WorldWideScience

Sample records for relationship sar analysis

  1. Spaceborne Differential SAR Interferometry: Data Analysis Tools for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Michele Crosetto

    2011-02-01

    Full Text Available This paper is focused on spaceborne Differential Interferometric SAR (DInSAR for land deformation measurement and monitoring. In the last two decades several DInSAR data analysis procedures have been proposed. The objective of this paper is to describe the DInSAR data processing and analysis tools developed at the Institute of Geomatics in almost ten years of research activities. Four main DInSAR analysis procedures are described, which range from the standard DInSAR analysis based on a single interferogram to more advanced Persistent Scatterer Interferometry (PSI approaches. These different procedures guarantee a sufficient flexibility in DInSAR data processing. In order to provide a technical insight into these analysis procedures, a whole section discusses their main data processing and analysis steps, especially those needed in PSI analyses. A specific section is devoted to the core of our PSI analysis tools: the so-called 2+1D phase unwrapping procedure, which couples a 2D phase unwrapping, performed interferogram-wise, with a kind of 1D phase unwrapping along time, performed pixel-wise. In the last part of the paper, some examples of DInSAR results are discussed, which were derived by standard DInSAR or PSI analyses. Most of these results were derived from X-band SAR data coming from the TerraSAR-X and CosmoSkyMed sensors.

  2. TerraSAR-X InSAR multipass analysis on Venice, Italy)

    Science.gov (United States)

    Nitti, D. O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M. T.; Guerriero, L.

    2009-09-01

    The TerraSAR-X (copyright) mission, launched in 2007, carries a new X-band Synthetic Aperture Radar (SAR) sensor optimally suited for SAR interferometry (InSAR), thus allowing very promising application of InSAR techniques for the risk assessment on areas with hydrogeological instability and especially for multi-temporal analysis, such as Persistent Scatterer Interferometry (PSI) techniques, originally developed at Politecnico di Milano. The SPINUA (Stable Point INterferometry over Unurbanised Areas) technique is a PSI processing methodology which has originally been developed with the aim of detection and monitoring of coherent PS targets in non or scarcely-urbanized areas. The main goal of the present work is to describe successful applications of the SPINUA PSI technique in processing X-band data. Venice has been selected as test site since it is in favorable settings for PSI investigations (urban area containing many potential coherent targets such as buildings) and in view of the availability of a long temporal series of TerraSAR-X stripmap acquisitions (27 scenes in all). The Venice Lagoon is affected by land sinking phenomena, whose origins are both natural and man-induced. The subsidence of Venice has been intensively studied for decades by determining land displacements through traditional monitoring techniques (leveling and GPS) and, recently, by processing stacks of ERS/ENVISAT SAR data. The present work is focused on an independent assessment of application of PSI techniques to TerraSAR-X stripmap data for monitoring the stability of the Venice area. Thanks to its orbital repeat cycle of only 11 days, less than a third of ERS/ENVISAT C-band missions, the maximum displacement rate that can be unambiguously detected along the Line-of-Sight (LOS) with TerraSAR-X SAR data through PSI techniques is expected to be about twice the corresponding value of ESA C-band missions, being directly proportional to the sensor wavelength and inversely proportional to the

  3. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude

    2005-12-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  4. Localized landslide risk assessment with multi pass L band DInSAR analysis

    Science.gov (United States)

    Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo

    2014-05-01

    In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error

  5. Natural phenomena risk analysis - an approach for the tritium facilities 5480.23 SAR natural phenomena hazards accident analysis

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Joshi, J.R.; Long, T.A.; Taylor, R.P.

    1997-01-01

    A Tritium Facilities (TF) Safety Analysis Report (SAR) has been developed which is compliant with DOE Order 5480.23. The 5480.23 SAR upgrades and integrates the safety documentation for the TF into a single SAR for all of the tritium processing buildings. As part of the TF SAR effort, natural phenomena hazards (NPH) were analyzed. A cost effective strategy was developed using a team approach to take advantage of limited resources and budgets. During development of the Hazard and Accident Analysis for the 5480.23 SAR, a strategy was required to allow maximum use of existing analysis and to develop a cost effective graded approach for any new analysis in identifying and analyzing the bounding accidents for the TF. This approach was used to effectively identify and analyze NPH for the TF. The first part of the strategy consisted of evaluating the current SAR for the RTF to determine what NPH analysis could be used in the new combined 5480.23 SAR. The second part was to develop a method for identifying and analyzing NPH events for the older facilities which took advantage of engineering judgment, was cost effective, and followed a graded approach. The second part was especially challenging because of the lack of documented existing analysis considered adequate for the 5480.23 SAR and a limited budget for SAR development and preparation. This paper addresses the strategy for the older facilities

  6. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  7. An econometric analysis of SARS and Avian flu on international tourist arrivals to Asia

    NARCIS (Netherlands)

    M.J. McAleer (Michael); B-W. Huang (Bing-Wen); H-I. Kuo (Hsiao-I); C-C. Chen (Chi-Chung); C-L. Chang (Chia-Lin)

    2008-01-01

    textabstractThis paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is

  8. Phase correction and error estimation in InSAR time series analysis

    Science.gov (United States)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same

  9. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  10. Combining pharmacophore fingerprints and PLS-discriminant analysis for virtual screening and SAR elucidation

    DEFF Research Database (Denmark)

    Askjær, Sune; Langgård, Morten

    2008-01-01

    The criterion of success for the initial stages of a ligand-based drug-discovery project is dual. First, a set of suitable lead compounds has to be identified. Second, a level of a preliminary structure-activity relationship (SAR) of the identified ligands has to be established in order to guide ...... by the protein-binding site known from X-ray complexes. The result of this analysis assists in explaining the efficiency of 2D pharmacophore fingerprints as descriptors in virtual screening....... the lead optimization toward a final drug candidate. This paper presents a combined approach to solving these two problems of ligand-based virtual screening and elucidation of SAR based on interplay between pharmacophore fingerprints and interpretation of PLS-discriminant analysis (PLS-DA) models....... The virtual screening capability of the PLS-DA method is compared to group fusion maximum similarity searching in a test using four graph-based pharmacophore fingerprints over a range of 10 diverse targets. The PLS-DA method was generally found to do better than the Smax method. The GpiDAPH3 and PCH...

  11. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  12. Exploring cloud and big data components for SAR archiving and analysis

    Science.gov (United States)

    Baker, S.; Crosby, C. J.; Meertens, C.; Phillips, D.

    2017-12-01

    Under the Geodesy Advancing Geoscience and EarthScope (GAGE) NSF Cooperative Agreement, UNAVCO has seen the volume of the SAR Data Archive grow at a substantial rate, from 2 TB in Y1 and 5 TB in Y2 to 41 TB in Y3 primarily due to WInSAR PI proposal management of ALOS-­2/JAXA (Japan Aerospace Exploration Agency) data and to a lesser extent Supersites and other data collections. JAXA provides a fixed number of scenes per year for each PI, and some data files are 50­-60GB each, which accounts for the large volume of data. In total, over 100TB of SAR data are in the WInSAR/UNAVCO archive and a large portion of these are available unrestricted for WInSAR members. In addition to the existing data, newer data streams from the Sentinel-1 and NISAR missions will require efficient processing pipelines and easily scalable infrastructure to handle processed results. With these growing data sizes and space concerns, the SAR archive operations migrated to the Texas Advanced Computing Center (TACC) via an NSF XSEDE proposal in spring 2017. Data are stored on an HPC system while data operations are running on Jetstream virtual machines within the same datacenter. In addition to the production data operations, testing was done in early 2017 with container based InSAR processing analysis using JupyterHub and Docker images deployed on a VM cluster on Jetstream. The JupyterHub environment is well suited for short courses and other training opportunities for the community such as labs for university courses on InSAR. UNAVCO is also exploring new processing methodologies using DC/OS (the datacenter operating system) for batch and stream processing workflows and time series analysis with Big Data open source components like the Spark, Mesos, Akka, Cassandra, Kafka (SMACK) stack. The comparison of the different methodologies will provide insight into the pros and cons for each and help the SAR community with decisions about infrastructure and software requirements to meet their research

  13. Image based SAR product simulation for analysis

    Science.gov (United States)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  14. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  15. SAR Image Classification Based on Its Texture Features

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; FANG Shenghui

    2003-01-01

    SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation.It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.

  16. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  17. Statistical characterisation of COSMO Sky-Med X-SAR retrieved precipitation fields by scale-invariance analysis

    Science.gov (United States)

    Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta

    2013-04-01

    COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.

  18. Forest Analysis by Single-Pass Millimeterwave SAR Tomography

    OpenAIRE

    Schmitt, Michael; Zhu, Xiao Xiang

    2016-01-01

    Recent investigations show that millimeterwave SAR tomography provides an interesting means for the analysis of forested areas, especially if single-pass systems are employed. Providing very high resolutions in the decimeter domain and highly coherent data also for slightly windy conditions, even individual trees can be considered. Besides, it has been shown that a certain amount of canopy penetration is possible in spite of the short wavelength.

  19. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  20. Unsupervised DInSAR processing chain for multi-scale displacement analysis

    Science.gov (United States)

    Casu, Francesco; Manunta, Michele

    2016-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images

  1. Bryan Mound InSAR Analysis U.S. Strategic petroleum Reserve.

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Anna C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    The U.S. Strategic Petroleum Reserve (SPR) is a stockpile of emergency crude oil to be tapped into if a disruption in the nation's oil supply occurs. The SPR is comprised of four salt dome sites. Subsidence surveys have been conducted either annually or biennially at all four sites over the life of the program. Monitoring of surface behavior is a first line defense to detecting possible subsurface cavern integrity issues. Over the life of the Bryan Mound site, subsidence rates over abandoned Cavern 3 have continuously been the highest at the site. In an effort to try and understand the subsurface dynamics, specifically over Bryan Mound Cavern 3, historic interferometric synthetic aperture radar (InSAR) data was acquired and processed by TRE Altamira. InSAR involves the processing of multiple satellite synthetic aperture radar scenes acquired across the same location of the Earth's surface at different times to map surface deformation. The analysis of the data has the ability to detect millimeters of motion spanning days, months, year and decades, across specific sites. The intent in regards to the Bryan Mound site was (1) to confirm the higher subsidence rates recorded over abandoned Cavern 3 indicated by land survey and (2) understand the regional surface behavior. This report describes the InSAR analysis results, how those results compare to the historical collection of land survey data, and what additional information the data has provided towards understanding the response recorded at the surface.

  2. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.

    Science.gov (United States)

    Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  3. Studies on Synthesis and Structure-Activity Relationship (SAR of Derivatives of a New Natural Product from Marine Fungi as Inhibitors of Influenza Virus Neuraminidase

    Directory of Open Access Journals (Sweden)

    Yongcheng Lin

    2011-10-01

    Full Text Available Based on the natural isoprenyl phenyl ether from a mangrove-derived fungus, 32 analogues were synthesized and evaluated for inhibitory activity against influenza H1N1 neuraminidase. Compound 15 (3-(allyloxy-4-hydroxybenzaldehyde exhibited the most potent inhibitory activity, with IC50 values of 26.96 μM for A/GuangdongSB/01/2009 (H1N1, 27.73 μM for A/Guangdong/03/2009 (H1N1, and 25.13 μM for A/Guangdong/05/2009 (H1N1, respectively, which is stronger than the benzoic acid derivatives (~mM level. These are a new kind of non-nitrogenous aromatic ether Neuraminidase (NA inhibitors. Their structures are simple and the synthesis routes are not complex. The structure-activity relationship (SAR analysis revealed that the aryl aldehyde and unsubstituted hydroxyl were important to NA inhibitory activities. Molecular docking studies were carried out to explain the SAR of the compounds, and provided valuable information for further structure modification.

  4. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  5. Combined DEM Extration Method from StereoSAR and InSAR

    Science.gov (United States)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  6. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China

    Directory of Open Access Journals (Sweden)

    Chunxiang Cao

    2016-01-01

    Full Text Available Severe acute respiratory syndrome (SARS is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  7. Use of SAR data for proliferation monitoring

    International Nuclear Information System (INIS)

    Lafitte, M.; Robin, J.P.

    2013-01-01

    Synthetic Aperture Radar (SAR) is an active and coherent system. SAR images are complex data which contain both amplitude and phase information. The analysis of single SAR data required a very good experience and a good understanding of SAR geometry regarding layover, shadowing, texture and speckle. Image analyst can depicts and describes most of the facilities related to nuclear proliferation and weapons of mass destruction (WMD). The Amplitude Change Detection (ACD) technique consists of a combination of two or three SAR amplitude data acquired with similar orbit and frequency parameters on different dates. That technique provides a very good overview of the changes and particularly regarding vehicles activity and constructions ongoing within the area of interest over the monitoring period. One of the particularities of the SAR systems is to be coherent. The phase of a single image is not exploitable. Thus when two or more SAR data have been acquired with identical orbit and frequency parameters, the phases shift are indicators of changes such as structural changes, terrain subsidence or motion. The Multi-Temporal Coherence (MTC) product merged the two type of information previously detailed: the ACD and coherence analysis. It consists of the combination of two amplitude images and the corresponding coherence computed image. The MTC image may highlights changes between two states of a target which on the ACD analysis appeared unchanged. EUSC uses the difference interferometry techniques in order to estimate volumes that have changed between two acquisition dates. The paper is followed by the slides of the presentation. (A.C.)

  8. The Danish (Q)SAR Database Update Project

    DEFF Research Database (Denmark)

    Nikolov, Nikolai Georgiev; Dybdahl, Marianne; Abildgaard Rosenberg, Sine

    2013-01-01

    The Danish (Q)SAR Database is a collection of predictions from quantitative structure–activity relationship ((Q)SAR) models for over 70 environmental and human health-related endpoints (covering biodegradation, metabolism, allergy, irritation, endocrine disruption, teratogenicity, mutagenicity......, carcinogenicity and others), each of them available for 185,000 organic substances. The database has been available online since 2005 (http://qsar.food.dtu.dk). A major update project for the Danish (Q)SAR database is under way, with a new online release planned in the beginning of 2015. The updated version...... will contain more than 600,000 discrete organic structures and new, more precise predictions for all endpoints, derived by consensus algorithms from a number of state-of-the-art individual predictions. Copyright © 2013 Published by Elsevier Ireland Ltd....

  9. Spatiotemporal Characterization of Land Subsidence and Uplift (2009–2010 over Wuhan in Central China Revealed by TerraSAR-X InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Lin Bai

    2016-04-01

    Full Text Available The effects of ground deformation pose a significant geo-hazard to the environment and infrastructure in Wuhan, the most populous city in Central China, in the eastern Jianghan Plain at the intersection of the Yangtze and Han rivers. Prior to this study, however, rates and patterns of region-wide ground deformation in Wuhan were little known. Here we employ multi-temporal SAR interferometry to detect and characterize spatiotemporal variations of ground deformation in major metropolitan areas in Wuhan. A total of twelve TerraSAR-X images acquired during 2009–2010 are used in the InSAR time series analysis. InSAR-derived results are validated by levelling survey measurements and reveal a distinct subsidence pattern within six zones in major commercial and industrial areas, with a maximum subsidence rate up to −67.3 mm/year. A comparison analysis between subsiding patterns and urban developments as well as geological conditions suggests that land subsidence in Wuhan is mainly attributed to anthropogenic activities, natural compaction of soft soil, and karst dissolution of subsurface carbonate rocks. However, anthropogenic activities related to intensive municipal construction and industrial production have more significant impacts on the measured subsidence than natural factors. Moreover, remarkable signals of secular land uplift are found along both banks of the Yangtze River, especially along the southern bank, with deformation rates ranging mostly from +5 mm/year to +17.5 mm/year. A strong temporal correlation is highlighted between the detected displacement evolutions and the water level records of the Yangtze River, inferring that this previously unknown deformation phenomenon is likely related to seasonal fluctuations in water levels of the Yangtze River.

  10. On the use of Cloud Computing and Machine Learning for Large-Scale SAR Science Data Processing and Quality Assessment Analysi

    Science.gov (United States)

    Hua, H.

    2016-12-01

    Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The Advanced Rapid Imaging and Analysis (ARIA) project has proven capability to automate SAR data processing and analysis. Existing and upcoming SAR missions such as Sentinel-1A/B and NISAR are also expected to generate massive amounts of SAR data. This has brought to the forefront the need for analytical tools for SAR quality assessment (QA) on the large volumes of SAR data-a critical step before higher-level time series and velocity products can be reliably generated. Initially leveraging an advanced hybrid-cloud computing science data system for performing large-scale processing, machine learning approaches were augmented for automated analysis of various quality metrics. Machine learning-based user-training of features, cross-validation, prediction models were integrated into our cloud-based science data processing flow to enable large-scale and high-throughput QA analytics for enabling improvements to the production quality of geodetic data products.

  11. Accelerated Scientific InSAR Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Neva Ridge Technologies proposes to develop a suite of software tools for the analysis of SAR and InSAR data, focused on having a robust and adopted capability well...

  12. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  13. Nano(Q)SAR: Challenges, pitfalls and perspectives.

    Science.gov (United States)

    Tantra, Ratna; Oksel, Ceyda; Puzyn, Tomasz; Wang, Jian; Robinson, Kenneth N; Wang, Xue Z; Ma, Cai Y; Wilkins, Terry

    2015-01-01

    Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure-activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data.

  14. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  15. LANDSAT TM and SAR - ERS1 data for analysis of Vrancea seismic region

    International Nuclear Information System (INIS)

    Zoran, M.

    2002-01-01

    This paper is aimed to present the results of the application of LANDSAT TM and SAR- ERS1 satellite data for Vrancea seismic area investigation, in order to emphasize geomorphological features as well as to identify faulting zones responsible of seismic events generation. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Vrancea - Focsani is structurally and seismically complex area, bounded by latitudes 45.6 angle N and 46.0 angle N and longitudes 26.5 angle E and 27.5 angle E. The Peceneaga -Camena Fault, a deep crustal fracture with dextral slip, is considered to be North-Eastern boundary of the Moesian Platform. The Eastern unit of the Moesian Sub-Plate is characterized by a series of principal faults with a North-Western orientation and by a secondary system of faults orientated NE-SW. NW trending crustal fractures are also evidenced East of the Peceneaga-Camena Fault, within our test area. A SAR- ERS1 image and a multispectral Landsat TM data set were used and processed with EASI/PACE image processing software package as well as with developed algorithms. In order to a better management all the information available on the study area, data acquired have been integrated in a unique database. This information consists of thematic maps from cartography, land use map from classification of remotely sensed data. This study revealed that satellite data used are excellent for recognizing the continuity and regional relationships of faults. Linear features in TM images appear shorter and denser distributed, whereas ERS1 images are dominated by the principal structures. In certain cases they complete the lineaments and lineament patterns derived from TM data. Higher spatial resolution satellite data and SAR interferometric data are needed for mapping of these features. Remote sensing techniques provide a means for locating, identifying and mapping

  16. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    Science.gov (United States)

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  17. Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis

    Science.gov (United States)

    Kim, J. W.; Lu, Z.; QU, F.

    2014-12-01

    The landslide is a process that results in the downward and outward movement of slope-reshaping materials including rocks and soils and annually causes the loss of approximately $3.5 billion and tens of casualties in the United States. The 2014 Oso mudslide was an extreme event costing nearly 40 deaths and damaging civilian properties. Landslides are often unpredictable, but in many cases, catastrophic events are repetitive. Historic record in the Oso mudslide site indicates that there have been serial events in decades, though the extent of sliding events varied from time to time. In our study, the combination of multi-source DEMs, InSAR, and time-series InSAR analysis has enabled to characterize the Oso mudslide. InSAR results from ALOS PALSAR show that there was no significant deformation between mid-2006 and 2011. The combination of time-series InSAR analysis and old-dated DEM indicated revealed topographic changes associated the 2006 sliding event, which is confirmed by the difference of multiple LiDAR DEMs. Precipitation and discharge measurements before the 2006 and 2014 landslide events did not exhibit extremely anomalous records, suggesting the precipitation is not the controlling factor in determining the sliding events at Oso. The lack of surface deformation during 2006-2011 and weak correlation between the precipitation and the sliding event, suggest other factors (such as porosity) might play a critical role on the run-away events at this Oso and other similar landslides.

  18. Environmental Impact Assessment of Rosia Jiu Opencast Area Using AN Integrated SAR Analysis

    Science.gov (United States)

    Poenaru, V. D.; Negula, I. F. Dana; Badea, A.; Cuculici, R.

    2016-06-01

    The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR). The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.

  19. ENVIRONMENTAL IMPACT ASSESSMENT OF ROSIA JIU OPENCAST AREA USING AN INTEGRATED SAR ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. D. Poenaru

    2016-06-01

    Full Text Available The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR. The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.

  20. Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mingliang Gao

    2018-02-01

    Full Text Available Land subsidence is the disaster phenomenon of environmental geology with regionally surface altitude lowering caused by the natural or man-made factors. Beijing, the capital city of China, has suffered from land subsidence since the 1950s, and extreme groundwater extraction has led to subsidence rates of more than 100 mm/year. In this study, we employ two SAR datasets acquired by Envisat and TerraSAR-X satellites to investigate the surface deformation in Beijing Plain from 2003 to 2013 based on the multi-temporal InSAR technique. Furthermore, we also use observation wells to provide in situ hydraulic head levels to perform the evolution of land subsidence and spatial-temporal changes of groundwater level. Then, we analyze the accumulated displacement and hydraulic head level time series using continuous wavelet transform to separate periodic signal components. Finally, cross wavelet transform (XWT and wavelet transform coherence (WTC are implemented to analyze the relationship between the accumulated displacement and hydraulic head level time series. The results show that the subsidence centers in the northern Beijing Plain is spatially consistent with the groundwater drop funnels. According to the analysis of well based results located in different areas, the long-term groundwater exploitation in the northern subsidence area has led to the continuous decline of the water level, resulting in the inelastic and permanent compaction, while for the monitoring wells located outside the subsidence area, the subsidence time series show obvious elastic deformation characteristics (seasonal characteristics as the groundwater level changes. Moreover, according to the wavelet transformation, the land subsidence time series at monitoring well site lags several months behind the groundwater level change.

  1. Relationship between post-SARS osteonecrosis and PAI-1 4G/5G gene polymorphisms.

    Science.gov (United States)

    Sun, Wei; Li, Zirong; Shi, Zhengcai; Wang, Bailiang; Gao, Fuqiang; Yang, Yurun; Guo, Wanshou

    2014-05-01

    To explore the correlation between post-severe acute respiratory symptom (SARS) patients with osteonecrosis, investigate the etiology of post-SARS osteonecrosis and select the sensitive molecular symbols for early diagnosis and distinguish the high-risk population. The studied subjects were divided into two groups. Sixty-two post-SARS patients with osteonecrosis were one group, and 52 age- and sex-matched healthy people were as normal controlled group. Empty stomach blood samples from cubital veins were collected from both groups. Plasminogen activator inhibitor (PAI) by means of enzyme-linked immunosorbent assay and PAI-1 4G/5G polymorphism was detected by polymerase chain reaction and solid phase oligonucleotide assay. The blood agents of post-SARS patients changed obviously with 15.64 ± 13.85 U/ml while the control group 7.96 ± 4.27 U/ml; 4G/4G genotype for the PAI-1 polymorphism detected in post-SARS group was more than that of the control group, but had no statistical significance. The plasma PAI activity was related to homozygote 4G/4G genotype. This reveals that homozygote 4G/4G genotype may be a susceptible gene mark to Chinese osteonecrosis patients. Plasminogen activator inhibitor-1 is sensitive blood symbol for screening high-risk susceptible population; 4G/4G PAI-1 genotype may be an etiological factor in osteonecrosis.

  2. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  3. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon; Hanssen, Ramon F.

    2014-01-01

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  4. Bioinformatics analysis of SARS coronavirus genome polymorphism

    Directory of Open Access Journals (Sweden)

    Pavlović-Lažetić Gordana M

    2004-05-01

    Full Text Available Abstract Background We have compared 38 isolates of the SARS-CoV complete genome. The main goal was twofold: first, to analyze and compare nucleotide sequences and to identify positions of single nucleotide polymorphism (SNP, insertions and deletions, and second, to group them according to sequence similarity, eventually pointing to phylogeny of SARS-CoV isolates. The comparison is based on genome polymorphism such as insertions or deletions and the number and positions of SNPs. Results The nucleotide structure of all 38 isolates is presented. Based on insertions and deletions and dissimilarity due to SNPs, the dataset of all the isolates has been qualitatively classified into three groups each having their own subgroups. These are the A-group with "regular" isolates (no insertions / deletions except for 5' and 3' ends, the B-group of isolates with "long insertions", and the C-group of isolates with "many individual" insertions and deletions. The isolate with the smallest average number of SNPs, compared to other isolates, has been identified (TWH. The density distribution of SNPs, insertions and deletions for each group or subgroup, as well as cumulatively for all the isolates is also presented, along with the gene map for TWH. Since individual SNPs may have occurred at random, positions corresponding to multiple SNPs (occurring in two or more isolates are identified and presented. This result revises some previous results of a similar type. Amino acid changes caused by multiple SNPs are also identified (for the annotated sequences, as well as presupposed amino acid changes for non-annotated ones. Exact SNP positions for the isolates in each group or subgroup are presented. Finally, a phylogenetic tree for the SARS-CoV isolates has been produced using the CLUSTALW program, showing high compatibility with former qualitative classification. Conclusions The comparative study of SARS-CoV isolates provides essential information for genome

  5. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2007-06-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  6. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2006-12-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval of timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp. done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  7. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  8. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  9. A neural network detection model of spilled oil based on the texture analysis of SAR image

    Science.gov (United States)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  10. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  11. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  12. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  13. The experience of SARS-related stigma at Amoy Gardens.

    Science.gov (United States)

    Lee, Sing; Chan, Lydia Y Y; Chau, Annie M Y; Kwok, Kathleen P S; Kleinman, Arthur

    2005-11-01

    Severe Acute Respiratory Syndrome (SARS) possesses characteristics that render it particularly prone to stigmatization. SARS-related stigma, despite its salience for public health and stigma research, has had little examination. This study combines survey and case study methods to examine subjective stigma among residents of Amoy Gardens (AG), the first officially recognized site of community outbreak of SARS in Hong Kong. A total of 903 residents of AG completed a self-report questionnaire derived from two focus groups conducted toward the end of the 3-month outbreak. Case studies of two residents who lived in Block E, the heart of the SARS epidemic at AG, complement the survey data. Findings show that stigma affected most residents and took various forms of being shunned, insulted, marginalized, and rejected in the domains of work, interpersonal relationships, use of services and schooling. Stigma was also associated with psychosomatic distress. Residents' strategies for diminishing stigma varied with gender, age, education, occupation, and proximity to perceived risk factors for SARS such as residential location, previous SARS infection and the presence of ex-SARS household members. Residents attributed stigma to government mismanagement, contagiousness of the mysterious SARS virus, and alarmist media reporting. Stigma clearly decreased, but never completely disappeared, after the outbreak. The findings confirm and add to existing knowledge on the varied origins, correlates, and impacts of stigma. They also highlight the synergistic roles of inconsistent health policy responses and risk miscommunication by the media in rapidly amplifying stigma toward an unfamiliar illness. While recognizing the intrinsically stigmatizing nature of public health measures to control SARS, we recommend that a consistent inter-sectoral approach is needed to minimize stigma and to make an effective health response to future outbreaks.

  14. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  15. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  16. SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.

    Science.gov (United States)

    Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen

    2012-07-23

    We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.

  17. Analysis on Vertical Scattering Signatures in Forestry with PolInSAR

    Science.gov (United States)

    Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen

    2014-11-01

    We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.

  18. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  19. InSAR Reveals Land Deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data

    Directory of Open Access Journals (Sweden)

    Alex Hay-Man Ng

    2018-05-01

    Full Text Available Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR, we found that significant surface displacement rates occurred in the study area varying from −35 mm/year (subsidence to 10 mm/year (uplift. The 2011–2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011–2013, and 2013–2017. Our CSK TS-InSAR results are in broad agreement with previous ENVISAT results and levelling data, strengthening our conclusion that localised subsidence phenomena occurs at different locations in Guangzhou and Foshan. A comparison between temporal and spatial patterns of deformations from our TS-InSAR measurements and different land use types in Guangzhou shows that there is no clear relationship between them. Many local scale deformation zones have been identified related to different phenomena. The majority of deformations is related to excessive groundwater extraction for agricultural and industrial purposes but subsidence in areas of subway construction also occurred. Furthermore, a detailed analysis on the sinkhole collapse in early 2018 has been conducted, suggesting that surface loading may be a controlling factor of the subsidence, especially along the road and highway. Roads and highways with similar subsidence phenomenon are identified. Continuous monitoring of the deforming areas identified by our analysis is important to measure the magnitude and spatial pattern of the evolving deformations in order to minimise the risk and hazards of land subsidence.

  20. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  1. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  2. Tomographic SAR analysis of subsurface ice structure in Greenland: first results

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2013-01-01

    structure with P-band SAR tomography. First results from ESA IceSAR 2012 campaign carried out in south-west Greenland are presented. It is found that significant penetration in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different type...

  3. Analysis of the effect of mobile phone base station antenna loading on localized SAR and its consequences for measurements.

    Science.gov (United States)

    Hansson, Björn; Thors, Björn; Törnevik, Christer

    2011-12-01

    In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.

  4. SARS - Diagnosis

    Indian Academy of Sciences (India)

    SARS - Diagnosis. Mainly by exclusion of known causes of atypical pneumonia; * X ray Chest; * PCR on body fluids- primers defined by WHO centres available from website.-ve result does not exclude SARS. * Sequencing of amplicons; * Viral Cultures – demanding; * Antibody tests.

  5. Preparation of safety analysis reports (SARs) for near surface radioactive waste disposal facilities. Format and content of SARs

    International Nuclear Information System (INIS)

    1995-02-01

    All facilities at which radioactive wastes are processed, stored and disposed of have the potential for causing hazards to humans and to the environment. Precautions must be taken in the siting, design and operation of the facilities to ensure that an adequate level of safety is achieved. The processes by which this is evaluated is called safety assessment. An important part of safety assessment is the documentation of the process. A well prepared safety analysis report (SAR) is essential if approval of the facility is to be obtained from the regulatory authorities. This TECDOC describes the format and content of a safety analysis report for a near surface radioactive waste disposal facility and will serve essentially as a checklist in this respect

  6. SAR in human head model due to resonant wireless power transfer system.

    Science.gov (United States)

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  7. A Study on PolInSAR Coherence Based Regression Analysis of Forest Biomass (BARKOT Reserve Forest India), Using RADARSAT-2 Datasets

    Science.gov (United States)

    Singh, J.; Kumar, S.; Kushwaha, S. P. S.

    2015-04-01

    Forests cover 30% of the world's land surface, and are home to around 90% of the world's flora and fauna. They serve as one of the world's largest carbon sinks, absorbing 2.4 million tons of CO2 each year and storing billions more in form of biomass. Around 6 million hectares of forest is lost or changed each year and as much as a fifth of global emissions are estimated to come from deforestation. Hence accurate estimation of forest biophysical variables is necessary as it is a key parameter in determination of forest inventories, vegetation modeling and global carbon cycle. SAR Remote sensing technique is capable of providing accurate and reliable information about forest parameters. The present work aims to explore the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolinSAR) technique for developing a relationship between complex coherence and forest aboveground biomass (t/ha). In order to attain our objective Radarsat-2 satellite interferometric pair of 4th March 2013(master image) and 28th March 2013(slave image) were acquired for Barkot Reserve Forest, Dehradun, India. Field inventory was done for 30 plots (31.62m x 31.62m) and tree height and stem diameter were procured for each plot which were later utilized in calculation of aboveground biomass(AGB).Work emphasizes on the application of PolinSAR coherence instead of using SAR backscatter which saturates after a certain value of biomass content. Complex coherence values for different polarization channels were computed with the help of polarimetric interferometric coherence matrix. Retrieved complex coherences were investigated individually and then regression analysis was carried with the field estimated aboveground biomass. R2 value of HV+VH complex coherence component was found to be relatively higher than other polarization channel components

  8. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  9. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...

  10. Molecular Descriptors Family on Structure Activity Relationships 3. Antituberculotic Activity of some Polyhydroxyxanthones

    Directory of Open Access Journals (Sweden)

    Sorana BOLBOACĂ

    2005-06-01

    Full Text Available The antituberculotic activity of some polyhydroxyxanthones was estimated using the Molecular Descriptors Family on Structure Activity Relationships methodology. From a total number of 298110 real and distinct calculated descriptors, 94843 were significantly different and entered into multiple linear regression analysis. The best performing bi-varied model was obtained by use of all polyhydroxyxanthones. The MDF SAR model was validated splitting the molecules into training and test sets. A correlated correlations analysis was applied in other to compare the MDF SAR models with the previous SAR model. The prediction ability of antituberculotic activity of polyhydroxyxanthones with MDF SAR methodology is sustained by three arguments: leave-one-out procedure, training vs. test procedure, and the correlated correlations analysis. Looking at the bi-varied MDF SAR model, we can conclude that the antituberculotic activity of polyhydroxyxanthones is almost of geometrical nature (99% and is strongly dependent on partial atomic charge and group electronegativity.

  11. Risk factors for chronic post-traumatic stress disorder (PTSD) in SARS survivors.

    Science.gov (United States)

    Mak, Ivan Wing Chit; Chu, Chung Ming; Pan, Pey Chyou; Yiu, Michael Gar Chung; Ho, Suzanne C; Chan, Veronica Lee

    2010-01-01

    Post-traumatic stress disorder (PTSD) is one of the most prevalent long-term psychiatric diagnoses among survivors of severe acute respiratory syndrome (SARS). The objective of this study was to identify the predictors of chronic PTSD in SARS survivors. PTSD at 30 months after the SARS outbreak was assessed by the Structured Clinical Interview for the DSM-IV. Survivors' demographic data, medical information and psychosocial variables were collected for risk factor analysis. Multivariate logistic regression analysis showed that female gender as well as the presence of chronic medical illnesses diagnosed before the onset of SARS and avascular necrosis were independent predictors of PTSD at 30 months post-SARS. Associated factors included higher-chance external locus of control, higher functional disability and higher average pain intensity. The study of PTSD at 30 months post-SARS showed that the predictive value of acute medical variables may fade out. Our findings do not support some prior hypotheses that the use of high dose corticosteroids is protective against the development of PTSD. On the contrary, the adversity both before and after the SARS outbreak may be more important in hindering recovery from PTSD. The risk factor analysis can not only improve the detection of hidden psychiatric complications but also provide insight for the possible model of care delivery for the SARS survivors. With the complex interaction of the biopsychosocial challenges of SARS, an integrated multidisciplinary clinic setting may be a superior approach in the long-term management of complicated PTSD cases. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  13. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data

    Science.gov (United States)

    Koppe, Wolfgang; Gnyp, Martin L.; Hütt, Christoph; Yao, Yinkun; Miao, Yuxin; Chen, Xinping; Bareth, Georg

    2013-04-01

    This study assesses the use of TerraSAR-X data for monitoring rice cultivation in the Sanjiang Plain in Heilongjiang Province, Northeast China. The main objective is the understanding of the coherent co-polarized X-band backscattering signature of rice at different phenological stages in order to retrieve growth status. For this, multi-temporal dual polarimetric TerraSAR-X High Resolution SpotLight data (HH/VV) as well as single polarized StripMap (VV) data were acquired over the test site. In conjunction with the satellite data acquisition, a ground truth field campaign was carried out. The backscattering coefficients at HH and VV of the observed fields were extracted on the different dates and analysed as a function of rice phenology to provide a physical interpretation for the co-polarized backscatter response in a temporal and spatial manner. Then, a correlation analysis was carried out between TerraSAR-X backscattering signal and rice biomass of stem, leaf and head to evaluate the relationship with different vertical layers within the rice vegetation. HH and VV signatures show two phases of backscatter increase, one at the beginning up to 46 days after transplanting and a second one from 80 days after transplanting onwards. The first increase is related to increasing double bounce reflection from the surface-stem interaction. Then, a decreasing trend of both polarizations can be observed due to signal attenuation by increasing leaf density. A second slight increase is observed during senescence. Correlation analysis showed a significant relationship with different vertical layers at different phenological stages which prove the physical interpretation of X-band backscatter of rice. The seasonal backscatter coefficient showed that X-band is highly sensitive to changes in size, orientation and density of the dominant elements in the upper canopy.

  14. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  15. The integration of Human Factors (HF) in the SAR process training course text

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR

  16. The integration of Human Factors (HF) in the SAR process training course text

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR.

  17. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Ciampalini, Andrea; Solari, Lorenzo; Frodella, William; Bellotti, Fernando; Fumagalli, Alfio; De Rosa, Giuseppe; Casagli, Nicola

    2018-01-01

    Stromboli (Aeolian Archipelago, Italy) is an active volcano that is frequently affected by moderate to large mass wasting, which has occasionally triggered tsunamis. With the aim of understanding the relationship between the geomorphologic evolution and slope instability of Stromboli, remote sensing information from space-born Synthetic Aperture Radar (SAR) change detection and interferometry (InSAR) () and Ground Based InSAR (GBInSAR) was compared with field observations and morphological analyses. Ground reflectivity and SqueeSAR™ (an InSAR algorithm for surface deformation monitoring) displacement measurements from X-band COSMO-SkyMed satellites (CSK) were analysed together with displacement measurements from a permanent-sited, Ku-band GBInSAR system. Remote sensing results were compared with a preliminary morphological analysis of the Sciara del Fuoco (SdF) steep volcanic flank, which was carried out using a high-resolution Digital Elevation Model (DEM). Finally, field observations, supported by infrared thermographic surveys (IRT), allowed the interpretation and validation of remote sensing data. The analysis of the entire dataset (collected between January 2010 and December 2014) covers a period characterized by a low intensity of Strombolian activity. This period was punctuated by the occurrence of lava overflows, occurring from the crater terrace evolving downslope toward SdF, and flank eruptions, such as the 2014 event. The amplitude of the CSK images collected between February 22nd, 2010, and December 18th, 2014, highlights that during periods characterized by low-intensity Strombolian activity, the production of materials ejected from the crater terrace towards the SdF is generally low, and erosion is the prevailing process mainly affecting the central sector of the SdF. CSK-SqueeSAR™ and GBInSAR data allowed the identification of low displacements in the SdF, except for high displacement rates (up to 1.5 mm/h) that were measured following both lava

  18. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  19. Tropical forest plantation biomass estimation using RADARSAT-SAR and TM data of south china

    Science.gov (United States)

    Wang, Chenli; Niu, Zheng; Gu, Xiaoping; Guo, Zhixing; Cong, Pifu

    2005-10-01

    Forest biomass is one of the most important parameters for global carbon stock model yet can only be estimated with great uncertainties. Remote sensing, especially SAR data can offers the possibility of providing relatively accurate forest biomass estimations at a lower cost than inventory in study tropical forest. The goal of this research was to compare the sensitivity of forest biomass to Landsat TM and RADARSAT-SAR data and to assess the efficiency of NDVI, EVI and other vegetation indices in study forest biomass based on the field survey date and GIS in south china. Based on vegetation indices and factor analysis, multiple regression and neural networks were developed for biomass estimation for each species of the plantation. For each species, the better relationships between the biomass predicted and that measured from field survey was obtained with a neural network developed for the species. The relationship between predicted and measured biomass derived from vegetation indices differed between species. This study concludes that single band and many vegetation indices are weakly correlated with selected forest biomass. RADARSAT-SAR Backscatter coefficient has a relatively good logarithmic correlation with forest biomass, but neither TM spectral bands nor vegetation indices alone are sufficient to establish an efficient model for biomass estimation due to the saturation of bands and vegetation indices, multiple regression models that consist of spectral and environment variables improve biomass estimation performance. Comparing with TM, a relatively well estimation result can be achieved by RADARSAT-SAR, but all had limitations in tropical forest biomass estimation. The estimation results obtained are not accurate enough for forest management purposes at the forest stand level. However, the approximate volume estimates derived by the method can be useful in areas where no other forest information is available. Therefore, this paper provides a better

  20. Keynote presentation : SAR systems

    NARCIS (Netherlands)

    Halsema, D. van; Otten, M.P.G.; Maas, A.P.M.; Bolt, R.J.; Anitori, L.

    2011-01-01

    Synthetic Aperture Radar (SAR) systems are becoming increasingly important sensors in as well the military environment as in the civilian market. In this keynote presentation an overview will be given over more than 2 decades of SAR system∼ and SAR application development at TNO in the Netherlands.

  1. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  2. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  3. Improving the applicability of (Q)SARs for percutaneous penetration in regulatory risk assessment.

    NARCIS (Netherlands)

    Bouwman, T.; Cronin, M.T.; Bessems, J.G.; Sandt, J.J. van de

    2008-01-01

    The new regulatory framework REACH (Registration, Evaluation, and Authorisation of Chemicals) foresees the use of non-testing approaches, such as read-across, chemical categories, structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs). Although information

  4. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.

    Science.gov (United States)

    Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T

    2018-04-27

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  5. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Fabio Bovenga

    2018-04-01

    Full Text Available Multi-temporal InSAR (MTI applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  6. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  7. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-02-01

    Full Text Available By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  8. Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval

    Science.gov (United States)

    Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn

    2016-05-01

    Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of

  9. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  10. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study

    Directory of Open Access Journals (Sweden)

    Yu Shun-Zhang

    2003-11-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS has claimed 349 lives with 5,327 probable cases reported in mainland China since November 2002. SARS case fatality has varied across geographical areas, which might be partially explained by air pollution level. Methods Publicly accessible data on SARS morbidity and mortality were utilized in the data analysis. Air pollution was evaluated by air pollution index (API derived from the concentrations of particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide and ground-level ozone. Ecologic analysis was conducted to explore the association and correlation between air pollution and SARS case fatality via model fitting. Partially ecologic studies were performed to assess the effects of long-term and short-term exposures on the risk of dying from SARS. Results Ecologic analysis conducted among 5 regions with 100 or more SARS cases showed that case fatality rate increased with the increment of API (case fatality = - 0.063 + 0.001 * API. Partially ecologic study based on short-term exposure demonstrated that SARS patients from regions with moderate APIs had an 84% increased risk of dying from SARS compared to those from regions with low APIs (RR = 1.84, 95% CI: 1.41–2.40. Similarly, SARS patients from regions with high APIs were twice as likely to die from SARS compared to those from regions with low APIs. (RR = 2.18, 95% CI: 1.31–3.65. Partially ecologic analysis based on long-term exposure to ambient air pollution showed the similar association. Conclusion Our studies demonstrated a positive association between air pollution and SARS case fatality in Chinese population by utilizing publicly accessible data on SARS statistics and air pollution indices. Although ecologic fallacy and uncontrolled confounding effect might have biased the results, the possibility of a detrimental effect of air pollution on the prognosis of SARS patients deserves further investigation.

  11. The Seamless SAR Archive (SSARA) Project and Other SAR Activities at UNAVCO

    Science.gov (United States)

    Baker, S.; Crosby, C. J.; Meertens, C. M.; Fielding, E. J.; Bryson, G.; Buechler, B.; Nicoll, J.; Baru, C.

    2014-12-01

    The seamless synthetic aperture radar archive (SSARA) implements a seamless distributed access system for SAR data and derived data products (i.e. interferograms). SSARA provides a unified application programming interface (API) for SAR data search and results at the Alaska Satellite Facility and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives. Interest from the international community has prompted an effort to incorporate ESA's Virtual Archive 4 Geohazard Supersites and Natural Laboratories (GSNL) collections and other archives into the federated query service. SSARA also provides Digital Elevation Model access for topographic correction via a simple web service through OpenTopography and tropospheric correction products through JPL's OSCAR service. Additionally, UNAVCO provides data storage capabilities for WInSAR PIs with approved TerraSAR-X and ALOS-2 proposals which allows easier distribution to US collaborators on associated proposals and facilitates data access through the SSARA web services. Further work is underway to incorporate federated data discovery for GSNL across SAR, GPS, and seismic datasets provided by web services from SSARA, GSAC, and COOPEUS.

  12. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  13. Spectral SAR Ecotoxicology of Ionic Liquids: The Daphnia magna Case

    International Nuclear Information System (INIS)

    Putz, M.V.; Lacrama, A.M.; Ostafe, V.; Lacrama, A.M.

    2007-01-01

    Aiming to provide a unified theory of ionic liquids eco toxicity, the recent spectral structure activity relationship (S-SAR) algorithm is employed for testing the two additive models of anionic-cationic interaction containing ionic liquid activity: the causal and the endpoint, |0+> and |1+> models, respectively. As a working system, the Daphnia magna eco toxicity was characterized through the formulated and applied spectral chemical-eco biological interaction principles. Specific anionic-cationic-ionic-liquid rules of interaction along the developed mechanistic hypersurface map of the main eco toxicity paths together with the so-called resonance limitation of the standard statistical correlation analysis were revealed.

  14. High-Level Performance Modeling of SAR Systems

    Science.gov (United States)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  15. The potential of targeted antibody prophylaxis in SARS outbreak control: a mathematic analysis

    NARCIS (Netherlands)

    Bogaards, Johannes Antonie; Putter, Hein; Jan Weverling, Gerrit; ter Meulen, Jan; Goudsmit, Jaap

    2007-01-01

    BACKGROUND: Severe acute respiratory syndrome (SARS) coronavirus-like viruses continue to circulate in animal reservoirs. If new mutants of SARS coronavirus do initiate another epidemic, administration of prophylactic antibodies to risk groups may supplement the stringent isolation procedures that

  16. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  17. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Wang Jianqing; Fujiwara, Osamu; Kodera, Sachiko; Watanabe, Soichi

    2006-01-01

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band

  18. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianqing [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Fujiwara, Osamu [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kodera, Sachiko [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Watanabe, Soichi [National Institute of Information and Communications Technology, Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2006-09-07

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band.

  19. Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia

    Directory of Open Access Journals (Sweden)

    Xiaojing Li

    2013-07-01

    Full Text Available Because of all-weather working ability, sensitivity to biomass and moisture, and high spatial resolution, Synthetic aperture radar (SAR satellite images can perfectly complement optical images for pasture monitoring. This paper aims to examine the potential of the integration of COnstellation of small Satellites for the Mediterranean basin Observasion (COSMO-SkyMed, Environmental Satellite Advanced Synthetic Aperture Radar (ENVISAT ASAR, and Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR radar signals at horizontally emitted and received polarization (HH for pasture monitoring at the paddock scale in order to guide farmers for better management. The pasture site is selected, in Otway, Victoria, Australia. The biomass, water content of grass, and soil moisture over this site were analyzed with these three bands of SAR images, through linear relationship between SAR backscattering coefficient, and vegetation indices Normalized Differential Vegetation Index (NDVI, Normalized Difference Water Index (NDWI, Enhanced Vegetation Index (EVI, together with soil moisture index (MI. NDVI, NDWI, and MI are considered as proxy of pasture biomass, plant water content, and soil moisture, respectively, and computed from optical images and climate data. SAR backscattering coefficient and vegetation indices are computed within a grass zone, defined by classification with MODIS data. The grass condition and grazing activities for specific paddocks are detectable, based on SAR backscatter, with all three wavelengths datasets. Both temporal and spatial analysis results show that the X-band SAR has the highest correlation to the vegetation indices. However, its accuracy can be affected by wet weather due to its sensitivity to the water on leaves. The C-band HH backscattering coefficient showed moderate reliability to evaluate biomass and water content of grass, with limited influence from rainfall in the dry season

  20. Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska

    Directory of Open Access Journals (Sweden)

    David B. McAlpin

    2016-12-01

    Full Text Available Deformation of pyroclastic flow deposits begins almost immediately after emplacement, and continues thereafter for months or years. This study analyzes the extent, volume, thickness, and variability in pyroclastic flow deposits (PFDs on Augustine Volcano from measuring their deformation rates with interferometric synthetic aperture radar (InSAR. To conduct this analysis, we obtained 48 SAR images of Augustine Volcano acquired between 1992 and 2010, spanning its most recent eruption in 2006. The data were processed using d-InSAR time-series analysis to measure the thickness of the Augustine PFDs, as well as their surface deformation behavior. Because much of the 2006 PFDs overlie those from the previous eruption in 1986, geophysical models were derived to decompose deformation contributions from the 1986 deposits underlying the measured 2006 deposits. To accomplish this, we introduce an inversion approach to estimate geophysical parameters for both 1986 and 2006 PFDs. Our analyses estimate the expanded volume of pyroclastic flow material deposited during the 2006 eruption to be 3.3 × 107 m3 ± 0.11 × 107 m3, and that PFDs in the northeastern part of Augustine Island reached a maximum thickness of ~31 m with a mean of ~5 m. Similarly, we estimate the expanded volume of PFDs from the 1986 eruption at 4.6 × 107 m3 ± 0.62 × 107 m3, with a maximum thickness of ~31 m, and a mean of ~7 m.

  1. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  2. Flood extent and water level estimation from SAR using data-model integration

    Science.gov (United States)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  3. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  4. Clinical and epidemiological predictors of transmission in Severe Acute Respiratory Syndrome (SARS

    Directory of Open Access Journals (Sweden)

    Leong Hoe

    2006-10-01

    Full Text Available Abstract Background Only a minority of probable SARS cases caused transmission. We assess if any epidemiological or clinical factors in SARS index patients were associated with increased probability of transmission. Methods We used epidemiological and clinical data on probable SARS patients admitted to Tan Tock Seng Hospital. Using a case-control approach, index patients who had probable SARS who subsequently transmitted the disease to at least one other patient were analysed as "cases" against patients with no transmission as "controls", using multivariate logistic regression analysis. Results 98 index patients were available for analysis (22 with transmission, 76 with no transmission. Covariates positively associated with transmission in univariate analysis at p 650 IU/L (OR 6.4, 23.8 and 4.7 respectively. Conclusion Clinical and epidemiological factors can help us to explain why transmission was observed in some instances but not in others.

  5. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Manabu Watanabe

    2010-01-01

    Full Text Available We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR σ∘ under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the σ∘ difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that σ∘ and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  6. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Shimada Masanobu

    2010-01-01

    Full Text Available Abstract We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  7. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory

    Directory of Open Access Journals (Sweden)

    Dongqing Peng

    2016-11-01

    Full Text Available Based on Time-Frequency (TF analysis and a-contrario theory, this paper presents a new approach for extraction of linear arranged power transmission tower series in Polarimetric Synthetic Aperture Radar (PolSAR images. Firstly, the PolSAR multidimensional information is analyzed using a linear TF decomposition approach. The stationarity of each pixel is assessed by testing the maximum likelihood ratio statistics of the coherency matrix. Then, based on the maximum likelihood log-ratio image, a Cell-Averaging Constant False Alarm Rate (CA-CFAR detector with Weibull clutter background and a post-processing operator is used to detect point-like targets in the image. Finally, a searching approach based on a-contrario theory is applied to extract the linear arranged targets from detected point-like targets. The experimental results on three sets of PolSAR data verify the effectiveness of this approach.

  8. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.

  9. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  10. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  11. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  12. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Science.gov (United States)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  13. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  14. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  15. MRI screening on bone ischemia of hip and knee in recovered SARS patients

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Qu Hui; Liu Wei; Sun Jing; Cheng Kebin; Feng Suchen; Li Xiaosong

    2004-01-01

    Objective: To screen ischemia in the hip and knee joints of recovered SARS patients with MRI, and to investigate the prevalence rate of bone ischemia in those patients and its relationship with the use of steroid. Methods: Hip and knee MRI examinations were performed in 76 recovered SARS patients. There were 17 males and 59 females. Eight patients were treated without steroid, while 68 patients with steroid. Dose and duration of steroid usage were available in 30 out of 68 patients. The MRI images were read by senior radiologists to determine whether bone ischemia and/or osteonecrosis was present. Appropriate statistic analysis was performed to determine the significance of difference between groups. Results: (1) The MRI appearance of osteonecrosis in femoral head and condyle and bone infarct in bone marrow found in SARS patients was identical to those caused by other conditions (including steroid usage in other diseases). (2) No one of 8 SARS without steroid developed osteonecrosis, while 25 out of 68 steroid users had osteonecrosis found by MRI screening, and the difference in prevalence of osteonecrosis between these 2 groups was significant. In 25 patients with osteonecrosis, 20 of them involved more than one joints. Osteonecrosis involved 32 femoral heads, 26 femoral condyles, and 6 in femoral and tibial shafts. Thirteen patients with osteonecrosis had greater total steroid dose, greater daily dose, and longer duration than those (17 patients) without osteonecrosis, however, the differences between the two groups were not statistically significant. Sixty-four patients out of 76 complained pain in joints, 50 of them had multiple joint pains. The pain was reported in hips in 40 cases, followed by knees in 36, low backs in 10, shoulders in 7, and wrists in 4, respectively. The differences in frequency of pain between steroid users and non-steroid users, as well as between osteonecrosis and non-osteonecrosis were not significant. Conclusion: MRI is recommended for

  16. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  17. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    Science.gov (United States)

    Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  18. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    Science.gov (United States)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  19. Design and realization of an active SAR calibrator for TerraSAR-X

    Science.gov (United States)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  20. Classification of sea-ice types in SAR imagery

    International Nuclear Information System (INIS)

    Baraldi, A.; Parmiggiani, F.

    2001-01-01

    It is presented a supervised three-stage classification (labeling) scheme applied to SAR images of polar regions for detecting different sea-ice types. The three-stage labeling procedure consists of: 1) a speckle noise filtering stage, based on a sequence of contour detection, segmentation and filtering steps, which removes SAR speckle noise (and texture information as well) without losing spatial details; 2) a second stage providing Bayesian, maximum-α-posteriori, hierarchical (coarse-to-fine), adaptive (data-driven) and contextual labeling of piecewise constant intensity images featuring little useful texture information; and 3) an output stage providing a many-to-one relationship between second stage output categories (types or clusters) and desired output classes. Modules 1) and 2), which demonstrated their validity in several applications in the existing literature, are briefly recalled in the current paper. The proposed labeling scheme features some interesting functional properties when applied to sea-ice SAR images: it is easy to use, i.e., it requires minor user interaction, is robust to changes in input conditions and performs better than a non-contextual (per-pixel) classifier. Application results are presented and discussed for a pair of SAR images extracted, respectively, from an ERS-1 scene acquired on November 1992 over the Bellingshausen Sea (Antarctica) and from an ERS-2 scene of the East Greenland Sea acquired on March 1997 when a field experiment by the research vessel Jan Ma yen was conducted in the same area

  1. The Space-Borne SBAS-DInSAR Technique as a Supporting Tool for Sustainable Urban Policies: The Case of Istanbul Megacity, Turkey

    Directory of Open Access Journals (Sweden)

    Fabiana Calò

    2015-12-01

    Full Text Available In today’s urbanizing world, home of 28 megacities, there is a growing need for tools to assess urban policies and support the design and implementation of effective development strategies. Unsustainable practices of urbanization bring major implications for land and environment, and cause a dramatic increase of urban vulnerability to natural hazards. In Istanbul megacity, disaster risk reduction represents a challenging issue for urban managers. In this paper, we show the relevance of the space-borne Differential SAR Interferometry (DInSAR technique as a tool for supporting risk management, and thus contributing to achieve the urban sustainability. To this aim, we use a dataset of high resolution SAR images collected by the TerraSAR-X satellite that have been processed through the advanced (multi-temporal Small BAseline Subset (SBAS—DInSAR technique, thus producing spatially-dense deformation velocity maps and associated time-series. Results allow to depict an up-to-date picture of surface deformations occurring in Istanbul, and thus to identify urban areas subject to potential risk. The joint analysis of remotely sensed measurements and ancillary data (geological and urban development information provides an opportunity for city planners and land professionals to discuss on the mutual relationship between urban development policies and natural/man-made hazards.

  2. New challenges for a SAR toolbox

    International Nuclear Information System (INIS)

    Loreaux, P.; Quin, G.

    2013-01-01

    High resolution multi-frequency synthetic aperture radar (SAR) imagery, available since early 2008, brings all weather capability and day/night operability in support of safeguards verification. Today, a combined approach of high resolution optical and radar imagery in monitoring exercise would enable looking at any area of interest on daily basis. One of the challenges is the co-registration of SAR images acquired with different acquisition mode and also with different optical images. We show in this paper the on-going research work to find a general co-register method and an automatic tool to detect changes. Before having an operational co-register tool, a method to find automatically tie points between SAR images acquired with different acquisition mode and with optical images has to be developed. Concerning an automatic change detection method we can conclude that the study of the Harmonic mean, Geometric mean and Arithmetic mean, enables several applications like change detection for SAR imagery. Thus, we developed the MAGMA (Method for Arithmetic and Geometric Means Analysis) change detection method. As shown in this paper, the MAGMA method improves the Maximum Likelihood techniques like GLRT, using Information-Theory concepts to detect changes between SAR amplitude images. The major improvement consists in a lower false detection rate, especially in low amplitude areas. The second improvement consists in a better location of the changes in clearly delimited areas, which enables precise interpretations. Results presented here reveal the potential of high resolution radar imagery for a baseline description of some sites, change detection based on repeat pass imagery acquisitions and site specific constraints in coherent change detection due to cover conditions. (A.C.)

  3. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  4. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  5. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Science.gov (United States)

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  6. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    International Nuclear Information System (INIS)

    Lee, Seung-Kuk

    2013-01-01

    , NESZ, ambiguities) and the operation scenario (e.g., temporal decorrelation due to a repeat-pass orbit) is evaluated and discussed with respect to the retrieval of the forest parameters. The study is supported and validated by using repeat-pass Pol-InSAR data at L- and P-band acquired by DLR's E-SAR system over Remningstorp (BioSAR 2007, hemi-boreal forest), Krycklan (BioSAR 2008, boreal forest) and Traunstein (TempoSAR 2008 and 2009, temperate forest) test sites. The simulated spaceborne data sets generated during the BioSAR 2007 campaign are used to carry out the performance analysis.

  7. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  8. Literature-Related Discovery: Potential Treatments and Preventives for SARS

    Science.gov (United States)

    2010-01-01

    We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial...retrieval and analysis of the core SARS literature and literatures related directly to the core SARS literature (e.g., immune system component literatures...According to recent reviews of the pandemic, none of the drugs worked. Those who recovered did so by natural means; their immune systems were

  9. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  10. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  11. The Advanced Rapid Imaging and Analysis (ARIA) Project: Status of SAR products for Earthquakes, Floods, Volcanoes and Groundwater-related Subsidence

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.

    2017-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano

  12. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  13. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  14. PSInSAR Analysis in the Pisa Urban Area (Italy: A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization

    Directory of Open Access Journals (Sweden)

    Lorenzo Solari

    2016-02-01

    Full Text Available Permanent Scatterer Interferometry (PSI has been used to detect and characterize the subsidence of the Pisa urban area, which extends for 33 km2 within the Arno coastal plain (Tuscany, Italy. Two SAR (Synthetic Aperture Radar datasets, covering the time period from 1992 to 2010, were used to quantify the ground subsidence and its temporal evolution. A geotechnical borehole database was also used to make a correspondence with the detected displacements. Finally, the results of the SAR data analysis were contrasted with the urban development of the eastern part of the city in the time period from 1978 to 2013. ERS 1/2 (European Remote-Sensing Satellite and Envisat SAR data, processed with the PSInSAR (Permanent Scatterer InSAR algorithm, show that the investigated area is divided in two main sectors: the southwestern part, with null or very small subsidence rates (<2 mm/year, and the eastern portion which shows a general lowering with maximum deformation rates of 5 mm/year. This second area includes deformation rates higher than 15 mm/year, corresponding to small groups of buildings. The case studies in the eastern sector of the urban area have demonstrated the direct correlation between the age of construction of buildings and the registered subsidence rates, showing the importance of urbanization as an accelerating factor for the ground consolidation process.

  15. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Diego O Andrey

    Full Text Available Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1, encoded by tst(H, and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1, RNAIII, rot, and the alternative stress sigma factor sigB (σB. By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.

  16. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    Science.gov (United States)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest

  17. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  18. InSAR atmospheric correction using Himawari-8 Geostationary Meteorological Satellite

    Science.gov (United States)

    Kinoshita, Y.; Nimura, T.; Furuta, R.

    2017-12-01

    The atmospheric delay effect is one of the limitations for the accurate surface displacement detection by Synthetic Aperture Radar Interferometry (InSAR). Many previous studies have attempted to mitigate the neutral atmospheric delay in InSAR (e.g. Jolivet et al. 2014; Foster et al. 2006; Kinoshita et al. 2013). Hanssen et al. (2001) investigated the relationship between the 27 hourly observations of GNSS precipitable water vapor (PWV) and the infrared brightness temperature derived from visible satellite imagery, and showed a good correlation. Here we showed a preliminary result of the newly developed method for the neutral atmospheric delay correction using the Himawari-8 Japanese geostationary meteorological satellite data. The Himawari-8 satellite is the Japanese state-of-the-art geostationary meteorological satellite that has 16 observation channels and has spatial resolutions of 0.5 km (visible) and 2.0 km (near-infrared and infrared) with an time interval of 2.5 minutes around Japan. To estimate the relationship between the satellite brightness temperature and the atmospheric delay amount. Since the InSAR atmospheric delay is principally the same as that in GNSS, we at first compared the Himawari-8 data with the GNSS zenith tropospheric delay data derived from the Japanese dense GNSS network. The comparison of them showed that the band with the wavelength of 6.9 μm had the highest correlation to the GNSS observation. Based on this result, we developed an InSAR atmospheric delay model that uses the Himawari-8 6.9 μm band data. For the model validation, we generated InSAR images from the ESA's C-band Sentinel-1 SLC data with the GAMMA SAR software. We selected two regions around Tokyo and Sapporo (both in Japan) as the test sites because of the less temporal decorrelation. The validation result showed that the delay model reasonably estimate large scale phase variation whose spatial scale was on the order of over 20 km. On the other hand, phase variations of

  19. Multi-temporal InSAR Datastacks for Surface Deformation Monitoring: a Review

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Prati, C.; Rocca, F.

    2009-04-01

    In the last decade extensive processing of thousands of satellite radar scenes acquired by different sensors (e.g. ERS-1/2, ENVISAT and RADARSAT) has demonstrated how multi-temporal data-sets can be successfully exploited for surface deformation monitoring, by identifying objects on the terrain that have a stable, point-like behaviour. These objects, referred to as Permanent or Persistent Scatterers (PS), can be geo-coded and monitored for movement very accurately, acting as a "natural" geodetic network, integrating successfully continuous GPS data. After a brief analysis of both advantages and drawbacks of InSAR datastacks, the paper presents examples of applications of PS measurements for detecting and monitoring active faults, aquifers and oil/gas reservoirs, using experience in Europe, North America and Japan, and concludes with a discussion on future directions for PSInSAR analysis. Special attention is paid to the possibility of creating deformation maps over wide areas using historical archives of data already available. This second part of the paper will briefly discuss the technical features of the new radar sensors recently launched (namely: TerraSAR-X, RADARSAT-2, and CosmoSkyMed) and their impact on space geodesy, highlighting the importance of data continuity and standardized acquisition policies for almost all InSAR and PSInSAR applications. Finally, recent advances in the algorithms applied in PS analysis, such as detection of "temporary PS", PS characterization and exploitation of distributed scatterers, will be briefly discussed based on the processing of real data.

  20. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  1. Basin Scale Assessment of Landslides Geomorphological Setting by Advanced InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Francesca Bozzano

    2017-03-01

    Full Text Available An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010 have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space.

  2. Application of SAR interferometry to low-rate crustal deformation fields

    Science.gov (United States)

    Vincent, Paul

    Differential SAR interferometry is applied to the study of low-rate interseismic crustal deformation fields along three regions of the San Adreas fault system: Salton Sea (southernmost region), Pinto Mountain fault (south-central region), and San Francisco Bay (northern region). New techniques are developed to analyze and model these low-rate deformation fields including constrained horizontal-vertical component deconvolution, deformation phase pattern analysis and strain field evolution modeling. Several new active faults were discovered as well as unmeasured activity on existing faults in the process of this SAR interferometry study. The feasibility and limitations of InSAR as a tool to study low-rate deformation fields is also addressed.

  3. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    Science.gov (United States)

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  4. Crisis prevention and management during SARS outbreak, Singapore.

    Science.gov (United States)

    Quah, Stella R; Hin-Peng, Lee

    2004-02-01

    We discuss crisis prevention and management during the first 3 months of the severe acute respiratory syndrome (SARS) outbreak in Singapore. Four public health issues were considered: prevention measures, self-health evaluation, SARS knowledge, and appraisal of crisis management. We conducted telephone interviews with a representative sample of 1,201 adults, > or = 21 years of age. We found that sex, age, and attitude (anxiety and perception of open communication with authorities) were associated with practicing preventive measures. Analysis of Singapore's outbreak improves our understanding of the social dimensions of infectious disease outbreaks.

  5. SARS-related perceptions in Hong Kong.

    Science.gov (United States)

    Lau, Joseph T F; Yang, Xilin; Pang, Ellie; Tsui, H Y; Wong, Eric; Wing, Yun Kwok

    2005-03-01

    To understand different aspects of community responses related to severe acute respiratory syndrome (SARS), 2 population-based, random telephone surveys were conducted in June 2003 and January 2004 in Hong Kong. More than 70% of respondents would avoid visiting hospitals or mainland China to avoid contracting SARS. Most respondents believed that SARS could be transmitted through droplets, fomites, sewage, and animals. More than 90% believed that public health measures were efficacious means of prevention; 40.4% believed that SARS would resurge in Hong Kong; and approximately equals 70% would then wear masks in public places. High percentages of respondents felt helpless, horrified, and apprehensive because of SARS. Approximately 16% showed signs of posttraumatic symptoms, and approximately equals 40% perceived increased stress in family or work settings. The general public in Hong Kong has been very vigilant about SARS but needs to be more psychologically prepared to face a resurgence of the epidemic.

  6. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  7. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization

    Directory of Open Access Journals (Sweden)

    Lin Ren

    2017-11-01

    Full Text Available This study analyzed the noise equivalent sigma zero (NESZ and ocean wind sensitivity for Chinese C-band Gaofen-3 (GF-3 quad-polarization synthetic aperture radar (SAR measurements to facilitate further operational wind extraction from GF-3 data. Data from the GF-3 quad-polarization SAR and collocated winds from both NOAA/NCEP Global Forecast System (GFS atmospheric model and National Data Buoy Center (NDBC buoys were used in the analysis. For NESZ, the co-polarization was slightly higher compared to the cross-polarization. Regarding co-polarization and cross-polarization, NESZ was close to RadarSAT-2 and Sentinel-1 A. Wind sensitivity was analyzed by evaluating the dependence on winds in terms of normalized radar cross-sections (NRCS and polarization combinations. The closest geophysical model function (GMF and the polarization ratio (PR model to GF-3 data were determined by comparing data and the model results. The dependence of co-polarized NRCS on wind speed and azimuth angle was consistent with the proposed GMF models. The combination of CMOD5 and CMOD5.N was considered to be the closest GMF in co-polarization. The cross-polarized NRCS exhibited a strong linear relationship with moderate wind speeds higher than 4 m·s−1, but a weak correlation with the azimuth angle. The proposed model was considered as the closest GMF in cross-polarization. For polarization combinations, PR and polarization difference (PD were considered. PR increased only with the incidence angle, whereas PD increased with wind speed and varied with azimuth angle. There were three very close PR models and each can be considered as the closest. Preliminary results indicate that GF-3 quad-polarization data are valid and have the ability to extract winds in each polarization.

  8. Individual Building Extraction from TerraSAR-X Images Based on Ontological Semantic Analysis

    Directory of Open Access Journals (Sweden)

    Rong Gui

    2016-08-01

    Full Text Available Accurate building information plays a crucial role for urban planning, human settlements and environmental management. Synthetic aperture radar (SAR images, which deliver images with metric resolution, allow for analyzing and extracting detailed information on urban areas. In this paper, we consider the problem of extracting individual buildings from SAR images based on domain ontology. By analyzing a building scattering model with different orientations and structures, the building ontology model is set up to express multiple characteristics of individual buildings. Under this semantic expression framework, an object-based SAR image segmentation method is adopted to provide homogeneous image objects, and three categories of image object features are extracted. Semantic rules are implemented by organizing image object features, and the individual building objects expression based on an ontological semantic description is formed. Finally, the building primitives are used to detect buildings among the available image objects. Experiments on TerraSAR-X images of Foshan city, China, with a spatial resolution of 1.25 m × 1.25 m, have shown the total extraction rates are above 84%. The results indicate the ontological semantic method can exactly extract flat-roof and gable-roof buildings larger than 250 pixels with different orientations.

  9. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara; Rockwood, Alyn; Ghanem, Bernard

    2015-01-01

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR's ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  10. Multiple alignment analysis on phylogenetic tree of the spread of SARS epidemic using distance method

    Science.gov (United States)

    Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.

    2017-09-01

    Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.

  11. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  12. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  13. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Melancon, Jeffrey M.; Chouljenko, Vladimir N.; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2005-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  14. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    2007-05-01

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  15. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  16. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  17. Global Rapid Flood Mapping System with Spaceborne SAR Data

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  18. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  19. SARS knowledge, perceptions, and behaviors: a comparison between Finns and the Dutch during the SARS outbreak in 2003

    NARCIS (Netherlands)

    Vartti, A.M.; Oenema, A.; Schreck, M.; Uutela, A.; Zwart, de O.; Brug, J.; Aro, A.R.

    2009-01-01

    BACKGROUND: The SARS outbreak served to test both local and international outbreak management and risk communication practices. PURPOSE: The study compares SARS knowledge, perceptions, behaviors, and information between Finns and the Dutch during the SARS outbreak in 2003. METHOD: The participants

  20. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    Science.gov (United States)

    Bahr, Thomas

    2014-05-01

    The use of SAR data has become increasingly popular in recent years and in a wide array of industries. Having access to SAR can be highly important and critical especially for public safety. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. SAR imaging offers the great advantage, over its optical counterparts, of not being affected by darkness, meteorological conditions such as clouds, fog, etc., or smoke and dust, frequently associated with disaster zones. In this paper we present the operational processing of SAR data within a GIS environment for rapid disaster mapping. For this technique we integrated the SARscape modules for ENVI with ArcGIS®, eliminating the need to switch between software packages. Thereby the premier algorithms for SAR image analysis can be directly accessed from ArcGIS desktop and server environments. They allow processing and analyzing SAR data in almost real time and with minimum user interaction. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. The Bacchiglione River burst its banks on Nov. 2nd after two days of heavy rainfall throughout the northern Italian region. The community of Bovolenta, 22 km SSE of Padova, was covered by several meters of water. People were requested to stay in their homes; several roads, highways sections and railroads had to be closed. The extent of this flooding is documented by a series of Cosmo-SkyMed acquisitions with a GSD of 2.5 m (StripMap mode). Cosmo-SkyMed is a constellation of four Earth observation satellites, allowing a very frequent coverage, which enables monitoring using a very high temporal resolution. This data is processed in ArcGIS using a single-sensor, multi-mode, multi-temporal approach consisting of 3 steps: (1) The single images are filtered with a Gamma DE-MAP filter. (2) The filtered images are geocoded using a reference

  1. Study on Zero-Doppler Centroid Control for GEO SAR Ground Observation

    Directory of Open Access Journals (Sweden)

    Yicheng Jiang

    2014-01-01

    Full Text Available In geosynchronous Earth orbit SAR (GEO SAR, Doppler centroid compensation is a key step for imaging process, which could be performed by the attitude steering of a satellite platform. However, this zero-Doppler centroid control method does not work well when the look angle of radar is out of an expected range. This paper primarily analyzes the Doppler properties of GEO SAR in the Earth rectangular coordinate. Then, according to the actual conditions of the GEO SAR ground observation, the effective range is presented by the minimum and maximum possible look angles which are directly related to the orbital parameters. Based on the vector analysis, a new approach for zero-Doppler centroid control in GEO SAR, performing the attitude steering by a combination of pitch and roll rotation, is put forward. This approach, considering the Earth’s rotation and elliptical orbit effects, can accurately reduce the residual Doppler centroid. All the simulation results verify the correctness of the range of look angle and the proposed steering method.

  2. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  3. SARS: Key factors in crisis management.

    Science.gov (United States)

    Tseng, Hsin-Chao; Chen, Thai-Form; Chou, Shieu-Ming

    2005-03-01

    This study was conducted at a single hospital selected in Taipei during the SARS (Severe Acute Respiratory Syndrome) outbreak from March to July, 2003 in Taiwan. During this period of time, 104 SARS patients were admitted to the hospital. There were no negative reports related to the selected hospital despite its being located right in the center of an area struck by the epidemic. The purpose of this study was to identify the key factors enabling the hospital to survive SARS unscathed. Data were collected from in-depth interviews with the nursing directors and nursing managers of the SARS units, along with a review of relevant hospital documents. The five key elements identified as survival factors during this SARS crisis are as follows: 1. good control of timing for crisis management, 2. careful decision-making, 3. thorough implementation, 4. effective communication, and 5. trust between management and employees. The results of this study reconfirmed the selected hospital as a model for good crisis management during the SARS epidemic.

  4. Dictionary-Based Stochastic Expectation–Maximization for SAR Amplitude Probability Density Function Estimation

    OpenAIRE

    Moser , Gabriele; Zerubia , Josiane; Serpico , Sebastiano B.

    2006-01-01

    International audience; In remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. This paper deals with the problem of probability density function (pdf) estimation in the context of synthetic aperture radar (SAR) amplitude data analysis. Several theoretical and heuristic models for the pdfs of SAR data have been proposed in the literature, which have been proved to be effective for different land-cov...

  5. SAR Raw Data Generation for Complex Airport Scenes

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-10-01

    Full Text Available The method of generating the SAR raw data of complex airport scenes is studied in this paper. A formulation of the SAR raw signal model of airport scenes is given. Via generating the echoes from the background, aircrafts and buildings, respectively, the SAR raw data of the unified SAR imaging geometry is obtained from their vector additions. The multipath scattering and the shadowing between the background and different ground covers of standing airplanes and buildings are analyzed. Based on the scattering characteristics, coupling scattering models and SAR raw data models of different targets are given, respectively. A procedure is given to generate the SAR raw data of airport scenes. The SAR images from the simulated raw data demonstrate the validity of the proposed method.

  6. Deep learning for SAR image formation

    Science.gov (United States)

    Mason, Eric; Yonel, Bariscan; Yazici, Birsen

    2017-04-01

    The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image formation. We review deep learning from a perspective relevant to SAR image formation. Our objective is to address SAR image formation in the presence of uncertainties in the SAR forward model. We present a recurrent auto-encoder network architecture based on the iterative shrinkage thresholding algorithm (ISTA) that incorporates SAR modeling. We then present an off-line training method using stochastic gradient descent and discuss the challenges and key steps of learning. Lastly, we show experimentally that our method can be used to form focused images in the presence of phase uncertainties. We demonstrate that the resulting algorithm has faster convergence and decreased reconstruction error than that of ISTA.

  7. Basic to Advanced InSAR Processing: GMTSAR

    Science.gov (United States)

    Sandwell, D. T.; Xu, X.; Baker, S.; Hogrelius, A.; Mellors, R. J.; Tong, X.; Wei, M.; Wessel, P.

    2017-12-01

    Monitoring crustal deformation using InSAR is becoming a standard technique for the science and application communities. Optimal use of the new data streams from Sentinel-1 and NISAR will require open software tools as well as education on the strengths and limitations of the InSAR methods. Over the past decade we have developed freely available, open-source software for processing InSAR data. The software relies on the Generic Mapping Tools (GMT) for the back-end data analysis and display and is thus called GMTSAR. With startup funding from NSF, we accelerated the development of GMTSAR to include more satellite data sources and provide better integration and distribution with GMT. In addition, with support from UNAVCO we have offered 6 GMTSAR short courses to educate mostly novice InSAR users. Currently, the software is used by hundreds of scientists and engineers around the world to study deformation at more than 4300 different sites. The most challenging aspect of the recent software development was the transition from image alignment using the cross-correlation method to a completely new alignment algorithm that uses only the precise orbital information to geometrically align images to an accuracy of better than 7 cm. This development was needed to process a new data type that is being acquired by the Sentinel-1A/B satellites. This combination of software and open data is transforming radar interferometry from a research tool into a fully operational time series analysis tool. Over the next 5 years we are planning to continue to broaden the user base through: improved software delivery methods; code hardening; better integration with data archives; support for high level products being developed for NISAR; and continued education and outreach.

  8. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

    Science.gov (United States)

    Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai

    2018-02-01

    Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

  9. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    Science.gov (United States)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  10. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    Science.gov (United States)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  11. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  12. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  13. Investigating the Relationship between X-Band SAR Data from COSMO-SkyMed Satellite and NDVI for LAI Detection

    Directory of Open Access Journals (Sweden)

    Antonino Maltese

    2013-03-01

    Full Text Available Monitoring spatial and temporal variability of vegetation is important to manage land and water resources, with significant impact on the sustainability of modern agriculture. Cloud cover noticeably reduces the temporal resolution of retrievals based on optical data. COSMO-SkyMed (the new Italian Synthetic Aperture RADAR-SAR opened new opportunities to develop agro-hydrological applications. Indeed, it represents a valuable source of data for operational use, due to the high spatial and temporal resolutions. Although X-band is not the most suitable to model agricultural and hydrological processes, an assessment of vegetation development can be achieved combing optical vegetation indices (VIs and SAR backscattering data. In this paper, a correlation analysis has been performed between the crossed horizontal-vertical (HV backscattering (s°HV and optical VIs (VIopt on several plots. The correlation analysis was based on incidence angle, spatial resolution and polarization mode. Results have shown that temporal changes of s°HV (Δs°HV acquired with high angles (off nadir angle; θ > 40° best correlates with variations of VIopt (ΔVI. The correlation between ΔVI and Δs°HV has been shown to be temporally robust. Based on this experimental evidence, a model to infer a VI from s° (VISAR at the time, ti + 1, once known, the VIopt at a reference time, ti, and Δs°HV between times, ti + 1 and ti, was implemented and verified. This approach has led to the development and validation of an algorithm for coupling a VIopt derived from DEIMOS-1 images and s°HV. The study was carried out over the Sele plain (Campania, Italy, which is mainly characterized by herbaceous crops. In situ measurements included leaf area index (LAI, which were collected weekly between August and September 2011 in 25 sites, simultaneously to COSMO-SkyMed (CSK and DEIMOS-1 imaging. Results confirm that VISAR obtained using the combined model is able to increase the feasibility

  14. Object Georeferencing in UAV-Based SAR Terrain Images

    Directory of Open Access Journals (Sweden)

    Łabowski Michał

    2016-12-01

    Full Text Available Synthetic aperture radars (SAR allow to obtain high resolution terrain images comparable with the resolution of optical methods. Radar imaging is independent on the weather conditions and the daylight. The process of analysis of the SAR images consists primarily of identifying of interesting objects. The ability to determine their geographical coordinates can increase usability of the solution from a user point of view. The paper presents a georeferencing method of the radar terrain images. The presented images were obtained from the SAR system installed on board an Unmanned Aerial Vehicle (UAV. The system was developed within a project under acronym WATSAR realized by the Military University of Technology and WB Electronics S.A. The source of the navigation data was an INS/GNSS system integrated by the Kalman filter with a feed-backward correction loop. The paper presents the terrain images obtained during flight tests and results of selected objects georeferencing with an assessment of the accuracy of the method.

  15. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  16. A categorical structure-activity relationship analysis of the developmental toxicity of antithyroid drugs.

    Science.gov (United States)

    Cunningham, Albert R; Carrasquer, C Alex; Mattison, Donald R

    2009-01-01

    The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR) model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  17. Discrimination of land cover from a multiparameter SAR data set

    International Nuclear Information System (INIS)

    Pierdicca, N.; Castracane, P.; Basili, P.; Ciotti, P.; Marzano, F.S.

    2001-01-01

    The identification of the most valuable radar observation parameters (e.g., frequency, polarisation, incidence angle) is important both for designing non-redundant high-performance sensors (i.e. selection of frequency bands and polarizations) and for specifying mission operation requirements (i.e. temporal sampling, incidence angle). Moreover, the task of classifying multiparameter SAR images may require to adopt a strategy that implies the selection of a number of features among those available from this kind of sensors. In this paper it has performed this kind of analysis in a specific area of interest to account for the particular conditions in which remotely sensed data are going to be used. The paper summarises the results of the analysis of the radar data acquired during the MAC Europe '91 and X-SAR/SIR-C campaigns over the Montespertoli test site in Italy. The analysis is based mainly on a statistical approach aiming at demonstrating what is the contribution of different measurements performed by the polarimetric SAR for discriminating the surface coverage. The work is intended to furnish a guideline to develop an optimal strategy for acquiring and processing polarimetric data to be used for land classification

  18. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  19. Residue analysis of a CTL epitope of SARS-CoV spike protein by IFN-gamma production and bioinformatics prediction

    Directory of Open Access Journals (Sweden)

    Huang Jun

    2012-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is an emerging infectious disease caused by the novel coronavirus SARS-CoV. The T cell epitopes of the SARS CoV spike protein are well known, but no systematic evaluation of the functional and structural roles of each residue has been reported for these antigenic epitopes. Analysis of the functional importance of side-chains by mutational study may exaggerate the effect by imposing a structural disturbance or an unusual steric, electrostatic or hydrophobic interaction. Results We demonstrated that N50 could induce significant IFN-gamma response from SARS-CoV S DNA immunized mice splenocytes by the means of ELISA, ELISPOT and FACS. Moreover, S366-374 was predicted to be an optimal epitope by bioinformatics tools: ANN, SMM, ARB and BIMAS, and confirmed by IFN-gamma response induced by a series of S358-374-derived peptides. Furthermore, each of S366-374 was replaced by alanine (A, lysine (K or aspartic acid (D, respectively. ANN was used to estimate the binding affinity of single S366-374 mutants to H-2 Kd. Y367 and L374 were predicated to possess the most important role in peptide binding. Additionally, these one residue mutated peptides were synthesized, and IFN-gamma production induced by G368, V369, A371, T372 and K373 mutated S366-374 were decreased obviously. Conclusions We demonstrated that S366-374 is an optimal H-2 Kd CTL epitope in the SARS CoV S protein. Moreover, Y367, S370, and L374 are anchors in the epitope, while C366, G368, V369, A371, T372, and K373 may directly interact with TCR on the surface of CD8-T cells.

  20. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  1. Analysis of Secular Ground Motions in Istanbul from a Long-Term InSAR Time-Series (1992–2017

    Directory of Open Access Journals (Sweden)

    Gokhan Aslan

    2018-03-01

    Full Text Available The identification and measurement of ground deformations in urban areas is of great importance for determining the vulnerable parts of the cities that are prone to geohazards, which is a crucial element of both sustainable urban planning and hazard mitigation. Interferometric synthetic aperture radar (InSAR time series analysis is a very powerful tool for the operational mapping of ground deformation related to urban subsidence and landslide phenomena. With an analysis spanning almost 25 years of satellite radar observations, we compute an InSAR time series of data from multiple satellites (European Remote Sensing satellites ERS-1 and ERS-2, Envisat, Sentinel-1A, and its twin sensor Sentinel-1B in order to investigate the spatial extent and rate of ground deformation in the megacity of Istanbul. By combining the various multi-track InSAR datasets (291 images in total and analysing persistent scatterers (PS-InSAR, we present mean velocity maps of ground surface displacement in selected areas of Istanbul. We identify several sites along the terrestrial and coastal regions of Istanbul that underwent vertical ground subsidence at varying rates, from 5 ± 1.2 mm/yr to 15 ± 2.1 mm/yr. The results reveal that the most distinctive subsidence patterns are associated with both anthropogenic factors and relatively weak lithologies along the Haramirede valley in particular, where the observed subsidence is up to 10 ± 2 mm/yr. We show that subsidence has been occurring along the Ayamama river stream at a rate of up to 10 ± 1.8 mm/yr since 1992, and has also been slowing down over time following the restoration of the river and stream system. We also identify subsidence at a rate of 8 ± 1.2 mm/yr along the coastal region of Istanbul, which we associate with land reclamation, as well as a very localised subsidence at a rate of 15 ± 2.3 mm/yr starting in 2016 around one of the highest skyscrapers of Istanbul, which was built in 2010.

  2. Methods of evaluating the effects of coding on SAR data

    Science.gov (United States)

    Dutkiewicz, Melanie; Cumming, Ian

    1993-01-01

    It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important.

  3. FlexSAR, a high quality, flexible, cost effective, prototype SAR system

    Science.gov (United States)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2016-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible research prototype instrument. Radar researchers and practitioners often desire the ability to prototype new or advanced configurations, yet the ability to enhance or upgrade existing radar systems can be cost prohibitive. FlexSAR answers the need for a flexible radar system that can be extended easily, with minimal cost and time expenditures. The design approach focuses on reducing the resources required for developing and validating new advanced radar modalities. Such an approach fosters innovation and provides risk reduction since actual radar data can be collected in the appropriate mode, processed, and analyzed early in the development process. This allows for an accurate, detailed understanding of the corresponding trade space. This paper is a follow-on to last years paper and discusses the advancements that have been made to the FlexSAR system. The overall system architecture is discussed and presented along with several examples illustrating the system utility.

  4. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  5. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  6. PHARUS : PHased ARray Universal SAR

    NARCIS (Netherlands)

    Paquay, M.H.A.; Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a polarimetric C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronm for PHased ARray Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 active modules (expandable to 96). A module

  7. SARS-related Perceptions in Hong Kong

    OpenAIRE

    Lau, Joseph T.F.; Yang, Xilin; Pang, Ellie; Tsui, H.Y.; Wong, Eric; Wing, Yun Kwok

    2005-01-01

    To understand different aspects of community responses related to severe acute respiratory syndrome (SARS), 2 population-based, random telephone surveys were conducted in June 2003 and January 2004 in Hong Kong. More than 70% of respondents would avoid visiting hospitals or mainland China to avoid contracting SARS. Most respondents believed that SARS could be transmitted through droplets, fomites, sewage, and animals. More than 90% believed that public health measures were efficacious means o...

  8. Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR Data for the Assessment of Physical Soil Parameters

    Directory of Open Access Journals (Sweden)

    Azza Gorrab

    2015-01-01

    Full Text Available The aim of this paper is to analyze the potential of X-band SAR measurements (COSMO-SkyMed and TerraSAR-X made over bare soils for the estimation of soil moisture and surface geometry parameters at a semi-arid site in Tunisia (North Africa. Radar signals acquired with different configurations (HH and VV polarizations, incidence angles of 26° and 36° are statistically compared with ground measurements (soil moisture and roughness parameters. The radar measurements are found to be highly sensitive to the various soil parameters of interest. A linear relationship is determined for the radar signals as a function of volumetric soil moisture, and a logarithmic correlation is observed between the radar signals and three surface roughness parameters: the root mean square height (Hrms, the parameter Zs = Hrms2/l (where l is the correlation length and the parameter Zg = Hrms × (Hrms/lα (where α is the power of the surface height correlation function. The highest dynamic sensitivity is observed for Zg at high incidence angles. Finally, the performance of different physical and semi-empirical backscattering models (IEM, Baghdadi-calibrated IEM and Dubois models is compared with SAR measurements. The results provide an indication of the limits of validity of the IEM and Dubois models, for various radar configurations and roughness conditions. Considerable improvements in the IEM model performance are observed using the Baghdadi-calibrated version of this model.

  9. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel......Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available...

  10. How infectious is SARS virus

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. How infectious is SARS virus. Influenza: 1 patient infects ten people. SARS: 1 patient infects 2-4 people. Incubation period 10 days. Are there `silent´ cases ? Is quarantine enough ? How will it behave if and when it returns ?

  11. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy

    International Nuclear Information System (INIS)

    Zeni, G; Bonano, M; Casu, F; Manunta, M; Manzo, M; Pepe, A; Lanari, R; Marsella, M

    2011-01-01

    Monitoring of deformation phenomena affecting urban areas and man-made structures is of key relevance for the preservation of the artistic, archaeological and architectural heritage. The differential SAR interferometry (DInSAR) technique has already been demonstrated to be an effective tool for non-invasive deformation analyses over large areas by producing spatially dense deformation maps with centimetre to millimetre accuracy. Moreover, by exploiting long sequences of SAR data acquired by different sensors, the advanced DInSAR technique referred to as the small baseline subset (SBAS) approach allows providing long-term deformation time series, which are strategic for guaranteeing the monitoring of urban area displacements. In this work, we investigate the effectiveness of the two-scale multi-sensor SBAS-DInSAR approach to detect and monitor displacements affecting historical and artistic monuments. The presented results, achieved by applying the full resolution SBAS technique to a huge set of ERS-1/2 and ENVISAT data, spanning the 1992–2010 time interval and relevant to the city of Rome (Italy), show the capability of this approach to detect and analyse the temporal evolution of possible deformation phenomena affecting historical buildings and archaeological sites. Accordingly, our analysis demonstrates the effectiveness of the full resolution multi-sensor SBAS approach to operate as a surface deformation tool for supporting the study and conservation strategies of the historical, cultural and artistic heritage

  12. Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the N5W iron mine (Carajás, Brazil) using TerraSAR-X data

    Science.gov (United States)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.

    2014-10-01

    We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.

  13. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    International Nuclear Information System (INIS)

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-01-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4 1 32 or P4 3 32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å

  14. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre, E-mail: marie-pierre.egloff@afmb.univ-mrs.fr [Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d’Ingénieurs de Luminy-Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France)

    2006-04-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.

  15. Imaging in severe acute respiratory syndrome (SARS)

    International Nuclear Information System (INIS)

    Antonio, G.E.; Wong, K.T.; Chu, W.C.W.; Hui, D.S.C.; Cheng, F.W.T.; Yuen, E.H.Y.; Chung, S.S.C.; Fok, T.F.; Sung, J.J.Y.; Ahuja, A.T.

    2003-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus, and has become pandemic within a short period of time. Imaging plays an important role in the diagnosis, management and follow-up of patients with SARS. The current status of imaging in SARS is presented in this review

  16. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  17. Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV)

    International Nuclear Information System (INIS)

    Chou, Te-hui W.; Wang, Shixia; Sakhatskyy, Pavlo V.; Mboudoudjeck, Innocent; Lawrence, John M.; Huang Song; Coley, Scott; Yang Baoan; Li Jiaming; Zhu Qingyu; Lu Shan

    2005-01-01

    Inactivated severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been tested as a candidate vaccine against the re-emergence of SARS. In order to understand the efficacy and safety of this approach, it is important to know the antibody specificities generated with inactivated SARS-CoV. In the current study, a panel of twelve monoclonal antibodies (mAbs) was established by immunizing Balb/c mice with the inactivated BJ01 strain of SARS-CoV isolated from the lung tissue of a SARS-infected Chinese patient. These mAbs could recognize SARS-CoV-infected cells by immunofluorescence analysis (IFA). Seven of them were mapped to the specific segments of recombinant spike (S) protein: six on S1 subunit (aa 12-798) and one on S2 subunit (aa 797-1192). High neutralizing titers against SARS-CoV were detected with two mAbs (1A5 and 2C5) targeting at a subdomain of S protein (aa 310-535), consistent with the previous report that this segment of S protein contains the major neutralizing domain. Some of these S-specific mAbs were able to recognize cleaved products of S protein in SARS-CoV-infected Vero E6 cells. None of the remaining five mAbs could recognize either of the recombinant S, N, M, or E antigens by ELISA. This study demonstrated that the inactivated SARS-CoV was able to preserve the immunogenicity of S protein including its major neutralizing domain. The relative ease with which these mAbs were generated against SARS-CoV virions further supports that subunit vaccination with S constructs may also be able to protect animals and perhaps humans. It is somewhat unexpected that no N-specific mAbs were identified albeit anti-N IgG was easily identified in SARS-CoV-infected patients. The availability of this panel of mAbs also provided potentially useful agents with applications in therapy, diagnosis, and basic research of SARS-CoV

  18. Monitoring Building Deformation with InSAR: Experiments and Validation

    Science.gov (United States)

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-01-01

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403

  19. Monitoring Building Deformation with InSAR: Experiments and Validation

    Directory of Open Access Journals (Sweden)

    Kui Yang

    2016-12-01

    Full Text Available Synthetic Aperture Radar Interferometry (InSAR techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.

  20. Doppler Centroid Estimation for Airborne SAR Supported by POS and DEM

    Directory of Open Access Journals (Sweden)

    CHENG Chunquan

    2015-05-01

    Full Text Available It is difficult to estimate the Doppler frequency and modulating rate for airborne SAR by using traditional vector method due to instable flight and complex terrain. In this paper, it is qualitatively analyzed that the impacts of POS, DEM and their errors on airborne SAR Doppler parameters. Then an innovative vector method is presented based on the range-coplanarity equation to estimate the Doppler centroid taking the POS and DEM as auxiliary data. The effectiveness of the proposed method is validated and analyzed via the simulation experiments. The theoretical analysis and experimental results show that the method can be used to estimate the Doppler centroid with high accuracy even in the cases of high relief, instable flight, and large squint SAR.

  1. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    Science.gov (United States)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  2. Human factors engineering checklists for application in the SAR process

    International Nuclear Information System (INIS)

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy's (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered

  3. A Categorical Structure-Activity Relationship Analysis of the Developmental Toxicity of Antithyroid Drugs

    Directory of Open Access Journals (Sweden)

    Cunningham AlbertR

    2009-11-01

    Full Text Available The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  4. A Categorical Structure-Activity Relationship Analysis of the Developmental Toxicity of Antithyroid Drugs

    Directory of Open Access Journals (Sweden)

    Albert R. Cunningham

    2009-01-01

    Full Text Available The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  5. Oil seepage polarimetric contrast analysis in a time series of TerraSAR-X images

    OpenAIRE

    de Macedo, Carina Regina; Nunziata, Ferdinando; Velotto, Domenico; Migliaccio, Maurizio

    2017-01-01

    Natural hydrocarbon seeps are broadly distributed across the Gulf of Mexico. Such seeps emit oil and gas into the water column, increasing the phytoplankton biomass and impacting regionally the productivity, carbon and nutrient cycling [1]. A fraction of this oil reaches to the sea surface and can be detected by SAR data. Although the ability of SAR data to detect oil features present in ocean's surface is wide exploited in the literature, it is known that the detection of those features is a...

  6. Molecular mechanisms of severe acute respiratory syndrome (SARS

    Directory of Open Access Journals (Sweden)

    Zabel Peter

    2005-01-01

    Full Text Available Abstract Severe acute respiratory syndrome (SARS is a new infectious disease caused by a novel coronavirus that leads to deleterious pulmonary pathological features. Due to its high morbidity and mortality and widespread occurrence, SARS has evolved as an important respiratory disease which may be encountered everywhere in the world. The virus was identified as the causative agent of SARS due to the efforts of a WHO-led laboratory network. The potential mutability of the SARS-CoV genome may lead to new SARS outbreaks and several regions of the viral genomes open reading frames have been identified which may contribute to the severe virulence of the virus. With regard to the pathogenesis of SARS, several mechanisms involving both direct effects on target cells and indirect effects via the immune system may exist. Vaccination would offer the most attractive approach to prevent new epidemics of SARS, but the development of vaccines is difficult due to missing data on the role of immune system-virus interactions and the potential mutability of the virus. Even in a situation of no new infections, SARS remains a major health hazard, as new epidemics may arise. Therefore, further experimental and clinical research is required to control the disease.

  7. User-friendly InSAR Data Products: Fast and Simple Timeseries (FAST) Processing

    Science.gov (United States)

    Zebker, H. A.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) methods provide high resolution maps of surface deformation applicable to many scientific, engineering and management studies. Despite its utility, the specialized skills and computer resources required for InSAR analysis remain as barriers for truly widespread use of the technique. Reduction of radar scenes to maps of temporal deformation evolution requires not only detailed metadata describing the exact radar and surface acquisition geometries, but also a software package that can combine these for the specific scenes of interest. Furthermore, the radar range-Doppler radar coordinate system itself is confusing, so that many users find it hard to incorporate even useful products in their customary analyses. And finally, the sheer data volume needed to represent interferogram time series makes InSAR analysis challenging for many analysis systems. We show here that it is possible to deliver radar data products to users that address all of these difficulties, so that the data acquired by large, modern satellite systems are ready to use in more natural coordinates, without requiring further processing, and in as small volume as possible.

  8. Structure-Activity Relationships on the Molecular Descriptors Family Project at the End

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2007-12-01

    Full Text Available Molecular Descriptors Family (MDF on the Structure-Activity Relationships (SAR, a promising approach in investigation and quantification of the link between 2D and 3D structural information and the activity, and its potential in the analysis of the biological active compounds is summarized. The approach, attempts to correlate molecular descriptors family generated and calculated on a set of biological active compounds with their observed activity. The estimation as well as prediction abilities of the approach are presented. The obtained MDF SAR models can be used to predict the biological activity of unknown substrates in a series of compounds.

  9. Unsupervised SBAS-DInSAR Processing of Space-borne SAR data for Earth Surface Displacement Time Series Generation

    Science.gov (United States)

    Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.

    2016-12-01

    During the last 25 years, the Differential Synthetic Aperture Radar Interferometry (DInSAR) has played an important role for understanding the Earth's surface deformation and its dynamics. In particular, the large collections of SAR data acquired by a number of space-borne missions (ERS, ENVISAT, ALOS, RADARSAT, TerraSAR-X, COSMO-SkyMed) have pushed toward the development of advanced DInSAR techniques for monitoring the temporal evolution of the ground displacements with an high spatial density. Moreover, the advent of the Copernicus Sentinel-1 (S1) constellation is providing a further increase in the SAR data flow available to the Earth science community, due to its characteristics of global coverage strategy and free and open access data policy. Therefore, managing and storing such a huge amount of data, processing it in an effcient way and maximizing the available archives exploitation are becoming high priority issues. In this work we present some recent advances in the DInSAR field for dealing with the effective exploitation of the present and future SAR data archives. In particular, an efficient parallel SBAS implementation (namely P-SBAS) that takes benefit from high performance computing is proposed. Then, the P-SBAS migration to the emerging Cloud Computing paradigm is shown, together with extensive tests carried out in the Amazon's Elastic Cloud Compute (EC2) infrastructure. Finally, the integration of the P-SBAS processing chain within the ESA Geohazards Exploitation Platform (GEP), for setting up operational on-demand and systematic web tools, open to every user, aimed at automatically processing stacks of SAR data for the generation of SBAS displacement time series, is also illustrated. A number of experimental results obtained by using the ERS, ENVISAT and S1 data in areas characterized by volcanic, seismic and anthropogenic phenomena will be shown. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.

  10. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge

    Directory of Open Access Journals (Sweden)

    Chen Liangan

    2005-01-01

    Full Text Available Abstract Objective The intent of this study was to examine the recovery of individuals who had been hospitalized for severe acute respiratory syndrome (SARS in the year following their discharge from the hospital. Parameters studied included serum levels of SARS coronavirus (SARS-CoV IgG antibody, tests of lung function, and imaging data to evaluate changes in lung fibrosis. In addition, we explored the incidence of femoral head necrosis in some of the individuals recovering from SARS. Methods The subjects of this study were 383 clinically diagnosed SARS patients in Beijing, China. They were tested regularly for serum levels of SARS-CoV IgG antibody and lung function and were given chest X-rays and/or high resolution computerized tomography (HRCT examinations at the Chinese PLA General Hospital during the 12 months that followed their release from the hospital. Those individuals who were found to have lung diffusion abnormities (transfer coefficient for carbon monoxide [DLCO] Findings Of all the subjects, 81.2% (311 of 383 patients tested positive for serum SARS-CoV IgG. Of those testing positive, 27.3% (85 of 311 patients were suffering from lung diffusion abnormities (DLCO Interpretation The lack of sero-positive SARS-CoV in some individuals suggests that there may have been some misdiagnosed cases among the subjects included in this study. Of those testing positive, the serum levels of SARS-CoV IgG antibody decreased significantly during the 12 months after hospital discharge. Additionally, we found that the individuals who had lung fibrosis showed some spontaneous recovery. Finally, some of the subjects developed femoral head necrosis.

  11. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  12. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    < 2m and the zero-crossing period during the satellite overpass is small (< 6s, �O�O < 60m). We therefore utilized the visit of one of the authors (Sarma) to the Southampton Oceanographic Centre, U.K., to procure two ERS-1 digital image mode SAR...-dimensional FFT as well as a computer program for downloading SAR data from CCT. Finally we owe a debt of gratitude to J C da Silva, Southampton Oceanographic Centre, U K for sharing some of his SAR data with us. References Allan T. D. (Ed) (1983...

  13. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  14. Quantitative relationship between SAR and temperature rise inside eyeball in a realistic human heat model for 1.5 GHz-microwave exposure; 1.5GHz maikuroha wo abita tobu real model ni okeru gankyunai no hikyushuritsu to josho ondo tono teiryo kankei

    Energy Technology Data Exchange (ETDEWEB)

    Takai, K.; Fujiwara, O. [Nagoya Institute of Technology, Nagoya (Japan)

    1997-12-20

    For investigating biological effects of a localized SAR (specific absorption rate) deposited in a human body for electromagnetic wave exposure, it is indispensable to graps a temperature-rise inside a human brain including the control center for the body temperature. This paper numerically analyzes a temperature-rise inside an eyeball of our developed realistic head model for 1.5 GHz microwave exposure, using the FD-TD (finite-difference time-domain) method. The computed results are validated in comparison with the data obtained by Taflove and his colleague. In order to examine a quantitative relationship between the localized SAR and temperature-rise, we also obtained a tissue amount over which the localized SAR should be averaged so as to well reflect the temperature-rise distribution inside the eyeball. 15 refs., 9 figs., 3 tabs.

  15. The SARVIEWS Project: Automated SAR Processing in Support of Operational Near Real-time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P. W.; Dehn, J.; Arko, S. A.; McAlpin, D. B.; Gong, W.

    2016-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing has become established in operational volcano monitoring. Centers like the Alaska Volcano Observatory rely heavily on remote sensing data from optical and thermal sensors to provide time-critical hazard information. Despite this high use of remote sensing data, the presence of clouds and a dependence on solar illumination often limit their impact on decision making. Synthetic Aperture Radar (SAR) systems are widely considered superior to optical sensors in operational monitoring situations, due to their weather and illumination independence. Still, the contribution of SAR to operational volcano monitoring has been limited in the past due to high data costs, long processing times, and low temporal sampling rates of most SAR systems. In this study, we introduce the automatic SAR processing system SARVIEWS, whose advanced data analysis and data integration techniques allow, for the first time, a meaningful integration of SAR into operational monitoring systems. We will introduce the SARVIEWS database interface that allows for automatic, rapid, and seamless access to the data holdings of the Alaska Satellite Facility. We will also present a set of processing techniques designed to automatically generate a set of SAR-based hazard products (e.g. change detection maps, interferograms, geocoded images). The techniques take advantage of modern signal processing and radiometric normalization schemes, enabling the combination of data from different geometries. Finally, we will show how SAR-based hazard information is integrated in existing multi-sensor decision support tools to enable joint hazard analysis with data from optical and thermal sensors. We will showcase the SAR processing system using a set of recent natural disasters (both earthquakes and volcanic eruptions) to demonstrate its

  16. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  17. SAR target recognition using behaviour library of different shapes in different incidence angles and polarisations

    Science.gov (United States)

    Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas

    2018-05-01

    Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.

  18. Optimizing deep hyperthermia treatments: are locations of patient pain complaints correlated with modelled SAR peak locations?

    Energy Technology Data Exchange (ETDEWEB)

    Canters, R A M; Franckena, M; Van der Zee, J; Van Rhoon, G C, E-mail: r.canters@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Daniel den Hoed Cancer Centre, Rotterdam, PO Box 5201, 3008 AE Rotterdam (Netherlands)

    2011-01-21

    During deep hyperthermia treatment, patient pain complaints due to heating are common when maximizing power. Hence, there exists a good rationale to investigate whether the locations of predicted SAR peaks by hyperthermia treatment planning (HTP) are correlated with the locations of patient pain during treatment. A retrospective analysis was performed, using the treatment reports of 35 patients treated with deep hyperthermia controlled by extensive treatment planning. For various SAR indicators, the average distance from a SAR peak to a patient discomfort location was calculated, for each complaint. The investigated V{sub 0.1closest} (i.e. the part of the 0.1th SAR percentile closest to the patient complaint) performed the best, and leads to an average distance between the SAR peak and the complaint location of 3.9 cm. Other SAR indicators produced average distances that were all above 10 cm. Further, the predicted SAR peak location with V{sub 0.1} provides a 77% match with the region of complaint. The current study demonstrates that HTP is able to provide a global indication of the regions where hotspots during treatment will most likely occur. Further development of this technology is necessary in order to use HTP as a valuable toll for objective and advanced SAR steering. The latter is especially valid for applications that enable 3D SAR steering.

  19. Optimizing deep hyperthermia treatments: are locations of patient pain complaints correlated with modelled SAR peak locations?

    International Nuclear Information System (INIS)

    Canters, R A M; Franckena, M; Van der Zee, J; Van Rhoon, G C

    2011-01-01

    During deep hyperthermia treatment, patient pain complaints due to heating are common when maximizing power. Hence, there exists a good rationale to investigate whether the locations of predicted SAR peaks by hyperthermia treatment planning (HTP) are correlated with the locations of patient pain during treatment. A retrospective analysis was performed, using the treatment reports of 35 patients treated with deep hyperthermia controlled by extensive treatment planning. For various SAR indicators, the average distance from a SAR peak to a patient discomfort location was calculated, for each complaint. The investigated V 0.1closest (i.e. the part of the 0.1th SAR percentile closest to the patient complaint) performed the best, and leads to an average distance between the SAR peak and the complaint location of 3.9 cm. Other SAR indicators produced average distances that were all above 10 cm. Further, the predicted SAR peak location with V 0.1 provides a 77% match with the region of complaint. The current study demonstrates that HTP is able to provide a global indication of the regions where hotspots during treatment will most likely occur. Further development of this technology is necessary in order to use HTP as a valuable toll for objective and advanced SAR steering. The latter is especially valid for applications that enable 3D SAR steering.

  20. Human factors engineering checklists for application in the SAR process

    Energy Technology Data Exchange (ETDEWEB)

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy`s (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered.

  1. Permanent scatterer InSAR processing: Forsmark

    International Nuclear Information System (INIS)

    Dehls, John F.

    2006-04-01

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km 2 . Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of errors

  2. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  3. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR Soil Moisture Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2016-04-01

    Full Text Available Due to complicated and undefined systematic errors in satellite observation, data assimilation integrating model states with satellite observations is more complicated than field measurements-based data assimilation at a local scale. In the case of Synthetic Aperture Radar (SAR soil moisture, the systematic errors arising from uncertainties in roughness conditions are significant and unavoidable, but current satellite bias correction methods do not resolve the problems very well. Thus, apart from the bias correction process of satellite observation, it is important to assess the inherent capability of satellite data assimilation in such sub-optimal but more realistic observational error conditions. To this end, time-evolving sequential ensembles of the Ensemble Kalman Filter (EnKF is compared with stationary ensemble of the Ensemble Optimal Interpolation (EnOI scheme that does not evolve the ensembles over time. As the sensitivity analysis demonstrated that the surface roughness is more sensitive to the SAR retrievals than measurement errors, it is a scope of this study to monitor how data assimilation alters the effects of roughness on SAR soil moisture retrievals. In results, two data assimilation schemes all provided intermediate values between SAR overestimation, and model underestimation. However, under the same SAR observational error conditions, the sequential ensembles approached a calibrated model showing the lowest Root Mean Square Error (RMSE, while the stationary ensemble converged towards the SAR observations exhibiting the highest RMSE. As compared to stationary ensembles, sequential ensembles have a better tolerance to SAR retrieval errors. Such inherent nature of EnKF suggests an operational merit as a satellite data assimilation system, due to the limitation of bias correction methods currently available.

  4. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    extensively in the field. High resolution TerraSAR-X (TSX) images, covering the entire research area were acquired for the period of October 2011 to July 2012 (15 images in total). All images were co-registreted, the first image was used as the master image. A coherence index was calculated for all the images. Analysis was performed in GIS software. The results display minor changes (coherence index in range of 0.4-0.65) on dune crests depending on the dune location relative to its distance from the sea and distance from the city. In addition, field results indicate erosion / deposition of sand in a cumulatively amount of approximately 30mm annually. The results of this study confirm that it is possible to monitor subtle changes in dunes and to identify dune stability or instability, only by the use of SAR images.

  5. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar

    DEFF Research Database (Denmark)

    Eriksson, André H; Elm, Peter L; Begtrup, Mikael

    2005-01-01

    -tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown......The aim of the present study was to improve the synthetic pathway of bioreversible dipeptide derivatives as well as evaluate the potential of using l-Glu-Sar as a pro-moiety for delivering three newly synthesised nucleoside and pyrimidine l-Glu-Sar derivatives. l-Glu(trans-2-thymine-1-yl...

  6. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  7. Federated query services provided by the Seamless SAR Archive project

    Science.gov (United States)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  8. Decadal strain along creeping faults in the Needles District, Paradox Basin Utah determined with InSAR Time Series Analysis

    Science.gov (United States)

    Kravitz, K.; Furuya, M.; Mueller, K. J.

    2013-12-01

    The Needles District, in Canyonlands National Park in Utah exposes an array of actively creeping normal faults that accommodate gravity-driven extension above a plastically deforming substrate of evaporite deposits. Previous interferogram stacking and InSAR analysis of faults in the Needles District using 35 ERS satellite scenes from 1992 to 2002 showed line-of-sight deformation rates of ~1-2 mm/yr along active normal faults, with a wide strain gradient along the eastern margin of the deforming region. More rapid subsidence of ~2-2.5 mm/yr was also evident south of the main fault array across a broad platform bounded by the Colorado River and a single fault scarp to the south. In this study, time series analysis was performed on SAR scenes from Envisat, PALSAR, and ERS satellites ranging from 1992 to 2010 to expand upon previous results. Both persistent scatterer and small baseline methods were implemented using StaMPS. Preliminary results from Envisat data indicate equally distributed slip rates along the length of faults within the Needles District and very little subsidence in the broad region further southwest identified in previous work. A phase ramp that appears to be present within the initial interferograms creates uncertainty in the current analysis and future work is aimed at removing this artifact. Our new results suggest, however that a clear deformation signal is present along a number of large grabens in the northern part of the region at higher rates of up to 3-4 mm/yr. Little to no creep is evident along the single fault zone that bounds the southern Needles, in spite of the presence of a large and apparently active fault. This includes a segment of this fault that is instrumented by a creepmeter that yields slip rates on the order of ~1mm/yr. Further work using time series analysis and a larger sampling of SAR scenes will be used in an effort to determine why differences exist between previous and current work and to test mechanics-based modeling

  9. SARS – Koch´Postulates proved.

    Indian Academy of Sciences (India)

    SARS – Koch´Postulates proved. Novel coronavirus identified from fluids of patients. Virus cultured in Vero cell line. Sera of patients have antibodies to virus. Cultured virus produces disease in Macaque monkeys. -produces specific immune response; -isolated virus is SARS CoV; -pathology similar to human.

  10. Low cost realization of space-borne synthectic aperture radar - MicroSAR

    Science.gov (United States)

    Carter, D.; Hall, C.

    Spaceborne Earth Observation data has been used for decades in the areas of meteorology and optical imaging. The systems and satellites have, in the main, been owned and operated by a few government institutions and agencies. More recently industrial organizations in North America have joined the list. Few of these, however, include Synthetic Aperture Radar (SAR)., although the additional utility in terms of all weather, 24 hour measurement capability over the Earth's surface is well recognized. Three major factors explain this:1) Relationships between the SAR measurements of radar backscatter and images to the specific information needs have not been seen as sufficiently well understood or robust2) Availability of suitable sources, at the relevant performance and data quality have been inadequate to provide service assurance that is necessary to sustain commercial businesses3) Costs associated with building, launching and operating spaceborne SAR have not been low enough as to achieve an acceptable return of investment. A significant amount of research and development has been undertaken throughout the World to establish reliable and robust algorithms for information extraction from SAR data. Much of this work has been carried out utilizing airborne systems over localized and carefully controlled regions. In addition, an increasing number of pilot services have been offered by geo-information providers. This has allowed customer confidence to grow. With the status of spaceborne SAR being effectively in the development phase, commercial funding has been scarce, and there has been need to rely on government and institutional budgets. Today the increasing maturity of the technology of SAR and its applications is beginning to attract the commercial sector. This is the funding necessary to realize sufficient assets to be able to provide a robust supply of SAR data to the geo-information providers and subsequently a reliable service to customers. Reducing the costs

  11. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  12. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  13. SAR system development for UAV multicopter platforms

    OpenAIRE

    Escartin Martínez, Antonio

    2015-01-01

    SAR system development for UAV multicopter platforms This thesis describes the optimization of a synthetic aperture radar (SAR) at X-band and its integration into an unmanned aerial vehicle (UAV) of type octocopter. For such optimization the SAR system functionality was extended from singlepol to fulpol and it has been optimized at hardware level in order to improve its quality against noise figure. After its integration into the octocopter platform, its features has been used in order to ...

  14. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  15. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  16. PHARUS: A C-band Airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Pouwels, H.; Snoeij, P.

    1990-01-01

    In The Netherlands a plan to design aircraft and build a polarimetric C-band SAR system of a novel design, called PHARUS (PHased Array Universal SAR) is carried out by three institutes. These institutes are the Physics and Electronics Laboratory TNO in The Hague (prime contractor and project

  17. Accuracy Analysis Comparison of Supervised Classification Methods for Anomaly Detection on Levees Using SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ramakalavathi Marapareddy

    2017-10-01

    Full Text Available This paper analyzes the use of a synthetic aperture radar (SAR imagery to support levee condition assessment by detecting potential slide areas in an efficient and cost-effective manner. Levees are prone to a failure in the form of internal erosion within the earthen structure and landslides (also called slough or slump slides. If not repaired, slough slides may lead to levee failures. In this paper, we compare the accuracy of the supervised classification methods minimum distance (MD using Euclidean and Mahalanobis distance, support vector machine (SVM, and maximum likelihood (ML, using SAR technology to detect slough slides on earthen levees. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s uninhabited aerial vehicle synthetic aperture radar (UAVSAR. The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  18. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    Science.gov (United States)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  19. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-01-01

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. (note)

  20. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    Science.gov (United States)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  1. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    Science.gov (United States)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe

  2. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    OpenAIRE

    Guo, Hao; Wu, Danni; An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred f...

  3. Species-area relationships are controlled by species traits.

    Science.gov (United States)

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope = 0.82), narrow dietary niche (slope= 0.59), low abundance (slope= 0.52), and low reproductive potential (slope = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions.

  4. Detection of oil spills near offshore installations using synthetic aperture radar (SAR)

    International Nuclear Information System (INIS)

    Espedal, H.A.; Johannessen, O.M.

    2000-01-01

    Remote sensing using synthetic aperture radar (SAR) is attracting increasing interest for the detection of oil spills from offshore oil installations. Three systems are already operating and three more are planned. SAR can provide high spatial resolution and is not affected by the time of day or cloud conditions. Examples of images obtained from UK and Norwegian offshore installations are shown and their interpretation are explained. SAR image analysis is used by a satellite-based oil spill monitoring service covering the Norwegian sector of the North Sea and part of the North Sea, the Norwegian Sea and the Baltic Sea. An algorithm has been developed at the Nansen Environmental and Remote Sensing Centre (NERSC) in Norway to help distinguish between oil spills, natural films, current shear zones and rain cells

  5. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  6. STRUCTURE – ANTIOXIDANT ACTIVITIES RELATIONSHIP ANALYSIS OF ISOEUGENOL, EUGENOL, VANILIN AND THEIR DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Nur Aini

    2010-06-01

    Full Text Available Structure Activity Relationship (SAR technique between the theoretical parameters and antioxidant activities of isoeugenol, eugenol, vanillin and their derivatives as Mannich reaction products, have been analyzed. Antioxidant activities were examined by oxidation reaction of oleic acid at 60 °C with b-carotene methods, whereas theoretical parameters of the activities were determined by calculating Bonding Dissociation Enthalpy (BDE and net charge of oxygen atom(-OH using AM1 semi empiric methods. The result from both test showed in the following orders: BHT > Mannich product of isoeugenol > isoeugenol > Mannich product of eugenol > eugenol > Mannich product of vanillin > vanillin. The antioxidant activities increase with small the BDE value and high the net charge. Electron donating groups will increase the antioxidants activity with lowering the BDE value and increasing the net charge, while electron-withdrawing groups will decrease antioxidants activity.   Keywords: SAR, antioxidants, Bonding Dissociation Entalphy, eugenol.

  7. Influence of information about specific absorption rate (SAR) upon customers' purchase decisions and safety evaluation of mobile phones.

    Science.gov (United States)

    Wiedemann, Peter M; Schütz, Holger; Clauberg, Martin

    2008-02-01

    This study investigated whether the SAR value is a purchase-relevant characteristic of mobile phones for laypersons and what effect the disclosure of a precautionary SAR value has on laypersons' risk perception. The study consisted of two parts: Study part 1 used a conjoint analysis design to explore the relevance of the SAR value and other features of mobile phones for an intended buying decision. Study part 2 used an experimental, repeated measures design to examine the effect of the magnitude of SAR values and the disclosure of a precautionary SAR value on risk perception. In addition, the study included an analysis of prior concerns of the study participants with regard to mobile phone risks. Part 1 indicates that the SAR value has a high relevance for laypersons' purchase intentions. In the experimental purchase setting it ranks even before price and equipment features. The results of study part 2 show that providing information of a precautionary limit value does not influence risk perception. This result suggests that laypersons' underlying subjective "safety model" for mobile phones resembles more a "margin of safety" concept than a threshold concept. The latter observation holds true no matter how concerned the participants are. (c) 2007 Wiley-Liss, Inc.

  8. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.

  9. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR

    Science.gov (United States)

    Mellors, R.J.; Magistrale, H.; Earle, P.; Cogbill, A.H.

    2004-01-01

    Source parameters determined from interferometric synthetic aperture radar (InSAR) measurements and from seismic data are compared from four moderate-size (less than M 6) earthquakes in southern California. The goal is to verify approximate detection capabilities of InSAR, assess differences in the results, and test how the two results can be reconciled. First, we calculated the expected surface deformation from all earthquakes greater than magnitude 4 in areas with available InSAR data (347 events). A search for deformation from the events in the interferograms yielded four possible events with magnitudes less than 6. The search for deformation was based on a visual inspection as well as cross-correlation in two dimensions between the measured signal and the expected signal. A grid-search algorithm was then used to estimate focal mechanism and depth from the InSAR data. The results were compared with locations and focal mechanisms from published catalogs. An independent relocation using seismic data was also performed. The seismic locations fell within the area of the expected rupture zone for the three events that show clear surface deformation. Therefore, the technique shows the capability to resolve locations with high accuracy and is applicable worldwide. The depths determined by InSAR agree with well-constrained seismic locations determined in a 3D velocity model. Depth control for well-imaged shallow events using InSAR data is good, and better than the seismic constraints in some cases. A major difficulty for InSAR analysis is the poor temporal coverage of InSAR data, which may make it impossible to distinguish deformation due to different earthquakes at the same location.

  10. AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND KI FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Q. Zhao

    2016-06-01

    Full Text Available Accurate and timely change detection of Earth’s surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  11. Suitability Assessment of X-Band Satellite SAR Data for Geotechnical Monitoring of Site Scale Slow Moving Landslides

    Directory of Open Access Journals (Sweden)

    Guadalupe Bru

    2018-06-01

    Full Text Available This work addresses the suitability of using X-band Synthetic Aperture Radar (SAR data for operational geotechnical monitoring of site scale slow moving landslides, affecting urban areas and infrastructures. The scale of these studies requires high resolution data. We propose a procedure for the practical use of SAR data in geotechnical landslides campaigns, that includes an appropriate dataset selection taking into account the scenario characteristics, a visibility analysis, and considerations when comparing advanced differential SAR interferometry (A-DInSAR results with other monitoring techniques. We have determined that Sentinel-2 satellite optical images are suited for performing high resolution land cover classifications, which results in the achievement of qualitative visibility maps. We also concluded that A-DInSAR is a very powerful and versatile tool for detailed scale landslide monitoring, although in combination with other instrumentation techniques.

  12. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  13. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets

    NARCIS (Netherlands)

    ter Meulen, Jan; Bakker, Alexander B. H.; van den Brink, Edward N.; Weverling, Gerrit J.; Martina, Byron E. E.; Haagmans, Bart L.; Kuiken, Thijs; de Kruif, John; Preiser, Wolfgang; Spaan, Willy; Gelderblom, Hans R.; Goudsmit, Jaap; Osterhaus, Albert D. M. E.

    2004-01-01

    SARS coronavirus continues to cause sporadic cases of severe acute respiratory syndrome (SARS) in China. No active or passive immunoprophylaxis for disease induced by SARS coronavirus is available. We investigated prophylaxis of SARS coronavirus infection with a neutralising human monoclonal

  14. The Advanced Rapid Imaging and Analysis (ARIA) Project: Providing Standard and On-Demand SAR products for Hazard Science and Hazard Response

    Science.gov (United States)

    Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.

    2017-12-01

    A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.

  15. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    International Nuclear Information System (INIS)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-01-01

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm 3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  16. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    Science.gov (United States)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error

  17. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world.

    Science.gov (United States)

    Ar Gouilh, Meriadeg; Puechmaille, Sébastien J; Diancourt, Laure; Vandenbogaert, Mathias; Serra-Cobo, Jordi; Lopez Roïg, Marc; Brown, Paul; Moutou, François; Caro, Valérie; Vabret, Astrid; Manuguerra, Jean-Claude

    2018-04-01

    The emergence of SARS-CoV and MERS-CoV, triggered the discovery of a high diversity of coronaviruses in bats. Studies from Europe have shown that coronaviruses circulate in bats in France but this reflects only a fraction of the whole diversity. In the current study the diversity of coronaviruses circulating in western Europe was extensively explored. Ten alphacoronaviruses in eleven bat species belonging to the Miniopteridae, Vespertilionidae and Rhinolophidae families and, a SARS-CoV-related Betacoronavirus in Rhinolophus ferrumequinum were identified. The diversity and prevalence of bat coronaviruses presently reported from western Europe is much higher than previously described and includes a SARS-CoV sister group. This diversity demonstrates the dynamic evolution and circulation of coronaviruses in this species. That said, the identified coronaviruses were consistently associated with a particular bat species or genus, and these relationships were maintained no matter the geographic location. The observed phylogenetic grouping of coronaviruses from the same species in Europe and Asia, emphasizes the role of host/pathogen coevolution in this group. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  19. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    Science.gov (United States)

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  20. Characterizing Post-Drainage Succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI Data

    Directory of Open Access Journals (Sweden)

    Prajna Regmi

    2012-11-01

    Full Text Available Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR data of the German TerraSAR-X satellite from the 2009 growing season (July–September for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old. No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  1. Rapid Flood Map Generation from Spaceborne SAR Observations

    Science.gov (United States)

    Yun, S. H.; Liang, C.; Manipon, G.; Jung, J.; Gurrola, E. M.; Owen, S. E.; Hua, H.; Agram, P. S.; Webb, F.; Sacco, G. F.; Rosen, P. A.; Simons, M.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) team has responded to the January 2016 US Midwest Floods along the Mississippi River. Daily teleconferences with FEMA, NOAA, NGA, and USGS, provided information on precipitation and flood crest migration, based on which we coordinated with the Japanese Aerospace Exploration Agency (JAXA) through NASA headquarters for JAXA's ALOS-2 timely tasking over two paths. We produced flood extent maps using ALOS-2 SM3 mode Level 1.5 data that were provided through the International Charter and stored at the US Geological Survey's Hazards Data Distribution System (HDDS) archive. On January 6, the first four frames (70 km x 240 km) were acquired, which included the City of Memphis. We registered post-event SAR images to pre-event images, applied radiometric calibration, took a logarithm of the ratio of the two images. Two thresholds were applied to represent flooded areas that became open water (colored in blue) and flooded areas with tall vegetation (colored in red). The second path was acquired on January 11 further down along the Mississippi River. Seven frames (70 km x 420 km) were acquired and flood maps were created in the similar fashion. The maps were delivered to the FEMA as well as posted on ARIA's public website. The FEMA stated that SAR provides inspection priority for optical imagery and ground response. The ALOS-2 data and the products have been a very important source of information during this response as the flood crest has moved down stream. The SAR data continue to be an important resource during times when optical observations are often not useful. In close collaboration with FEMA and USGS, we also work on other flood events including June 2016 China Floods using European Space Agency's (ESA's) Sentienl-1 data, to produce flood extent maps and identify algorithmic needs and ARIA system's requirements to automate and rapidly produce and deliver flood maps for future events. With the addition of Sentinel-1B

  2. SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory.

    Science.gov (United States)

    Gouilh, Meriadeg Ar; Puechmaille, Sébastien J; Gonzalez, Jean-Paul; Teeling, Emma; Kittayapong, Pattamaporn; Manuguerra, Jean-Claude

    2011-10-01

    One of the great challenges in the ecology of infectious diseases is to understand what drives the emergence of new pathogens including the relationship between viruses and their hosts. In the case of the emergence of SevereAcute Respiratory Syndrome Coronavirus (SARS-CoV), several studies have shown coronavirus diversity in bats as well as the existence of SARS-CoV infection in apparently healthy bats, suggesting that bats may be a crucial host in the genesis of this disease. To elucidate the biogeographic origin of SARS-CoV and investigate the role that bats played in its emergence, we amplified coronavirus sequences from bat species captured throughout Thailand and assessed the phylogenetic relationships to each other and to other published coronavirus sequences. To this end, RdRp sequence of Coronavirinae was targeted by RT-PCR in non-invasive samples from bats collected in Thailand. Two new coronaviruses were detected in two bat species: one Betacoronavirus in Hipposideros larvatus and one Alphacoronavirus in Hipposiderosarmiger. Interestingly, these viruses from South-East Asia are related to those previously detected in Africa (Betacoronavirus-b) or in Europe (Alphacoronavirus & Betacoronavirus-b). These findings illuminate the origin and the evolutionary history of the SARS-CoV group found in bats by pushing forward the hypothesis of a Betacoronavirus spill-over from Hipposideridae to Rhinolophidae and then from Rhinolophidae to civets and Human. All reported Betacoronaviruses-b (SARS-CoV group) of Hipposideridae and Rhinolophidae respectively cluster in two groups despite their broad geographic distribution and the sympatry of their hosts, which is in favor of an ancient and genetically independent evolution of Betacoronavirus-b clusters in these families. Moreover, despite its probable pathogenicity, we found that a Betacoronavirus-b can persistently infect a medium-sized hipposiderid bat colony. These findings illustrate the importance of the host

  3. An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-Resolution and Wide-Swath SAR Systems

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2017-04-01

    Full Text Available Multichannel synthetic aperture radar (SAR is a significant breakthrough to the inherent limitation between high-resolution and wide-swath (HRWS compared with conventional SAR. Moving target indication (MTI is an important application of spaceborne HRWS SAR systems. In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the estimation of velocity is equivalent to the estimation of the cone angle according to their relationship. The maximum likelihood (ML based algorithm is proposed to estimate the radial velocity in the existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the phase offset caused by radial velocity are processed for a moving target. Finally, the traditional imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios (SNR. Furthermore, the performance is analyzed with respect to the motion ship that experiences interference due to different distributions of sea clutter. The results verify that the proposed algorithm is accurate and efficient with low computational complexity. This paper aims at providing a solution to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.

  4. Mapping mountain meadow with high resolution and polarimetric SAR data

    International Nuclear Information System (INIS)

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  5. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  6. URBAN MODELLING PERFORMANCE OF NEXT GENERATION SAR MISSIONS

    Directory of Open Access Journals (Sweden)

    U. G. Sefercik

    2017-09-01

    Full Text Available In synthetic aperture radar (SAR technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX and Cosmo-SkyMed (CSK since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM acquisition for urban areas utilizing interferometric SAR (InSAR technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8–10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  7. InSAR deformation monitoring of high risk landslides

    Science.gov (United States)

    Singhroy, V.; Li, J.

    2013-05-01

    During the past year there were at least twenty five media reports of landslides and seismic activities some fatal, occurring in various areas in Canada. These high risk geohazards sites requires high resolution monitoring both spatially and temporally for mitigation purposes, since they are near populated areas and energy, transportation and communication corridors. High resolution air photos, lidar and satellite images are quite common in areas where the landslides can be fatal. Radar interferometry (InSAR) techniques using images from several radar satellites are increasingly being used in slope stability assessment. This presentation provides examples of using high-resolution (1-3m) frequent revisits InSAR techniques from RADARSAT 2 and TerraSAR X to monitor several types of high-risk landslides affecting transportation and energy corridors and populated areas. We have analyses over 200 high resolution InSAR images over a three year period on geologically different landslides. The high-resolution InSAR images are effective in characterizing differential motion within these low velocity landslides. The low velocity landslides become high risk during the active wet spring periods. The wet soils are poor coherent targets and corner reflectors provide an effective means of InSAR monitoring the slope activities.

  8. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  9. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels, E-mail: neufeld@itis.ethz.ch [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland)

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm{sup 3} of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  10. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  11. Structural Health and Stability Assessment of High-Speed Railways via Thermal Dilation Mapping With Time-Series InSAR Analysis

    NARCIS (Netherlands)

    Qin, Xiaoqiong; Liao, Mingsheng; Zhang, L; Yang, M.

    2017-01-01

    Thermal dilation is a vital component of deformation along the extensive railway network infrastructure. To monitor subtle deformation, the synthetic aperture radar interferometry (InSAR) technique has been adopted as a space-borne geodetic tool. However, InSAR applications in railway stability

  12. Feature Matching for SAR and Optical Images Based on Gaussian-Gamma-shaped Edge Strength Map

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2016-03-01

    Full Text Available A matching method for SAR and optical images, robust to pixel noise and nonlinear grayscale differences, is presented. Firstly, a rough correction to eliminate rotation and scale change between images is performed. Secondly, features robust to speckle noise of SAR image are detected by improving the original phase congruency based method. Then, feature descriptors are constructed on the Gaussian-Gamma-shaped edge strength map according to the histogram of oriented gradient pattern. Finally, descriptor similarity and geometrical relationship are combined to constrain the matching processing.The experimental results demonstrate that the proposed method provides significant improvement in correct matches number and image registration accuracy compared with other traditional methods.

  13. hPEPT1 Affinity and Translocation of Selected Gln-Sar and Glu-Sar Dipeptide Derivatives

    DEFF Research Database (Denmark)

    Eriksson, A. H.; Elm, Peter L.; Begtrup, Mikael

    2005-01-01

    using 14C-labeled Gly-Sar. Translocation was measured as fluorescence ratios induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All compounds showed high affinity to hPEPT1, but only the amides l-Gln(N,N-dimethyl)-Sar and l-Gln(N-piperidinyl)-Sar were...... been suggested. However, these are not necessarily predictive of compounds that are actually translocated by hPEPT1. More information on affinity to and translocation via hPEPT1 of side-chain-modified dipeptides may be gained by conducting a study of selected dipeptide derivatives with variety in size...... translocated by hPEPT1. hPEPT1 is very susceptible to modifications of the N-terminal amino acid side chain of dipeptidomimetic substrates, in terms of achieving compounds with high affinity for the transporter. However, as affinity is not predictive of translocation, derivatization in this position must...

  14. Estimating Elevation Angles From SAR Crosstalk

    Science.gov (United States)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  15. Structure-activity relationship of crustacean peptide hormones.

    Science.gov (United States)

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  16. Advanced DInSAR analysis for building damage assessment in large urban areas: an application to the city of Roma, Italy

    Science.gov (United States)

    D'Aranno, Peppe J. V.; Marsella, Maria; Scifoni, Silvia; Scutti, Marianna; Sonnessa, Alberico; Bonano, Manuela

    2015-10-01

    Remote sensing data play an important role for the environmental monitoring because they allow to provide systematic information on very large areas and for a long period of time. Such information must be analyzed, validated and incorporated into proper modeling tools in order to become useful for performing risk assessment analysis. These approaches has been already applied in the field of natural hazard evaluation (i.e. for monitoring seismic, volcanic areas and landslides). However, not enough attention has been devoted to the development of validated methods for implementing quantitative analysis on civil structures. This work is dedicated to the comprehensive utilization of ERS / ENVISAT data store ESA SAR used to detect deformation trends and perform back-analysis of the investigated structures useful to calibrate the damage assessment models. After this preliminary analysis, SAR data of the new satellite mission (ie Cosmo SkyMed) were adopted to monitor the evolution of existent surface deformation processes and to detect new occurrence. The specific objective was to set up a data processing and data analysis chain tailored on a service that sustains the safe maintenance of the built-up environment, including critical construction such as public (schools, hospital, etc), strategic (dam, highways, etc) and also the cultural heritage sites. The analysis of the test area, in the southeastern sector of Roma, has provided three different levels and sub-levels of products from metropolitan area scale (territorial analysis), settlement scale (aggregated analysis) to single structure scale (damage degree associated to the structure).

  17. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    Science.gov (United States)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  18. SAR Study of Mobile Phones as a function of Antenna Q

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Jagielski, Ole

    2015-01-01

    density associated with high-Q antennas. The higher energy stored in the electric and magnetic near-field components can result in higher SAR. Hence, SAR study of high-Q antennas is necessary which, if not addressed, might not comply with the SAR safety guidelines. In this paper, SAR as a function...

  19. SAR calculation using FDTD simulations

    OpenAIRE

    Ferro, Francisco Nabais; Pinto, Guilherme Taveira; Pinho, Pedro

    2009-01-01

    The main intend of this work, is to determinate the Specific Absorption Rate (SAR) on human head tissues exposed to radiation caused by sources of 900 and 1800MHz, since those are the typical frequencies for mobile communications systems nowadays. In order to determinate the SAR, has been used the FDTD (Finite Difference Time Domain), which is a numeric method in time domain, obtained from the Maxwell equations in differential mode. In order to do this, a computational model from the human he...

  20. Automatic Coregistration for Multiview SAR Images in Urban Areas

    Science.gov (United States)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  1. 3D Monitoring of Buildings Using TerraSAR-X InSAR, DInSAR and PolSAR Capacities

    Directory of Open Access Journals (Sweden)

    Flora Weissgerber

    2017-09-01

    Full Text Available The rapid expansion of cities increases the need of urban remote sensing for a large scale monitoring. This paper provides greater understanding of how TerraSAR-X (TSX high-resolution abilities enable to reach the spatial precision required to monitor individual buildings, through the use of a 4 year temporal stack of 100 images over Paris (France. Three different SAR modes are investigated for this purpose. First a method involving a whole time-series is proposed to measure realistic heights of buildings. Then, we show that the small wavelength of TSX makes the interferometric products very sensitive to the ordinary building-deformation, and that daily deformation can be measured over the entire building with a centimetric accuracy, and without any a priori on the deformation evolution, even when neglecting the impact of the atmosphere. Deformations up to 4 cm were estimated for the Eiffel Tower and up to 1 cm for other lower buildings. These deformations were analyzed and validated with weather and in situ local data. Finally, four TSX polarimetric images were used to investigate geometric and dielectric properties of buildings under the deterministic framework. Despite of the resolution loss of this mode, the possibility to estimate the structural elements of a building orientations and their relative complexity in the spatial organization are demonstrated.

  2. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    Science.gov (United States)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of

  3. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures

    Science.gov (United States)

    Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele

    2017-04-01

    The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed

  4. Information extraction from dynamic PS-InSAR time series using machine learning

    Science.gov (United States)

    van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.

    2017-12-01

    Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account

  5. Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2017-10-01

    Full Text Available A novel technique for ship wake detection has been recently proposed and applied on X-band Synthetic Aperture Radar images provided by COSMO/SkyMed and TerraSAR-X. The approach shows that the vast majority of wake features are correctly detected and validated in critical situations. In this paper, the algorithm was applied to 28 wakes imaged by Sentinel-1 mission with different polarizations and incidence angles with the aim of testing the method’s robustness with reference to radar frequency and resolution. The detection process is properly modified. The results show that the features were correctly classified in 78.5% of cases, whereas false confirmations occur mainly on Kelvin cusps. Finally, the results were compared with the algorithm performance on X-band images, showing that no significant difference arises. In fact, the total false confirmations rate was 15.8% on X-band images and 18.5% on C-band images. Moreover, since the main criticality concerns again the false confirmation of Kelvin cusps, the same empirical criterion suggested for the X-band SAR images yielded a negligible 1.5% of false detection rate.

  6. Evaluation and SAR analysis of the cytotoxicity of tanshinones in colon cancer cells.

    Science.gov (United States)

    Wang, Lin; Liu, An; Zhang, Fei-Long; Yeung, John H K; Li, Xu-Qin; Cho, Chi-Hin

    2014-03-01

    This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA, and six derivatives of tanshinone IIA on normal and cancerous colon cells. Structure activity relationship (SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action. Tanshinone derivatives were designed and synthesized according to the literature. The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay. Apoptotic activity of the tanshinones was measured by flow cytometry (FCM). Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells. They are more effective in p53(+/+) colon cancer cell line. It was also noted that the anti-cancer activity of tanshinone I was more potent and selective. Two of the derivatives of tanshinone IIA (N1 and N2) also exhibited cytotoxicity on colon cancer cells. The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA, and is p53 dependent. The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells. From steric and electronic characteristics point of view, it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity. An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds, while a non-planar and small sized D ring region would provide improved anti-cancer activity. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. An analytical solution for improved HIFU SAR estimation

    International Nuclear Information System (INIS)

    Dillon, C R; Vyas, U; Christensen, D A; Roemer, R B; Payne, A

    2012-01-01

    Accurate determination of the specific absorption rates (SARs) present during high intensity focused ultrasound (HIFU) experiments and treatments provides a solid physical basis for scientific comparison of results among HIFU studies and is necessary to validate and improve SAR predictive software, which will improve patient treatment planning, control and evaluation. This study develops and tests an analytical solution that significantly improves the accuracy of SAR values obtained from HIFU temperature data. SAR estimates are obtained by fitting the analytical temperature solution for a one-dimensional radial Gaussian heating pattern to the temperature versus time data following a step in applied power and evaluating the initial slope of the analytical solution. The analytical method is evaluated in multiple parametric simulations for which it consistently (except at high perfusions) yields maximum errors of less than 10% at the center of the focal zone compared with errors up to 90% and 55% for the commonly used linear method and an exponential method, respectively. For high perfusion, an extension of the analytical method estimates SAR with less than 10% error. The analytical method is validated experimentally by showing that the temperature elevations predicted using the analytical method's SAR values determined for the entire 3D focal region agree well with the experimental temperature elevations in a HIFU-heated tissue-mimicking phantom. (paper)

  8. Relations of SARS-Related Stressors and Coping to Chinese College Students' Psychological Adjustment during the 2003 Beijing SARS Epidemic

    Science.gov (United States)

    Main, Alexandra; Zhou, Qing; Ma, Yue; Luecken, Linda J.; Liu, Xin

    2011-01-01

    This study examined the main and interactive relations of stressors and coping related to severe acute respiratory syndrome (SARS) with Chinese college students' psychological adjustment (psychological symptoms, perceived general health, and life satisfaction) during the 2003 Beijing SARS epidemic. All the constructs were assessed by self-report…

  9. A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003-2004 community outbreak of SARS in Guangzhou, China.

    Science.gov (United States)

    Che, Xiao-yan; Di, Biao; Zhao, Guo-ping; Wang, Ya-di; Qiu, Li-wen; Hao, Wei; Wang, Ming; Qin, Peng-zhe; Liu, Yu-fei; Chan, Kwok-hong; Cheng, Vincent C C; Yuen, Kwok-yung

    2006-07-01

    An asymptomatic case of severe acute respiratory syndrome (SARS) occurred early in 2004, during a community outbreak of SARS in Guangzhou, China. This was the first time that a case of asymptomatic SARS was noted in an individual with antigenemia and seroconversion. The asymptomatic case patient and the second index case patient with SARS in the 2003-2004 outbreak both worked in the same restaurant, where they served palm civets, which were found to carry SARS-associated coronaviruses. Epidemiological information and laboratory findings suggested that the findings for the patient with asymptomatic infection, together with the findings from previously reported serological analyses of handlers of wild animals and the 4 index case patients from the 2004 community outbreak, reflected a likely intermediate phase of animal-to-human transmission of infection, rather than a case of human-to-human transmission. This intermediate phase may be a critical stage for virus evolution and disease prevention.

  10. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR

    Directory of Open Access Journals (Sweden)

    Kefeng Ji

    2015-06-01

    Full Text Available Dual polarization is a typical operational mode of polarimetric synthetic aperture radar (SAR. However, few studies have considered the scattering mechanism extraction of dual-polarization SARs. A modified Cloude-Pottier decomposition is proposed to investigate the performance of the scattering mechanism extraction of dual-polarization SARs. It is theoretically demonstrated that only HH-VV SAR can discriminate the three canonical scattering mechanisms from an isotropic surface, horizontal dipole, and isotropic dihedral. Various experiments are conducted using 21 scenes from real datasets acquired by AIRSAR, Convair-580 SAR, EMISAR, E-SAR, Pi-SAR, and RADARSAT-2. Division of the dual-polarization H-α plane is experimentally obtained. The lack of cross-polarization induces the diffusion of scattering mechanisms and their overlap in the HH-VV H-α plane. However, the performance of HH-VV SAR for extracting scattering mechanisms is acceptable. Thus, HH-VV SAR is a suitable alternative to full-polarization SAR in certain cases. Meanwhile, the extraction performance of the other two dual-polarization SARs is badly degraded due to the lack of co-polarization. Therefore, HH-HV and HV-VV SARs cannot effectively extract the scattering mechanisms in the H-α plane.

  11. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  12. Analysis of Ground Displacements in Taipei Area by Using High Resolution X-band SAR Interferometry

    Science.gov (United States)

    Tung, H.; Chen, H. Y.; Hu, J. C.

    2014-12-01

    Located at the northern part of Taiwan, Taipei is the most densely populated city and the center of politic, economic, and culture of this island. North of the Taipei basin, the active Tatun volcano group with the eruptive potential to devastate the entire Taipei is only 15 km away from the capital Taipei. Furthermore, the active Shanchiao fault located in the western margin of Taipei basin. Therefore, it is not only an interesting scientific topic but also a strong social impact to better understand the assessment and mitigation of geological hazard in the metropolitan Taipei city. In this study, we use 12 high resolution X-band SAR images from the new generation COSMO-SkyMed (CSK) constellation for associating with leveling and GPS data to monitor surface deformation around the Shanchiao fault and the Tatun volcano group. The stripmap mode of CSK SAR images provides spatial resolution of 3 m x 3 m, which is one order of magnitude better than the previous available satellite SAR data. Furthermore, the more frequent revisit of the same Area of Interest (AOI) of the present X-band missions provides massive datasets to avoid the baseline limitation and temporal decorrelation to improve the temporal resolution of deformation in time series. After transferring the GPS vectors and leveling data to the LOS direction by referring to continuous GPS station BANC, the R square between PS velocities and GPS velocities is approximate to 0.9, which indicates the high reliability of our PSInSAR result. In addition, the well-fitting profiles between leveling data and PSInSAR result along two leveling routes both demonstrate that the significant deformation gradient mainly occurs along the Shanchiao fault. The severe land subsidence area is located in the western part of Taipei basin just next to the Shanchiao fault with a maximum of SRD rate of 30 mm/yr. However, the severe subsidence area, Wuku, is also one industrial area in Taipei which could be attributed to anthropogenic

  13. AUTOMATIC COREGISTRATION FOR MULTIVIEW SAR IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Xiang

    2017-09-01

    Full Text Available Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  14. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    Science.gov (United States)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  15. Applications of SAR Interferometry in Earth and Environmental Science Research.

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  16. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    Science.gov (United States)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  17. Inhibitors of inosine monophosphate dehydrogenase: SARs about the N-[3-Methoxy-4-(5-oxazolyl)phenyl moiety.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Guo, Junqing; Pitts, William J; Murali Dhar, T G; Shen, Zhongqi; Chen, Ping; Gu, Henry H; Fleener, Catherine A; Rouleau, Katherine A; Cheney, Daniel L; Townsend, Robert M; Hollenbaugh, Diane L

    2003-06-16

    The first reported structure-activity relationships (SARs) about the N-[3-methoxy-4-(5-oxazolyl)phenyl moiety for a series of recently disclosed inosine monophosphate dehydrogenase (IMPDH) inhibitors are described. The syntheses and in vitro inhibitory values for IMPDH II, and T-cell proliferation (for select analogues) are given.

  18. SARS Risk Perception, Knowledge, Precautions, and Information Sources, the Netherlands

    Science.gov (United States)

    Aro, Arja R.; Oenema, Anke; de Zwart, Onno; Richardus, Jan Hendrik; Bishop, George D.

    2004-01-01

    Severe acute respiratory syndrome (SARS)–related risk perceptions, knowledge, precautionary actions, and information sources were studied in the Netherlands during the 2003 SARS outbreak. Although respondents were highly aware of the SARS outbreak, the outbreak did not result in unnecessary precautionary actions or fears. PMID:15496256

  19. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  20. SAR antenna design for ambiguity and multipath suppression

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dich, Mikael

    1993-01-01

    A high resolution airborne synthetic aperture radar (SAR) has been developed at the Electromagnetics Institute (EMI) for remote sensing applications. The paper considers the radiation of antennas for a SAR system from a systems perspective. The basic specifications of an idealised antenna...... are obtained from the required swath and the azimuth footprint needed for the SAR processing. The radiation from a real antenna causes unwanted signal returns that lead to intensity variations (multipath) and ghost echoes (ambiguity). Additional specifications are deduced by considering these signals...

  1. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.

  2. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    Science.gov (United States)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  3. Advanced SAR Interferometric Analysis to Support Geomorphological Interpretation of Slow-Moving Coastal Landslides (Malta, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Matteo Mantovani

    2016-05-01

    Full Text Available An advanced SAR interferometric analysis has been combined with a methodology for the automatic classification of radar reflectors phase histories to interpret slope-failure kinematics and trend of displacements of slow-moving landslides. To accomplish this goal, the large dataset of radar images, acquired in more than 20 years by the two European Space Agency (ESA missions ERS-1/2 and ENVISAT, was exploited. The analysis was performed over the northern sector of Island of Malta (central Mediterranean Sea, where extensive landslides occur. The study was assisted by field surveys and with the analysis of existing thematic maps and landslide inventories. The outcomes allowed definition of a model capable of describing the geomorphological evolution of slow-moving landslides, providing a key for interpreting such phenomena that, due to their slowness, are usually scarcely investigated.

  4. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    Science.gov (United States)

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  5. Research on Airborne SAR Imaging Based on Esc Algorithm

    Science.gov (United States)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  6. RESEARCH ON AIRBORNE SAR IMAGING BASED ON ESC ALGORITHM

    Directory of Open Access Journals (Sweden)

    X. T. Dong

    2017-09-01

    Full Text Available Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC. In this paper, extend chirp scaling algorithm (ECS is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  7. Benzoxazolone carboxamides as potent acid ceramidase inhibitors: Synthesis and structure-activity relationship (SAR) studies

    DEFF Research Database (Denmark)

    Bach, Anders

    2015-01-01

    be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We...... examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic...

  8. Applications of SAR Interferometry in Earth and Environmental Science Research

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  9. Applications of SAR Interferometry in Earth and Environmental Science Research

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2009-03-01

    Full Text Available This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  10. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  11. Backscatter Analysis Using Multi-Temporal SENTINEL-1 SAR Data for Crop Growth of Maize in Konya Basin, Turkey

    Science.gov (United States)

    Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.

    2018-04-01

    Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.

  12. Mapping Regional Inundation with Spaceborne L-Band SAR

    Directory of Open Access Journals (Sweden)

    Bruce Chapman

    2015-04-01

    Full Text Available Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space Exploration Agency (JAXA, a program to develop an Earth Science Data Record (ESDR for inundated wetlands was funded by NASA. Using established methodologies, extensive multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument onboard ALOS were used to classify the inundation state for South America for delivery as a component of this Inundated Wetlands ESDR (IW-ESDR and in collaboration with JAXA’s ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and the final classification of the inundation state, then compared this with results derived from dual-season data acquired by the JERS-1 L-band SAR mission in 1995 and 1996, as well as with estimates of surface water extent measured globally every 10 days by coarser resolution sensors. Good correspondence was found when comparing open water extent classified from multi-temporal ALOS ScanSAR data with surface water fraction identified from coarse resolution sensors, except in those regions where there may be differences in sensitivity to widespread and shallow seasonal flooding event, or in areas that could be excluded through use of a continental-scale inundatable mask. It was found that the ALOS ScanSAR classification of inundated vegetation was relatively insensitive to inundated herbaceous vegetation. Inundation dynamics were examined using the multi-temporal ALOS ScanSAR acquisitions over the Pacaya-Samiria and surrounding areas in the Peruvian Amazon.

  13. Detection of macroalgae blooms by complex SAR imagery

    International Nuclear Information System (INIS)

    Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun

    2014-01-01

    Highlights: • Complex SAR imagery enables better recognition of macroalgae patches. • Combination of different information in SAR matrix forms new index factors. • Proposed index factors contribute to unsupervised recognition of macroalgae. -- Abstract: Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean

  14. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  15. The economic impact of SARS in Beijing, China.

    Science.gov (United States)

    Beutels, Philippe; Jia, Na; Zhou, Qing-Yi; Smith, Richard; Cao, Wu-Chun; de Vlas, Sake J

    2009-11-01

    To document the impact of the severe acute respiratory syndrome (SARS) outbreak in Beijing on indicators of social and economic activity. Associations between time series of daily and monthly SARS cases and deaths and volume of public train, airplane and cargo transport, tourism, household consumption patterns and gross domestic product growth in Beijing were investigated using the cross-correlation function. Significant correlation coefficients were found for all indicators except wholesale accounts and expenditures on necessities, with the most significant correlations occurring with a delay of 1 day to 1 month. Especially leisure activities, local and international transport and tourism were affected by SARS particularly in May 2003. Much of this consumption was merely postponed; but irrecoverable losses to the tourist sector alone were estimated at about US$ 1.4 bn, or 300 times the cost of treatment for SARS cases in Beijing.

  16. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  17. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  18. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  19. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  20. Remarkable Urban Uplift in Staufen im Breisgau, Germany: Observations from TerraSAR-X InSAR and Leveling from 2008 to 2011

    Directory of Open Access Journals (Sweden)

    Hermann Kaufmann

    2013-06-01

    Full Text Available As geothermal energy is of increasing importance as a renewable energy source, there is a high demand for comprehensive studies to prevent failure during implementation, as is the case in Staufen im Breisgau, Germany. The drilling of seven wells for the geothermal heating of the city hall in 2007 is thought to have disturbed the existing hydro-geological system in the complex structured transition zone of the Upper Rhine Graben and the Schwarzwald massif. This event has led to uplift, related to the transformation of anhydrite to gypsum, which affects the infrastructure of the city centre via the generation of large cracks. This study focuses on the application of the InSAR Small Baseline Subset (SBAS approach using 50 X-band radar images from the German TerraSAR-X satellite (TSX to map the spatial and temporal patterns of the deformation field in detail. X-band InSAR time series analysis for the three-year time period from July 2008 through May 2011 indicates maximum velocities of ~12 cm/yr in the line of sight (LOS direction, from the ground to the satellite, approximately 50 m northeast of the drilling field. In comparison with leveling data for the same time period, TSX data analysis better delineates the border of the deformation area, and it is able to map the amount of deformation associated with different parts of the city. Moreover, this comparison indicates contributions of horizontal motion, as is expected for uplift patterns.

  1. ARIA: Delivering state-of-the-art InSAR products to end users

    Science.gov (United States)

    Agram, P. S.; Owen, S. E.; Hua, H.; Manipon, G.; Sacco, G. F.; Bue, B. D.; Fielding, E. J.; Yun, S. H.; Simons, M.; Webb, F.; Rosen, P. A.; Lundgren, P.; Liu, Z.

    2016-12-01

    Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards aims to bring state-of-the-art geodetic imaging capabilities to an operational level in support of local, national, and international hazard response communities. ARIA project's first foray into operational generation of InSAR products was with Calimap Project, in collaboration with ASI-CIDOT, using X-band data from the Cosmo-SkyMed constellation. Over the last year, ARIA's processing infrastructure has been significantly upgraded to exploit the free stream of high quality C-band SAR data from ESA's Sentinel-1 mission and related algorithmic improvements to the ISCE software. ARIA's data system can now operationally generate geocoded unwrapped phase and coherence products in GIS-friendly formats from Sentinel-1 TOPS mode data in an automated fashion, and this capability is currently being exercised various study sites across the United States including Hawaii, Central California, Iceland and South America. The ARIA team, building on the experience gained from handling X-band data and C-band data, has also built an automated machine learning-based classifier to label the auto-generated interferograms based on phase unwrapping quality. These high quality "time-series ready" InSAR products generated using state-of-the-art processing algorithms can be accessed by end users using two different mechanisms - 1) a Faceted-search interface that includes browse imagery for quick visualization and 2) an ElasticSearch-based API to enable bulk automated download, post-processing and time-series analysis. In this talk, we will present InSAR results from various global events that ARIA system has responded to. We will also discuss the set of geospatial big data tools including GIS libraries and API tools, that end users will need to familiarize themselves with in order to maximize the utilization of continuous stream of InSAR products from the Sentinel-1 and NISAR missions that the ARIA project will generate.

  2. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  3. Comparison of SAR calculation algorithms for the finite-difference time-domain method

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-01-01

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)

  4. SAR Imaging through the Earth’s Ionosphere

    Science.gov (United States)

    2013-11-06

    Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and Zhenhong Li . Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J...resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst., 30(3):827–835, 1994. [30] Lianlin Li and Fang Li . Ionosphere tomography based on...Manduchi and G. A. Mian . Accuracy analysis for correlation-based image registartion algorithms. In Proceedings of the 1993 IEEE International

  5. Satellite SAR data assessment for Silk Road archaeological prospection

    Science.gov (United States)

    Chen, Fulong; Lasaponara, Rosa; Masini, Nicola; Yang, Ruixia

    2015-04-01

    The development of Synthetic Aperture Radar (SAR) in terms of multi-band, multi-polarization and high-resolution data, favored the application of this technology also in archaeology [1]. Different approaches based on both single and multitemporal data analysis, exploiting the backscattering and the penetration of radar data, have been used for a number of archaeological sites and landscapes [2-5]. Nevertheless, the capability of this technology in archaeological applications has so far not been fully assessed. It lacks a contribution aimed at evaluating the potential of SAR technology for the same study area by using different bands, spatial resolutions and data processing solutions. In the framework of the Chinese-Italian bilateral project "Smart management of cultural heritage sites in Italy and China: Earth Observation and pilot projects", we addressed some pioneering investigations to assess multi-mode (multi-band, temporal, resolution) satellite SAR data (including X-band TerraSAR, C-band Envisat and L-band ALOS PALSAR) in archaeological prospection of the Silk road [6]. The Silk Road, a series of trade and cultural transmission routes connecting China to Europe, is the witness of civilization and friendship between the East and West dated back to 2000 years ago, that left us various relics (e.g. lost cities) to be uncovered and investigated.. In particular, the assessment has been performed in the Xinjiang and Gansu section pf the Silk Road focusing on : i) the subsurface penetration capability of SAR data in the arid and semi-arid region ii) and sensitivity of SAR imaging geometry for the detection of relics As regards the point i) , apart from the soil moisture, the penetration is seriously restricted by the soil porosity. For instance, negligible penetration signs were detected in Yumen Frontier Pass either using X- or L-band SAR data due to the occurrence of Yardang landscape. As regards the point ii), the flight path of SAR images in parallel with the

  6. Combining TerraSAR-X and SPOT-5 data for object-based landslide detection

    Science.gov (United States)

    Friedl, B.; Hölbling, D.; Füreder, P.

    2012-04-01

    Landslide detection and classification is an essential requirement in pre- and post-disaster hazard analysis. In earlier studies landslide detection often was achieved through time-consuming and cost-intensive field surveys and visual orthophoto interpretation. Recent studies show that Earth Observation (EO) data offer new opportunities for fast, reliable and accurate landslide detection and classification, which may conduce to an effective landslide monitoring and landslide hazard management. To ensure the fast recognition and classification of landslides at a regional scale, a (semi-)automated object-based landslide detection approach is established for a study site situated in the Huaguoshan catchment, Southern Taiwan. The study site exhibits a high vulnerability to landslides and debris flows, which are predominantly typhoon-induced. Through the integration of optical satellite data (SPOT-5 with 2.5 m GSD), SAR (Synthetic Aperture Radar) data (TerraSAR-X Spotlight with 2.95 m GSD) and digital elevation information (DEM with 5 m GSD) including its derived products (e.g. slope, curvature, flow accumulation) landslides may be examined in a more efficient way as if relying on single data sources only. The combination of optical and SAR data in an object-based image analysis (OBIA) domain for landslide detection and classification has not been investigated so far, even if SAR imagery show valuable properties for landslide detection, which differ from optical data (e.g. high sensitivity to surface roughness and soil moisture). The main purpose of this study is to recognize and analyze existing landslides by applying object-based image analysis making use of eCognition software. OBIA provides a framework for examining features defined by spectral, spatial, textural, contextual as well as hierarchical properties. Objects are derived through image segmentation and serve as input for the classification process, which relies on transparent rulesets, representing knowledge

  7. Spatial Analysis of Land Subsidence and Flood Pattern Based on DInSAR Method in Sentinel Sar Imagery and Weighting Method in Geo-Hazard Parameters Combination in North Jakarta Region

    Science.gov (United States)

    Prasetyo, Y.; Yuwono, B. D.; Ramadhanis, Z.

    2018-02-01

    The reclamation program carried out in most cities in North Jakarta is directly adjacent to the Jakarta Bay. Beside this program, the density of population and development center in North Jakarta office has increased the need for underground water excessively. As a result of these things, land subsidence in North Jakarta area is relatively high and so intense. The research methodology was developed based on the method of remote sensing and geographic information systems, expected to describe the spatial correlation between the land subsidence and flood phenomenon in North Jakarta. The DInSAR (Differential Interferometric Synthetic Aperture Radar) method with satellite image data Radar (SAR Sentinel 1A) for the years 2015 to 2016 acquisitions was used in this research. It is intended to obtain a pattern of land subsidence in North Jakarta and then combined with flood patterns. For the preparation of flood threat zoning pattern, this research has been modeling in spatial technique based on a weighted parameter of rainfall, elevation, flood zones and land use. In the final result, we have obtained a flood hazard zonation models then do the overlap against DInSAR processing results. As a result of the research, Geo-hazard modelling has a variety results as: 81% of flood threat zones consist of rural area, 12% consists of un-built areas and 7% consists of water areas. Furthermore, the correlation of land subsidence to flood risk zone is divided into three levels of suitability with 74% in high class, 22% in medium class and 4% in low class. For the result of spatial correlation area between land subsidence and flood risk zone are 77% detected in rural area, 17% detected in un-built area and 6% detected in a water area. Whereas the research product is the geo-hazard maps in North Jakarta as the basis of the spatial correlation analysis between the land subsidence and flooding phenomena.double point.

  8. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    Science.gov (United States)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  9. The Intercomparison of X-Band SAR Images from COSMO‑SkyMed and TerraSAR-X Satellites: Case Studies

    Directory of Open Access Journals (Sweden)

    Simone Pettinato

    2013-06-01

    Full Text Available The analysis of experimental data collected by X-band SAR of COSMO-SkyMed (CSK® and TerraSAR-X (TSX images on the same surface types has shown significant differences in the signal level of the two sensors. In order to investigate the possibility of combining data from the two instruments, a study was carried out by comparing images collected with similar orbital and sensor parameters (e.g., incidence angle, polarization, look angle at approximately the same date on two Italian agricultural test sites. Several homogenous agricultural fields within the observed area common to the two sensors were selected. Some forest plots have also been considered and used as a reference target. Direct comparisons were then performed between CSK and TSX images in different acquisition modes. The analysis carried out on the agricultural fields showed that, in general, the backscattering coefficient is higher in TSX Stripmap images with respect to CSK-Himage (about 3 dB, while CSK-Ping Pong data showed values lower than TSX of about 4.8 dB. Finally, a difference in backscattering of about 2.5 dB was pointed out between CSK-Himage and Ping-Pong images on agricultural fields. These results, achieved on bare soils, have also been compared with simulations performed by using the Advanced Integral Equation Model (AIEM.

  10. Discernibility of Burial Mounds in High-Resolution X-Band SAR Images for Archaeological Prospections in the Altai Mountains

    Directory of Open Access Journals (Sweden)

    Timo Balz

    2016-09-01

    Full Text Available The Altai Mountains are a heritage-rich archaeological landscape with monuments in almost every valley. Modern nation state borders dissect the region and limit archaeological landscape analysis to intra-national areas of interest. Remote sensing can help to overcome these limitations. Due to its high precision, Synthetic Aperture Radar (SAR data can be a very useful tool for supporting archaeological prospections, but compared to optical imagery, the detectability of sites of archaeological interest is limited. We analyzed the limitations of SAR using TerraSAR-X images in different modes. Based on ground truth, the discernibility of burial mounds was analyzed in different SAR acquisition modes. We show that very-high-resolution TerraSAR-X staring spotlight images are very well suited for the task, with >75% of the larger mounds being discernible, while in images with a lower spatial resolution only a few large sites can be detected, at rates below 50%.

  11. Multi-Frequency and Multi-Polarization Analysis of Oil Slicks using TerraSAR-X and RADARSAT-2 Data

    OpenAIRE

    Singha, Suman; Ressel, Rudolf; Lehner, Susanne

    2016-01-01

    The use of fully polarimetric SAR data for oil spill detection is relatively new and shows great potential for operational offshore platform monitoring. Greater availability of these kind of SAR data calls for a development of time critical processing chain capable of detecting and distinguishing oil spills from ’look-alikes’. This paper describes the development of an automated Near Real Time (NRT) oil spill detection processing chain based on quad-pol RADARSAT-2 (RS-2) and quad-pol Terra...

  12. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    Science.gov (United States)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  13. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  14. Hydrodynamics of the groundwater-fed Sian Ka'an Wetlands, Mexico, From InSAR and SAR Data

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Hong, S.; Wdowinski, S.

    2008-01-01

    The 5300 km2 pristine Sian Ka'an wetland in Mexico is fed entirely by groundwater from the karst aquifer of the Yucatan Peninsula. The area is undeveloped and hence difficult to access. The inflow through underground rivers and karst structures is hard to observe resulting in difficulties......-changes of the backscattered radar signal, which can be related to the water level changes in vegetated wetlands. SAR data reveals information of surface properties such as the degree of flooding through the amplitude of the backscattered signal. We used RADARSAT-1 InSAR and SAR data to form 36 interferograms and 13 flooding...... maps with 24 to 48 day intervals covering the time span of October 2006 to March 2008. The dataset has a high spatial resolution of ca. 20 to 60 m. Sian Ka'an consists of a mosaic of freshwater sloughs, canals, floodplains and brackish tidally-influenced areas. Throughout most of the year, water level...

  15. InSAR analysis of the crustal deformation affecting the megacity of Istanbul: the results of the FP7 Marsite Project as a GEO Supersite Initiative

    Science.gov (United States)

    Solaro, Giuseppe; Bonano, Manuela; Manzo, Mariarosaria

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most active faults worldwide, extending approximately 1,200 km from Eastern Turkey to the Northern Aegean Sea. During the 20th century series of damaging earthquakes occurred along the NAF, generally propagated westward towards Istanbul; the last one occurred in 1999 at Izmit, a city 80 km away from Istanbul. Within this scenario, the FP7 MARsite project (New Directions in Seismic Hazard assessment through Focused Earth Observation in Marmara Supersite), supported by EU, intends to collect, share and integrate multidisciplinary data (seismologic, geochemical, surveying, satellite, etc.) in order to carry out assessment, mitigation and management of seismic risk in the region of the Sea of Marmara. In the framework of the MARsite project, we performed the analysis and monitoring of the surface deformation affecting the Istanbul mega city by exploiting the large archives of X-band satellite SAR data, made available through the Supersites Initiatives, and by processing them via the advanced multi-temporal and multi-scale InSAR technique, known as the Small BAseline Subset (SBAS) approach. In particular, we applied the SBAS technique to a dataset of 101 SAR images acquired by the TerraSAR-X constellation of the German Space Agency (DLR) over descending orbits and spanning the November 2010 - August 2014 time interval. From,these images, we generated 312 differential interferograms with a maximum spatial separation (perpendicular baseline) between the acquisition orbits of about 500 m., that were used to generate, via the SBAS approach, mean deformation velocity map and corresponding ground time series of the investigated area. The performed InSAR analysis reveals a generalized stability over the Istanbul area, except for some localized displacements, related to subsidence and slope instability phenomena. In particular, we identified: (i) a displacement pattern related to the Istanbul airport, showing a mostly linear

  16. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  17. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    Directory of Open Access Journals (Sweden)

    Yu Zheng

    2017-06-01

    Full Text Available In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  18. SAR data for the analysis of forest features: current Brazilian experiences

    OpenAIRE

    Fábio Guimarães Gonçalves; Fábio Furlan Gama; João Roberto dos Santos

    2006-01-01

    This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar) experiments were done in the Amazon tropical forest: (a) to study the spatial distribution of very large trees (VLTs) in the primary forest using local maximum filtering and a series of Markov processes; (b) to model the estimation of biomass variations in primary and secondary forests; (c) to analyz...

  19. IMAGE ENHANCEMENT AND SPECKLE REDUCTION OF FULL POLARIMETRIC SAR DATA BY GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    M. Mahdian

    2013-09-01

    Full Text Available In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF, which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  20. Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB. The S-band frequency (3.1–3.3 GHz lies between the longer L-band (1–2 GHz and the shorter C-band (5–6 GHz and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6–23 m, diameter at breast-height (7–42 cm, basal area (0.2–56 m2/ha, stem density (20–350 trees/ha and woody biomass density (31–520 t/ha. S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r2 between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range.

  1. Demonstrator for Automatic Target Classification in SAR Imagery

    NARCIS (Netherlands)

    Wit, J.J.M. de; Broek, A.C. van den; Dekker, R.J.

    2006-01-01

    Due to the increasing use of unmanned aerial vehicles (UAV) for reconnaissance, surveillance, and target acquisition applications, the interest in synthetic aperture radar (SAR) systems is growing. In order to facilitate the processing of the enormous amount of SAR data on the ground, automatic

  2. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  3. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Anna de Lang

    2007-08-01

    Full Text Available The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis that show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine genes, including interleukin (IL-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons (IFNs and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with immunohistochemistry to further unravel the pathogenesis of SARS.

  4. Principal component analysis of MSBAS DInSAR time series from Campi Flegrei, Italy

    Science.gov (United States)

    Tiampo, Kristy F.; González, Pablo J.; Samsonov, Sergey; Fernández, Jose; Camacho, Antonio

    2017-09-01

    Because of its proximity to the city of Naples and with a population of nearly 1 million people within its caldera, Campi Flegrei is one of the highest risk volcanic areas in the world. Since the last major eruption in 1538, the caldera has undergone frequent episodes of ground subsidence and uplift accompanied by seismic activity that has been interpreted as the result of a stationary, deeper source below the caldera that feeds shallower eruptions. However, the location and depth of the deeper source is not well-characterized and its relationship to current activity is poorly understood. Recently, a significant increase in the uplift rate has occurred, resulting in almost 13 cm of uplift by 2013 (De Martino et al., 2014; Samsonov et al., 2014b; Di Vito et al., 2016). Here we apply a principal component decomposition to high resolution time series from the region produced by the advanced Multidimensional SBAS DInSAR technique in order to better delineate both the deeper source and the recent shallow activity. We analyzed both a period of substantial subsidence (1993-1999) and a second of significant uplift (2007-2013) and inverted the associated vertical surface displacement for the most likely source models. Results suggest that the underlying dynamics of the caldera changed in the late 1990s, from one in which the primary signal arises from a shallow deflating source above a deeper, expanding source to one dominated by a shallow inflating source. In general, the shallow source lies between 2700 and 3400 m below the caldera while the deeper source lies at 7600 m or more in depth. The combination of principal component analysis with high resolution MSBAS time series data allows for these new insights and confirms the applicability of both to areas at risk from dynamic natural hazards.

  5. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  6. Program Merges SAR Data on Terrain and Vegetation Heights

    Science.gov (United States)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  7. Answering the right question - integration of InSAR with other datasets

    Science.gov (United States)

    Holley, Rachel; McCormack, Harry; Burren, Richard

    2014-05-01

    The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.

  8. Detection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Oscar Garcia-Pineda

    2017-06-01

    Full Text Available During any marine oil spill, floating oil slicks that reach shorelines threaten a wide array of coastal habitats. To assess the presence of oil near shorelines during the Deepwater Horizon (DWH oil spill, we scanned the library of Synthetic Aperture Radar (SAR imagery collected during the event to determine which images intersected shorelines and appeared to contain oil. In total, 715 SAR images taken during the DWH spill were analyzed and processed, with 188 of the images clearly showing oil. Of these, 156 SAR images showed oil within 10 km of the shoreline with appropriate weather conditions for the detection of oil on SAR data. We found detectable oil in SAR images within 10 km of the shoreline from west Louisiana to west Florida, including near beaches, marshes, and islands. The high number of SAR images collected in Barataria Bay, Louisiana in 2010 allowed for the creation of a nearshore oiling persistence map. This analysis shows that, in some areas inside Barataria Bay, floating oil was detected on as many as 29 different days in 2010. The nearshore areas with persistent floating oil corresponded well with areas where ground survey crews discovered heavy shoreline oiling. We conclude that satellite-based SAR imagery can detect oil slicks near shorelines, even in sheltered areas. These data can help assess potential shoreline oil exposure without requiring boats or aircraft. This method can be particularly helpful when shoreline assessment crews are hampered by difficult access or, in the case of DWH, a particularly large spatial and temporal spill extent.

  9. Field Experiments on SAR Detection of Film Slicks

    Science.gov (United States)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  10. Application of spaceborne SAR data to uranium metallogenetic environment, condition and prognosis

    International Nuclear Information System (INIS)

    Huang Xianfang; Huang Shutao; Dong Wenming; Pan Wei; Fang Maolong; Xuan Yanxiu

    2001-01-01

    JERS-1 SAR data processing and data fusion with TM, airborne radioactive and magnetic survey data have been elaborated and image effects have been described in the paper. By means of the analysis of the processed images, the stratigraphy, structures (including faults and folds) and ore-controlling factors in the study area have successfully been interpreted; the underground water mobile characteristics have been discussed; and the metallogenetic environment and condition have been summarized. Based on above research results, the prospecting criteria have been provided and favorable sections have been suggested. The practice has indicated that the application of spaceborne SAR data to uranium reconnaissance and exploration has potential prospects

  11. The effect of severe acute respiratory syndrome (SARS) on emergency airway management.

    Science.gov (United States)

    Wong, Evelyn; Ho, Khoy Kheng

    2006-07-01

    From early March 2003 to late May 2003, severe acute respiratory syndrome (SARS) was detected in Singapore. The increase in workload and new infection control procedures were thought to affect resuscitation and airway management. Our aim was to study the effects of wearing of personal protective equipment (PPE) and powered air-purifying respirator (PAPR) and the restriction in the number of resuscitation personnel on airway management during the SARS crisis. Data was collected prospectively through an ongoing emergency airway registry. The data was divided into three periods: (1) before PPE was instituted from 1 November 2002 to 31 March 2003; (2) during SARS (when PPE use was mandatory) from 1 April to 31 July 2003; (3) post-SARs (when PPE use was non-mandatory but encouraged) from 1 August to 31 March 2004. There was no change in patient demographics during the three periods. There were significant increases in the proportion of resuscitation cases and airway interventions during the SARS period compared to the pre-SARS period. The resident medical officer intubation rate decreased from 45.1% pre-SARS to 35.2% during SARS and 17.7% post-SARS. The complication rates were 10.5%, 9.9% and 9.4% in periods 1-3, respectively. Restriction in the number of healthcare staff attending to each patient may have influenced the department's decision to allow only the most confident or experienced personnel to manage the airway. The exposure of junior medical officers in emergency airway management during SARS and the immediate post-SARS period was decreased. This trend should be monitored further and intervention may be necessary should it continue to decline.

  12. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  13. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  14. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Science.gov (United States)

    Wang, Xin-Wei; Li, Jin-Song; Guo, Ting-Kai; Zhen, Bei; Kong, Qing-Xin; Yi, Bin; Li, Zhong; Song, Nong; Jin, Min; Wu, Xiao-Ming; Xiao, Wen-Jun; Zhu, Xiu-Mei; Gu, Chang-Qing; Yin, Jing; Wei, Wei; Yao, Wei; Liu, Chao; Li, Jian-Feng; Ou, Guo-Rong; Wang, Min-Nian; Fang, Tong-Yu; Wang, Gui-Jie; Qiu, Yao-Hui; Wu, Huai-Huan; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system. METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SARS patients in Beijing in China. RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise, cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals. The RNA could not be detected in urine and stool samples from patients recovered from SARS. CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded. PMID:16038039

  15. Leads Detection Using Mixture Statistical Distribution Based CRF Algorithm from Sentinel-1 Dual Polarization SAR Imagery

    Science.gov (United States)

    Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting

    2017-04-01

    Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a

  16. PSInSAR technology and its use for monitoring of the Earth's surface deformation; Technologia PSInSAR a jej vyuzitie na monitorovanie deformacii zemskeho povrchu

    Energy Technology Data Exchange (ETDEWEB)

    Batorova, K [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra inzinierskej geologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Method of permanent reflex points (PSInSAR) allows to monitor the time evolution of deformations of the Earth's surface with a millimeter precision. For deformation size determination there are used the maps of movement speed or time delay of line set of data that are obtained by evaluating of SAR images. SAR files must be processed using the basic mathematical calculation presented in the work, with an emphasis on the parameters used in geology. Extensive processing of multiple SAR imagery showed that they can be used during monitoring of the field with an accurate identification of the objects on the Earth's surface, which provide a stable reflection of radar rays transmitted from the satellite. These objects are known as permanent reflection points (PS). PS can be geo-referenced, allowing accurate determination of the movement size of the Earth's surface deformation. In this paper an example of using of PSInSAR technology for monitoring of slope movements on the territory of Slovakia is presented. (authors)

  17. Improving the applicability of (Q)SARs for percutaneous penetration in regulatory risk assessment.

    Science.gov (United States)

    Bouwman, T; Cronin, M T D; Bessems, J G M; van de Sandt, J J M

    2008-04-01

    The new regulatory framework REACH (Registration, Evaluation, and Authorisation of Chemicals) foresees the use of non-testing approaches, such as read-across, chemical categories, structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs). Although information on skin absorption data are not a formal requirement under REACH, data on dermal absorption are an integral part of risk assessment of substances/products to which man is predominantly exposed via the dermal route. In this study, we assess the present applicability of publicly available QSARs on skin absorption for risk assessment purposes. We explicitly did not aim to give scientific judgments on individual QSARs. A total of 33 QSARs selected from the public domain were evaluated using the OECD (Organisation for Economic Co-operation and Development) Principles for the Validation of (Q)SAR Models. Additionally, several pragmatic criteria were formulated to select QSARs that are most suitable for their use in regulatory risk assessment. Based on these criteria, four QSARs were selected. The predictivity of these QSARs was evaluated by comparing their outcomes with experimentally derived skin absorption data (for 62 compounds). The predictivity was low for three of four QSARs, whereas one model gave reasonable predictions. Several suggestions are made to increase the applicability of QSARs for skin absorption for risk assessment purposes.

  18. A strategy for Local Surface Stability Monitoring Using SAR Imagery

    Science.gov (United States)

    Kim, J.; Lan, C. W.; Lin, S. Y.; vanGasselt, S.; Yun, H.

    2017-12-01

    In order to provide sufficient facilities to satisfy a growing number of residents, nowadays there are many constructions and maintenance of infrastructures or buildings undergoing above and below the surface of urban area. In some cases we have learned that disasters might happen if the developments were conducted on unknown or geologically unstable ground or in over-developed areas. To avoid damages caused by such settings, it is essential to perform a regular monitoring scheme to understand the ground stability over the whole urban area. Through long-term monitoring, we firstly aim to observe surface stability over the construction sites. Secondly, we propose to implement an automatic extraction and tracking of suspicious unstable area. To achieve this, we used 12-days-interval C-band Sentinel-1A Synthetic Aperture Radar (SAR) images as the main source to perform regular monitoring. Differential Interferometric SAR (D-InSAR) technique was applied to generate interferograms. Together with the accumulation of updated Sentinel-1A SAR images, time series interferograms were formed accordingly. For the purpose of observing surface stability over known construction sites, the interferograms and the unwrapped products could be used to identify the surface displacement occurring before and after specific events. In addition, Small Baseline Subset (SBAS) and Permanent Scatterers (PS) approaches combining a set of unwrapped D-InSAR interferograms were also applied to derive displacement velocities over long-term periods. For some cases, we conducted the ascending and descending mode time series analysis to decompose three surface migration vectors and to precisely identify the risk pattern. Regarding the extraction of suspicious unstable areas, we propose to develop an automatic pattern recognition algorithm for the identification of specific fringe patterns involving various potential risks. The detected fringes were tracked in the time series interferograms and

  19. Curvelet-based compressive sensing for InSAR raw data

    Science.gov (United States)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications

  20. Chinese HJ-1C SAR And Its Wind Mapping Capability

    Science.gov (United States)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  1. Early appearance of SARS on chest CT scan

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Feng Suchen; Xia Guoguang; Zhao Tao; Gu Xiang; Qu Hui

    2003-01-01

    Objective: To evaluate the early appearance of SARS on chest CT scan and its role in the early diagnosis. Methods: Forty cases of SARS in keeping with the criteria of the Ministry of Health had chest CT scans within 7 days of onset of symptoms, and CR chest X-ray films were available as well. These chest X-rays and CT images were retrospectively reviewed to determine if there were any abnormalities on the images. The lesions on the chest CT images were then further analyzed in terms of the number, location, size, and density. Results: Positive abnormalities on chest CT scans were revealed in all 40 SARS cases. Positive findings on CR chest films were showed in only 25 cases, equivocal in 6, and normal in 9 cases. The main abnormalities seen on CT and X-rays were pulmonary infiltrations varied markedly in severity. 70 % cases had 1 or 2 lesions on chest CT scan, 30 % cases had 3 or more lesions. The lesions seen on chest CT scan tended to be ground-glass opacification, sometimes with consolidation which was very faint and inhomogeneous, easily missed on chest X-rays. Typically the lesions were located in the periphery of the lung, or both central and peripheral lung, but very rare in a pure central location. They were commonly in the shape of patch or ball. Conclusions: Chest CT scan is much more sensitive in detecting the lesions of the lung in SARS. The early appearance of SARS on chest CT scan is characteristic but non-specific, indicating that chest CT scan plays a very important role in the early diagnosis and differential diagnosis of SARS

  2. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-02-01

    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  3. Volcano deformation analysis based an on-demand DInSAR-GRID system: the SBAS-GPOD solution

    Science.gov (United States)

    Manunta, M.; Casu, F.; Cossu, R.; Fusco, L.; Guarino, S.; Lanari, R.; Mazzarella, G.; Sansosti, E.

    2009-04-01

    Differential SAR Interferometry (DInSAR) has already demonstrated to be an effective technique to detect and monitor ground displacements with centimeter accuracy. Moreover, the recent development of advanced DInSAR techniques, aimed at the generation of deformation time series, has led to the exploitation of the large archive of SAR data acquired all over the world, during the last 16 years, by the ERS, ENVISAT and RADARSAT satellites. Among these advanced approaches, we focus on the Small BAseline Subset (SBAS) algorithm that relies on the combination of DInSAR data pairs, characterized by a small separation between the acquisition orbits (baseline), in order to produce mean deformation velocity maps and the corresponding time series, maximizing the coherent pixel density of the investigated area. One of the main capabilities of the SBAS approach is the possibility to work at two spatial resolution scales, thus allowing us to investigate deformation phenomena affecting both extended areas (with resolution of about 100 by 100 m) and selected zones, in the latter case highlighting localized displacements that may affect single structures or buildings (at the full instrument resolution). Similarly to other advanced DInSAR techniques, the SBAS approach requires extended data storage and processing capabilities due to the large amount of data exploited for the generation of the final products. Accordingly, we present in this work the results of the first experiment to "plug" the robustness of the SBAS algorithm into the high computing capability provided by a GRID-based system. In particular, we have exploited the low-resolution SBAS algorithm [1] and the ESA Grid Processing-on-Demand (G-POD) system. This environment is one of the results achieved by the ESA Science and Application Department of Earth Observation Programmes Directorate at ESRIN that focused, following the participation to the DATAGRID project (the first large European Commission funded Grid project

  4. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    that is needed compared to single polarisation SAR to provide reliable and robust detection of changes. Polarimetric SAR data will be available from satellites in the near future, e.g. the Japanese ALOS, the Canadian Radarsat-2 and the German TerraSAR-X. An appropriate way of representing multi-look fully...... be split into a number of smaller fields, a building may be removed from or added to some area, hedgerows may be removed/added or other type of vegetated areas may be partly removed or added. In this case, ambiguities may arise when segments have changed shape and extent from one image to another...

  5. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    Science.gov (United States)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation

  6. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  7. Crop Classification Using Short-Revisit Multitemporal SAR Data

    DEFF Research Database (Denmark)

    Skriver, Henning; Mattia, Francesco; Satalino, Giuseppe

    2011-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and SAR satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. An airborne SAR data set with a short revisi...

  8. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  9. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR images, we adopt the termed temporarily-coherent point (TCP InSAR (TCPInSAR technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables.

  10. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  11. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    Science.gov (United States)

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  12. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    Science.gov (United States)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  13. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    International Nuclear Information System (INIS)

    Wake, Kanako; Watanabe, Soichi; Taki, Masao; Varsier, Nadege; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-01-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  14. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  15. Safety assessment of widely used fermented virgin coconut oil (Cocos nucifera) in Malaysia: Chronic toxicity studies and SAR analysis of the active components.

    Science.gov (United States)

    Ibrahim, Ahmad H; Khan, Md Shamsuddin Sultan; Al-Rawi, Sawsan S; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Bin Abdul; Al-Suede, Fouad Saleih R; Ji, Dan; Majid, Amin Malik Shah Abdul

    2016-11-01

    Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Modeling the Structure of SARS 3a Transmembrane Protein Using a ...

    Indian Academy of Sciences (India)

    Modeling the structure of SARS 3a Transmembrane protein using a ... for the implicit membrane molecular dynamics (MD) simulations. ... The coordinates during the simulation were saved every 500 steps, and were used for analysis. ... the pair list for calculation of nonbonded interactions being updated after every 10 steps.

  17. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  18. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.

    2017-06-22

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  19. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2017-01-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  20. SAR compliance assessment of PMR 446 and FRS walkie-talkies.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2015-10-01

    The vast amount of studies on radiofrequency dosimetry deal with exposure due to mobile devices and base station antennas for cellular communication systems. This study investigates compliance of walkie-talkies to exposure guidelines established by the International Commission on Non-Ionizing Radiation Protection and the Federal Communications Committee. The generic walkie-talkie consisted of a helical antenna and a ground plane and was derived by reverse engineering of a commercial walkie-talkie. Measured and simulated values of antenna characteristics and electromagnetic near fields of the generic walkie-talkie were within 2% and 8%, respectively. We also validated normalized electromagnetic near fields of the generic walkie-talkie against a commercial device and observed a very good agreement (deviation based on magnetic near field. Finally, we found that SAR of commercial devices is within current SAR limits for general public exposure for a worst-case duty cycle of 100%, that is, about 3 times and 6 times lower than the limit on the 1 g SAR (1.6 W/kg) and 10 g SAR (2 W/kg), respectively. But, an effective radiated power as specified by the Private Mobile Radio at 446 MHz (PMR 446) radio standard can cause localized SAR exceeding SAR limits for 1 g of tissue. © 2015 Wiley Periodicals, Inc.

  1. Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms

    Directory of Open Access Journals (Sweden)

    Douglas C. Comer

    2017-10-01

    Full Text Available We used synthetic aperture radar (SAR data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR returns, collected at different times, and generate correlation images. Landscape disturbances even on the scale of pedestrian travel are discernible in correlation images generated from airborne, L-band SAR. Correlation images derived from C-band SAR data collected by the European Space Agency’s Sentinel-1 satellites also provide detailed landscape change information. Because the two Sentinel-1 satellites together have a repeat pass interval that can be as short as six days, products derived from their data can not only provide information on the location and degree of ground disturbance, but also identify a time window of about one to three weeks during which disturbance must have occurred. For Sentinel-1, this does not depend on collecting data in fine-beam modes, which generally sacrifice the size of the area covered for a higher spatial resolution. We also report on pixel value stretching for a visual analysis of SAR data, quantitative assessment of landscape disturbance, and statistical testing for significant landscape change.

  2. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  3. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  4. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DEFF Research Database (Denmark)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel

    2016-01-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas...... activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group....

  5. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  6. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  7. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.

    NARCIS (Netherlands)

    Chen, Guangchao; Vijver, Martina G; Xiao, Yinlong; Peijnenburg, Willie J G M

    2017-01-01

    Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e., nano-(Q)SARs, is a possible solution. The

  8. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    Science.gov (United States)

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  9. Osservazione dei fenomeni deformativi nel centro di Roma. Dall'applicazione di tecniche avanzate DInSAR, all'analisi qualitativa della natura del rumore dei dati COSMO Sky-Med

    OpenAIRE

    Massimo Morigi

    2015-01-01

    This work was created to focus the attention on a particular aspect of theequivocation (aliasing) of the measurements made with Differential SAR interferometry (DInSAR) X-band for the presence of snow. Such equivocationemerge after a careful interpretation of the results obtained through theapplication of techniques Advanced DInSAR (A-DInSAR) for the observation ofthe deformation phenomena of the monumental structures in the center ofRome. The qualitative analysis have enabled the identificat...

  10. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  11. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    Science.gov (United States)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  12. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  13. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2016-03-01

    Full Text Available This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar data acquired by ground-based (GB and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013 and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012, both of them in ascending orbit, processed applying SBAS (Small BAseline Subset method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.

  14. Fusion method of SAR and optical images for urban object extraction

    Science.gov (United States)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  15. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  16. Crystallization and diffraction analysis of the SARS coronavirus nsp10–nsp16 complex

    International Nuclear Information System (INIS)

    Debarnot, Claire; Imbert, Isabelle; Ferron, François; Gluais, Laure; Varlet, Isabelle; Papageorgiou, Nicolas; Bouvet, Mickaël; Lescar, Julien; Decroly, Etienne; Canard, Bruno

    2011-01-01

    The expression, purification and crystallization of the SARS coronavirus nsp16 RNA-cap AdoMet-dependent (nucleoside-2′O)-methyltransferase in complex with its activating factor nsp10 are reported. To date, the SARS coronavirus is the only known highly pathogenic human coronavirus. In 2003, it was responsible for a large outbreak associated with a 10% fatality rate. This positive RNA virus encodes a large replicase polyprotein made up of 16 gene products (nsp1–16), amongst which two methyltransferases, nsp14 and nsp16, are involved in viral mRNA cap formation. The crystal structure of nsp16 is unknown. Nsp16 is an RNA-cap AdoMet-dependent (nucleoside-2′-O-)-methyltransferase that is only active in the presence of nsp10. In this paper, the expression, purification and crystallization of nsp10 in complex with nsp16 are reported. The crystals diffracted to a resolution of 1.9 Å resolution and crystal structure determination is in progress

  17. SAR Cross-Ambiguities in SAOCOM-CS Large Baseline Bistatic Configuration

    OpenAIRE

    Bordoni, Federica; Rodriguez-Cassola, Marc; Younis, Marwan; Prats-Iraola, Pau; Lopez-Dekker, Paco; Krieger, Gerhard

    2016-01-01

    The evaluation of the ambiguous signal level, the Ambiguity-to-Signal Ratio (ASR), plays a key role in the Synthetic Aperture Radar (SAR) design and performance prediction. In conventional SAR acquisition scenarios, the computation of the ASR is based on the evaluation of the range and azimuth ambiguous contributes. Though appealing for its simplicity, this approach could be inaccurate in case of complex SAR acquisition geometries. In this paper we focus on the ASR performance of the SAOCOM-...

  18. Rice Crop Monitoring and Yield Estimation Through Cosmo Skymed and TerraSAR-X: A SAR-Based Experience in India

    OpenAIRE

    Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.

    2015-01-01

    Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used...

  19. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  20. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  1. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  2. Project SFR 1 SAR-08. Update of priority of FEPs from Project SAFE

    International Nuclear Information System (INIS)

    Gordon, Anna; Loefgren, Martin; Lindgren, Maria

    2008-03-01

    SFR 1 is a repository for final disposal of low and intermediate level radioactive waste produced at Swedish nuclear power plants, as well as at Swedish industrial, research, and medical treatment facilities. The repository obtained operational license in March 1988. The aim of Project SFR 1 SAR-08 is to perform an updated safety analysis, according to requirements in the regulations. A major difference between this and previous safety analyses is that repository safety should be demonstrated for 100,000 years after repository closure. This should be compared with the time frame of the safety assessment in Project SAFE that was 10,000 years. Due to the extended time frame, permafrost and glaciation have to be considered in the reference evolution of Project SFR 1 SAR-08. Other rationales for the update are recent input from the authorities concerning SAFE documents and the SFR 1 repository, as well as new data concerning the SFR 1 inventory. This report describes the outcome of revisiting the qualitative FEP (Features, Events and Processes) analysis carried out within Project SAFE for the SFR 1 repository. Each and every interaction definition, as defined in SAFE, has been examined with the aim at assuring that the SAFE interaction matrices are also applicable for SAR-08. It was found that this is generally the case, but seven new interactions were defined in order to make the interaction matrices more applicable for SAR-08. The priority of all interactions assigned priority 1 and many interactions assigned priority 2 in SAFE have been carefully examined. The examination has been made in the context of the general initial and boundary conditions that should also form the basis for the SAR-08 main scenario and less probable scenarios. In 48 cases, the priority of the interaction needed upgrading, compared to in SAFE. In a majority of these cases, the upgrade is due to the extended time frame of the safety assessment, from 10,000 years in SAFE to 100,000 years in SAR

  3. Project SFR 1 SAR-08. Update of priority of FEPs from Project SAFE

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Anna (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Loefgren, Martin; Lindgren, Maria (Kemakta Konsult AB, Stockholm (SE)) (eds.)

    2008-03-15

    SFR 1 is a repository for final disposal of low and intermediate level radioactive waste produced at Swedish nuclear power plants, as well as at Swedish industrial, research, and medical treatment facilities. The repository obtained operational license in March 1988. The aim of Project SFR 1 SAR-08 is to perform an updated safety analysis, according to requirements in the regulations. A major difference between this and previous safety analyses is that repository safety should be demonstrated for 100,000 years after repository closure. This should be compared with the time frame of the safety assessment in Project SAFE that was 10,000 years. Due to the extended time frame, permafrost and glaciation have to be considered in the reference evolution of Project SFR 1 SAR-08. Other rationales for the update are recent input from the authorities concerning SAFE documents and the SFR 1 repository, as well as new data concerning the SFR 1 inventory. This report describes the outcome of revisiting the qualitative FEP (Features, Events and Processes) analysis carried out within Project SAFE for the SFR 1 repository. Each and every interaction definition, as defined in SAFE, has been examined with the aim at assuring that the SAFE interaction matrices are also applicable for SAR-08. It was found that this is generally the case, but seven new interactions were defined in order to make the interaction matrices more applicable for SAR-08. The priority of all interactions assigned priority 1 and many interactions assigned priority 2 in SAFE have been carefully examined. The examination has been made in the context of the general initial and boundary conditions that should also form the basis for the SAR-08 main scenario and less probable scenarios. In 48 cases, the priority of the interaction needed upgrading, compared to in SAFE. In a majority of these cases, the upgrade is due to the extended time frame of the safety assessment, from 10,000 years in SAFE to 100,000 years in SAR

  4. Project SFR 1 SAR-08. Update of priority of FEPs from Project SAFE

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Anna [Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE); Loefgren, Martin; Lindgren, Maria [Kemakta Konsult AB, Stockholm (SE); eds.

    2008-03-15

    SFR 1 is a repository for final disposal of low and intermediate level radioactive waste produced at Swedish nuclear power plants, as well as at Swedish industrial, research, and medical treatment facilities. The repository obtained operational license in March 1988. The aim of Project SFR 1 SAR-08 is to perform an updated safety analysis, according to requirements in the regulations. A major difference between this and previous safety analyses is that repository safety should be demonstrated for 100,000 years after repository closure. This should be compared with the time frame of the safety assessment in Project SAFE that was 10,000 years. Due to the extended time frame, permafrost and glaciation have to be considered in the reference evolution of Project SFR 1 SAR-08. Other rationales for the update are recent input from the authorities concerning SAFE documents and the SFR 1 repository, as well as new data concerning the SFR 1 inventory. This report describes the outcome of revisiting the qualitative FEP (Features, Events and Processes) analysis carried out within Project SAFE for the SFR 1 repository. Each and every interaction definition, as defined in SAFE, has been examined with the aim at assuring that the SAFE interaction matrices are also applicable for SAR-08. It was found that this is generally the case, but seven new interactions were defined in order to make the interaction matrices more applicable for SAR-08. The priority of all interactions assigned priority 1 and many interactions assigned priority 2 in SAFE have been carefully examined. The examination has been made in the context of the general initial and boundary conditions that should also form the basis for the SAR-08 main scenario and less probable scenarios. In 48 cases, the priority of the interaction needed upgrading, compared to in SAFE. In a majority of these cases, the upgrade is due to the extended time frame of the safety assessment, from 10,000 years in SAFE to 100,000 years in SAR

  5. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  6. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  7. The 2006-2012 deformation at Sakurajima stratovolcano (Japan) detected via spaceborne multisensor SAR Interferometry

    Science.gov (United States)

    Pepe, Susi; Trippanera, Daniele; Casu, Francesco; Tizzani, Pietro; Nobile, Adriano; Aoki, Yosuke; Zoffoli, Simona; Acocella, Valerio; Sansosti, Eugenio

    2013-04-01

    We analyze the evolution of the ground deformation at Sakurajima active stratovolcano located in the Aira caldera (Kagoshima prefecture Japan). This caldera, extending over more than 20 km, has been formed as a consequence of a huge eruption, occurred 22,000 years ago, that caused a magma chamber collapse. The Sakurajima volcano is an andesitic cone formed by more recent activity within the caldera, beginning about 13,000 years ago. Its first historical recorded eruption occurred in 963 AD. Most eruptions are Strombolian and Vulcanian and affect only the summit area. The larger explosive (plinian) eruptions occurred in 1471-1476, 1779-1782 and 1914, each producing 1 - 2 km3 of lava and pyroclastic materials. Explosive eruptions of Vulcanian type, with ash emissions, have occurred intermittently from 1955 to 2002. From 2009 to December 2012, a strong and continuous period of volcanic activity has been recorded mainly at the Showa Crater producing plumes that reached altitudes of 1.8-3.5 km. In order to analyze the active deformation processes of the volcano complex and its surrounding areas, we performed SAR Interferometry (InSAR) techniques by using COSMOSkyMed (X-band) and ALOS (L-band) data. The joint data analysis allowed us to increase the spatial coverage of InSAR measurements., we processed 19 descending and 25 ascending orbit SAR images acquired by ALOS satellite from 2008 to 2011 and 2006 to 2011, respectively; we computed 57 descending and 71 ascending interferograms which were subsequently inverted via SBAS-InSAR algorithm to obtain mean velocity maps and deformation time series. The X-band dataset consists of 20 images acquired only on descending orbits between 2011 and 2012; from this dataset we computed 44 interferograms. The preliminary analysis of the mean deformation velocity reveals the presence of a consistent uplift signal in the North region of the Sakurajima Island that extends also to the North sector of Kagoshima bay. The corresponding

  8. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    Science.gov (United States)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  9. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    Science.gov (United States)

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  10. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.

    Science.gov (United States)

    Giovannoni, Stephen J

    2017-01-03

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10 28 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  11. The Parallel SBAS-DInSAR algorithm: an effective and scalable tool for Earth's surface displacement retrieval

    Science.gov (United States)

    Zinno, Ivana; De Luca, Claudio; Elefante, Stefano; Imperatore, Pasquale; Manunta, Michele; Casu, Francesco

    2014-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is an effective technique to estimate and monitor ground displacements with centimetre accuracy [1]. In the last decade, advanced DInSAR algorithms, such as the Small Baseline Subset (SBAS) [2] one that is aimed at following the temporal evolution of the ground deformation, showed to be significantly useful remote sensing tools for the geoscience communities as well as for those related to hazard monitoring and risk mitigation. DInSAR scenario is currently characterized by the large and steady increasing availability of huge SAR data archives that have a broad range of diversified features according to the characteristics of the employed sensor. Indeed, besides the old generation sensors, that include ERS, ENVISAT and RADARSAT systems, the new X-band generation constellations, such as COSMO-SkyMed and TerraSAR-X, have permitted an overall study of ground deformations with an unprecedented detail thanks to their improved spatial resolution and reduced revisit time. Furthermore, the incoming ESA Sentinel-1 SAR satellite is characterized by a global coverage acquisition strategy and 12-day revisit time and, therefore, will further contribute to improve deformation analyses and monitoring capabilities. However, in this context, the capability to process such huge SAR data archives is strongly limited by the existing DInSAR algorithms, which are not specifically designed to exploit modern high performance computational infrastructures (e.g. cluster, grid and cloud computing platforms). The goal of this paper is to present a Parallel version of the SBAS algorithm (P-SBAS) which is based on a dual-level parallelization approach and embraces combined parallel strategies [3], [4]. A detailed description of the P-SBAS algorithm will be provided together with a scalability analysis focused on studying its performances. In particular, a P-SBAS scalability analysis with respect to the number of exploited CPUs has

  12. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  13. New free Danish online (Q)SAR predictions database with >600,000 substances

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Reffstrup, Trine Klein

    Since 2005 the Danish (Q)SAR Database has been freely available on the Internet. It is a tool that allows single chemical substance profiling and screenings based on predicted hazard information. The database is also included in the OECD (Q)SAR Application Toolbox which is used worldwide...... by regulators and industry. A lot of progress in (Q)SAR model development, application and documentation has been made since the publication in 2005. A new and completely rebuild online (Q)SAR predictions database was therefore published in November 2015 at http://qsar.food.dtu.dk. The number of chemicals...... in the database has been expanded from 185,000 to >600,000. As far as possible all organic single constituent substances that were pre-registered under REACH have been included in the new structure set. The new Danish (Q)SAR Database includes estimates from more than 200 (Q)SARs covering a wide range of hazardous...

  14. What is missing? An operational inundation mapping framework by SAR data

    Science.gov (United States)

    Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.

    2017-12-01

    Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential

  15. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  16. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  18. TOWARDS CHANGE DETECTION IN URBAN AREA BY SAR INTERFEROMETRY AND RADARGRAMMETRY

    Directory of Open Access Journals (Sweden)

    C. Dubois

    2013-04-01

    Full Text Available Change detection in urban area is an active topic in remote sensing. However, well-dealt subject in optical remote sensing, this research topic is still at an early stage and needs deeper investigations and improvement in what concerns SAR and InSAR remote sensing. Due to their weather and daylight-independency, SAR sensors allow an all-time observation of the earth. This is determining in cases where rapid change detection is required after a natural – or technological – disaster. Due to the high resolution that can be achieved, the new generation of space-borne radar sensors opens up new perspectives for analysing buildings in urban areas. Moreover, due to their short revisiting cycle, they give rise to monitoring and change detection applications. In this paper, we present a concept for change detection in urban area at building level, relying only on SAR- and InSAR data. In this approach, interferometric and radargrammetric SAR data are merged in order to detect changes. Here, we present the overall workflow, the test area, the required data as well as first findings on the best-suited stereo-configurations for change detection.

  19. Detection of land degradation with polarimetric SAR

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  20. Using PS-InSAR data in landslide hazard management: the case of Veneto Region (NE Italy)

    Science.gov (United States)

    Floris, Mario; Viganò, Alessandro; Busnardo, Enrico; Arziliero, Luciano; Zanette, Doriano

    2013-04-01

    scale (single Municipality) we propose to analyze more in depth displacements time series to better evaluate the occurrence of landslides characterized by high frequency of reactivation and to identify the relationships with rainfall considered as triggering factor. Results from our study will help in identifying the actual possibility to use PS-InSAR data in landslide characterization and monitoring. Starting from these results an update of current landslide inventories and a planning to monitor the evolution of instabilities is possible. To these purposes, in the next future we are going to process high resolution SAR data acquired by Cosmo SKY Med satellites characterized also by a high revisit period, and to implement new systems for a near real time monitoring.

  1. Charge-sharing SAR ADCs for low-voltage low-power applications

    CERN Document Server

    Rabuske, Taimur

    2017-01-01

    This book introduces readers to the potential of charge-sharing (CS) successive approximation register (SAR) analog-to-digital converters (ADCs), while providing extensive analysis of the factors that limit the performance of the CS topology. The authors present guidelines and useful techniques for mitigating the limitations of the architecture, while focusing on the implementation under restricted power budgets and voltage supplies.

  2. SAR China Land Mapping Project: Development, Production and Potential Applications

    International Nuclear Information System (INIS)

    Zhang, Lu; Guo, Huadong; Liu, Guang; Fu, Wenxue; Yan, Shiyong; Song, Rui; Ji, Peng; Wang, Xinyuan

    2014-01-01

    Large-area, seamless synthetic aperture radar (SAR) mosaics can reflect overall environmental conditions and highlight general trends in observed areas from a macroscopic standpoint, and effectively support research at the global scale, which is in high demand now across scientific fields. The SAR China Land Mapping Project (SCLM), supported by the Digital Earth Science Platform Project initiated and managed by the Center for Earth Observation and Digital Earth, Chinese Academy of Sciences (CEODE), is introduced in this paper. This project produced a large-area SAR mosaic dataset and generated the first complete seamless SAR map covering the entire land area of China using EnviSat-ASAR images. The value of the mosaic map is demonstrated by some potential applications in studies of urban distribution, rivers and lakes, geologic structures, geomorphology and paleoenvironmental change

  3. Vegetation Parameter Extraction Using Dual Baseline Polarimetric SAR Interferometry Data

    Science.gov (United States)

    Zhang, H.; Wang, C.; Chen, X.; Tang, Y.

    2009-04-01

    For vegetation parameter inversion, the single baseline polarimetric SAR interferometry (POLinSAR) technique, such as the three-stage method and the ESPRIT algorithm, is limited by the observed data with the minimum ground to volume amplitude ration, which effects the estimation of the effective phase center for the vegetation canopy or the surface, and thus results in the underestimated vegetation height. In order to remove this effect of the single baseline inversion techniques in some extend, another baseline POLinSAR data is added on vegetation parameter estimation in this paper, and a dual baseline POLinSAR technique for the extraction of the vegetation parameter is investigated and improved to reduce the dynamic bias for the vegetation parameter estimation. Finally, the simulated data and real data are used to validate this dual baseline technique.

  4. L’interferometria SAR satellitare per la misura delle deformazioni superficiali

    Directory of Open Access Journals (Sweden)

    Marco Chini

    2012-04-01

    Full Text Available La tecnica interferometrica, basata  sull’elaborazione coerente della fase del ritorno del segnale radar dalla superficie terrestre, ha reso il telerilevamento radar uno strumento di analisi quantitativa in molteplici campi applicativi quali cartografia, geodesia, rischio sismico, idrogeologico e vulcanico. In particolare, l’InSAR consente di produrre mappe di spostamento co-sismico, ovvero di misurare  il campo di deformazione superficiale causato da un terremoto con accuratezze centimetriche.Satellite  SAR  interferometry  for the measurement of surface deformationThe SAR Interferometry (InSAR technique is mostly used to measure the characteristics of the topography and its  changes  during  time.  The  interferometric  technique,  based  on  the coherent elaboration of radar returns from the surface, has made the radar remote  sensing  a  valuable  tool  for a  quantitative  analysis  in  many  applicative  fields  such  as  cartography, geodesy, seismic, hydrogeologic and volcanic  hazards.  In  particular,  InSAR technique is able to measure the co-seismic  surface  deformation  caused by  an  earthquake  with  accuracies  at order of centimeters. This kind of data is extremely important for the estima-tion  of  the  geometric  parameters  of the seismic source  which is a relevant information  for  the  management  of event scenarios.In the last decade a new technique for the elaboration of the interferometric signal  arises,  the  multitemporal  SAR Interferometry. Thanks to the exploita-tion of a conspicuous number of SAR images,  it  is  possible  detecting  and monitoring the slow soil deformation with millimetric accuracies. Moreover, the recent very high resolution satellite  SAR  sensors  make  possible  to apply  this  technique  in  urban  areas in  order  to  monitor  single  structures such as bridges, buildings, roads and

  5. Analysis of Land Deformation on Slope Area using PS InSAR. Case Study: Malang Area

    International Nuclear Information System (INIS)

    Sudiana, Dodi; Rizkinia, Mia; Arief, Rahmat; Rokhmatuloh; Ardiansyah; Setiadi, Bambang; Bayuaji, Luhur; Sri Sumantyo, Josaphat Tetuko

    2014-01-01

    The geographical position of Indonesia located between two continents and oceans is strategic, but at large risk of experiencing various disasters. Climate change and vulnerable location (surrounded by plates and geological faults in the Earth's crust) creates an earthquake-prone region and causes land/mudslides. In this paper, PS InSAR method (Persistent Scatterer Interferometric Synthetic Aperture Radar) is implemented to Phased Array type L-band Synthetic Aperture Radar (PALSAR) data to study the potential damage caused by the earthquake or volcanic eruption in Malang vicinity. By comparing the amplitude images periodically, shifting soil can be determined using precise orbital information. The analysis showed a significant decrease of land deformation on slope area in Klojen district in Malang city, reached up to −7.128 mm/year

  6. Calibration of SAR probes in waveguide at 900 MHz

    International Nuclear Information System (INIS)

    Jokela, K.; Puranen, L.; Hyysalo, P.

    1998-01-01

    The radiation safety tests for hand-held mobile phones require precise calibration of the small electric field probes used for the measurement of SAR in phantoms simulating the human body. In this study a calibration based on a rectangular waveguide was developed for SAR calibrations at 900 MHz

  7. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  8. Deformation at longyao ground fissure and its surroundings, north China plain, revealed by ALOS PALSAR PS-InSAR

    Science.gov (United States)

    Yang, Chengsheng; Lu, Zhong; Zhang, Qin; Zhao, Chaoying; Peng, Jianbing; Ji, Lingyun

    2018-05-01

    The Longyao ground fissure (LGF) is the longest and most active among more than 1000 ground fissures on the North China Plain. There have been many studies on the formation mechanism of the LGF, due to its scientific importance and its potential for damage to the environment. These studies have been based on both regional tectonic analysis and numerical simulations. In order to provide a better understanding of the formation mechanism, the deformation of the crack and its surrounding environment should be taken into consideration. In this paper, PS-InSAR technology was employed to assess the ground deformation of LGF and its surrounding area, using L-band ALOS-1 PALSAR images from 2007 to 2011. The characteristics of ground deformation, relationships between fissure activity and surrounding faults and groundwater exploitation were analyzed. This study shows that the north side of Longyao fault (LF) is uplifting while the south side is subsiding. This provides the tectonic conditions responsible for the activity of the ground fissure. Local groundwater exploitation also plays an important role in the development of ground fissures. InSAR observations were modeled to infer the loading depth (-2.8 km) and the slip rate (31.1 mm/yr) of LF.

  9. Validity and validation of expert (Q)SAR systems.

    Science.gov (United States)

    Hulzebos, E; Sijm, D; Traas, T; Posthumus, R; Maslankiewicz, L

    2005-08-01

    At a recent workshop in Setubal (Portugal) principles were drafted to assess the suitability of (quantitative) structure-activity relationships ((Q)SARs) for assessing the hazards and risks of chemicals. In the present study we applied some of the Setubal principles to test the validity of three (Q)SAR expert systems and validate the results. These principles include a mechanistic basis, the availability of a training set and validation. ECOSAR, BIOWIN and DEREK for Windows have a mechanistic or empirical basis. ECOSAR has a training set for each QSAR. For half of the structural fragments the number of chemicals in the training set is >4. Based on structural fragments and log Kow, ECOSAR uses linear regression to predict ecotoxicity. Validating ECOSAR for three 'valid' classes results in predictivity of > or = 64%. BIOWIN uses (non-)linear regressions to predict the probability of biodegradability based on fragments and molecular weight. It has a large training set and predicts non-ready biodegradability well. DEREK for Windows predictions are supported by a mechanistic rationale and literature references. The structural alerts in this program have been developed with a training set of positive and negative toxicity data. However, to support the prediction only a limited number of chemicals in the training set is presented to the user. DEREK for Windows predicts effects by 'if-then' reasoning. The program predicts best for mutagenicity and carcinogenicity. Each structural fragment in ECOSAR and DEREK for Windows needs to be evaluated and validated separately.

  10. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  11. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  12. Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations

    OpenAIRE

    Paul Lundgren; M. Nikkhoo; Sergey V. Samsonov; Pietro Milillo; Fernando Gil-Cruz; Jonathan Lazo

    2017-01-01

    Tar files for each of the InSAR time series (interferograms used in the GIAnT time series computation as well as the input files and outputs from using GIAnT). GIAnT is an open source InSAR time series code developed at Caltech. The UAVSAR_*.tgz files contain the interferograms from the UAVSAR airborne system that were used in the analysis. The actual model input files require some additional down sampling using resamptool.m a Matlab code developed by Prof. R. Lohman, Cornell Univ.

  13. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  14. A Novel Strategy of Ambiguity Correction for the Improved Faraday Rotation Estimator in Linearly Full-Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2018-04-01

    Full Text Available Spaceborne synthetic aperture radar (SAR missions operating at low frequencies, such as L-band or P-band, are significantly influenced by the ionosphere. As one of the serious ionosphere effects, Faraday rotation (FR is a remarkable distortion source for the polarimetric SAR (PolSAR application. Various published FR estimators along with an improved one have been introduced to solve this issue, all of which are implemented by processing a set of PolSAR real data. The improved estimator exhibits optimal robustness based on performance analysis, especially in term of the system noise. However, all published estimators, including the improved estimator, suffer from a potential FR angle (FRA ambiguity. A novel strategy of the ambiguity correction for those FR estimators is proposed and shown as a flow process, which is divided into pixel-level and image-level correction. The former is not yet recognized and thus is considered in particular. Finally, the validation experiments show a prominent performance of the proposed strategy.

  15. A Novel Strategy of Ambiguity Correction for the Improved Faraday Rotation Estimator in Linearly Full-Polarimetric SAR Data.

    Science.gov (United States)

    Li, Jinhui; Ji, Yifei; Zhang, Yongsheng; Zhang, Qilei; Huang, Haifeng; Dong, Zhen

    2018-04-10

    Spaceborne synthetic aperture radar (SAR) missions operating at low frequencies, such as L-band or P-band, are significantly influenced by the ionosphere. As one of the serious ionosphere effects, Faraday rotation (FR) is a remarkable distortion source for the polarimetric SAR (PolSAR) application. Various published FR estimators along with an improved one have been introduced to solve this issue, all of which are implemented by processing a set of PolSAR real data. The improved estimator exhibits optimal robustness based on performance analysis, especially in term of the system noise. However, all published estimators, including the improved estimator, suffer from a potential FR angle (FRA) ambiguity. A novel strategy of the ambiguity correction for those FR estimators is proposed and shown as a flow process, which is divided into pixel-level and image-level correction. The former is not yet recognized and thus is considered in particular. Finally, the validation experiments show a prominent performance of the proposed strategy.

  16. Caldera deformation in Kyushu island (SW Japan) through InSAR data

    Science.gov (United States)

    Nobile, Adriano; Pepe, Susi; Ruch, Joel; Trippanera, Daniele; Casu, Francesco; Castaldo, Raffaele; Tizzani, Pietro; Aoki, Yosuke; Geshi, Nobuo; Acocella, Valerio; Sansosti, Eugenio; Siniscalchi, Valeria; Borgstrom, Sven; Zoffoli, Simona

    2014-05-01

    Calderas are the surface expression of a long-lived and complex magmatic system, often hosting a shallower hydrothermal system. Most monitored calderas have experienced some forms of unrest, even though only a part of these unrest episodes has culminated in an eruption. This study focuses on surface deformation analysis using InSAR from 1993 to 2013 at two large active calderas, Aso and Aira, located on Kyushu Island (Japan). Despite being closely monitored, our knowledge on the deformation history of both calderas with regard to their activity is poor. ERS, ENVISAT, ALOS and COSMO-SkyMed SAR images have been processed to obtain mean velocity deformation maps and time series through the SBAS technique. Results are then inverted using the simulated annealing technique to evaluate the deformation source parameters. Aso caldera hosts several vents in its central portion. One of these, the Naka Dake crater is the only currently active and erupted 7 times since 1993. From January 1996 to November 1998, after the important 1994 - 1995 eruption, we observed a subsidence of ~1.2 cm/yr at the center of the caldera. Analytical models suggest a deflating source (with various possible shapes) at 5-7 km of depth, implying a magmatic nature for the deformation. Inversion results are consistent with available seismic and GPS data. Aira Caldera hosts the Sakurajima volcano along its southern rim, with a persistent eruptive activity since 1950s. From June 2006 to March 2011, we observed a broad uplift of ~1.5 cm along most of the caldera rim. Analytical inversion of both the entire dataset and a cross-correlated dataset suggests a deformation source at the caldera center, at a depth of 5-9 km (depending on the source shape), implying a magmatic nature of the deformation. Inversion results are in agreement with GPS and InSAR data inversions for other periods of activity. This research has been partially performed within the frame of Italian Space Agency (ASI) and Japan Aerospace

  17. From genome to antivirals: SARS as a test tube.

    Science.gov (United States)

    Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

    2005-03-01

    The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

  18. Target discrimination method for SAR images based on semisupervised co-training

    Science.gov (United States)

    Wang, Yan; Du, Lan; Dai, Hui

    2018-01-01

    Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.

  19. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community

  20. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  1. Information theoretic bounds for compressed sensing in SAR imaging

    International Nuclear Information System (INIS)

    Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo

    2014-01-01

    Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities

  2. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  3. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint

    Directory of Open Access Journals (Sweden)

    Deng Yuan

    2014-08-01

    Full Text Available In the MOtion COmpensation (MOCO approach to airborne repeat-pass interferometric Synthetic Aperture Radar (SAR based on motion measurement data, the measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS and the positioning errors of the target, which may contribute to the residual uncompensated motion errors, affect the imaging result and interferometric measurement. Considering the effects of the two types of error, this paper builds a mathematical model of residual motion errors in presence of squint, and analyzes the effects on the residual motion errors induced by the measurement inaccuracies of IMU/GPS and the positioning errors of the target. In particular, the effects of various measurement inaccuracies of IMU/GPS on interferometric SAR image quality, interferometric phase, and digital elevation model precision are disscussed. Moreover, the paper quantitatively researches the effects of residual motion errors on airborne repeat-pass interferometric SAR through theoretical and simulated analyses and provides theoretical bases for system design and signal processing.

  4. Research on Strong Clutter Suppression for Gaofen-3 Dual-Channel SAR/GMTI

    Directory of Open Access Journals (Sweden)

    Mingjie Zheng

    2018-03-01

    Full Text Available In spaceborne synthetic aperture radar (SAR, moving targets are almost buried in ground clutter due to the wide clutter Doppler spectrum and the restricted pulse repetition frequency (PRF, which increases the difficulty of moving target detection. Clutter suppression is one of the key issues in the spaceborne SAR moving target indicator operation. In this paper, we describe the clutter suppression principle and analyze the influence of amplitude and phase error on clutter suppression. In the following, a novel dual-channel SAR clutter suppression algorithm is proposed, which is suitable for the Gaofen-3(GF-3 SAR sensor. The proposed algorithm consists of three technique steps, namely adaptive two-dimensional (2D channel calibration, refined amplitude error correction and refined phase error correction. After channel error is corrected by these procedures, the clutter component, especially a strong clutter component, can be well suppressed. The validity of the proposed algorithm is verified by GF-3 SAR real data which demonstrates the ground moving-target indication (GMTI capability of GF-3 SAR sensor.

  5. Latitudinal dynamics of SAR-arcs relative to the local time

    International Nuclear Information System (INIS)

    Alekseev, V.N.; Ievenko, I.B.

    1991-01-01

    In November-December, 1988, January-April, 1989-1990, at the Maymaga station in Yakutia according to spectrophotometric data 47 events of the occurrence of red stable middle-latitudinal arcs (SAR-arcs) were recorded. On the basis of these data the latitudinal dynamics of SAR-arcs was studied depending on the local time and geomagnetic disturbance level. The uniform equatorial shift of SAR arcs in the night time is noticed, and a sharp increase of the speed of this motion can be caused by the nonstationary character of the magnetospheric activity

  6. LTE modem power consumption, SAR and RF signal strength emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...... emulation model(s) are computed by a two layer 451 neural network based on physical power measurements. SAR is emulated by polynomial interpolation models based on FDTD simulations. The accuracies of the mathematical function approximations for the emulation models of power and SAR are 5.19% and 3...

  7. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  8. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  9. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico

    Science.gov (United States)

    Castellazzi, Pascal; Garfias, Jaime; Martel, Richard; Brouard, Charles; Rivera, Alfonso

    2017-12-01

    This paper illustrates how InSAR alone can be used to delineate potential ground fractures related to aquifer system compaction. An InSAR-derived ground fracturing map of the Toluca Valley, Mexico, is produced and validated through a field campaign. The results are of great interest to support sustainable urbanization and show that InSAR processing of open-access Synthetic Aperture Radar (SAR) data from the Sentinel-1 satellites can lead to reliable and cost-effective products directly usable by cities to help decision-making. The Toluca Valley Aquifer (TVA) sustains the water needs of two million inhabitants living within the valley, a growing industry, an intensively irrigated agricultural area, and 38% of the water needs of the megalopolis of Mexico City, located 40 km east of the valley. Ensuring water sustainability, infrastructure integrity, along with supporting the important economic and demographic growth of the region, is a major challenge for water managers and urban developers. This paper presents a long-term analysis of ground fracturing by interpreting 13 years of InSAR-derived ground displacement measurements. Small Baseline Subset (SBAS) and Persistent Scatterer Interferometry (PSI) techniques are applied over three SAR datasets totalling 93 acquisitions from Envisat, Radarsat-2, and Sentinel-1A satellites and covering the period from 2003 to 2016. From 2003 to 2016, groundwater level declines of up to 1.6 m/yr, land subsidence up to 77 mm/yr, and major infrastructure damages are observed. Groundwater level data show highly variable seasonal responses according to their connectivity to recharge areas. However, the trend of groundwater levels consistently range from -0.5 to -1.5 m/yr regardless of the well location and depth. By analysing the horizontal gradients of vertical land subsidence, we provide a potential ground fracture map to assist in future urban development planning in the Toluca Valley.

  10. Blood donors--Serious adverse reactions (SAR) 2010-2014 EFS Châteauroux, France.

    Science.gov (United States)

    Riga, A; Sapey, T; Bacanu, M; Py, J-Y; Dehaut, F

    2015-06-01

    In 2013, the national French incidence of serious adverse reactions (SAR) was 155.7 per 100,000 donations and 82% of SAR were grade 2 (French classification of SAR related to blood donors) The purpose of our study was to describe the profile of blood donator candidate which had a SAR in our center. The study contains all the SAR superior to grade 1 occurred on the site EFS Châteauroux (site and mobile blood collection) from January 2010 to October 31, 2014. We analyzed 37 parameters from the e-fit files (e-site French blood vigilance) and In-log software. We identified 82 SAR for 72,553 blood donations (incidence: 113.02 SAR per 100,000 donations). Forty-one men and 41 women, middle age 39 years (18-66). Average height: 1.68 m (1.49-1.85); average weight: 68 kg (50-98); body mass index (kg/m(2)): 24,13(18.6-31.9). All donors were Caucasian and 30% unemployed. We found 74 vasovagal syncope (VVS), 5 hematomas, 2 arterial injuries and an adverse reaction to citrate. In 90%, the SAR was immediate and of grade 2 in 85% of cases. Thirty-seven percent of SAR were first donation in connection with whole blood in 87% of cases. Regarding the seniority of donors, the number of average donations (whole blood, plasma, platelets) was 16.5. An SAR determined the stop of blood donation in 65% of cases with nearly 80% stoppage if it was a first donation. Seventy-three percent of SAR as a VVS took place during blood collection or within 5 minutes following the end of the donation. Sixty-one percent were men. Forty-four percent of cases were a first donation and 83% occurred in mobile blood collection. Average age was 36 years. The result was a permanent stop of all type of donations in 76% of cases. Twenty-seven percent of SAR as a VVS took place beyond 5 minutes after the end of the donation. Seventy-five percent were women. Thirty percent of cases were a first donation and 95% of SAR occurred in mobile blood collection. Average age was 42 years. The result was a permanent stop of

  11. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  12. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR...... mapping is complicated by an extreme topography leading to massive shadowing, foreshortening and layover. An artifact characterised by high cross-polarisation is observed behind many sharp mountain ridges. A multi-reflection hypothesis has been investigated without finding the ultimate proof...

  13. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG gene associated with the risk of SARS-CoV infection.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    Full Text Available Genetic background may play an important role in the process of SARS-CoV infection and SARS development. We found several proteins that could interact with the nucleocapsid protein of the SARS coronavirus (SARS-CoV. α-2-Heremans-Schmid Glycoprotein (AHSG, which is required for macrophage deactivation by endogenous cations, is associated with inflammatory regulation. Cytochrome P450 Family 3A (CYP4F3A is an ω-oxidase that inactivates Leukotriene B4 (LTB4 in human neutrophils and the liver. We investigated the association between the polymorphisms of these two inflammation-associated genes and SARS development. The linkage disequilibrium (LD maps of these two genes were built with Haploview using data on CHB+JPT (version 2 from the HapMap. A total of ten tag SNPs were selected and genotyped. In the Guangzhou cohort study, after adjusting for age and sex, two AHSG SNPs and one CYP4F3 SNP were found to be associated with SARS susceptibility: rs2248690 (adjusted odds ratio [AOR] 2.42; 95% confidence interval [CI] 1.30-4.51; rs4917 (AOR 1.84; 95% CI 1.02-3.34; and rs3794987 (AOR 2.01; 95% CI 1.10-3.68. To further validate the association, the ten tag SNPs were genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690 (AOR, 1.63; 95% CI, 1.30-2.04 was found to be associated with SARS susceptibility. The combined analysis of the two studies confirmed tag SNP rs2248690 in AHSG as a susceptibility variant (AOR 1.70; 95% CI 1.37-2.09. The statistical analysis of the rs2248690 genotype data among the patients and healthy controls in the HCW cohort, who were all similarly exposed to the SARS virus, also supported the findings. Further, the SNP rs2248690 affected the transcriptional activity of the AHSG promoter and thus regulated the AHSG serum level. Therefore, our study has demonstrated that the AA genotype of rs2268690, which leads to a higher AHSG serum concentration, was significantly associated with protection against SARS

  14. The use of the DInSAR method in the monitoring of road damage caused by mining activities

    Science.gov (United States)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    This paper reviews existing remote sensing methods of road damage detection and demonstrates the possibility of using DInSAR (Differential Interferometry SAR) method to identify endangered road sections. In this study two radar images collected by Sentinel-1 satellite have been used. Images were acquired with 24 days interval in 2015. The analysis allowed to estimate the scale of the post-mining deformation that occurred in Upper Silesia and to indicate areas where road infrastructure is particularly vulnerable to damage.

  15. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically, and studied extensively in the field. High resolution TerraSAR-X (TSX) images covering the entire research area were acquired for the period of 2011 to 2012. Analysis was performed in imaging processing and GIS software. The coherence results display minor changes on the dune crest (0.42-0.49), compared to bigger changes in windward slope (0.31-0.37). The level of change depends on the dune location relative to its distance from the sea. Furthermore, the coherence results show decreasing over time. Field results indicate erosion/deposition of sand ranging from -99 to 137 mm/year. The results of this study confirm that it is possible to monitor subtle changes in sand dunes and to identify dune stability or instability, only by the use of SAR images, even in areas characterized by low coherence.

  16. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    , urban mapping etc…. In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode, TerraSAR-X (Dual-pol mode and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes, by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE. The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.

  17. SAR processing in the cloud for oil detection in the Arctic

    Science.gov (United States)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  18. SAR Agriculture Rice Production Estimation (SARPE)

    Science.gov (United States)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  19. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    Science.gov (United States)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  20. A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers

    KAUST Repository

    Omran, Hesham

    2016-11-16

    A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.

  1. A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers

    KAUST Repository

    Omran, Hesham; Alhoshany, Abdulaziz; Alahmadi, Hamzah; Salama, Khaled N.

    2016-01-01

    A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.

  2. Sentinel-3 SAR Altimetry Toolbox

    Science.gov (United States)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  3. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy

    Directory of Open Access Journals (Sweden)

    F. Ferrigno

    2017-06-01

    Full Text Available On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy reactivated, affecting both state road 90 Delle Puglie and the Rome–Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  4. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

    Science.gov (United States)

    Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola

    2017-06-01

    On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  5. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  6. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  7. InSAR observations of active volcanoes in Latin America

    Science.gov (United States)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  8. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    Science.gov (United States)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will

  9. [SARS: a new emergency in the world health].

    Science.gov (United States)

    Calza, Leonardo; Manfredi, Roberto; Verucchi, Gabriella; Chiodo, Francesco

    2003-01-01

    The Severe Acute Respiratory Syndrome (SARS) is a new life-threatening respiratory disease which has its origins in Guangdong province, China, where the earliest known cases were identified in November 2002. Since then, probable cases of SARS have been reported in 30 countries and the current cumulative number of cases is 8,240 with 745 deaths and a global fatality rate of 9%. The most frequently involved areas include China, Hong Kong, Singapore, Canada, Vietnam and Philippines. Most cases of SARS to date have occurred in young adults and this disease appears to spread most commonly by close person-to-person contact, involving exposure to infectious droplets and body fluids. This transmission pattern generally involves household members, health care workers and international travellers, while a large and sudden cluster of almost simultaneous cases in an housing estate of Hong Kong has raised the possibility of transmission from an environmental source. The most common presenting symptoms are fever, malaise, non-productive cough and dyspnea, associated with pulmonary interstitial infiltrates on chest radiography. A novel coronavirus is associated with this outbreak, and the laboratory evidences indicate that this virus has an etiologic role in SARS, but the role of other concurrent viral agents (such as metapneumovirus) identified in these patients requires further investigation.

  10. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  11. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada.

    Directory of Open Access Journals (Sweden)

    Janet Raboud

    Full Text Available BACKGROUND: In the 2003 Toronto SARS outbreak, SARS-CoV was transmitted in hospitals despite adherence to infection control procedures. Considerable controversy resulted regarding which procedures and behaviours were associated with the greatest risk of SARS-CoV transmission. METHODS: A retrospective cohort study was conducted to identify risk factors for transmission of SARS-CoV during intubation from laboratory confirmed SARS patients to HCWs involved in their care. All SARS patients requiring intubation during the Toronto outbreak were identified. All HCWs who provided care to intubated SARS patients during treatment or transportation and who entered a patient room or had direct patient contact from 24 hours before to 4 hours after intubation were eligible for this study. Data was collected on patients by chart review and on HCWs by interviewer-administered questionnaire. Generalized estimating equation (GEE logistic regression models and classification and regression trees (CART were used to identify risk factors for SARS transmission. RESULTS: 45 laboratory-confirmed intubated SARS patients were identified. Of the 697 HCWs involved in their care, 624 (90% participated in the study. SARS-CoV was transmitted to 26 HCWs from 7 patients; 21 HCWs were infected by 3 patients. In multivariate GEE logistic regression models, presence in the room during fiberoptic intubation (OR = 2.79, p = .004 or ECG (OR = 3.52, p = .002, unprotected eye contact with secretions (OR = 7.34, p = .001, patient APACHE II score > or = 20 (OR = 17.05, p = .009 and patient Pa0(2/Fi0(2 ratio < or = 59 (OR = 8.65, p = .001 were associated with increased risk of transmission of SARS-CoV. In CART analyses, the four covariates which explained the greatest amount of variation in SARS-CoV transmission were covariates representing individual patients. CONCLUSION: Close contact with the airway of severely ill patients and failure of infection control practices to prevent exposure

  12. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  13. An ice-motion tracking system at the Alaska SAR facility

    Science.gov (United States)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  14. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  15. Long-term persistence of robust antibody and cytotoxic T cell responses in recovered patients infected with SARS coronavirus.

    Directory of Open Access Journals (Sweden)

    Taisheng Li

    2006-12-01

    Full Text Available Most of the individuals infected with SARS coronavirus (SARS-CoV spontaneously recovered without clinical intervention. However, the immunological correlates associated with patients' recovery are currently unknown. In this report, we have sequentially monitored 30 recovered patients over a two-year period to characterize temporal changes in SARS-CoV-specific antibody responses as well as cytotoxic T cell (CTL responses. We have found persistence of robust antibody and CTL responses in all of the study subjects throughout the study period, with a moderate decline one year after the onset of symptoms. We have also identified two potential major CTL epitopes in N proteins based on ELISPOT analysis of pooled peptides. However, despite the potent immune responses and clinical recovery, peripheral lymphocyte counts in the recovered patients have not yet been restored to normal levels. In summary, our study has, for the first time, characterized the temporal and dynamic changes of humoral and CTL responses in the natural history of SARS-recovered individuals, and strongly supports the notion that high and sustainable levels of immune responses correlate strongly with the disease outcome. Our findings have direct implications for future design and development of effective therapeutic agents and vaccines against SARS-CoV infection.

  16. Feature Fusion Based Road Extraction for HJ-1-C SAR Image

    Directory of Open Access Journals (Sweden)

    Lu Ping-ping

    2014-06-01

    Full Text Available Road network extraction in SAR images is one of the key tasks of military and civilian technologies. To solve the issues of road extraction of HJ-1-C SAR images, a road extraction algorithm is proposed based on the integration of ratio and directional information. Due to the characteristic narrow dynamic range and low signal to noise ratio of HJ-1-C SAR images, a nonlinear quantization and an image filtering method based on a multi-scale autoregressive model are proposed here. A road extraction algorithm based on information fusion, which considers ratio and direction information, is also proposed. By processing Radon transformation, main road directions can be extracted. Cross interferences can be suppressed, and the road continuity can then be improved by the main direction alignment and secondary road extraction. The HJ-1-C SAR image acquired in Wuhan, China was used to evaluate the proposed method. The experimental results show good performance with correctness (80.5% and quality (70.1% when applied to a SAR image with complex content.

  17. A MATCHING METHOD TO REDUCE THE INFLUENCE OF SAR GEOMETRIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    C. Gao

    2018-04-01

    Full Text Available There are large geometrical deformations in SAR image, including foreshortening, layover, shade,which leads to SAR Image matching with low accuracy. Especially in complex terrain area, the control points are difficult to obtain, and the matching is difficult to achieve. Considering the impact of geometric distortions in SAR image pairs, a matching algorithm with a combination of speeded up robust features (SURF and summed of normalize cross correlation (SNCC was proposed, which can avoid the influence of SAR geometric deformation. Firstly, SURF algorithm was utilized to predict the search area. Then the matching point pairs was selected based on summed of normalized cross correlation. Finally, false match points were eliminated by the bidirectional consistency. SURF algorithm can control the range of matching points, and the matching points extracted from the deformation area are eliminated, and the matching points with stable and even distribution are obtained. The experimental results demonstrated that the proposed algorithm had high precision, and can effectively avoid the effect of geometric distortion on SAR image matching. Meet accuracy requirements of the block adjustment with sparse control points.

  18. Ionospheric errors compensation for ground deformation estimation with new generation SAR

    Science.gov (United States)

    Gomba, Giorgio; De Zan, Francesco; Rodriguez Gonzalez, Fernando

    2017-04-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) measurements are disturbed by the propagation velocity changes of microwaves that are caused by the high density of free electrons in the ionosphere. Most affected are low-frequency (L- or P-band) radars, as the recently launched ALOS-2 and the future Tandem-L and NISAR, although higher frequency (C- or X-band) systems, as the recently launched Sentinel-1, are not immune. Since the ionosphere is an obstacle to increasing the precision of new generation SAR systems needed to remotely measure the Earth's dynamic processes as for example ground deformation, it is necessary to estimate and compensate ionospheric propagation delays in SAR signals. In this work we discuss about the influence of the ionosphere on interferograms and the possible correction methods with relative accuracies. Consequently, the effect of ionospheric induced errors on ground deformation measurements prior and after ionosphere compensation will be analyzed. Examples will be presented of corrupted measurements of earthquakes and fault motion along with the corrected results using different methods.

  19. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  20. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...

  1. A preliminary study on the CT finding in SARS following hospital discharge

    International Nuclear Information System (INIS)

    Zhang Lieguang; Liu Jinxing; Chen Bihua; Jiang Songfeng

    2004-01-01

    Objective: To study the CT finding of chest in patient with SARS following hospital discharge. Methods: Thirty-six patients (11 men, 25 women; age range, 20-73 years; mean age, 39 years) with confirmed SARS underwent follow-up spiral CT. The scans were obtained on average 187 days (range from 152 days to 225 days) after onset of symptoms. Patients were assigned to group 1 (with heavy SARS, n=19) and group 2 (with common SARS, n=17) for analysis. The chest X-ray films of the 36 patients in fastigium of film were retrospectively reviewed. Results: 58.33% (21 of 36) cases are normal on the CT of thorax. In group 1 42.11% (8 of 19) cases and in group 2 76.47%(13 of 17) cases. In group 1: 31.58%(6 of 19) cases present diffuse ground-glass opacification, 21.05% (4 of 19) cases present multi-patch ground-glass opacification, 5.26% (1 of 19) cases present local ground-glass opacification in single lobar, 31.58% (6 of 19) cases present intralobular interstitial thickening and/or interlobular septal thickening, 5.26% (1 of 19) present subpleural lines, 5.26% (1 of 19) present honeycombing, 5.26% (1 of 19) cases present bullae; In group 2: 11.76% (2 of 17) cases present local ground-glass opacification, 11.76%(2 of 17) cases present intralobular interstitial thickening and/or interlobular septal thickening, 5.88%(1 of 17) cases present organized pneumonia. In group 1, 73.68% (14/19) cases in fastigium of film present large areas of lung consolidation and diffuse ground-glass opacification. Conclusion: Most of the healing SARS cases after certain time are normal on the CT finding of thorax. Part of them remain manifests such as ground-glass opacification, intralobular interstitial thickening and/or interlobular septal thickening, subpleural lines, honeycombing, traction bronchiectasis, organized pneumonia and bullae. They relate to severeness of the lesion of the lung in fastigium of film. Such finding can last for long time and probably fibrosis can be developed. (authors)

  2. Underwater Topography Detection in Coastal Areas Using Fully Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolin Bian

    2017-06-01

    Full Text Available Fully polarimetric synthetic aperture radar (SAR can provide detailed information on scattering mechanisms that could enable the target or structure to be identified. This paper presents a method to detect underwater topography in coastal areas using high resolution fully polarimetric SAR data, while less prior information is required. The method is based on the shoaling and refraction of long surface gravity waves as they propagate shoreward. First, the surface scattering component is obtained by polarization decomposition. Then, wave fields are retrieved from the two-dimensional (2D spectra by the Fast Fourier Transformation (FFT. Finally, shallow water depths are estimated from the dispersion relation. Applicability and effectiveness of the proposed methodology are tested by using C-band fine quad-polarization mode RADARSAT-2 SAR data over the near-shore area of the Hainan province, China. By comparing with the values from an official electronic navigational chart (ENC, the estimated water depths are in good agreement with them. The average relative error of the detected results from the scattering mechanisms based method and single polarization SAR data are 9.73% and 11.53% respectively. The validation results indicate that the scattering mechanisms based methodology is more effective than only using the single polarization SAR data for underwater topography detection, and will inspire further research on underwater topography detection with fully polarimetric SAR data.

  3. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.

    Science.gov (United States)

    Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui

    2017-07-20

    In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.

  4. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  5. Anatomy of the epidemiological literature on the 2003 SARS outbreaks in Hong Kong and Toronto: a time-stratified review.

    Directory of Open Access Journals (Sweden)

    Weijia Xing

    2010-05-01

    Full Text Available BACKGROUND: Outbreaks of emerging infectious diseases, especially those of a global nature, require rapid epidemiological analysis and information dissemination. The final products of those activities usually comprise internal memoranda and briefs within public health authorities and original research published in peer-reviewed journals. Using the 2003 severe acute respiratory syndrome (SARS epidemic as an example, we conducted a comprehensive time-stratified review of the published literature to describe the different types of epidemiological outputs. METHODS AND FINDINGS: We identified and analyzed all published articles on the epidemiology of the SARS outbreak in Hong Kong or Toronto. The analysis was stratified by study design, research domain, data collection, and analytical technique. We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication. The impact factors of the publishing journals were examined according to the time of publication of SARS articles, and the numbers of citations received by SARS-case and matched-control articles submitted during and after the epidemic were compared. Descriptive, analytical, theoretical, and experimental epidemiology concerned, respectively, 54%, 30%, 11%, and 6% of the studies. Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic. The submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted during the epidemic period were significantly shorter than the corresponding intervals of matched-control non-SARS articles published in the same journal issues (p<0.001 and p<0.01, respectively. The differences of median submission-to-acceptance intervals and median acceptance-to-publication intervals between SARS articles and their corresponding control articles were 106.5 d (95% confidence interval [CI] 55.0-140.1 and 63.5 d (95% CI 18

  6. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    Science.gov (United States)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to

  7. Method of Monitoring Urban Area Deformation Based on Differential TomoSAR

    Directory of Open Access Journals (Sweden)

    WANG Aichun

    2016-12-01

    Full Text Available While the use of differential TomoSAR based on compressive sensing (CS makes it possible to solve the layover problem and reconstruct the deformation information of an observed urban area scene acquired by moderate-high resolution SAR satellite, the performance of the reconstruction decreases for a sparse and structural observed scene due to ignoring the structural characteristics of the observed scene. To deal with this issue, the method for differential SAR tomography based on Khatri-Rao subspace and block compressive sensing (KRS-BCS is proposed. The proposed method changes the reconstruction of the sparse and structural observed scene into a BCS problem under Khatri-Rao subspace, using the structure information of the observed scene and Khatri-Rao product property of the reconstructed observation matrix for differential TomoSAR, such that the KRS-BCS problem is efficiently solved with a block sparse l1/l2 norm optimization signal model, and the performance of resolution capability and reconstruction estimation is compared and analyzed qualitatively and quantitatively by the theoretical analysis and the simulation experiments, all of the results show the propose KRS-BCS method practicably overcomes the problems of CS method, as well as, quite maintains the high resolution characteristics, effectively reduces the probability of false scattering target and greatly improves the reconstruction accurate of scattering point. Finally, the application is taking the urban area of the Mobara(in Chiba, Japan as the test area and using 34 ENVISAT-ASAR images, the accuracy is verifying with the reference deformations derived from first level point data and GPS tracking data, the results show the trend is consistent and the overall deviation is small between reconstruction deformations of the propose KRS-BCS method and the reference deformations, and the accuracy is high in the estimation of the urban area deformation.

  8. Interseismic Deformation along the Red River Fault from InSAR Measurements

    Science.gov (United States)

    Chen, J.; Li, Z.; Clarke, P. J.

    2017-12-01

    The Red River Fault (RRF) zone is a profound geological discontinuity separating South China from Indochina. Right lateral movements along this >900 km fault are considered to accommodate the extrusion of SE China. Crustal deformation monitoring at high resolution is the key to understand the present-day mode of deformation in this zone and its interaction with the adjacent regions. This is the first study to measure the interseismic deformation of the entire fault with ALOS-1/2 and Sentinel-1 observations. Nine ascending tracks of ALOS-1 data between 2007 and 2011 are collected from the Alaska Satellite Facility (ASF), four descending tracks of Sentinel-1 data are acquired every 24 days since October 2014, and ALOS-2 data are being systematically acquired since 2014. The long wavelength (L-band) of ALOS-1/2 and short temporal baseline of Sentinel-1 ensure good coherence to overcome the limitations of heavy vegetation and variable climate in the region. Stacks of interferograms are generated by our automatic processing chain based on the InSAR Scientific Computing Environment (ISCE) software, ionospheric errors are estimated and corrected using the split-spectrum method (Fattahi et al., IEEE Trans. Geosci. Remote Sens., 2017) and the tropospheric delays are calibrated using the Generic Atmospheric Correction Online Service for InSAR (GACOS: http://ceg-research.ncl.ac.uk/v2/gacos) with high-resolution ECMWF products (Yu et al., J. Geophys. Res., 2017). Time series analysis is performed to determine the interseismic deformation rate of the RRF using the in-house InSAR time series with atmospheric estimation model (InSAR TS + AEM) package based on the Small Baseline Subset (SBAS) algorithm. Our results reveal the decrease of slip rate from north to south. We map the interseismic strain rate field to characterize the deformation patterns and seismic hazard throughout the RRF zone.

  9. SAR image dataset of military ground targets with multiple poses for ATR

    Science.gov (United States)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  10. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  11. Monitoring of Land Deformation Due to Oil Production by InSAR Time Series Analysis Using PALSAR Data in Bolivarian Republic of Venezuela

    Science.gov (United States)

    Deguchi, Tomonori; Narita, Tatsuhiko

    2015-05-01

    The target area of this study is the Maracaibo sedimentary basin located in the western part of Bolivarian Republic of Venezuela. The full-scale exploration and development for oil resources in Venezuela which was the greatest oil-producing country in South America had begun at the Maracaibo sedimentary basin in the 1910s, and it was a center of the oil product in Venezuela until the 1980s. But, in most of oil fields in the Maracaibo sedimentary basin, there is concern over the drain on recoverable reserves due to deterioration, and the production amount of petroleum in Venezuela has been diminishing these days. Leveling and GPS surveying were carried out in the past, and they revealed that the large-scale subsidence phenomenon of which cumulative subsidence amount was approximately 5 meter had occurred. The authors applied the vertical displacement measurement by InSAR time series analysis using PALSAR data obtained in the Fine-beam and ScanSAR observation mode. As a result, it could be confirmed clear ground deformation in the surrounding of three oil fields (Tia Juana, Lagunillas and Bachaquero) and easily recognized that the areas of phase anomalies detected by this analysis had expanded and the number of interference fringes had increased over time. The annual velocity of vertical ground surface displacement measured by InSAR time series analysis was -51 mm per year, -103 mm per year and -58 mm per year in Tia Juana, Lagunillas and Bachaquero oil field respectively. The tendency that an earth surface shifted towards the center of phase anomalies was detected from the result of the horizontal ground change measurement. It was interpreted from Google Earth and Landsat images that oil-related facilities (mainly bowling stations) were built intensively over the areas where phase anomalies were detected. Therefore, it was inferred that there was a high association between the operation activity of the oil field and ground deformation. In addition, the deterioration

  12. Feature extraction for SAR target recognition based on supervised manifold learning

    International Nuclear Information System (INIS)

    Du, C; Zhou, S; Sun, J; Zhao, J

    2014-01-01

    On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition

  13. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  14. SARS and hospital priority setting: a qualitative case study and evaluation

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2004-12-01

    Full Text Available Abstract Background Priority setting is one of the most difficult issues facing hospitals because of funding restrictions and changing patient need. A deadly communicable disease outbreak, such as the Severe Acute Respiratory Syndrome (SARS in Toronto in 2003, amplifies the difficulties of hospital priority setting. The purpose of this study is to describe and evaluate priority setting in a hospital in response to SARS using the ethical framework 'accountability for reasonableness'. Methods This study was conducted at a large tertiary hospital in Toronto, Canada. There were two data sources: 1 over 200 key documents (e.g. emails, bulletins, and 2 35 interviews with key informants. Analysis used a modified thematic technique in three phases: open coding, axial coding, and evaluation. Results Participants described the types of priority setting decisions, the decision making process and the reasoning used. Although the hospital leadership made an effort to meet the conditions of 'accountability for reasonableness', they acknowledged that the decision making was not ideal. We described good practices and opportunities for improvement. Conclusions 'Accountability for reasonableness' is a framework that can be used to guide fair priority setting in health care organizations, such as hospitals. In the midst of a crisis such as SARS where guidance is incomplete, consequences uncertain, and information constantly changing, where hour-by-hour decisions involve life and death, fairness is more important rather than less.

  15. SARS and hospital priority setting: a qualitative case study and evaluation.

    Science.gov (United States)

    Bell, Jennifer A H; Hyland, Sylvia; DePellegrin, Tania; Upshur, Ross E G; Bernstein, Mark; Martin, Douglas K

    2004-12-19

    Priority setting is one of the most difficult issues facing hospitals because of funding restrictions and changing patient need. A deadly communicable disease outbreak, such as the Severe Acute Respiratory Syndrome (SARS) in Toronto in 2003, amplifies the difficulties of hospital priority setting. The purpose of this study is to describe and evaluate priority setting in a hospital in response to SARS using the ethical framework 'accountability for reasonableness'. This study was conducted at a large tertiary hospital in Toronto, Canada. There were two data sources: 1) over 200 key documents (e.g. emails, bulletins), and 2) 35 interviews with key informants. Analysis used a modified thematic technique in three phases: open coding, axial coding, and evaluation. Participants described the types of priority setting decisions, the decision making process and the reasoning used. Although the hospital leadership made an effort to meet the conditions of 'accountability for reasonableness', they acknowledged that the decision making was not ideal. We described good practices and opportunities for improvement. 'Accountability for reasonableness' is a framework that can be used to guide fair priority setting in health care organizations, such as hospitals. In the midst of a crisis such as SARS where guidance is incomplete, consequences uncertain, and information constantly changing, where hour-by-hour decisions involve life and death, fairness is more important rather than less.

  16. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...

  17. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities

    Directory of Open Access Journals (Sweden)

    Stefano Perna

    2016-01-01

    Full Text Available We present in this work a first assessment of the imaging and topographic mapping capabilities of the InSAeS4 system, which is a single-pass interferometric airborne X-Band Synthetic Aperture Radar (SAR. In particular, we first provide a brief description of the InSAeS4 sensor. Then, we discuss the results of our analysis on the SAR and interferometric SAR products relevant to the first flight-test campaign. More specifically, we have exploited as reference the GPS measurements relevant to nine Corner Reflectors (CRs deployed over the illuminated area during the campaign and a laser scanner Digital Elevation Model (DEM. From the analysis carried out on the CRs we achieved a mean geometric resolution, for the SAR products, of about 0.14 m in azimuth and 0.49 m in range, a positioning misalignment with standard deviation of 0.07 m in range and 0.08 m in azimuth, and a height error with standard deviation of 0.51 m. From the comparison with the laser scanner DEM we estimated a height error with standard deviation of 1.57 m.

  18. DInSAR time series generation within a cloud computing environment: from ERS to Sentinel-1 scenario

    Science.gov (United States)

    Casu, Francesco; Elefante, Stefano; Imperatore, Pasquale; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana; Mathot, Emmanuel; Brito, Fabrice; Farres, Jordi; Lengert, Wolfgang

    2013-04-01

    requests of processing resources linked to disaster events. This work aims at presenting a parallel computational model for the widely used DInSAR algorithm named as Small BAseline Subset (SBAS), which has been implemented within the cloud computing environment provided by the ESA-CIOP platform. This activity has resulted in developing a scalable, unsupervised, portable, and widely accessible (through a web portal) parallel DInSAR computational tool. The activity has rewritten and developed the SBAS application algorithm within a parallel system environment, i.e., in a form that allows us to benefit from multiple processing units. This requires the devising a parallel version of the SBAS algorithm and its subsequent implementation, implying additional complexity in algorithm designing and an efficient multi processor programming, with the final aim of a parallel performance optimization. Although the presented algorithm has been designed to work with Sentinel-1 data, it can also process other satellite SAR data (ERS, ENVISAT, CSK, TSX, ALOS). Indeed, the performance analysis of the implemented SBAS parallel version has been tested on the full ASAR archive (64 acquisitions) acquired over the Napoli Bay, a volcanic and densely urbanized area in Southern Italy. The full processing - from the raw data download to the generation of DInSAR time series - has been carried out by engaging 4 nodes, each one with 2 cores and 16 GB of RAM, and has taken about 36 hours, with respect to about 135 hours of the sequential version. Extensive analysis on other test areas significant from DInSAR and geophysical viewpoint will be presented. Finally, preliminary performance evaluation of the presented approach within the Sentinel-1 scenario will be provided.

  19. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    International Nuclear Information System (INIS)

    Yu Hua; Jiang Lifang; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-01-01

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed

  20. Monitoring Subsidence in California with InSAR

    Science.gov (United States)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the