WorldWideScience

Sample records for relations promotes leaf

  1. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  2. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  3. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    Science.gov (United States)

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  4. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  5. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  6. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  7. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  8. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  9. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  10. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  11. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  12. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae; Kim, Sungjin; Abbasi, Nazia; Bressan, Ray Anthony; Yun, Daejin; Yoo, Sangdong; Kwon, SukYun; Choi, Sangbong

    2010-01-01

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  13. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  14. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

    Science.gov (United States)

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-01-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717

  15. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  16. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  17. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  18. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  19. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  20. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  1. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  2. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  3. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus.

    Directory of Open Access Journals (Sweden)

    Zainul A Khan

    Full Text Available Cotton leaf curl Burewala virus (CLCuBuV, belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV were fused with β-glucuronidase (GUS and green fluorescent protein (GFP reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.

  4. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    Science.gov (United States)

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  6. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  7. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  8. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  9. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  10. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  11. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  12. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  13. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species

    Directory of Open Access Journals (Sweden)

    Elsa Desnoues

    2017-12-01

    Full Text Available Background Leaf out times of temperate forest trees are a prominent determinant of global carbon dynamics throughout the year. Abiotic cues of leaf emergence are well studied but investigation of the relative roles of shared evolutionary history (phylogeny and local adaptation to climate in determining the species-level responses to these cues is needed to better apprehend the effect of global change on leaf emergence. We explored the relative importance of phylogeny and climate in determining the innate leaf out phenology across the temperate biome. Methods We used an extensive dataset of leaf-out dates of 1126 temperate woody species grown in eight Northern Hemisphere common gardens. For these species, information on the native climate and phylogenetic position was collected. Using linear regression analyses, we examine the relative effect of climate variables and phylogeny on leaf out variation among species. Results Climate variables explained twice as much variation in leaf out timing as phylogenetic information, a process that was driven primarily by the complex interactive effects of multiple climate variables. Although the primary climate factors explaining species-level variation in leaf-out timing varied drastically across different families, our analyses reveal that local adaptation plays a stronger role than common evolutionary history in determining tree phenology across the temperate biome. Conclusions In the long-term, the direct effects of physiological adaptation to abiotic effects of climate change on forest phenology are likely to outweigh the indirect effects mediated through changes in tree species composition.

  14. Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Azat Akbal

    2016-01-01

    Full Text Available Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum, quince (Cydonia oblonga, chestnut (Castanea sativa, fig (Ficus carica, walnut (Juglans cinerea, black mulberry (Morus nigra, and white mulberry (Morus alba leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422 nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively.

  15. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  16. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  17. Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)

    Science.gov (United States)

    Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.

    2016-12-01

    Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations

  18. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  19. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  20. Generation of an Infectious Clone of a New Korean Isolate of Apple chlorotic leaf spot virus Driven by Dual 35S and T7 Promoters in a Versatile Binary Vector

    Directory of Open Access Journals (Sweden)

    Ik-Hyun Kim

    2017-12-01

    Full Text Available The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacteriophage T7 RNA promoter and the Cauliflower mosaic virus 35S promoter. Chenopodium quinoa was successfully infected using in vitro transcripts synthesized using the T7 promoter, detected at 20 days post inoculation (dpi, but did not produce obvious symptoms. Nicotiana occidentalis and C. quinoa were inoculated through agroinfiltration. At 32 dpi the infection rate was evaluated; no C. quinoa plants were infected by agroinfiltration, but infection of N. occidentalis was obtained.

  1. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  2. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  3. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    Science.gov (United States)

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  4. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Nordt, Birgit; Ellwood, Elizabeth R; Stevens, Albert-Dieter; Renner, Susanne S; Willis, Charles G; Fahey, Robert; Whittemore, Alan; Du, Yanjun; Davis, Charles C

    2014-09-01

    Leaf out phenology affects a wide variety of ecosystem processes and ecological interactions and will take on added significance as leaf out times increasingly shift in response to warming temperatures associated with climate change. There is, however, relatively little information available on the factors affecting species differences in leaf out phenology. An international team of researchers from eight Northern Hemisphere temperate botanical gardens recorded leaf out dates of c. 1600 woody species in 2011 and 2012. Leaf out dates in woody species differed by as much as 3 months at a single site and exhibited strong phylogenetic and anatomical relationships. On average, angiosperms leafed out earlier than gymnosperms, deciduous species earlier than evergreen species, shrubs earlier than trees, diffuse and semi-ring porous species earlier than ring porous species, and species with smaller diameter xylem vessels earlier than species with larger diameter vessels. The order of species leaf out was generally consistent between years and among sites. As species distribution and abundance shift due to climate change, interspecific differences in leaf out phenology may affect ecosystem processes such as carbon, water, and nutrient cycling. Our open access leaf out data provide a critical framework for monitoring and modelling such changes going forward. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes

    NARCIS (Netherlands)

    Lee, K.M.; Driever, S.M.; Heuvelink, E.; Rüger, S.; Zimmermann, U.; Gelder, de A.; Marcelis, L.F.M.

    2012-01-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. Leaf patch clamp pressure changes, a measure for relative changes in cell turgor, were monitored at three different

  6. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    Science.gov (United States)

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  7. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Koji Kojima

    2018-01-01

    Full Text Available Leaf abaxial–adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2. Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2 which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1, has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial–abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2

  8. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  10. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  11. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.

  13. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    DEFF Research Database (Denmark)

    Wang, L.; Ibrom, Andreas; Korhonen, J. F. J.

    2013-01-01

    and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally...

  14. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  15. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  16. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    Science.gov (United States)

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  17. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    Directory of Open Access Journals (Sweden)

    Y. S. Kong

    2013-01-01

    Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  18. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  20. Compared leaf anatomy and water relations of commercial and traditional Prunus dulcis (Mill.) cultivars under rain-fed conditions

    DEFF Research Database (Denmark)

    Oliveira, I.; Meyer, A.; Afonso, S.

    2018-01-01

    Leaf anatomy and water relations of seven almond (Prunus dulcis Mill.) cultivars, traditional (Bonita, Casanova, Parada, Pegarinhos and Verdeal) and commercial (Ferragnès and Glorieta), grown under rain-fed conditions, were studied. The performed measurements included thickness of leaf tissues...... cuticle thickness, while Pegarinhos adds a thicker epidermis and palisade parenchyma to increase protection to water loss. These data is one of the first comparative approaches to the leaf characterization of these cultivars, and should now be combined with physiological and biochemical studies...

  1. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  3. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  4. The ring of fire: the relative importance of fuel packing versus intrinsic leaf flammability

    NARCIS (Netherlands)

    Grootemaat, S.; Wright, I.J.; Cornelissen, J.H.C.; Viegas, D.X.

    2014-01-01

    Two different experimental set-ups were used to disentangle the relative importance of intrinsic leaf traits versus fuel packing for the flammability in fuel beds. Dried leaves from 25 Australian perennial species were burnt in fuel bed rings under controlled conditions. The flammability parameters

  5. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  6. In situ determination of the depuration of three- and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces

    International Nuclear Information System (INIS)

    Sun, Haifeng; Shi, Jing; Guo, Shuai; Zhang, Yong; Duan, Lusha

    2016-01-01

    A dual-wavelength fiber-optic fluorimetry for the in situ simultaneous determinations of fluorene (Flu), phenanthrene (Phe) and pyrene (Pyr) adsorbed onto the leaf surfaces of living Avicennia marina (Am) seedling were developed and used to study the depuration kinetics of the three PAHs, adsorbed individually or mixed together, onto living Am leaf surfaces. Limits of detection for the in situ measurements of adsorbed Flu, Phe and Pyr were 4.62, 2.75 and 1.38 ng spot"−"1, respectively. The depuration kinetics of the three selected polycyclic aromatic hydrocarbons (PAHs) are divided into rapid and slow phases; both phases followed the same first-order kinetics with relative clearance rates of Flu > Phe > Pyr during the rapid phase, and a clearance rate order of Pyr > Flu > Phe during the slow phase. For the three PAHs co-adsorbed on living Am leaf surfaces, a significant synergistic effect was detected during the rapid phase clearance; conversely, an antagonistic effect was observed during the slow phase. However, the synergistic effect dominated during both phases of the depuration process, and the co-adsorption of PAHs promoted the clearance of all three compounds from the mangrove leaf surfaces. These findings demonstrate a novel analytical method for in situ characterization of multiple PAHs adsorbed onto the plant surfaces. - Highlights: • A novel method for the in situ determination of multi-component PAHs was developed. • Synergistic and antagonistic effects separately occurred over rapid and slow phases. • The clearance of all three PAHs from leaf surfaces was promoted by co-adsorption. - The co-adsorption of PAHs promoted the depuration of all three compounds from the mangrove leaf surfaces.

  7. Clone-Specific Response in Leaf Nitrate Reductase Activity among Unrelated Hybrid Poplars in relation to Soil Nitrate Availability

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2012-01-01

    Full Text Available In this field study, we used in vivo NRA activity in hybrid poplar leaves as an indicator of NO3- assimilation for five unrelated hybrid poplar clones. We also examined if leaf NRA of these clones is influenced to the same extent by different levels of soil NO3- availability in two riparian agroforestry systems located in pastures. Leaf NRA differences of more than one order of magnitude were observed between the clones, clearly showing their different abilities to reduce NO3- in leaves. Clone DxN-3570, a P. deltoides x P. nigra hybrid (Aigeiros intrasectional hybrid, always had the highest leaf NRA during the field assays. This clone was also the only one to increase its leaf NRA with increasing NO3- soil availability, which resulted in a significant Site x Clone interaction and a positive relationship between soil NO3- concentration and NRA. All of the four other clones studied had one or both parental species from the Tacamahaca section. They had relatively low leaf NRA and they did not increase their leaf NRA when grown on the NO3- rich site. These results provide evidence that NO3- assimilation in leaves varies widely among hybrid poplars of different parentages, suggesting potential preferences for N forms.

  8. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  9. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous....... In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale....

  10. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  11. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits.

    Science.gov (United States)

    Atkin, Owen K; Bloomfield, Keith J; Reich, Peter B; Tjoelker, Mark G; Asner, Gregory P; Bonal, Damien; Bönisch, Gerhard; Bradford, Matt G; Cernusak, Lucas A; Cosio, Eric G; Creek, Danielle; Crous, Kristine Y; Domingues, Tomas F; Dukes, Jeffrey S; Egerton, John J G; Evans, John R; Farquhar, Graham D; Fyllas, Nikolaos M; Gauthier, Paul P G; Gloor, Emanuel; Gimeno, Teresa E; Griffin, Kevin L; Guerrieri, Rossella; Heskel, Mary A; Huntingford, Chris; Ishida, Françoise Yoko; Kattge, Jens; Lambers, Hans; Liddell, Michael J; Lloyd, Jon; Lusk, Christopher H; Martin, Roberta E; Maksimov, Ayal P; Maximov, Trofim C; Malhi, Yadvinder; Medlyn, Belinda E; Meir, Patrick; Mercado, Lina M; Mirotchnick, Nicholas; Ng, Desmond; Niinemets, Ülo; O'Sullivan, Odhran S; Phillips, Oliver L; Poorter, Lourens; Poot, Pieter; Prentice, I Colin; Salinas, Norma; Rowland, Lucy M; Ryan, Michael G; Sitch, Stephen; Slot, Martijn; Smith, Nicholas G; Turnbull, Matthew H; VanderWel, Mark C; Valladares, Fernando; Veneklaas, Erik J; Weerasinghe, Lasantha K; Wirth, Christian; Wright, Ian J; Wythers, Kirk R; Xiang, Jen; Xiang, Shuang; Zaragoza-Castells, Joana

    2015-04-01

    Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  13. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Gao, Shan; Gao, Jiong; Zhu, Xiaoyu; Song, Yi; Li, Zhongpeng; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2016-09-06

    Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Leaf phenotypic variation and developmental instability in relation to different light regimes

    Directory of Open Access Journals (Sweden)

    Henrique Venâncio

    2016-06-01

    Full Text Available ABSTRACT For pioneer plants, shaded habitats represent a stressful condition, where sunlight exposure is below the optimum level and so leaves expand in order to intercept a greater amount of light. We investigated changes in both phenotypic variation and stress of Bauhinia brevipes in sunny and shaded microhabitats. Leaf area was used as a measure of phenotypic variation, whereas leaf asymmetry (difference between right and left sides of leaves, was used as a measure of stress. We hypothesized an increase in leaf area and stress in shaded locations, which might indicate that B. brevipes was compensating for low light absorption, and elevated levels of stress, respectively. Plants in the sun fitted a fluctuating asymmetry pattern (normal distribution of right minus left sides, while shaded plants were clearly antisymmetric (bimodal distribution of leaf side differences. Leaf asymmetry and area were 5% and 26.8% higher in plants in the shade compared to plants in the sun, respectively. These results were expected since B. brevipes is found predominantly in open areas; so sunlight exposure is important for its development. The presence of antisymmetry is rare in studies of developmental instability, and here it might indicate higher stress compared to plants with fluctuating asymmetry.

  15. Price-related promotions for tobacco products on Twitter.

    Science.gov (United States)

    Jo, Catherine L; Kornfield, Rachel; Kim, Yoonsang; Emery, Sherry; Ribisl, Kurt M

    2016-07-01

    This cross-sectional study examined price-related promotions for tobacco products on Twitter. Through the Twitter Firehose, we obtained access to all public tweets posted between 6 December 2012 and 20 June 2013 that contained a keyword suggesting a tobacco-related product or behaviour (eg, cigarette, vaping) in addition to a keyword suggesting a price promotion (eg, coupon, discount). From this data set of 155 249 tweets, we constructed a stratified sampling frame based on the price-related keywords and randomly sampled 5000 tweets (3.2%). Tweets were coded for product type and promotion type. Non-English tweets and tweets unrelated to a tobacco or cessation price promotion were excluded, leaving an analytic sample of 2847 tweets. The majority of tweets (97.0%) mentioned tobacco products while 3% mentioned tobacco cessation products. E-cigarettes were the most frequently mentioned product (90.1%), followed by cigarettes (5.4%). The most common type of price promotion mentioned across all products was a discount. About a third of all e-cigarette-related tweets included a discount code. Banned or restricted price promotions comprised about 3% of cigarette-related tweets. This study demonstrates that the vast majority of tweets offering price promotions focus on e-cigarettes. Future studies should examine the extent to which Twitter users, particularly youth, notice or engage with these price promotion tweets. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. DIFFERENCES IN LEAF GAS EXCHANGE AND LEAF CHARACTERISTICS BETWEEN TWO ALMOND CULTIVARS

    Directory of Open Access Journals (Sweden)

    George D. Nanos

    2013-12-01

    Full Text Available Leaf chlorophyll content, specific leaf weight (SLW, photosynthetic and transpiration rates, stomatal functioning, water use efficiency and quantum yield were assessed during the kernel filling period for two consecutive years in order to understand tissue-centered physiological profile differences between two commercial almond cultivars, ‘Ferragnès’ and ‘Texas’. Similar SLWs were observed on the studied cultivars; however, chlorophyll content, net photosynthetic and transpiration rates and stomatal functioning demonstrated statistically significant differences. In both cultivars, an overall decline in the examined parameters towards fruit maturation (i.e. end of the summer was recorded. ‘Ferragnès’ leaves were found to be more efficient in leaf photosynthesis related performance during kernel filling, when irrigated sufficiently, in comparison to ‘Texas’ leaves. Low average values of leaf conductance during summer in ‘Texas’ leaves revealed its potential for adaptation in cool climates and increased carbon assimilation therein for high kernel yield.

  17. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  18. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR IN SUGARCANE

    Directory of Open Access Journals (Sweden)

    Antonio Morgado González

    2015-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are an alternative for promoting sugarcane (Saccharum spp. development. Growth promotion was evaluated in sugarcane vitroplants inoculated separately with twenty-four strains of seven different bacterial species. Total indole synthesis and phosphate solubilization activity were determined in each strain. The experimental unit was one 5 L pot filled with a sterile mixture of farm soil-agrolite and one plant. The experimental design was completely random. Inoculation consisted of 1.0 mL of bacterial suspension (1 × 107 CFU. Plant height, stem diameter, number of shoots, leaf area and dry matter of shoot and root were determined every two weeks. The Ochrobactrum anthropi strains N208 and IMP311 and Pseudomonas luteola IMPCA244 had the highest production of total indoles (116.69, 115.70 and 117.34 µg mL-1, respectively. The Stenotrophomonas maltophilia strains CA158 and 79 exhibited the highest values of phosphate solubilization (222.43 and 216.38 µg mL-1, respectively. In general, plant height increased 27.75%, stem diameter 30.75%, number of tillers 38.5%, leaf area 49%, aerial dry matter 59.75% and root dry matter 59.5%. P. luteola, P. f luorescens, O. anthropi and S. maltophilia exhibited the highest values of the leaf area index, net assimilation, and relative and absolute growth rates. P. luteola IMPCA244, O. anthropi IMP311, Aeromonas salmonicida N264, Burkholderia cepacia N172, P. f luorescens N50 and S. maltophilia 79 promoted the highest values in different response variables throughout the study. Before using these strains as sugarcane biofertilizer, additional studies are required.

  19. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  20. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    Science.gov (United States)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the

  1. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  2. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  3. Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato

    NARCIS (Netherlands)

    Have, ten A.; Berloo, van R.; Lindhout, P.; Kan, van J.A.L.

    2007-01-01

    Tomato (Solanum lycopersicum) is one of many greenhouse crops that can be infected by the necrotrophic ascomycete Botrytis cinerea. Commercial cultivation of tomato is hampered by the lack of resistance. Quantitative resistance has been reported in wild tomato relatives, mostly based on leaf assays.

  4. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  5. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  6. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    2018-05-15

    Responses of urban vegetation to air pollution stress in relation to their tolerance and sensitivity have been extensively studied, however, studies related to air pollution responses based on different leaf functional traits and tree characteristics are limited. In this paper, we have tried to assess combined and individual effects of major air pollutants PM 10 (particulate matter ≤ 10 µm), TSP (total suspended particulate matter), SO 2 (sulphur dioxide), NO 2 (nitrogen dioxide) and O 3 (ozone) on thirteen tropical tree species in relation to fifteen leaf functional traits and different tree characteristics. Stepwise linear regression a general linear modelling approach was used to quantify the pollution response of trees against air pollutants. The study was performed for six successive seasons for two years in three distinct urban areas (traffic, industrial and residential) of Varanasi city in India. At all the study sites, concentrations of air pollutants, specifically PM (particulate matter) and NO 2 were above the specified standards. Distinct variations were recorded in all the fifteen leaf functional traits with pollution load. Caesalpinia sappan was identified as most tolerant species followed by Psidium guajava, Dalbergia sissoo and Albizia lebbeck. Stepwise regression analysis identified maximum response of Eucalyptus citriodora and P. guajava to air pollutants explaining overall 59% and 58% variability's in leaf functional traits, respectively. Among leaf functional traits, maximum effect of air pollutants was observed on non-enzymatic antioxidants followed by photosynthetic pigments and leaf water status. Among the pollutants, PM was identified as the major stress factor followed by O 3 explaining 47% and 33% variability's in leaf functional traits. Tolerance and pollution response were regulated by different tree characteristics such as height, canopy size, leaf from, texture and nature of tree. Outcomes of this study will help in urban forest

  7. [Effects of mixed decomposition of Populus simonii and other tree species leaf litters on soil properties in Loess Plateau].

    Science.gov (United States)

    Li, Qian; Liu, Zeng-Wen; Du, Liang-Zhen

    2012-03-01

    In this study, the leaf litters of Populus simonii and other 11 tree species were put into soil separately or in mixture after grinding, and incubated in laboratory to analyze the effects of their decomposition on soil properties and the interactions between the litters decomposition. The decomposition of each kind of the leaf litters in soil increased the soil urease, dehydrogenase, and phosphatase activities and the soil organic matter and available N contents markedly, but had greater differences in the effects on the soil available P content and CEC. The decomposition of the leaf litters of Caragana microphylla and of Amorpha fruticosa showed obvious effects in improving soil properties. The decomposition of the mixed leaf litters of P. simonii and Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, or Ulmus pumila showed interactive promotion effects on the abundance of soil microbes, and that of the mixed leaf litters of P. simonii and P. orientalis or C. microphylla showed interactive promotion effects on the soil organic matter, available P, and available K contents and soil CEC but interactive inhibition effects on the activities of most of the soil enzymes tested. The decomposition of the mixed leaf litters of P. simonii and Larix principis-rupprechtii showed interactive promotion effects on the activities of most of the soil enzymes and soil nutrient contents, while that of the mixed leaf litters of P. simonii and P. sylvestris var. mongolica showed interactive inhibition effects. Overall, the decomposition of the mixed leaf litters of P. simo- nii and U. pumila, P. tabulaeformis, L. principis-rupprechtii, or R. pseudoacacia could improve soil quality, but the mixed leaf litters of P. simonii and P. orientalis, C. microphylla, P. sylvestris var. mongolica, Hippophae rhamnoides, or A. fruticosa showed an interactive inhibition effect during their decomposition.

  8. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.

    Directory of Open Access Journals (Sweden)

    Hu Yang

    Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.

  9. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  10. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839 grown in natural ventilation system

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2014-12-01

    Full Text Available Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1 combined with different cultivation systems (conventional micropropagation and natural ventilation system. The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.

  11. (Chlorophyta) biomass production using Moringa oleifera Lam. leaf ...

    African Journals Online (AJOL)

    Chlorella sorokiniana Shih. et Krauss, a unicellular green alga was assayed to assess its to promotion potentials response of aqueous and ethanolic leaf extracts of Moringa oleifera Lam. C. sorokiniana grown in 200 ml aliquots of modified basal medium for two weeks: was treated with the aqueous and ethanolic extracts at ...

  12. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  13. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  14. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  16. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Science.gov (United States)

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  17. Trait-abundance relation in response to nutrient addition in a Tibetan alpine meadow: The importance of species trade-off in resource conservation and acquisition.

    Science.gov (United States)

    Liu, Huiying; Li, Ying; Ren, Fei; Lin, Li; Zhu, Wenyan; He, Jin-Sheng; Niu, Kechang

    2017-12-01

    In competition-dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait-abundance relations in the line of species trade-off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade-off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height-SRA was found in NP-fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade-off in nutrient acquisition and resource conservation was a key driver of SRA in competition-dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and

  18. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  19. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    Science.gov (United States)

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Evaluating a tobacco leaf humidification system involving nebulisation

    Directory of Open Access Journals (Sweden)

    Néstor Enrique Cerquera Peña

    2010-05-01

    Full Text Available A tobacco leaf humidifying system involving nebulisation was designned, implemented and evaluated; it had a system for monitoring and recording environmental conditions thereby producing an environment having more homogeneous relative humidity, ensuring better water use, better control of relative humidity and better control in managing cured tobacco leaf moisture content, thereby leading to a consequent improvement in final product quality. 55% to 75% relative humidity and 4 to 6 hour working ranges were obtained to en- sure leaf humidification reached 16% humidity on a wet basis. Two new designs are proposed for the conditioning stage regarding this conditioning chamber’s operational management, based on the results and field observations, which would allow better leaf management, thereby avoiding the risk of losses due to manipulation and over-humidification. This work strengthens research in the field of tobacco pos- tharvest technology, complementing other research projects which have been carried out in Colombia.

  1. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension.

    Science.gov (United States)

    Pfeifer, Johannes; Mielewczik, Michael; Friedli, Michael; Kirchgessner, Norbert; Walter, Achim

    2018-01-01

    Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These

  2. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  3. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  4. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  5. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non

  6. Comparative analysis of peroxidase profiles in Chinese kale (Brassica alboglabra L.): evaluation of leaf growth related isozymes.

    Science.gov (United States)

    Tang, Lei; Wang, Chenchen; Huang, Jiabao; Zhang, Jianhua; Mao, Zhonggui; Wang, Haiou

    2013-01-15

    Plant peroxidases (EC 1.11.1.7) with different isoforms catalyze various reactions in plant growth and development. However, it is difficult to elucidate the function of each isozyme in one plant. Here, we compared profiles of entire isozyme in young seedling and mature leaves of Chinese kale (Brassica alboglabra L.) on zymogram and ion exchange chromatography in order to investigate leaf growth related peroxidase isozymes. The results showed that four isozymes were constitutively expressed in kale leaves, whereas other two isozymes were induced in the mature leaves. The Mono Q ion exchange chromatography separated the six isozymes into two major groups due to the difference in their isoelectric points. The results suggested that although there were several isozymes in the leaves of Chinese kale, one isozyme functioned mainly through the leaf development. Two anionic isozymes with molecular weights lower than 32 kDa were considered mature related. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The expression of light-related leaf functional traits depends on the location of individual leaves within the crown of isolated Olea europaea trees.

    Science.gov (United States)

    Escribano-Rocafort, Adrián G; Ventre-Lespiaucq, Agustina B; Granado-Yela, Carlos; Rubio de Casas, Rafael; Delgado, Juan A; Balaguer, Luis

    2016-04-01

    The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale. We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day. All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun's trajectory. The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  8. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    Science.gov (United States)

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.

  9. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    Science.gov (United States)

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  11. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  12. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters.

    Science.gov (United States)

    Galmés, Jeroni; Ochogavía, Joan Manuel; Gago, Jorge; Roldán, Emilio José; Cifre, Josep; Conesa, Miquel Àngel

    2013-05-01

    In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level. © 2012 Blackwell Publishing Ltd.

  13. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  14. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  15. Relations among Valencia orange yields with soil and leaf nutrients in Northwestern Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Jonez Fidalski

    2000-01-01

    Full Text Available The Valencia orange orchards established on soils of low fertility in the Northwest region of Paraná State, Brazil, have showed symptoms of Mg deficiency and reduced fruit yields. The objective of this study was to verify the relationship between yield with soil and leaf nutrients during 1996/97 growing season. Two sites of low and high productivity were selected in seven orchards. Leaf and soil samples (fertilized rows and interrows were collected in 1996. The results showed that the citrus yields were negatively related with soil Mg/K and Ca+Mg/K ratios in the fertilized rows, and fruit weight positively correlated with leaf Zn in the low productivity orchards. The fruit weight was positively related with leaf Ca and soil Ca in the fertilized rows of the high productivity orchards. The results suggested an adequate lime and K fertilization managements in the fertilized rows, as well as an adequate Zn supply.Os pomares de laranja Valência (Citrus sinensis (L. Osbeck estabelecidos em solos de baixa fertilidade da região noroeste do Paraná, tem apresentado sintomas de desequilíbrio nutricional, principalmente deficiência de Mg e redução da produção e do tamanho dos frutos. O objetivo deste trabalho foi verificar as relações da produção e peso dos frutos com os nutrientes das folhas e do solo de sete pomares de laranja Valência na safra de 1996/97, em talhões de produtividade inferior e superior. Em 1996, foram coletadas amostras de folha e de solo nas faixas de adubação e nas entrelinhas. Os resultados mostraram que a produção de frutos correlacionou-se negativamente com as relações dos cátions Mg/K e Ca+Mg/K do solo das faixas de adubação dos pomares de baixa produtividade e, o peso dos frutos, correlacionou-se positivamente com os teores foliares de Zn. Nos pomares de produtividade superior, o peso dos frutos correlacionou-se positivamente com os teores de Ca das folhas e do solo nas faixas de adubação. Estes

  16. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins.

    Science.gov (United States)

    Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen

    2013-05-01

    The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.

  17. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  18. Generality of leaf trait relationships: A test across six biomes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  19. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    Nikula, Suvi; Vapaavuori, Elina; Manninen, Sirkku

    2010-01-01

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  20. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    Science.gov (United States)

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  1. Prediction of the competitive effects of weeds on crop yields based on the relative leaf area of weeds

    DEFF Research Database (Denmark)

    Lotz, L. A. P.; Christensen, Svend; Cloutier, D.

    1996-01-01

    . alba whereas the density model did not. A parameter that allows the maximum yield loss to be smaller than 100% was mostly not needed to describe the effects of weed competition. The parameter that denotes the competitiveness of the weed species with respect to the crop decreased the later the relative......For implementation of simple yield loss models into threshold-based weed management systems, a thorough validation is needed over a great diversity of sites. Yield losses by competition wsth Sinapis alba L. (white mustard) as a model weed, were studied in 12 experiments in sugar beet (Beta vulgaris...... L.) and in 11 experiments in spring wheat (Triticum aestivum L.). Most data sets were heller described by a model based on the relative leaf area of the weed than by a hyperbolic model based on weed density. This leaf area model accounted for (part of) the effect of different emerging times of the S...

  2. Theoretical analysis of radiation field penumbra from a multi leaf collimator

    International Nuclear Information System (INIS)

    Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed

    1996-01-01

    Purpose/Objective: Analysis and measurement of the difference between the light field and the radiation field of the multi leaf collimator (MLC) leaves that are constructed with curved ends. Material and Methods: A Varian MLC with curved leaf ends was installed on a Clinac 2300 C/D. The leaves were 6.13 cm deep (dimension in beam direction) and were located 53.9 cm from the x-ray target. The leaf ends had an 8 cm radius of curvature. A relation was derived using three dimensional geometry predicting the location of the light field edge relative to the geometric projection of the tip of the curved leaf end. This is a nonlinear relationship because the shadow of the leaf is generated by different points along the leaf end surface as the leaf moves across the field. The theoretical edge of the radiation fluence for a point source was taken to be located along the projection of a chord whose length was 1 Half-Value Thickness (HVT). The chords having projection points across the light field edge were computed using an analytical solution. The radiation transmission through the leaf end was then estimated. The HVT used for tungsten alloy, the leaf material, was 0.87 cm and 0.94 cm for the 6 MV and 15 MV photon beams, respectively. The location of the projection of the 1 HVT chord at a distance of 100 cm from x-ray target was also a nonlinear function of the projection of the leaf tip. Results: The displacement of the light field edge relative to the projection of the leaf tip varies from 0 mm when the leaf tip projects to the central axis, to approximately 3.2 mm for a 20 cm half-field width. The light field edge was always displaced into the unblocked area. The displacement of the projection of the 1 HVT chord relative to the projection of the leaf tip varies from 0.3 mm on the central axis to 3.0 mm for a 20 cm half-field width. The projection of 1 HVT chord was deviated from the light field edge by only 0.3 mm which would be slightly increased to 0.4 mm on decreasing

  3. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae).

    Science.gov (United States)

    Verstraete, Brecht; Janssens, Steven; Rønsted, Nina

    2017-08-01

    Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non-pathological endophytes are present in the leaves of their hosts. It is hypothesized that the bacterial endophytes, either alone or by interacting with the host, provide chemical protection against herbivory or pathogens by producing toxic or otherwise advantageous secondary metabolites. If the bacteria indeed have a direct beneficial influence on their hosts, it is reasonable to assume that the endophytes may increase the fitness of their hosts and therefore it is probable that their presence also has an influence on the long-term evolution of the particular plant lineages. In this study, the possible origin in time of non-nodulated bacterial leaf symbiosis in the Vanguerieae tribe of Rubiaceae is elucidated and dissimilarities in evolutionary dynamics between species with endophytes versus species without are investigated. Bacterial leaf symbiosis is shown to have most probably originated in the Late Miocene, a period when the savannah habitat is believed to have expanded on the African continent and herbivore pressure increased. The presence of bacterial leaf endophytes appears to be restricted to Old World lineages so far. Plant lineages with leaf endophytes show a significantly higher speciation rate than plant lineages without endophytes, while there is only a small difference in extinction rate. The transition rate shows that evolving towards having endophytes is twice as fast as evolving towards not having endophytes, suggesting that leaf symbiosis must be beneficial for the host plants. We conclude that the presence of bacterial leaf endophytes may also be an important driver for speciation of host plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight....... fulvum-tomato and S. tritici-wheat in order to find modelsystems to enhance interpretation of results from R. collo-cygni-barley interaction. Results from the mapping showed that resistance to Ramularia leaf spot is controlled by a number of QTL’s, some of which co-locate with other physiological traits....... The populations further segregated for physiological leaf spots, a phenomenon related to the leaf damage imposed by Rubellin, although, resistance to physiological leafspots appeared to come from the Ramularia leaf spot susceptible parent. The toxin assay further supported this result as the genotypes susceptible...

  5. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K; Zeevaart, J A

    1976-08-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  6. Associations of advertisement-promotion-sponsorship-related ...

    African Journals Online (AJOL)

    Associations of advertisement-promotion-sponsorship-related factors with current cigarette smoking among in-school adolescents in Zambia. ... R Zulu, S Siziya, AS Muula, E Rudatsikira. Abstract. Background : Tobacco use is the leading cause of noncommunicable disease morbidity and mortality. Most smokers initiate the ...

  7. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  8. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Directory of Open Access Journals (Sweden)

    L. Wang

    2013-02-01

    Full Text Available Seasonal and spatial variations in foliar nitrogen (N parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L., Douglas fir (Pseudotsuga menziesii (Mirb. Franco and Scots pine (Pinus sylvestris L. growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech, higher foliage longevity (fir or both (boreal pine forest. In combination with data from a literature review, a general relationship of decreasing N re

  9. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  10. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  11. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  12. A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry

    NARCIS (Netherlands)

    Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.

    2017-01-01

    The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired

  13. Modeling the leaf angle dynamics in rice plant.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available The leaf angle between stem and sheath (SSA is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  14. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  15. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  16. Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-11-01

    Full Text Available Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature.

  17. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  18. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard and white Swiss chard and protection of blood lipids from oxidative damage. The food that is the subject of the health claim, a combination...... of the following frozen vegetables: red spinach (Spinacia oleracea L.), green spinach (Spinacia oleracea L.), red chicory (Cichorium intybus L.), green chicory (Cichorium intybus L.), green leaf chard (Beta vulgaris L. var. cicla), red leaf chard (Beta vulgaris L. var. cicla), red Swiss chard (Beta vulgaris L. var...... conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between consumption of a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf...

  19. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard and white Swiss chard and maintenance of normal blood cholesterol concentration. The food that is the subject of the health claim, a combination of red...... spinach (Spinacia oleracea L.), green spinach (Spinacia oleracea L.), red chicory (Cichorium intybus L.), green chicory (Cichorium intybus L.), green leaf chard (Beta vulgaris L. var. cicla), red leaf chard (Beta vulgaris L. var. cicla), red Swiss chard (Beta vulgaris L. var. cicla), golden Swiss chard...... for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between consumption of a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden...

  20. Silicon Promotes Growth of Brassica napus L. and Delays Leaf Senescence Induced by Nitrogen Starvation

    Directory of Open Access Journals (Sweden)

    Cylia Haddad

    2018-04-01

    Full Text Available Silicon (Si is the second most abundant element in soil and has several beneficial effects, especially in plants subjected to stress conditions. However, the effect of Si in preventing nitrogen (N starvation in plants is poorly documented. The aim of this work was to study the effect of a short Si supply duration (7 days on growth, N uptake, photosynthetic activity, and leaf senescence progression in rapeseed subjected (or not to N starvation. Our results showed that after 1 week of Si supply, Si improves biomass and increases N uptake and root expression of a nitrate transporter gene. After 12 days of N starvation, compared to -Si plants, mature leaf from +Si plants showed a high chlorophyll content, a maintain of net photosynthetic activity, a decrease of oxidative stress markers [hydrogen peroxide (H2O2 and malondialdehyde (MDA] and a significant delay in senescence. When N-deprived plants were resupplied with N, a greening again associated with an increase of photosynthetic activity was observed in mature leaves of plants pretreated with Si. Moreover, during the duration of N resupply, an increase of N uptake and nitrate transporter gene expression were observed in plants pretreated with Si. In conclusion, this study has shown a beneficial role of Si to alleviate damage associated with N starvation and more especially its role in delaying of leaf senescence.

  1. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  2. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  3. Foraging on individual leaves by an intracellular feeding insect is not associated with leaf biomechanical properties or leaf orientation.

    Directory of Open Access Journals (Sweden)

    Justin Fiene

    Full Text Available Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side 'up', suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the 'toughness' of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding.

  4. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data

    Science.gov (United States)

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown

  5. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: A biophysical demonstration using computed tomography scanning data

    Directory of Open Access Journals (Sweden)

    Pierre eDutilleul

    2015-03-01

    Full Text Available Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike; we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05 for STI, FD1, FD2, and average leaf area displayed (A_D. Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10 for the needlelike-leaf group, but is positive and significant (P < 0.05 for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and A_D is significant (P < 0.05 for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown

  6. Quality assurance of MLC leaf position accuracy and relative dose effect at the MLC abutment region using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Koizumi, Masahiko; Ogata, Toshiyuki; Takahashi, Yutaka; Yoshioka, Yasuo

    2012-01-01

    We investigated an electronic portal image device (EPID)-based method to see whether it provides effective and accurate relative dose measurement at abutment leaves in terms of positional errors of the multi-leaf collimator (MLC) leaf position. A Siemens ONCOR machine was used. For the garden fence test, a rectangular field (0.2x20 cm) was sequentially irradiated 11 times at 2-cm intervals. Deviations from planned leaf positions were calculated. For the nongap test, relative doses at the MLC abutment region were evaluated by sequential irradiation of a rectangular field (2x20 cm) 10 times with a MLC separation of 2 cm without a leaf gap. The integral signal in a region of interest was set to position A (between leaves) and B (neighbor of A). A pixel value at position B was used as background and the pixel ratio (A/Bx100) was calculated. Both tests were performed at four gantry angles (0, 90, 180 and 270deg) four times over 1 month. For the nongap test the difference in pixel ratio between the first and last period was calculated. Regarding results, average deviations from planned positions with the garden fence test were within 0.5 mm at all gantry angles, and at gantry angles of 90 and 270deg tended to decrease gradually over the month. For the nongap test, pixel ratio tended to increase gradually in all leaves, leading to a decrease in relative doses at abutment regions. This phenomenon was affected by both gravity arising from the gantry angle, and the hardware-associated contraction of field size with this type of machine. (author)

  7. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank.

    Science.gov (United States)

    Prins, Anneke; Mukubi, Josephine Muchwesi; Pellny, Till K; Verrier, Paul J; Beyene, Getu; Lopes, Marta Silva; Emami, Kaveh; Treumann, Achim; Lelarge-Trouverie, Caroline; Noctor, Graham; Kunert, Karl J; Kerchev, Pavel; Foyer, Christine H

    2011-02-01

    The responses of C(3) plants to rising atmospheric CO(2) levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C(4) plants to high CO(2) remains controversial because of the absence of CO(2) -dependent effects on photosynthesis. In this study, the effects of atmospheric CO(2) availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zea mays L.) were studied in plants grown under ambient CO(2) conditions (350 +/- 20 µL L(-1) CO(2) ) or with CO(2) enrichment (700 +/- 20 µL L(-1) CO(2) ). Growth at high CO(2) had no effect on photosynthesis, photorespiration, leaf C/N ratios or anthocyanin contents. However, leaf transpiration rates, carbohydrate metabolism and protein carbonyl accumulation were altered at high CO(2) in a leaf-rank specific manner. Although no significant CO(2) -dependent changes in the leaf transcriptome were observed, qPCR analysis revealed that the abundance of transcripts encoding a Bowman-Birk protease inhibitor and a serpin were changed by the growth CO(2) level in a leaf rank specific manner. Moreover, CO(2) -dependent changes in the leaf proteome were most evident in the oldest source leaves. Small changes in water status may be responsible for the observed responses to high CO(2,) particularly in the older leaf ranks. © 2010 Blackwell Publishing Ltd.

  8. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Hsu, Chiun-Kang; Micallef, Shirley A

    2017-10-16

    Reducing Salmonella enterica association with plants during crop production could reduce risks of fresh produce-borne salmonellosis. Plant growth-promoting rhizobacteria (PGPR) colonizing plant roots are capable of promoting plant growth and boosting resistance to disease, but the effects of PGPR on human pathogen-plant associations are not known. Two root-colonizing Pseudomonas strains S2 and S4 were investigated in spinach, lettuce and tomato for their plant growth-promoting properties and their influence on leaf populations of S. enterica serovar Newport. Plant roots were inoculated with Pseudomonas in the seedling stage. At four (tomato) and six (spinach and lettuce) weeks post-germination, plant growth promotion was assessed by shoot dry weight (SDW) and leaf chlorophyll content measurements. Leaf populations of S. Newport were measured after 24h of leaf inoculation with this pathogen by direct plate counts on Tryptic Soy Agar. Root inoculation of spinach cv. 'Tyee', with Pseudomonas strain S2 or S4 resulted in a 69% and 63% increase in SDW compared to non-inoculated controls (pgrowth by over 40% compared to controls (pgrowth promotion was detected in tomato cv. 'BHN602', but S2-inoculated plants had elevated leaf chlorophyll content (13%, pgrowth, but also reduce the fitness of epiphytic S. enterica in the phyllosphere. Plant-mediated effects induced by PGPR may be an effective strategy to minimize contamination of crops with S. enterica during cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    Science.gov (United States)

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  10. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    Science.gov (United States)

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  11. Cassava brown streak disease effects on leaf metabolites and ...

    African Journals Online (AJOL)

    Cassava brown streak disease effects on leaf metabolites and pigment accumulation. ... Total reducing sugar and starch content also dropped significantly (-30 and -60%, respectively), much as NASE 14 maintained a relatively higher amount of carbohydrates. Leaf protein levels were significantly reduced at a rate of 0.07 ...

  12. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    Science.gov (United States)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  13. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  14. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  15. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  16. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Science.gov (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  17. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  18. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    Science.gov (United States)

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  19. BOREAS TE-9 NSA Leaf Chlorophyll Density

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Variation in leaf water delta D and delta 18O values during the evapotranspiration process

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Foloni, L.L.

    1984-01-01

    A theoretical model was developed to evaluate leaf water delta D and delta 18 O variation in relation to: leaf temperature, relative humidity converted to leaf temperature and delta D and delta 18 O values of atmospheric water vapour and soil water. (M.A.C.) [pt

  1. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

    Science.gov (United States)

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling.

  2. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  3. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  4. Reading the Leaves: A Comparison of Leaf Rank and Automated Areole Measurement for Quantifying Aspects of Leaf Venation

    Directory of Open Access Journals (Sweden)

    Walton A. Green

    2014-08-01

    Full Text Available The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation.

  5. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  6. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  7. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  8. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport

    Science.gov (United States)

    D.R. Woodruff; F.C. Meinzer; B. Lachenbruch

    2008-01-01

    Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...

  9. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  10. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 76 FR 55947 - Industrial Relations Promotion Project, Phase II in Vietnam

    Science.gov (United States)

    2011-09-09

    ... DEPARTMENT OF LABOR Office of the Secretary Industrial Relations Promotion Project, Phase II in... to perform the type of activity to be funded.. DAI, through its Industrial Relations Promotion... provided a letter in support of continued funding of DAI/IRRP based, on part, on the importance of the...

  12. Penumbra measurements of BeamModulatorTM multi leaf collimator

    International Nuclear Information System (INIS)

    Lu Xiaoguang; Wang Yunlai; Huo Xiaoqing; Sha Xiangyan; Miao Xiongfei

    2010-01-01

    Objective: To evaluate the penumbra of a new multileaf collimator equipped with Elekta Synergy accelerator. Methods: The penumbra were derived from beam profiles measured in air and water using PinPoint ion chamber with PTW MP3 water phantom. Variations of penumbra with X-ray beam energy, depth in water, and leaf position were investigated. Results: The penumbra in air for 6 MV X-ray was 2 mm less than that at depth of maximal dose in water. The penumbra of leaf side was 1 mm less than that of the leaf end. The penumbra had close relationship with beam energy, depth in water and leaf position. penumbra increased with beam quality and water depth. The leaf position had great influence on the penumbra. Conclusions: The penumbra of the multileaf collimator is related to its original design and radiation delivery technique. Special considerations should be taken into during treatment planning. Regular measurement should be performed to guarantee the delivery quality. (authors)

  13. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  14. Ozone and sulphur dioxide effects on leaf water potential of Petunia

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Three cultivars of Petunia hydrida Vilm., of differing ozone visible injury sensitivity, were exposed to 40 parts per hundred million (pphm) ozone and/or 80 pphm SO/sub 2/ for 4 h to study the relationships of leaf water potential, pollutant exposure, and cultivar sensitivity. Ozone substantially decreased leaf water potential in cv White Cascade but not in cv Capri or White Magic. Sulphur dioxide did not affect leaf water potential but delayed ozone-induced changes. Cultivar sensitivity to ozone-induced changes in leaf water potential was not related to cultivar sensitivity to ozone-induced visible injury.

  15. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area

    NARCIS (Netherlands)

    Meir, P.; Kruijt, B.; Broadmeadow, M.; Barbosa, E.; Kull, O.; Carswell, F.; Nobre, A.; Jarvis, P.G.

    2002-01-01

    The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil-vegetation-atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that

  16. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Science.gov (United States)

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  17. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials.

    Science.gov (United States)

    Hannan, Md Abdul; Kang, Ji-Young; Mohibbullah, Md; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2014-02-27

    Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 μg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The β-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system. Copyright

  18. Morality and its relation to political ideology: the role of promotion and prevention concerns.

    Science.gov (United States)

    Cornwell, James F M; Higgins, E Tory

    2013-09-01

    Our research investigated whether promotion concerns with advancement and prevention concerns with security related to moral beliefs and political ideology. Study 1 found that chronic prevention and promotion focus had opposite relations to binding foundation endorsement (as measured by the Moral Foundations Questionnaire), that is, positive for prevention and negative for promotion, and opposite relations to political ideology, that is, more conservative for prevention and more liberal for promotion, and the relation between focus and political ideology was partially mediated by binding foundation endorsement. Study 2 showed that promotion and prevention, even as situationally induced states, can contribute to differences in binding foundation endorsement, with prevention producing stronger endorsement (compared with a control) and promotion producing weaker endorsement.

  19. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  20. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  1. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake

    International Nuclear Information System (INIS)

    Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Pancrazi, Marica; Ballarin-Denti, Antonio

    2003-01-01

    The difference in ozone sensitivity between Fagus sylvatica and Fraxinus exclesior is explained by their different stomatal ozone uptake and by their different foliar structure. - During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions

  2. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  3. Leaf Potential Productivity at Different Canopy Levels in Densely-planted and Intermediately-thinned Apple Orchards

    Directory of Open Access Journals (Sweden)

    Ying SUN

    2016-07-01

    Full Text Available Most apple orchards in the apple production districts in China were densely planted with vigorous rootstocks during the 1980s. These orchards have suffered micro-environmental deterioration and loss of fruit quality because of the closed canopy. Modification of the densely-planted orchards is a priority in current apple production. Intermediate thinning is a basic technique used to transform densely-planted apple orchards in China. Our goal was to provide theoretical basis for studying the effect of thinning on the efficiency of photosynthetically active radiation (PAR, fruit quality, and yield. We measured leaf area, solar radiation, and leaf air exchange at different tree canopy levels and by fitting relevant photosynthetic models, vertical distribution characteristics of leaf photosynthetic potentials and PAR were analyzed in various levels within canopies in densely-planted and intermediately-thinned orchards. Intermediate thinning significantly improved the radiant environment inside the canopies. PAR distribution within the canopies in the intermediately-thinned orchard was better distributed than in the densely-planted orchards. The invalid space under 30.0% of relative photosynthetically active radiation (PARr was nearly zero in the intermediately-thinned orchard; but minimum PARr was 17.0% and the space under 0.30 of the relative height of the canopy was invalid for photosynthesis in the densely-planted orchard. The leaf photosynthetic efficiency in the intermediately-thinned orchard was improved. Photosynthetic rates (Pn at the middle and bottom levels of the canopy, respectively, were increased by 7.80% and 10.20% in the intermediately-thinned orchard. Leaf development, which influences photosynthetic potential, was closely related to the surrounding micro-environment, especially light. Leaf photosynthetic potentials were correlated with leaf nitrogen content (Nl and specific leaf weight (Ml at various levels of canopies. Compared

  4. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  5. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  6. Influence of phytochemicals in piper betle linn leaf extract on wound healing.

    Science.gov (United States)

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

  7. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  8. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  9. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    Directory of Open Access Journals (Sweden)

    Viktoriya Coneva

    2018-03-01

    Full Text Available Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  10. Inhibition of forage seed germination by leaf litter extracts of overstory hardwoods used in silvopastoral systems

    Science.gov (United States)

    Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...

  11. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    Science.gov (United States)

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  12. Ecophysiological function of leaf 'windows' in Lithops species - 'Living Stones' that grow underground.

    Science.gov (United States)

    Martin, C E; Brandmeyer, E A; Ross, R D

    2013-01-01

    Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Public Relations as Promotional Activity

    Directory of Open Access Journals (Sweden)

    Almira CURRI-MEMETI

    2011-11-01

    Full Text Available Public relations give opportunity to the organization to present its image and personality to its own “public”- users, supporters, sponsors, donors, local community and other public.It is about transferring the message to the public, but that is a twoway street. You must communicate with your public, but at the same time you must give opportunity to the public to communicate easier with you. The real public relations include dialog – you should listen to the others, to see things through their perspective. This elaborate is made with the purpose to be useful for every organization, not for the sensational promotion of its achievements, but to become more critical towards its work. Seeing the organization in the way that the other see it, you can become better and sure that you are giving to your users the best service possible.

  14. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  15. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  16. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  17. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.; Tcekova, Z.

    2003-01-01

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F 1 and F 2 generations were analyzed. The altered leaf trait was presented in all F 1 plants suggesting a dominant character. F 2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  18. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  19. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    Science.gov (United States)

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Plant traits and environment: floating leaf blade production and turnover of waterlilies.

    Science.gov (United States)

    Klok, Peter F; van der Velde, Gerard

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  1. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  2. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.

    1992-01-01

    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  3. Optimal allocation of leaf epidermal area for gas exchange

    OpenAIRE

    de Boer, Hugo J.; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2016-01-01

    Summary A long?standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of ...

  4. Improving productivity promoting traits in wild and cultivated urd and mung beans

    International Nuclear Information System (INIS)

    Ignacimuthu, S.; Babu, C.R.

    1989-01-01

    Photosynthetic rate, RuBP Carboxylase activity, glycolate oxidase activity, malate dehydrogenase activity, specific leaf weight, harvest index and yield were estimated in the normal and 10 Krad dose treated M 2 plants of Vigna sublobata (wild), V. radiata and V. mungo (cultivars) with the objective of locating and utilizing productivity promoting gene assemblies as well as to understand the role of natural and artificial selections in moulding yield promoting gene combinations. The results suggest that there is higher photosynthetic rate and RuPB Case activity in the 10 Krad treated M 2 plants. There is lesser glycolate oxidase activity and malate dehydrogenase activity. There is also positive correlation among net leaf assimilation rate, RuBP Case activity, SLW, HI and yield. These observations imply that domestication accompanied by directional selection did a lter substantially the productivity traits and productivity promoting gene assemblies. (author). 26 refs., 3 tabs

  5. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    Science.gov (United States)

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  6. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Science.gov (United States)

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  7. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    . 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    Science.gov (United States)

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  9. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  10. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    Science.gov (United States)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch

  11. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica).

    Science.gov (United States)

    Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang

    2014-01-01

    Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  12. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica.

    Directory of Open Access Journals (Sweden)

    Xiao-juan Deng

    Full Text Available Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7 is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640 which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98 all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  13. Leaf appearance rate and final main stem leaf number as affected by temperature and photoperiod in cereals grown in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Ezio Riggi

    2017-09-01

    Full Text Available In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf., two bread wheat (Triticum aestivum L. and two barley (Hordeum vulgare L. cultivars, using six different sowing dates (SD. Significant effects of SD on final main stem leaf number (FLN, thermal leaf appearance rate (TLAR, daily leaf appearance rate (DLAR and phyllochron (PhL were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V. Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.

  14. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  15. Plant traits and environment: floating leaf blade production and turnover of waterlilies

    Directory of Open Access Journals (Sweden)

    Peter F. Klok

    2017-04-01

    Full Text Available Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L. Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  16. Effects of combination of leaf resources on competition in container mosquito larvae.

    Science.gov (United States)

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  17. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  18. Induced mutations for resistance to leaf rust in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.

    1983-01-01

    Problems related to the induction of mutations for disease resistance were investigated under several aspects, using the wheat/leaf rust system. Previously selected mutant lines, tested in M 11 and M 13 , were found to differ with regard to infection type and disease severity from the original varieties. To verify the induced-mutation origin, these mutants were examined further using test crosses with carriers of known genes for leaf rust resistance and electrophoresis. A separate experiment to induce mutations for leaf rust resistance in the wheat varieties Sava, Aurora and Siete Cerros, using gamma rays, fast neutrons and EMS, yielded mutants with different disease reaction in the varieties Sava and Aurora at a frequency of about 1x10 - 3 per M 1 plant progenies. (author)

  19. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, K.; Smith, W.K. [Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Biology

    2008-01-15

    Global climate change is expected to increase regional cloud ceiling levels in many mountainous forested areas of the world. This study investigated environmental influences on the gas exchange physiology of understory red spruce and Fraser fir trees at 2 sites in the Appalachian mountains. The study hypothesized that the humid, cloudy environment would influence the photosynthetic performance of the trees, and that the species would adapt to low, diffuse light. The study also predicted that leaf conductance to carbon dioxide (CO{sub 2}) would be high as a result of low leaf-to-air-vapour pressure deficit (LAVD). The study demonstrated that leaf conductance decreased exponentially as LAVD increased. Predawn leaf water potentials remained stable, while late afternoon values declined. It was concluded that leaf gas exchange was correlated with the response of leaf conductance and LAVD. The cloudy, humid environment strongly influenced tree leaf gas exchange and water relations. It was suggested that further research is needed to investigate cloud impacts on carbon gain and water relations. 72 refs., 1 tab., 8 figs.

  20. Molecular Characterization of a Leaf Senescence-Related Transcription Factor BrWRKY75 of Chinese Flowering Cabbage

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2016-09-01

    Full Text Available WRKY is a plant-specific transcription factor (TF involved in the regulation of many biological processes; however, its role in leaf senescence of leafy vegetables remains unknown. In the present work, a WRKY TF, termed BrWRKY75 was isolated from Chinese flowering cabbage [Brassica rapa L. ssp. chinensis (L. Mokino var. utilis Tsen et Lee]. Analysis of deduced amino acid sequence and the phylogenetic tree showed that BrWRKY75 has high homology with WRKY75 from Brassica oleracea and Arabidopsis thaliana, and belongs to the II c sub-group. Sub-cellular localization and transcriptional activity analysis revealed that BrWRKY75 is a nuclear protein with transcriptional repression activity, and was up-regulated during leaf senescence. Electrophoretic mobility shift assay confirmed that BrWRKY75 directly bound to the W-box (TTGAC cis-element. Collectively, these results provide a basis for further investigation of the transcriptional regulation of Chinese flowering cabbage leaf senescence.

  1. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    Energy Technology Data Exchange (ETDEWEB)

    Glowacka, K; Adhikari, S; Peng, JH; Gifford, J; Juvik, JA; Long, SP; Sacks, EJ

    2014-09-08

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chilling treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.

  2. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  3. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  4. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    Science.gov (United States)

    Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..

  5. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    Science.gov (United States)

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  6. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  7. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  8. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts

    International Nuclear Information System (INIS)

    Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C

    2012-01-01

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven

  9. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts.

    Science.gov (United States)

    van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C

    2012-05-21

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains

  10. Leaf injury characteristics of grassland species exposed to ozone in relation to soil moisture condition and vapour pressure deficit

    International Nuclear Information System (INIS)

    Bungener, P.; Balls, G.R.; Nussbaum, S.; Geissmann, M.; Grub, A.; Fuhrer, J.

    1999-01-01

    A range of plant species typical of semi-natural grasslands were tested for their sensitivity to short-term ozone injury under normal and reduced irrigation, and in relationship to air vapour pressure deficit. Potted specimens of 24 herbs, legumes and grasses were exposed during two seasons to four O 3 treatments in open-top chambers. The ozone treatments were: (a) charcoal-filtered air; (b) charcoal-filtered air plus ozone to match ambient levels; (c) charcoal-filtered air plus O 3 to ambient levels 1.5 and (d) charcoal-filtered air with ozone added to twice ambient levels during selected episodes of 7–13 d. During these ozone episodes, half of the plants in each ozone treatment received reduced irrigation (dry treatment) while the rest was kept under full irrigation (wet treatment). Type and date of first occurrence of leaf injury were noted during individual growth periods. Plants were harvested three times per year, and the percentage of injured leaves was recorded. Depending on species, injury symptoms were expressed as flecking (O 3 -specific injury), leaf yellowing or anthocyanin formation. Carum carvi and most species of the Fabaceae family (Onobrychis sativa, Trifolium repens, Trifolium pratense) were found to be most responsive to O 3 , injury occurring after only a few days of exposure in treatment (b). An episodic reduction in irrigation tended to reduce the expression of O 3 -specific symptoms, but only in species for which a reduction in soil moisture potential and an associated reduction in stomatal conductance during the dry episodes were observed. In other species, the protection from O 3 injury seemed to be of little importance. Using artificial neural networks the injury response of nine species was analysed in relation to Species, stomatal conductance, ozone as AOT40 (accumulated exposure above a threshold of 0.04 ppm for periods with global radiation ≥ 50 W m −2 (Fuhrer et al., 1997)), mean relative growth rate, air vapour pressure

  11. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  12. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  14. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  15. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  16. Promotional Cultures: The Rise and Spread of Advertising, Public Relations, Marketing and Branding

    OpenAIRE

    Davis, Aeron

    2013-01-01

    In the twenty-first century, promotion is everywhere and everything has become promotable: everyday goods and organizations, people and ideas, cultures and futures. This engaging book looks at the rise of advertising, public relations, branding, marketing and lobbying, and explores where our promotional times have taken us.\\ud \\ud Promotional Cultures documents how the professions and practices of promotion have interacted with and reshaped so much in our world, from commodities, celebrities ...

  17. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  18. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  19. Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing

    Science.gov (United States)

    Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian

    2017-04-01

    Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13

  20. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  1. LEAF ANATOMICAL VARIATION IN RELATION TO STRESS TOLERANCE AMONG SOME WOODY SPECIES ON THE ACCRA PLAINS OF GHANA

    Directory of Open Access Journals (Sweden)

    DZOMEKU BELOVED MENSAH

    2012-12-01

    Full Text Available Leaf anatomical study was conducted on some woody species on the Accra Plains of Ghana. Leaf epidermal strips and transverse sections were mounted in Canada balsam and studied. The anatomical studies revealed numerous stomata on the lower epidermis of Azadirachta indica. The anatomical studies revealed the presence of thick cuticles, double-layered palisade mesophyll in most species and the presence of epidermal hairs in some species. Ficus capensis showed the presence of cystolith in the lower epidermis whereas Zanthoxylum zanthoxyloides showed the presence of mucilage gland in the upper epidermis. Epidermal cell of Chromolaena odorata are very large with undulating cell walls. The species studied had various adaptive anatomical features. The stomatal frequency of Azadirachta indica was very high. With the exception of Chromolaena odorata the stomatal frequencies of the species were relatively high. The stomatal dimensions showed that most of the species maintained constant stomatal length during the study period except Griffonia simplicifolia that increased the stomatal width during the afternoon. Unlike Morinda lucida, Griffonia simplicifolia and Chromolaena odorata, that showed reduction in the breadth of stomata, the other species maintained constant stomatal width.

  2. Remote sensing based mapping of leaf nitrogen and leaf area index in European landscapes using the REGularized canopy reFLECtance (REGFLEC) model

    DEFF Research Database (Denmark)

    Boegh, E.; Houborg, R.; Bienkowski, J.

    2011-01-01

    index (LAI) are important determinants of the maximum CO2 Methods/Approach uptake by plants and trees. In the EU project NitroEurope, high spatial resolution (10-20 m) remote sensing data from the HRG and HRVIR sensors onboard the SPOT satellites were acquired to derive maps of leaf N and LAI for 5...... European landscapes. The estimations of leaf N, Cab and LAI soil reflectance parameters and canopy parameters are discussed in relation to the prevailing soil types and vegetation characteristics of land cover classes across the 5 European landscapes....

  3. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  4. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  5. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  6. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  7. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  8. Sugarbeet leaf spot disease (Cercospora beticola Sacc.)dagger.

    Science.gov (United States)

    Weiland, John; Koch, Georg

    2004-05-01

    SUMMARY Leaf spot disease caused by Cercospora beticola Sacc. is the most destructive foliar pathogen of sugarbeet worldwide. In addition to reducing yield and quality of sugarbeet, the control of leaf spot disease by extensive fungicide application incurs added costs to producers and repeatedly has selected for fungicide-tolerant C. beticola strains. The genetics and biochemistry of virulence have been examined less for C. beticola as compared with the related fungi C. nicotianae, C. kikuchii and C. zeae-maydis, fungi to which the physiology of C. beticola is often compared. C. beticola populations generally are not characterized as having race structure, although a case of race-specific resistance in sugarbeet to C. beticola has been reported. Resistance currently implemented in the field is quantitatively inherited and exhibits low to medium heritability. Cercospora beticola Sacc.; Kingdom Fungi, Subdivision Deuteromycetes, Class Hyphomycetes, Order Hyphales, Genus Cercospora. Circular, brown to red delimited spots with ashen-grey centre, 0.5-6 mm diameter; dark brown to black stromata against grey background; pale brown unbranched sparingly septate conidiophores, hyaline acicular conidia, multiseptate, from 2.5 to 4 microm wide and 50-200 microm long. Propagative on Beta vulgaris and most species of Beta. Reported on members of the Chenopodiaceae and on Amaranthus. Disease symptoms: Infected leaves and petioles of B. vulgaris exhibit numerous circular leaf spots that coalesce in severe cases causing complete leaf collapse. Dark specks within a grey spot centre are characteristic for the disease. Older leaves exhibit a greater number of lesions with larger spot diameter. During the latter stage of severe epiphytotics, new leaf growth can be seen emerging from the plant surrounded by prostrate, collapsed leaves. Fungicides in the benzimidazole and triazole class as well as organotin derivatives and strobilurins have successfully been used to control Cercospora

  9. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    Science.gov (United States)

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  10. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Science.gov (United States)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  12. Using Leaf Samples to Establish a Library of Tropical Leaf Fingerprints

    Science.gov (United States)

    Ngo, P.; Nguyen, R.; Anderson, C.; Weiss, P.

    2010-12-01

    Variation in leaf chemistry is directly expressed in spectroscopic patterns of tropical canopies. The goal of the Spectranomics project is to explore this variation in the hopes of developing a method to measure tropical forest diversity remotely from airborne or space-bound spectroscopy in the future. We analyzed tomato leaves for various chemical compositions to better understand the Spectranomics approach to quantifying chemical data of tropical species. We also compared our data to standard data in each analysis. Our results allow us to give the tomato leaves a chemical signature in which we are able to use to compare to other leaf samples. Using this process, we are able to create a library of leaf signatures and document the variety of tree species in tropical forests around the world.

  13. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    Science.gov (United States)

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  15. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  16. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  17. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  18. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  19. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  20. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  1. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  2. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    Science.gov (United States)

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  3. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  4. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  5. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  6. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  7. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  8. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  9. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  10. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  11. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  12. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  13. AtHMA4 Drives Natural Variation in Leaf Zn Concentration of Arabidopsis thaliana

    Science.gov (United States)

    Chen, Zi-Ru; Kuang, Lu; Gao, Yi-Qun; Wang, Ya-Ling; Salt, David E.; Chao, Dai-Yin

    2018-01-01

    Zinc (Zn) is an essential element for plant growth and development, and Zn derived from crop plants in the diet is also important for human health. Here, we report that genetic variation in Heavy Metal-ATPase 4 (HMA4) controls natural variation in leaf Zn content. Investigation of the natural variation in leaf Zn content in a world-wide collection of 349 Arabidopsis thaliana wild collected accessions identified two accessions, Van-0 and Fab-2, which accumulate significantly lower Zn when compared with Col-0. Both quantitative trait loci (QTL) analysis and bulked segregant analysis (BSA) identified HMA4 as a strong candidate accounting for this variation in leaf Zn concentration. Genetic complementation experiments confirmed this hypothesis. Sequence analysis revealed that a 1-bp deletion in the third exon of HMA4 from Fab-2 is responsible for the lose of function of HMA4 driving the low Zn observed in Fab-2. Unlike in Fab-2 polymorphisms in the promoter region were found to be responsible for the weak function of HMA4 in Van-0. This is supported by both an expression analysis of HMA4 in Van-0 and through a series of T-DNA insertion mutants which generate truncated HMA4 promoters in the Col-0 background. In addition, we also observed that Fab-2, Van-0 and the hma4-2 null mutant in the Col-0 background show enhanced resistance to a combination of high Zn and high Cd in the growth medium, raising the possibility that variation at HMA4 may play a role in environmental adaptation. PMID:29545819

  14. AtHMA4 Drives Natural Variation in Leaf Zn Concentration of Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Zi-Ru; Kuang, Lu; Gao, Yi-Qun; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2018-01-01

    Zinc (Zn) is an essential element for plant growth and development, and Zn derived from crop plants in the diet is also important for human health. Here, we report that genetic variation in Heavy Metal-ATPase 4 ( HMA4 ) controls natural variation in leaf Zn content. Investigation of the natural variation in leaf Zn content in a world-wide collection of 349 Arabidopsis thaliana wild collected accessions identified two accessions, Van-0 and Fab-2, which accumulate significantly lower Zn when compared with Col-0. Both quantitative trait loci (QTL) analysis and bulked segregant analysis (BSA) identified HMA4 as a strong candidate accounting for this variation in leaf Zn concentration. Genetic complementation experiments confirmed this hypothesis. Sequence analysis revealed that a 1-bp deletion in the third exon of HMA4 from Fab-2 is responsible for the lose of function of HMA4 driving the low Zn observed in Fab-2. Unlike in Fab-2 polymorphisms in the promoter region were found to be responsible for the weak function of HMA4 in Van-0. This is supported by both an expression analysis of HMA4 in Van-0 and through a series of T-DNA insertion mutants which generate truncated HMA4 promoters in the Col-0 background. In addition, we also observed that Fab-2, Van-0 and the hma4-2 null mutant in the Col-0 background show enhanced resistance to a combination of high Zn and high Cd in the growth medium, raising the possibility that variation at HMA4 may play a role in environmental adaptation.

  15. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Concept Analysis: Health-Promoting Behaviors Related to Human Papilloma Virus (HPV) Infection.

    Science.gov (United States)

    McCutcheon, Tonna; Schaar, Gina; Parker, Karen L

    2015-01-01

    The concept of health-promoting behaviors incorporates ideas presented in the Ottawa Charter of Public Health and the nursing-based Health Promotion Model. Despite the fact that the concept of health-promoting behaviors has a nursing influence, literature suggests nursing has inadequately developed and used this concept within nursing practice. A further review of literature regarding health promotion behaviors and the human papilloma virus suggest a distinct gap in nursing literature. This article presents a concept analysis of health-promoting behaviors related to the human papilloma virus in order to encourage the application of the concept into nursing practice, promote continued nursing research regarding this concept, and further expand the application of health-promoting behaviors to other situations and populations within the nursing discipline. Attributes of health-promoting behaviors are presented and include empowerment, participation, community, and a positive concept of health. Antecedents, consequences, and empirical referents are also presented, as are model, borderline, and contrary cases to help clarify the concept. Recommendations for human papilloma virus health-promoting behaviors within the nursing practice are also provided. © 2014 Wiley Periodicals, Inc.

  17. Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter.

    Science.gov (United States)

    Raghothama, K G; Liu, D; Nelson, D E; Hasegawa, P M; Bressan, R A

    1993-12-01

    Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5' deletions of the osmotin promoter cloned into a promoter-less GUSNOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from -108 to -248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to -1052) of enhancer-like sequence and then a sequence upstream of -1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the -248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.

  18. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2013-12-01

    Full Text Available Objective: To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum . Methods: Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenolic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx, metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion method against seven strains of bacteria. Results: Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone at 10 mg/ disc. The IC 50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions: These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  19. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Science.gov (United States)

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  20. Cadmium tolerance of Typha domingensis Pers. (Typhaceae as related to growth and leaf morphophysiology

    Directory of Open Access Journals (Sweden)

    J. P. V. Oliveira

    2017-11-01

    Full Text Available Abstract Typha domingensis (cattail is a native macrophyte known by its capacity to tolerate several heavy metals effects and the potential use for phytoremediation. However, in despite that cadmium (Cd is one of the most toxic pollutants; its effects in T. domingensis biology remain uninvestigated. Thus, the objective of this study was to study the tolerance of T. domingensis to cadmium contamination by evaluating its growth, Cd uptake, leaf anatomy and gas exchange. The experiment was designed using three cadmium concentrations (0, 10 and 50 µM and ten replicates for 90 days. The cadmium uptake, growth, gas exchange, chlorophyll content and leaf anatomy were evaluated. Data was submitted to ANOVA and Scott-Knott test for P<0.05. Typha domingensis accumulates Cd proportionally to its concentration on the solution and the content of this metal was higher in roots as compared to shoots. Plants showed no significant modifications on growth parameters such as the biomass production, number of leaves, number of clones and the biomass allocation to organs. The photosynthesis, transpiration and chlorophyll content were not modified by Cd. Most anatomical traits evaluated were not modified by the metal but the stomatal density and the proportion of vascular tissues were reduced under 50 µM of Cd. In despite, the leaf anatomy showed no toxicity evidences for any Cd level. The absence of growth reduction and the stability of anatomical and physiological traits give insight about the Cd tolerance of this species. Therefore, T. domingensis is able to overcome Cd toxicity and shows potential for phytoremediation.

  1. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents.

    Science.gov (United States)

    Rowland, Lucy; Zaragoza-Castells, Joana; Bloomfield, Keith J; Turnbull, Matthew H; Bonal, Damien; Burban, Benoit; Salinas, Norma; Cosio, Eric; Metcalfe, Daniel J; Ford, Andrew; Phillips, Oliver L; Atkin, Owen K; Meir, Patrick

    2017-05-01

    Leaf dark respiration (R dark ) represents an important component controlling the carbon balance in tropical forests. Here, we test how nitrogen (N) and phosphorus (P) affect R dark and its relationship with photosynthesis using three widely separated tropical forests which differ in soil fertility. R dark was measured on 431 rainforest canopy trees, from 182 species, in French Guiana, Peru and Australia. The variation in R dark was examined in relation to leaf N and P content, leaf structure and maximum photosynthetic rates at ambient and saturating atmospheric CO 2 concentration. We found that the site with the lowest fertility (French Guiana) exhibited greater rates of R dark per unit leaf N, P and photosynthesis. The data from Australia, for which there were no phylogenetic overlaps with the samples from the South American sites, yielded the most distinct relationships of R dark with the measured leaf traits. Our data indicate that no single universal scaling relationship accounts for variation in R dark across this large biogeographical space. Variability between sites in the absolute rates of R dark and the R dark  : photosynthesis ratio were driven by variations in N- and P-use efficiency, which were related to both taxonomic and environmental variability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.

    Science.gov (United States)

    Simonin, K; Kolb, T E; Montes-Helu, M; Koch, G W

    2006-04-01

    Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to

  3. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes.

    Science.gov (United States)

    Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José

    2017-11-01

    Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.

  4. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  5. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  6. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves.

    Science.gov (United States)

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-03-08

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.

  7. Molecular characterization of two isolates of sweet potato leaf curl ...

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... related to that of sweet potato leaf curl virus (SPLCV) from United States with nucleotide sequence identity of ... species including Ipomoea indica, are grown orna- mentally all .... and AC4 were closely related to that of SPLCV-.

  8. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  9. Phosphorylation of stress protein pp80 is related to promotion of transformation

    International Nuclear Information System (INIS)

    Smith, B.M.; Gindhart, T.D.; Hirano, K.; Colburn, N.H.

    1986-01-01

    The JB6 mouse epidermal cell system is an in vitro model of late stage promotion, and includes cell lines sensitive (P+) or resistant (P-) to phorbol ester-induced anchorage independent transformation, and transformed (T/sub x/) lines. Certain promoter-induced changes in phosphoproteins, identified by gel electrophoresis, are unique to cells of one phenotype, and occur only with specific promoters. An 80Kd protein is inversely correlated with phenotype: P- cells have a constitutively higher level (p 35 S-methionine. pp80 shares properties with the 80Kd heat stress protein: molecular weight relative abundance, and isoelectric point (4.5). Pharmacological analogs of calcium, the lanthanides, promote transformation of JB6 cells, but have no effect on phosphorylation of the 80Kd protein. If pp80 is on the promotion pathway, it is limited to a specific subset of transformation promoters

  10. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight.

    Science.gov (United States)

    Himaman, Winanda; Thamchaipenet, Arinthip; Pathom-Aree, Wasu; Duangmal, Kannika

    2016-01-01

    In Thailand, Eucalyptus plantations rapidly expand across the country. Leaf and shoot blight caused by Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans is a serious disease in Eucalyptus plantations. In this study, a total of 477 actinomycete strains were successfully isolated from roots and rhizosphere soil of Eucalyptus. Four hundred and thirty nine isolates were classified as streptomycetes and 38 isolates were non-streptomycetes. Among these isolates, 272 (57.0%), 118 (24.7%) and 241 (50.5%) isolates were antagonistic to Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans, respectively. All isolates were tested for their abilities to produce siderophores, indole acetic acid (IAA) and solubilise phosphate. Most isolates (464, 97.3%) produced siderophores. The majority of isolates (345, 72.3%) solubilised phosphate. In addition, almost half of these isolates (237, 49.7%) produced indole acetic acid. Strain EUSKR2S82 which showed the strongest inhibitory effect against all tested fungi with plant growth promoting ability was selected to test with Eucalyptus. This strain could colonize plant roots and increase Eucalyptus roots length. In a detached leaves bioassay, the disease severity of EUSKR2S82-inoculated Eucalyptus leaves was only 30% compared to 95% in the control treatment. The 16S rRNA gene sequence analysis revealed that the strain EUSKR2S82 was related to Streptomyces ramulosus NRRL-B 2714(T) (99.44% similarity). Identification of non-streptomycete isolates using 16S rRNA gene sequences classified them into 9 genera: Actinoallomurus, Actinomadura, Amycolatopsis, Cryptosporangium, Microbispora, Micromonospora, Nocardia, Nonomuraea and Pseudonocardia. It is evident that Eucalyptus tree harbored several genera of actinomycetes. The selected isolate, EUSKR2S82 showed potential as a candidate for biocontrol agent of leaf and shoot blight of Eucalyptus and to promote growth. Copyright © 2016 Elsevier Gmb

  11. Moringa oleifera leaf extract: An innovative priming tool for rangeland grasses

    OpenAIRE

    NOUMAN, Wasif; SIDDIQUI, Muhammad Tahir; BASRA, Shahzad Maqsood Ahmed

    2012-01-01

    Moringa oleifera leaf extract (MLE) is rich in amino acids, ascorbate, zeatin, minerals, and many other compounds known for their growth-promoting potential. This study was planned to explore the potential of MLE as a seed priming agent to increase the germination rate and plant vigor of 3 range grasses, i.e. Cenchrus ciliaris, Panicum antidotale, and Echinochloa crusgalli. The priming strategies used were hydropriming, CaCl2, PEG-8000 (-1.1 M Pa), MLE (concentrate; 1:10, 1:20, 1:30, and 1:40...

  12. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  13. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    Science.gov (United States)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  14. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  15. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Science.gov (United States)

    Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.

    2009-01-01

    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620

  16. Gene expression in response to Cotton Leaf Curl Virus infection in Gossypium hirsutum under variable environmental conditions

    Directory of Open Access Journals (Sweden)

    Rehman Iqra

    2017-01-01

    Full Text Available Cotton Leaf Curl Disease (CLCuD is one of the threatening constrains of cotton production in Pakistan for which no adequate remedy is available until now. Local variety of Gossypium hirsutum (FH-142 was grown in field and infected naturally by CLCuV under variable range of temperature and humidity. Plants showed thickening of veins in lower leaf surface at 34°C and 60% relative humidity at 15days post infection (dpi and curling of leaf margins at 33°C with 58% relative humidity at 30dpi. Remarkable leaf darkening was observed with reduced boll formation at 45dpi at 26°C and 41% relative humidity. Enation developed, severe thickening and curling of leaves intensified and plants showed dwarf growth at 60dpi at 24°C with 52% relative humidity. PCR amplification of Rep associated gene confirmed the presence of CLCuD-associated begomovirus in the infected samples. Quantitative RT-PCR confirmed the amplification and differential expression of a number of pathogen stress responsive genes at different levels of temperature and humidity. This observation predicts that Cotton Leaf Curl Virus (CLCuV interacts with several host genes that are upregulated to make plants susceptible or suppress other genes to overcome host defense responses.

  17. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  18. Procedures for extraction and purification of leaf wax biomarkers from peats

    Directory of Open Access Journals (Sweden)

    J.E. Nichols

    2011-12-01

    Full Text Available Palaeoecological and palaeoclimate reconstruction, using leaf wax biomarkers, is a relatively new sub-discipline of peatland science. The ability to process large numbers of samples rapidly for biomarkers makes this type of analysis particularly appealing. This review is a guide to the preparation of leaf waxes for analysis by gas chromatography. The main phases of preparation are extraction of soluble organic compounds from sediment, separation of the total extract into fractions of differing polarity, and the derivatisation of polar functional groups. The procedures described here are not meant be exhaustive of all organic geochemical possibilities in peatlands, but a distillation of methods for the preparation of leaf waxes that are commonly and increasingly being used in palaeoecological and palaeoclimatological studies.

  19. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

    CSIR Research Space (South Africa)

    Cho, Moses A

    2013-10-01

    Full Text Available the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new...

  20. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  1. Understanding dyadic promoter-stakeholder relations in complex projects

    Directory of Open Access Journals (Sweden)

    Janita Vos

    2016-01-01

    Full Text Available In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s usefulness by illustrating its explanatory power in two instances of cooperation and two of non-cooperation within two health information technology projects. The study contributes to project management theory through its combined focus on transactional and relational motives. Further, the study contributes to practice by providing a tool for planning and evaluating cooperation in health Information Technology projects and similar complex multi-stakeholder environments.

  2. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry

  3. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  4. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  5. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana.

    Science.gov (United States)

    Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin

    2017-01-01

    The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

  6. Identifying Growth Conditions for Nicotiana benthimiana Resulting in Predictable Gene Expression of Promoter-Gus Fusion

    Science.gov (United States)

    Sandoval, V.; Barton, K.; Longhurst, A.

    2012-12-01

    Revoluta (Rev) is a transcription factor that establishes leaf polarity inArabidopsis thaliana. Through previous work in Dr. Barton's Lab, it is known that Revoluta binds to the ZPR3 promoter, thus activating the ZPR3 gene product inArabidopsis thaliana. Using this knowledge, two separate DNA constructs were made, one carrying revgene and in the other, the ZPR3 promoter fussed with the GUS gene. When inoculated in Nicotiana benthimiana (tobacco), the pMDC32 plasmid produces the Rev protein. Rev binds to the ZPR3 promoter thereby activating the transcription of the GUS gene, which can only be expressed in the presence of Rev. When GUS protein comes in contact with X-Gluc it produce the blue stain seen (See Figure 1). In the past, variability has been seen of GUS expression on tobacco therefore we hypothesized that changing the growing conditions and leaf age might improve how well it's expressed.

  7. [Effects of elevated O3 on leaf litter decomposition and nutrient release of Quercus mongolica in city].

    Science.gov (United States)

    Su, Li-li; Xu, Sheng; Fu, Wei; He, Xing-yuan; Chen, Wei; Zhao, Yi; Ping, Qin

    2016-02-01

    The leaf litters of 10-year-old Quercus mongolica were put in nylon bags and exposed to elevated 03 level (120 nmol . mol-1) with the control of 40 nmol . mol-1 in open top chambers (OTCs) for 150 days to test the effect of high O3 on the litter decomposition. The results showed that no significant difference was observed in residual mass between elevated O3 treatment and the control. Elevated 03 inhibited the release of C and K during the decomposition, the residual rate of K under elevated O3 treatment (23.9%) was significantly higher than that of the control (17.1%) after 150-day decomposition. Compared with the control, N mineralization and lignin degradation in elevated O3 treatment were inhibited during early period of decomposition (0-60 d), but were promoted in later period (90-150 d). The changes of lignin/N showed no significant difference between elevated O3 treatment and the control during the decomposition. Elevated O3 generally promoted the release of P in leaf litter of Q. mongolica during the decomposition. C/P ratio was higher under elevated 03 than that under control. Significant positive correlation was shown between residual dry mass of leaf litters and the residual rate of C, N, K, C/N ratio during decomposition. Elevated 03 might play an important role in the nutrient cycle of forest ecosystem in high-O3 pollution area.

  8. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species

    International Nuclear Information System (INIS)

    Ribas, Angela; Pen-tilde uelas, Josep; Elvira, Susana; Gimeno, Benjamin S.

    2005-01-01

    Four Mediterranean tree taxa, Quercus ilex subsp. ilex, Quercus ilex subsp. ballota, Olea europaea cv. vulgaris and Ceratonia siliqua, were exposed to different ozone (O 3 ) concentrations in open top chambers (OTCs) during 2 years. Three treatments were applied: charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air plus 40 ppb v of O 3 (NF+). The photochemical maximal efficiency, Fv/Fm, decreased in NF+ plants during the second year of exposure, especially during the most stressful Mediterranean seasons (winter and summer). An increase of δ 13 C was found in three of the four studied species during the first year of exposure. This finding was only maintained in C. siliqua during the second year. Decreases in the chlorophyll content were detected during the first year of fumigations in all the species studied, but not during the second year. The NF+ treatment induced changes in foliar anatomical characteristics, especially in leaf mass per area (LMA) and spongy parenchyma thickness, which increased in some species. A reduction in N content and an increase in δ 15 N were found in all species during the second year when exposed in the NF+ OTCs, suggesting a change in their retranslocation pattern linked to an acceleration of leaf senescence, as also indicated by the above mentioned biochemical and anatomical foliar changes. The two Q. ilex subspecies were the most sensitive species since the changes in N concentration, δ 15 N, chlorophyll, leaf area, LMA and biomass occurred at ambient O 3 concentrations. However, C. siliqua was the most responsive species (29% biomass reduction) when exposed to the NF+ treatment, followed by the two Q. ilex subspecies (14-20%) and O. europaea (no significant reduction). Ozone resistance of the latter species was linked to some plant traits such as chlorophyll concentrations, or spongy parenchyma thickness. - Ozone induces species-specific leaf senescence-related processes and morphological and growth changes in

  9. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Angela [CSIC-CEAB-CREAF Ecophysiology Unit, CREAF-Center for Ecological Research and Forestry Applications, Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: a.ribas@creaf.uab.es; Pen-tilde uelas, Josep [CSIC-CEAB-CREAF Ecophysiology Unit, CREAF-Center for Ecological Research and Forestry Applications, Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: josep.penuelas@uab.es; Elvira, Susana [CIEMAT, Avd. Complutense 22, 28040 Madrid (Spain); Gimeno, Benjamin S. [CIEMAT, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-03-01

    Four Mediterranean tree taxa, Quercus ilex subsp. ilex, Quercus ilex subsp. ballota, Olea europaea cv. vulgaris and Ceratonia siliqua, were exposed to different ozone (O{sub 3}) concentrations in open top chambers (OTCs) during 2 years. Three treatments were applied: charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air plus 40 ppb{sub v} of O{sub 3} (NF+). The photochemical maximal efficiency, Fv/Fm, decreased in NF+ plants during the second year of exposure, especially during the most stressful Mediterranean seasons (winter and summer). An increase of {delta}{sup 13}C was found in three of the four studied species during the first year of exposure. This finding was only maintained in C. siliqua during the second year. Decreases in the chlorophyll content were detected during the first year of fumigations in all the species studied, but not during the second year. The NF+ treatment induced changes in foliar anatomical characteristics, especially in leaf mass per area (LMA) and spongy parenchyma thickness, which increased in some species. A reduction in N content and an increase in {delta}{sup 15}N were found in all species during the second year when exposed in the NF+ OTCs, suggesting a change in their retranslocation pattern linked to an acceleration of leaf senescence, as also indicated by the above mentioned biochemical and anatomical foliar changes. The two Q. ilex subspecies were the most sensitive species since the changes in N concentration, {delta}{sup 15}N, chlorophyll, leaf area, LMA and biomass occurred at ambient O{sub 3} concentrations. However, C. siliqua was the most responsive species (29% biomass reduction) when exposed to the NF+ treatment, followed by the two Q. ilex subspecies (14-20%) and O. europaea (no significant reduction). Ozone resistance of the latter species was linked to some plant traits such as chlorophyll concentrations, or spongy parenchyma thickness. - Ozone induces species-specific leaf senescence-related

  10. Using the volumetric effect of a finite-sized detector for routine quality assurance of multileaf collimator leaf positioning

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) is an advanced form of radiation therapy and promises to improve dose conformation while reducing the irradiation to the sensitive structures. The modality is, however, more complicated than conventional treatment and requires much more stringent quality assurance (QA) to ensure what has been planned can be achieved accurately. One of the main QA tasks is the assurance of positioning accuracy of multileaf collimator (MLC) leaves during IMRT delivery. Currently, the routine quality assurance of MLC in most clinics is being done using radiographic films with specially designed MLC leaf sequences. Besides being time consuming, the results of film measurements are difficult to quantify and interpret. In this work, we propose a new and effective technique for routine MLC leaf positioning QA. The technique utilizes the fact that, when a finite-sized detector is placed under a leaf, the relative output of the detector will depend on the relative fractional volume irradiated. A small error in leaf positioning would change the fractional volume irradiated and lead to a deviation of the relative output from the normal reading. For a given MLC and detector system, the relation between the relative output and the leaf displacement can be easily established through experimental measurements and used subsequently as a quantitative means for detecting possible leaf positional errors. The method was tested using a linear accelerator with an 80-leaf MLC. Three different locations, including two locations on central plane (X1=X2=0) and one point on an off-central plane location (X1=-7.5, X=7.5), were studied. Our results indicated that the method could accurately detect a leaf positional change of ∼0.1 mm. The method was also used to monitor the stability of MLC leaf positioning for five consecutive weeks. In this test, we intentionally introduced two positional errors in the testing MLC leaf sequences: -0.2 mm and 1.2 mm. The technique

  11. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  12. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    Science.gov (United States)

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  13. A Conserved Molecular Framework for Compound Leaf Development

    DEFF Research Database (Denmark)

    Blein, Thomas; Pulido, Amada; Vialette-Guiraud, Aurélie

    2008-01-01

      Diversity in leaf shape is produced by alterations of the margin: for example, deep dissection leads to leaflet formation and less-pronounced incision results in serrations or lobes. By combining gene silencing and mutant analyses in four distantly related eudicot species, we show that reducing...

  14. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  15. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  16. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  17. Effects of an ultraviolet-visible rays translation film on growth of leaf or root vegetables

    International Nuclear Information System (INIS)

    Hamamoto, H.; Ueno, K.; Yamazaki, K.

    2008-01-01

    A new film that absorbs ultraviolet radiation (UV) and fluoresces red light was tested as a rain shelter for the cultivation of turnip (Brassica rapa L.), spinach (Spinacia oleracea L.), and Welsh onion (Allium fistulosum L.). The effect of this UV-visible ray translation film on various growth parameters (height, fresh and dry weight, leaf area and leaf sheath diameter) was compared with those under normal clear film, new UV-cut film, and used UV-cut film respectively. The transmissivity of UV was about 70% for the normal clear film, about 20% for the UV-visible ray translation film and used UV-cut film, and about 10% for the new UV-cut film. The transmissivity of photosynthetically active radiation (PAR) was about 90% for the normal clear film and the new UV-cut film, and about 80% for the used UV-cut film, while the mean transmissivity of PAR was about 80% for the UV-visible ray translation film, with about 60% transmissivity of blue radiation and over 90% of red radiation. The UV-visible ray translation film did not promote the growth of turnip roots but did significantly promote the growth of spinaches and Welsh onions compared with the normal clear film. The UV-visible ray translation film cover promoted the growth of spinaches and Welsh onions to a similar or greater extent compared to the new UV-cut film and also to a greater extent compared to the used UV-cut film

  18. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease.

    Science.gov (United States)

    Ignacimuthu, S; Ceasar, S Antony

    2012-03-01

    Finger millet plants conferring resistance to leaf blast disease have been developed by inserting a rice chitinase (chi11) gene through Agrobacterium-mediated transformation. Plasmid pHyg-Chi.11 harbouring the rice chitinase gene under the control of maize ubiquitin promoter was introduced into finger millet using Agrobacterium strain LBA4404 (pSB1). Transformed plants were selected and regenerated on hygromycin-supplemented medium. Transient expression of transgene was confirmed by GUS histochemical staining. The incorporation of rice chitinase gene in R0 and R1 progenies was confirmed by PCR and Southern blot analyses. Expression of chitinase gene in finger millet was confirmed by Western blot analysis with a barley chitinase antibody. A leaf blast assay was also performed by challenging the transgenic plants with spores of Pyricularia grisea. The frequency of transient expression was 16.3% to 19.3%. Stable frequency was 3.5% to 3.9%. Southern blot analysis confirmed the integration of 3.1 kb chitinase gene. Western blot analysis detected the presence of 35 kDa chitinase enzyme. Chitinase activity ranged from 19.4 to 24.8. In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance.

  19. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature.

    Science.gov (United States)

    Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf

    2016-07-01

    QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.

  20. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  1. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  2. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  3. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Directory of Open Access Journals (Sweden)

    Zhujia Ye

    2016-08-01

    Full Text Available Switchgrass (Panicum virgatum is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome expressed a significant difference (p < 0.05, fold change <0.6 or >1.7 from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes that can be employed to improve switchgrass seedling growth and

  4. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  5. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  6. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    Science.gov (United States)

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  7. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  8. [Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin, Northwest China].

    Science.gov (United States)

    Guo, Ru; Wen, Zhong-ming; Wang, Hong-xia; Qi, De-hui

    2015-12-01

    This article selected zonal plant communities as the research objects in different vegetation zones in Yanhe River basin. We measured six leaf traits of the dominant species and main accompanying species in each community, and then analyzed the relationships and their changes along with environmental gradients between these traits in order to understand the plant adaptation strategies to the environment changes. The results showed that the specific leaf area was significantly negatively correlated to leaf tissue density, area-based leaf nitrogen and phosphorus concentrations, and significantly positively correlated to mass-based leaf phosphorus concentration. Both the scaling relationships among these traits and plant life strategies were different among the three vegetation zones, the scaling-dependent relationship between leaf tissue density and specific leaf area was stronger in steppe and forest-steppe zones than in forest zone, but the correlations among area-based leaf nitrogen/phosphorus concentrations and specific leaf area and leaf tissue density were more significant in forest zone than in steppe zone. In the arid grassland and forest-steppe zone, plants give priority to defensive and stress resistance strategies, and in relatively moist nutrient-rich forest zone, plants give priority to fast growth and resource optimization allocation strategies.

  9. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  10. Modification of leaf morphology and anatomy as a consequence of columnar architecture in domestic apple (Malus x domestica Borkh.) trees

    DEFF Research Database (Denmark)

    Talwara, Susheela; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2013-01-01

    A quantitative study has been made of the modifications to leaf morphology and anatomy evident in columnar apples trees when compared to standard ones, using the original cultivar and the first columnar mutant derived from it, as well as other closely and more distantly related cultivars. Signifi......A quantitative study has been made of the modifications to leaf morphology and anatomy evident in columnar apples trees when compared to standard ones, using the original cultivar and the first columnar mutant derived from it, as well as other closely and more distantly related cultivars....... Significant increases in leaf number, area, weight per unit area, thickness and midrib angle, together with altered shape, have been recorded consistently for the leaves subtending the developing fruits of the columnar cultivars. Additionally, significant increases in leaf rolling, epicuticular wax, stomatal...... of leaf characteristics is considered in terms of the very open architectural phenotype of columnar trees and the impact this may have on the canopy microclimate that influences leaf development....

  11. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    Science.gov (United States)

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on

  12. How well can spectroscopy predict leaf morphological traits in the seasonal neotropical savannas?

    Science.gov (United States)

    Streher, A. S.; McGill, B.; Morellato, P.; Silva, T. S. F.

    2017-12-01

    Variations in foliar morphological traits, quantified as leaf mass per area (LMA, g m-2) and leaf dry matter content (LDMC, g g-1), correspond to a tradeoff between investments in leaf construction costs and leaf life span. Leaf spectroscopy, the acquisition of reflected radiation along contiguous narrow spectral bands from leaves, has shown the potential to link leaf optical properties with a range of foliar traits. However, our knowledge is still limited on how well leaf traits from plants with different life forms and deciduousness strategies can be predicted from spectroscopy. To understand the relationships between leaf traits and optical properties, we investigated: 1) What are the spectral regions associated with leaf morphological traits? 2) How generalizable an optical trait model is across different life forms and leaf strategies? Five locations across cerrado and campo rupestre vegetation in Brazil were sampled during the growing season in 2017. Triplicate mature sun leaves were harvested from plants encompassing different life forms (grasses, perennial herbs, shrubs and trees), comprising 1650 individuals growing over a wide range of environmental conditions. For each individual, we determined LDMC and LMA, and took 30 spectral leaf measurements from 400 to 2500nm, using a spectrometer. We used the Random Forests (RF) algorithm to predict both morphological traits from leaf reflectance, and performed feature selection with a backward stepwise method, progressively removing variables with small importance at each iteration. Model performance was evaluated by using 10-fold cross-validation. LDMC values ranged from 0.12 to 0.67 g g-1, while LMA varied between 41.78 and 562 g m-2. The spectral bands that best explained trait variation were found within the SWIR, around 1397 nm for LDMC, and 2279 nm for LMA. Our general model explained 55.28% of LDMC variance and 55.64% of LMA variation, and the mean RMSE for the predicted values were 0.004 g g-1 and 36.99 g

  13. Analysis of Influencing Factors Related to Health Promotion Behavior in Hospital Radiological Technologists

    International Nuclear Information System (INIS)

    Ko, Jong Kyung; Kwon, Duk Mun; Kang, Yeong Han

    2009-01-01

    The purpose of this study was to analyze factors that could affect health of radiological technologists, which is useful for health care and development of programs for health promotion. Subjects were 234 of radiological technologists who work in general hospitals. Some questionnaires were made about perceptions of health condition and promotional behavior of health for this study. The questionnaires of health perception were 20 items that consist of the present condition of health, health concern and sensitivity. The reliability was sufficient(Cronbach's α=0.79). The other questionnaires about health promotion behavior were 47 items that consist of self-realization, health responsibility, exercise, nutrition, personal relationships, and stress management. The results turned out to be was sufficient (Cronbach's α=0.93). Every data was treated statistically, comparison of average(t-test, ANOVA), correlation, and multiple regression. Related factors to health promotion behavior were age, marriage, salary, class of one's position, career, employment, and religion, in general features. In health life habit, related factors were smoke and exercise. Results of health promotion behavior was 2.90 of mean score, 0.37 of standard deviation. Correlations between factors of health perception and health promotion behavior was positive(p<0.01). Health promotion behavior were affected by sensitivity, presents condition of health, exercise, smoke, career. Sensitivity was the most affectable variable, which means that promotional behavior score became higher and higher as the score of sensitivity and present condition were increased. In addition, persons who exercise regularly, had been smoked, and has higher career showed higher score of promotional behavior. Radiological technologists have to keep their health, trying not to infected by a disease. Most of all, no smoking and regular exercise are the most important thing to all of members.

  14. Analysis of Influencing Factors Related to Health Promotion Behavior in Hospital Radiological Technologists

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Kim, In Hwan Internal Medicine Health Promotion Cnter, Youngcheon (Korea, Republic of); Kwon, Duk Mun [Dept. of Radiology Technology, Daegu Health College, Daegu (Korea, Republic of); Kang, Yeong Han [Dept. of Diagnostic Radiology, Daegu Catholic Univesity Hospital, Daegu (Korea, Republic of)

    2009-12-15

    The purpose of this study was to analyze factors that could affect health of radiological technologists, which is useful for health care and development of programs for health promotion. Subjects were 234 of radiological technologists who work in general hospitals. Some questionnaires were made about perceptions of health condition and promotional behavior of health for this study. The questionnaires of health perception were 20 items that consist of the present condition of health, health concern and sensitivity. The reliability was sufficient(Cronbach's {alpha}=0.79). The other questionnaires about health promotion behavior were 47 items that consist of self-realization, health responsibility, exercise, nutrition, personal relationships, and stress management. The results turned out to be was sufficient (Cronbach's {alpha}=0.93). Every data was treated statistically, comparison of average(t-test, ANOVA), correlation, and multiple regression. Related factors to health promotion behavior were age, marriage, salary, class of one's position, career, employment, and religion, in general features. In health life habit, related factors were smoke and exercise. Results of health promotion behavior was 2.90 of mean score, 0.37 of standard deviation. Correlations between factors of health perception and health promotion behavior was positive(p<0.01). Health promotion behavior were affected by sensitivity, presents condition of health, exercise, smoke, career. Sensitivity was the most affectable variable, which means that promotional behavior score became higher and higher as the score of sensitivity and present condition were increased. In addition, persons who exercise regularly, had been smoked, and has higher career showed higher score of promotional behavior. Radiological technologists have to keep their health, trying not to infected by a disease. Most of all, no smoking and regular exercise are the most important thing to all of members.

  15. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    Science.gov (United States)

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait.

  16. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    Science.gov (United States)

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  17. Declining global warming effects on the phenology of spring leaf unfolding.

    Science.gov (United States)

    Fu, Yongshuo H; Zhao, Hongfang; Piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Peñuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan A

    2015-10-01

    Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.

  18. Juvenile tree growth correlates with photosynthesis and leaf phosphorus content in central Amazonia

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Marenco

    2015-04-01

    Full Text Available Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04. Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K, the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003. At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

  19. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  20. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Science.gov (United States)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  1. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  2. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...

  3. What Is a Leaf? An Online Tutorial and Tests

    Science.gov (United States)

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  4. The Design and Implementation of the Leaf Area Index Sensor

    Directory of Open Access Journals (Sweden)

    Xiuhong Li

    2015-03-01

    Full Text Available The quick and accurate acquisition of crop growth parameters on a large scale is important for agricultural management and food security. The combination of photographic and wireless sensor network (WSN techniques can be used to collect agricultural information, such as leaf area index (LAI, over long distances and in real time. Such acquisition not only provides farmers with photographs of crops and suggestions for farmland management, but also the collected quantitative parameters, such as LAI, can be used to support large scale research in ecology, hydrology, remote sensing, etc. The present research developed a Leaf Area Index Sensor (LAIS to continuously monitor the growth of crops in several sampling points, and applied 3G/WIFI communication technology to remotely collect (and remotely setup and upgrade crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX algorithm in LAIS. The research also constructed a database of images and other information relating to crop management. The leaf length and width method (LAILLW can accurately measure LAI through direct field harvest. The LAIS has been tested in several exemplary applications, and validation with LAI from LAILLW. The LAI acquired by LAIS had been proved reliable.

  5. Leaf arrangements are invalid in the taxonomy of orchid species

    Directory of Open Access Journals (Sweden)

    Anna Jakubska-Busse

    2017-07-01

    Full Text Available The selection and validation of proper distinguishing characters are of crucial importance in taxonomic revisions. The modern classifications of orchids utilize the molecular tools, but still the selection and identification of the material used in these studies is for the most part related to general species morphology. One of the vegetative characters quoted in orchid manuals is leaf arrangement. However, phyllotactic diversity and ontogenetic changeability have not been analysed in detail in reference to particular taxonomic groups. Therefore, we evaluated the usefulness of leaf arrangements in the taxonomy of the genus Epipactis Zinn, 1757. Typical leaf arrangements in shoots of this genus are described as distichous or spiral. However, in the course of field research and screening of herbarium materials, we indisputably disproved the presence of distichous phyllotaxis in the species Epipactis purpurata Sm. and confirmed the spiral Fibonacci pattern as the dominant leaf arrangement. In addition, detailed analyses revealed the presence of atypical decussate phyllotaxis in this species, as well as demonstrated the ontogenetic formation of pseudowhorls. These findings confirm ontogenetic variability and plasticity in E. purpurata. Our results are discussed in the context of their significance in delimitations of complex taxa within the genus Epipactis.

  6. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    Science.gov (United States)

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects.

    Science.gov (United States)

    Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim

    2010-06-01

    Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.

  8. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    Starting from the early paper by Heber (1969), several studies have demonstrated a subtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) in response to rapid changes in environmental conditions. More recent work, briefly reviewed here, has also demonstrated the existence of two components in the maked peak centered at 505-540 nm: an irreversible component, attributed to the interconversion of leaf xanthophylls, and a reversible component at slightly longer wavelengths, resulting from conformational changes induced by the buildup of a pH gradient across the thylakoid membrane associated with photosynthetic electron transport. Both processes (xanthophyll de-epoxidation and conformational changes) are known to contribute to the dissipation of excess energy in Photosystem II (PSII). Leaf spectroscopy could therefore provide a powerful non-invasive tool for the determination of leaf photosynthetic processes. This led to the development of the normalized spectral index PRI (Photochemical Reflectance Index; Gamon, Penuelas &Field 1992; Gamon, Serrano &Surfus 1997), which relates the functional signal at 531 nm to a reference signal at 570 nm. The index has been found to track diurnal changes in xanthophyll de-epoxidation state, radiation use efficiency and fluorescence in response to light, both at the leaf and more recently at the canopy level. A common relationship has also beenreported across species and functional types, although such a generality has not always been confirmed. Recent reports (Stylinski et al. 2000) have also hinted of a possible link between PRI and leaf photosynthetic potential, possibly through the correlation between xanthophyll content and electron transport machinery in the chloroplast. Such a link, if confirmed, could prove very useful for the remote sensing and modelling ofvegetation. Some of these open questions were addressed in the present study. The correlation between leaf function and reflectance was

  9. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  10. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  11. Inoculation method, temperature and relative humidity affects leaf and neck anthracnose, a new onion disease.

    Science.gov (United States)

    Leaf and neck anthracnose caused by Colletotrichum coccodes is a new disease of onion in Michigan. To test the effect of inoculation method, ‘Prince’ onion seedlings were grown in the greenhouse and inoculated with either a conidial suspension of C. coccodes (alone or with an abrasive agent) or infe...

  12. Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China

    Science.gov (United States)

    Li, Mingxu; Peng, Changhui; Wang, Meng; Yang, Yanzheng; Zhang, Kerou; Li, Peng; Yang, Yan; Ni, Jian; Zhu, Qiuan

    2017-07-01

    The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was -27.15‰, with a range from -21.05‰ to -31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.

  13. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    Directory of Open Access Journals (Sweden)

    Laura eCeballos-Laita

    2015-03-01

    Full Text Available The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164 were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5% changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as

  14. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  15. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  16. Leaf-jams - A new and unique leaf deposit in the ephemeral Hoanib River, NW Namibia: Origin and plant taphonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christa-Ch. [University of Vienna, Department of Palaeontology, Palaeobotany Studies Group, Althanstrasse 14, 1090, Vienna (Austria); Rice, A. Hugh N. [University of Vienna, Department of Geodynamics and Sedimentology, Althanstrasse 14, 1090, Vienna (Austria)

    2010-08-01

    This paper documents a previously unrecorded type of leaf deposit, comprising essentially monospecific linear accumulations of Colophospermum mopane leaves on a point bar of the ephemeral Hoanib River, NW Namibia. In these 'leaf-jams', leaf laminae stand on edge, orientated more-or-less normal to bedding. Leaf-jams, which formed upstream of cobbles, clumps of grass and sticks wedged against the former two, were orientated subparallel to the adjacent meandering river-bed, such that over the 40 m of their occurrence, their mean azimuth changed by 59 anticlockwise downstream. The longest leaf-jam was 50 cm and contained approximately 500 leaves, as well as grass culms, twigs (C. mopane, Tamarix usneoides and unidentified) and medium- to fine-grained sand and silt. Individual leaf-jams were partially buried in the point bar sediments up to a depth of 3 cm. Leaf-jam formation occurred in the austral summer of 2006, during the waning stage of a major flood caused by anomalous tropical to extra-tropical storms. Their monospecifity is due to the overwhelming preponderance of the zonal taxon C. mopane in the catchment area, although the Khowarib Gorge contains a quite diverse azonal plant association due to the presence of a permanent water-seep. During leaf-jam formation, the water depth was less than the height of the cobbles (0.1 m), with stream flow-rates competent to transport medium-grained sand (velocity estimated at 0.5 m s{sup -} {sup 1}). Leaves must have been partially or fully waterlogged to inhibit buoyancy forces tending to lift them out of the developing leaf-jams, which propagated upstream in a manner comparable to longitudinal bars in a braided river. If fossilised, such deposits would probably lead to a very biased interpretation of the composition of the surrounding flora; the correct interpretation would be the one least favoured by palaeobotanists. (author)

  17. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Science.gov (United States)

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  18. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  19. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  20. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  1. Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower

    International Nuclear Information System (INIS)

    Rousseaux, M.C.; Hall, A.J.; Sánchez, R.A.

    1996-01-01

    Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower (Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly (P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly (P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR. (author)

  2. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  3. Effect of climate-related change in vegetation on leaf litter consumption and energy storage by Gammarus pulex from Continental or Mediterranean populations.

    Directory of Open Access Journals (Sweden)

    Natacha Foucreau

    Full Text Available As a consequence of global warming, it is important to characterise the potential changes occurring for some functional processes through the intra-specific study of key species. Changes in species distribution, particularly when key or engineer species are affected, should contribute to global changes in ecosystem functioning. In this study, we examined the potential consequences induced by global warming on ecosystem functioning in term of organic matter recycling. We compared consumption of leaf litter by some shredder populations (Gammarus pulex between five tree species inhabiting continental (i.e., the northern region of the Rhône River Valley and/or Mediterranean (i.e., the southern region of the Rhône River Valley conditions. To consider any potential adaptation of the gammarid population to vegetation in the same climate conditions, three populations of the key shredder Gammarus pulex from the northern region and three from the southern region of the Rhône River Valley were used. We experimentally compared the effects of the geographical origin of both the gammarid populations and the leaf litter species on the shredding activity and the physiological state of animals (through body triglyceride content. This study demonstrated that leaf toughness is more important than geographical origin for determining shredder leaf litter consumption. The overall consumption rate of the gammarid populations from the southern region of Rhône Valley was much higher than that of the populations from the northern region, but no clear differences between the origins of the leaf litter (i.e., continental vs. Mediterranean were observed. The northwards shift of G. pulex populations adapted to warmer conditions might significantly modify organic matter recycling in continental streams. As gammarid populations can demonstrate local adaptations to certain leaf species as a trophic resource, changes in riparian vegetation associated with climate change

  4. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  5. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    Science.gov (United States)

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  6. Dissipation and Residues of Pyrethrins in Leaf Lettuce under Greenhouse and Open Field Conditions.

    Science.gov (United States)

    Pan, Lixiang; Feng, Xiaoxiao; Zhang, Hongyan

    2017-07-21

    Pyrethrins are nowadays widely used for prevention and control of insects in leaf lettuce. However, there is a concern about the pesticide residue in leaf lettuce. A reliable analytical method for determination of pyrethrins (pyrethrin-and П, cinerin І and П, and jasmolin І and П) in leaf lettuce was developed by using gas chromatography-mass spectrometry (GC-MS). Recoveries of pyrethrins in leaf lettuce at three spiking levels were 99.4-104.0% with relative standard deviations of 0.9-3.1% ( n = 5). Evaluation of dissipation and final residues of pyrethrins in leaf lettuce were determined at six different locations, including the open field, as well as under greenhouse conditions. The initial concentration of pyrethrins in greenhouse (0.57 mg/kg) was higher than in open field (0.25 mg/kg) and the half-life for pyrethrins disappearance in field lettuce (0.7 days) was less than that greenhouse lettuce (1.1 days). Factors such as rainfall, solar radiation, wind speed, and crop growth rate are likely to have caused these results. The final residue in leaf lettuce was far below the maximum residue limits (MRLs) (1 mg/kg established by the European Union (EU), Australia, Korea, Japan).

  7. Generation of an infectious clone of a new Korean isolate of apple chlorotic leaf spot virus (ACLSV) driven by dual 35S and T7 promoters in a versatile binary vector

    Science.gov (United States)

    The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacter...

  8. 7 CFR 29.2277 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  9. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  10. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal N-14/N-15 Labeling and difference gel electrophoresis

    NARCIS (Netherlands)

    Hebeler, Romano; Oeljeklaus, Silke; Reidegeld, Kai E.; Eisenacher, Martin; Stephan, Christian; Sitek, Barbara; Stuehler, Kai; Meyer, Helmut E.; Sturre, Marcel J. G.; Dijkwel, Paul P.; Warscheid, Bettina

    Leaf senescence represents the final stage of leaf development and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senescence, we designed an elaborate double and reverse labeling strategy

  12. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  13. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  14. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    KAUST Repository

    Houborg, Rasmus

    2015-01-19

    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy

  15. 7 CFR 29.2278 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ...

  16. 7 CFR 29.2529 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  17. Inheritance of okra leaf type in different genetic backgrounds and its ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... discontinuous variation for leaf shape in F2 generations of three crosses .... Variable classes in leaf types (a) Normal leaf (b) Okra leaf (c) Sub-okra leaf. ..... insect pests on different isogenic lines of cotton variety H-777. J.

  18. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  19. Waiting for the Leaf; Warten auf den Leaf

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jan

    2012-01-15

    Nissan will be the first manufacturer to launch an electric vehicle of the VW Golf category in the German market. With a mileage of about 170 km and a roomy passenger compartment, the Leaf promises much comfort. In the US market, it was launched two years ago. Was it worth while waiting for?.

  20. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  1. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  2. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    the artificial rainwater chemistry. • Foliar N uptake increased with the level of pedospheric nitrogen fertilisation. • Foliar N uptake by birch related to leaf wettability, leaf N, and leaf mass per area.

  3. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  4. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models

    Science.gov (United States)

    McKee, M.; Royer, D. L.

    2017-12-01

    The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy

  5. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    OpenAIRE

    Marian Saniewski; Ewa Gajewska; Henryk Urbanek

    2013-01-01

    It was found previously that methyl jasmonate (JA-Me) induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in thi...

  6. Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities.

    Science.gov (United States)

    Al-Quraishy, Saleh; Othman, Mohamed S; Dkhil, Mohamed A; Abdel Moneim, Ahmed Esmat

    2017-07-01

    Gastritis is preponderantly characterized by inflammation of the lining epithelial layer and the chronic gastritis is considered as a pre-cancer lesion. For many centuries olive (Olea europaea) leaf has been used for its putative health potential, nonetheless, to date, the gastroprotective effects of olive leaves have not been studied yet. Hence, in this study we investigated whether olive leaf extract (OLE) could protect gastric mucosa against HCl/ethanol-induced gastric mucosal damage in rats. Hcl/ethanol administration caused significant damage to the gastric mucosa, as confirmed by gastric ulcer index and histological evaluation. However, this damage was largely prevented by pre-administering 20mg/kg omeprazole or 100mg/kg OLE. Interestingly, the damage was completely prevented by pre-administering 200 and 300mg/kg OLE. Moreover, OLE attenuated the inflammatory response by decreasing nuclear factor-κB (NF-κB), cycloxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) expressions, and down-regulating inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) in gastric mucosa. The gastroprotective mechanism of OLE involved the promotion of enzymatic and nonenzymatic molecules (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione reduced form), promoting nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression, halting lipid peroxidation and preventing the overproduction of nitric oxide. Together, our findings clearly demonstrated that OLE could prevent HCl/ethanol-induced gastritis by attenuating inflammation and oxidant/antioxidant imbalance. Indeed, OLE could potentially be useful as a natural therapy for gastritis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geonhee Hwang

    2017-07-01

    Full Text Available Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4 has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1 and LONGIFOLIA2 (LNG2 that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis.

  8. Leaf litter traits of invasive alien species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    NARCIS (Netherlands)

    Godoy, O.; Castro Diez, P.; van Logtestijn, R.S.P; Cornelissen, J.H.C.; Valladares, F.

    2010-01-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves

  9. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  10. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Directory of Open Access Journals (Sweden)

    Anna Boss

    2016-08-01

    Full Text Available The traditional Mediterranean diet (MD is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  11. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    Science.gov (United States)

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. THE EFFICIENCY OF PROMOTIONAL INSTRUMENTS RELATED TO THE PRODUCT LIFE CYCLE STAGES

    Directory of Open Access Journals (Sweden)

    MIHAELA MARCU

    2010-01-01

    Full Text Available Regarded as a planning tool, PLC (product life cycle strongly contributes to the identification of the main marketing challenges that may arise throughout the life of a product/service. Thus, the marketing management has the opportunity to develop and implement those solutions designed to optimize each of the 4P of marketing mix: product (quality, price, distribution (placement and promotion. The communication program has an essential role, because the company presents through it its "product" to actual or potential customers in order to convince them of the benefits of purchasing/using it. The efficiency of the promotional instruments involves an appropriate allocation of funds needed to promote the product/service in relation to the stage of its life cycle.

  13. 7 CFR 29.2530 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of...

  14. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  15. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  16. Models for leaf area estimation in dwarf pigeon pea by leaf dimensions

    Directory of Open Access Journals (Sweden)

    Rafael Vieira Pezzini

    2018-03-01

    Full Text Available ABSTRACT This study aims to determine the most suitable model to estimate the leaf area of dwarf pigeon pea in function of the leaf central leaflet dimension. Six samplings of 200 leaves were performed in the first experiment, at 36, 42, 50, 56, 64, and 72 days after emergence (DAE. In the second experiment, seven samplings of 200 leaves were performed at 29, 36, 43, 49, 57, 65, and 70 DAE, totaling 2600 leaves. The length (L and width (W of the central leaflet were measured in all leaves composed by left, central, and right leaflets, the product of length times width (LW was calculated, and the leaf area (Y – sum of left, central, and right leaflet areas was determined by digital images. Linear, power, quadratic, and cubic models of Y as function of L, W, and LW were built using data from the second experiment. Leaves from the first experiment were used to validate the models. In dwarf pigeon pea, the linear (Ŷ = – 0.4088 + 1.6669x, R2 = 0.9790 is preferable, but power (Ŷ = 1.6097x1.0065, R2 = 0.9766, quadratic (Ŷ = – 0.3625 + 1.663x + 0.00007x2, R2 = 0.9790, and cubic (Ŷ = 0.7216 + 1.522x + 0.005x2 – 5E–05x3, R2 = 0.9791 models in function of LW are also suitable to estimate the leaf area obtained by digital images. The power model (Ŷ = 5.2508x1.7868, R2 = 0.95 based on the central leaflet width is less laborious because requires only one variable, but it presents accuracy reduction.

  17. Dew water effects on leaf water using a stable isotope approach

    Science.gov (United States)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  18. Leveraging multiple datasets for deep leaf counting

    OpenAIRE

    Dobrescu, Andrei; Giuffrida, Mario Valerio; Tsaftaris, Sotirios A

    2017-01-01

    The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method tre...

  19. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    Science.gov (United States)

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Phytochemical analysis and gastroprotective activity of an olive leaf extract

    Directory of Open Access Journals (Sweden)

    IVANA ARSIĆ

    2009-04-01

    Full Text Available Some medicinal features of olive leaf have been known for centuries. It has been traditionally used as an antimicrobial and to prevent and treat diabetes mellitus and heart disease. Whether olive leaf, a natural antioxidant, influences the gastric defense mechanism and exhibits gastroprotection against experimentally-induced gastric lesions remains unknown. In this study, the content of total phenols, total flavonoids and tannins in olive leaf extract (OLE were determined. Seven phenolic compounds were identified and quantified (oleuropein, caffeic acid, luteolin, luteolin-7-O-glucoside, apigenin-7-O-glucoside, quercetin, and chryseriol. Furthermore, the protective activity of the OLE in gastric mucosal injury induced by a corrosive concentration of ethanol was investigated. In relation to the control group, pretreatment with OLE (40, 80 and 120 mg kg-1 significantly (p < 0.001 attenuated the gastric lesions induced by absolute ethanol. The protective effect of the OLE was similar to that obtained with a reference drug, ranitidine. The results obtained indicate that OLE possesses significant gastroprotective activity, and that the presence of compounds with antioxidative properties would probably explain this effect.

  1. Leaf area index estimation of Eucalyptus grandis W.Hill. in plantations

    Directory of Open Access Journals (Sweden)

    Dubal Papamija-Muñoz

    2012-12-01

    Full Text Available We estimated leaf area index (LAI in Eucalyptus grandis W.Hill. plantations in four farms in the Smurfit Kappa Carton de Colombia (SKCC with three farms located in the city of Popayan (Cauca and one located in the municipality of Restrepo (Valle del Cauca. Each farm had three fertilized and three unfertilized plots with 64 individuals in each. We used three methods, Plant Canopy Analyzer 2000 (PCA 2000, flat photograph PIPEcv software and a destructive method, which was generated using a mathematical model. The first two methods were measured bimonthly for a year and the final method required trees being cut to measure their diameter. Estimation of leaf area index was 2.01 for PCA 2000, 3.12 for PIPEcv and 2.83 for the mathematical model. These values correspond to the average and range of leaf area indices obtained for each method on all farms. Statistically the three methodologies developed in this study were not closely related.

  2. Slow rusting response of different wheat genotypes against the leaf rust in relation to epidemiological factors in Faisalabad

    International Nuclear Information System (INIS)

    Khan, M.A.; Haider, M.M.; Hussain, M.; Ahmad, S.

    2007-01-01

    Wheat genotypes were screened against leaf rust to evaluate slow rusting response. Among one hundred and sixty varieties/lines, 86 showed response to leaf rust while all other remained immune or showed no response. The slow rusting, wheat varieties/ lines displayed 20-40% severity level and these were Maxi-Pak65, Blue silver, Pothohar, Punjab81, Faisalabd-83, Shalimar-88, Kohnoor-83, Pasban-90, Inqilab-91, Uqab-99-94105, Punjab-76, Parwaz-94, HD2169, HD2179, HD2204, HD2285, Lr27+31, LrB, LR17, Lr14A, Lr15 and Yr1-E-1 while the fast rusting varieties/lines that showed severity level up to 90% were WL-711, Morocco, PAK-1, Punjab-85 and Chakwal-86 SA42, SA75, Lr1, Lr2A, Lr2B. Lr23, Lr3KA, Lr3g, Lr10, Lr18, Lr21, Lr24, Yr2-E35 and 95153 respectively. Slow rusting genotypes exhibited low AUDPC (200-400) values while fast rusters displayed high AUDPC (400-1500) values. Leaf rust severity displayed significant correlation with maximum and minimum temperatures, rainfall and sunshine radiation. It was observed that with an increase of these environmental conditions a significant increase in disease severity was recorded

  3. Soil-leaf transfer of chemical elements for the Atlantic Forest

    International Nuclear Information System (INIS)

    Joacir De Franca, E.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2007-01-01

    Soil analysis could improve environmental studies since soil is the main source of chemical elements for plants. In this study, soil samples collected at 0-10 cm depth under tree crown projection were analyzed by INAA. Using the chemical composition of the leaf previously determined, the leaf-soil transfer factors of chemical elements could be estimated for the Atlantic Forest. Despite the variability of the intra-species, the transfer factors were specific for some plant species due to their element accumulation in the leaves. Similar Br-Zn combined transfer factors were obtained for the species grouped according to habitats in relation to their position (understory or dominant species) in the forest canopy. (author)

  4. Social networks, health promoting-behavior, and health-related quality of life in older Korean adults.

    Science.gov (United States)

    Hong, Minjoo; De Gagne, Jennie C; Shin, Hyewon

    2018-03-01

    In this cross-sectional, descriptive study, we compared the sociodemographic characteristics, social networks, health-promoting behavior, and the health-related quality of life of older Korean adults living in South Korea to those of older Korean adult immigrants living in the USA. A total of 354 older adults, aged 65 years or older, participated. Data were collected through self-directed questionnaires, and analyzed using a two way analysis of variance, t-tests, χ 2 -tests, and Pearson's correlation coefficient. The association between four sociodemographic characteristics and health-related quality of life was significantly different between the two groups. For the older Korean adults living in South Korea, positive correlations existed between a measure of their social networks and both health-promoting behavior and health-related quality of life. For the older Korean immigrants, the findings revealed a positive correlation only between social networks and health-promoting behavior. The study findings support the important association social networks can have with health-related quality of life, and their possible relationship to health-promoting behaviors of older Korean adults. We suggest that health policy-makers and healthcare providers develop comprehensive programs that are designed to improve older adults' social networks. © 2017 John Wiley & Sons Australia, Ltd.

  5. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    Science.gov (United States)

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  6. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy.

    Science.gov (United States)

    Zhang, Senhao; Shi, Yinghua; Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang

    2015-01-01

    Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.

  7. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  8. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.

    Science.gov (United States)

    Brodribb, Tim J; Holbrook, N Michele; Zwieniecki, Maciej A; Palma, Beatriz

    2005-03-01

    * The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.

  9. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    Science.gov (United States)

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  10. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  11. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    Science.gov (United States)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale

  13. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    Science.gov (United States)

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  14. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.

    Science.gov (United States)

    Posada, Juan M; Sievänen, Risto; Messier, Christian; Perttunen, Jari; Nikinmaa, Eero; Lechowicz, Martin J

    2012-08-01

    Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ε). A functional-structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAI(ind)) together with a genetic algorithm to find distributions of leaf angle (L(A)) and leaf photosynthetic capacity (A(max)) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with A(max) either unconstrained or constrained to an upper value consistent with reported values for A(max) in A. saccharum. It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ε were simultaneously maximized. Maximization of ε required simultaneous adjustments in L(A) and A(max) along gradients of PPFD in the plants. When A(max) was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ε because PPFD incident on leaves was higher than the PPFD at which ε(max) was attainable. Average leaf ε in constrained plants nonetheless improved with increasing LAI(ind) because of an increase in self-shading. It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ε at the scale of leaves, which requires a highly integrated response between L(A), A(max) and LAI(ind). The results also suggest that to maximize ε plants have evolved mechanisms that co-ordinate the L(A) and A(max) of individual leaves with PPFD availability.

  15. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  16. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  17. The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season

    Czech Academy of Sciences Publication Activity Database

    Neuwirthová, E.; Lhotáková, Z.; Albrechtová, Jana

    2017-01-01

    Roč. 17, č. 6 (2017), s. 1-23, č. článku 1202. ISSN 1424-8220 Institutional support: RVO:67985939 Keywords : broadleaved trees * leaf optical properties * leaf traits Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.677, year: 2016

  18. Automated estimation of leaf distribution for individual trees based on TLS point clouds

    Science.gov (United States)

    Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus

    2017-04-01

    Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation

  19. Leaf Epidermis of the Rheophyte Dyckia brevifolia Baker (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Ghislaine Maria Lobo

    2013-01-01

    Full Text Available Some species of Dyckia Schult. f., including Dyckia brevifolia Baker, are rheophytes that live in the fast-moving water currents of streams and rivers which are subject to frequent flooding, but also period of low water. This study aimed to analyze the leaf epidermis of D. brevifolia in the context of epidermal adaptation to this aquatic plant’s rheophytic habitat. The epidermis is uniseriate, and the cuticle is thickened. The inner periclinal and anticlinal walls of the epidermal cells are thickened and lignified. Stomata are tetracytic, located in the depressions in relation to the surrounding epidermal cells, and covered by peltate trichomes. While the epidermal characteristics of D. brevifolia are similar to those of Bromeliaceae species, this species has made particular adaptations of leaf epidermis in response to its rheophytic environment.

  20. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    Science.gov (United States)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  1. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... properties. Leaf WUE and its variability and dependencies were assessed using leafgas-exchange measurements obtained during two growing seasons, 1999 and 2000, at the Soroe beech forest study site on Zealand in Denmark. It was found that the VPD-normalized leaf WUE, WUEnormleaf, although dependent...

  2. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  3. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-01-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  4. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-12-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  5. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  6. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD.

    Science.gov (United States)

    Yu, Miao; Shin, Young June; Kim, Nanyoung; Yoo, Guijae; Park, SeonJu; Kim, Seung Hyun

    2015-04-01

    A new method for the determination of six compounds, chlorogenic acid, rutin, nicotiflorin, hederacoside C, hederasaponin B and α-hederin, in ivy leaf extracts using high-performance liquid chromatography with diode array detector was developed. The chromatographic separation was performed on a YMC Hydrosphere C18 analytical column using a gradient elution of 0.1% phosphoric acid and acetonitrile. The method was validated in terms of specificity, linearity (r(2) > 0.9999), precision [relative standard deviation (RSD) method was successfully applied to quantify all six compounds in a 30% ethanol ivy leaf extract and 13 ivy leaf extract products. The results showed that all the tested products satisfied the minimum requirement for the content of hederacoside C. However, there were some differences between the contents of other constituents. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    Science.gov (United States)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water

  9. ANXIOLYTIC ACTIVITY OF OCIMUM SANCTUM LEAF EXTRACT

    OpenAIRE

    Chattopadhyay, R.R.

    1994-01-01

    The anxiolytic activity of Ocimum sanctum leaf extract was studied in mice. O.sanctum leaf extract produced significant anxiolytic activity in plus – maze and open field behaviour test models. The effect was compared with diazepam, a standard antianxiety drug.

  10. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains.

    Directory of Open Access Journals (Sweden)

    Chun-Juan Wang

    Full Text Available Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21, termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels.

  11. Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers

    Science.gov (United States)

    Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto

    2002-01-01

    Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...

  12. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  13. Interaction between Silver Nanoparticles and Spinach Leaf

    Science.gov (United States)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  14. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  15. Does leaf chemistry differentially affect breakdown in tropical versus temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...

  16. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    Energy Technology Data Exchange (ETDEWEB)

    Wuytack, Tatiana, E-mail: tatiana.wuytack@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Wuyts, Karen, E-mail: karen.wuyts@ugent.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Van Dongen, Stefan, E-mail: stefan.vandongen@ua.ac.be [Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Baeten, Lander, E-mail: lander.baeten@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Kardel, Fatemeh, E-mail: fatemeh.kardel@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode, Melle (Belgium); Samson, Roeland, E-mail: roeland.samson@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-10-15

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO{sub x} and O{sub 3} concentrations had only a marginal influence. The influence of SO{sub 2} concentration was negligible. Although our data analysis suggests a relationship between SLA and NO{sub x}/O{sub 3} concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: > Leaf characteristics of white willow as possible bio-indicators for air quality. > Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. > Shadow increases specific leaf area. > NO{sub x} and O{sub 3} change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO{sub x} and decreasing O{sub 3} concentration, while leaf asymmetry did not respond to air pollution

  17. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    International Nuclear Information System (INIS)

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-01-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO x and O 3 concentrations had only a marginal influence. The influence of SO 2 concentration was negligible. Although our data analysis suggests a relationship between SLA and NO x /O 3 concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: → Leaf characteristics of white willow as possible bio-indicators for air quality. → Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. → Shadow increases specific leaf area. → NO x and O 3 change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO x and decreasing O 3 concentration, while leaf asymmetry did not respond to air pollution

  18. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. biophysical constraints on leaf expansion under long-term water stress

    Science.gov (United States)

    Yanxiang ​Zhang; Maria Alejandra Equiza; Quanshui Zheng; Melvin T. Tyree

    2011-01-01

    In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψw = leaf water potential estimated with a pressure bomb of −0.48 and −0.98 MPa, respectively). Pressure–volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size...

  19. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  20. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset.

    Science.gov (United States)

    Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Alonso, Luis; Moreno, José; Samson, Roeland

    2014-05-05

    Biochemical and structural leaf properties such as chlorophyll content (Chl), nitrogen content (N), leaf water content (LWC), and specific leaf area (SLA) have the benefit to be estimated through nondestructive spectral measurements. Current practices, however, mainly focus on a limited amount of wavelength bands while more information could be extracted from other wavelengths in the full range (400-2500nm) spectrum. In this research, leaf characteristics were estimated from a field-based multi-species dataset, covering a wide range in leaf structures and Chl concentrations. The dataset contains leaves with extremely high Chl concentrations (>100μgcm(-2)), which are seldom estimated. Parameter retrieval was conducted with the machine learning regression algorithm Gaussian Processes (GP), which is able to perform adaptive, nonlinear data fitting for complex datasets. Moreover, insight in relevant bands is provided during the development of a regression model. Consequently, the physical meaning of the model can be explored. Best estimates of SLA, LWC and Chl yielded a best obtained normalized root mean square error of 6.0%, 7.7%, 9.1%, respectively. Several distinct wavebands were chosen across the whole spectrum. A band in the red edge (710nm) appeared to be most important for the estimation of Chl. Interestingly, spectral features related to biochemicals with a structural or carbon storage function (e.g. 1090, 1550, 1670, 1730nm) were found important not only for estimation of SLA, but also for LWC, Chl or N estimation. Similar, Chl estimation was also helped by some wavebands related to water content (950, 1430nm) due to correlation between the parameters. It is shown that leaf parameter retrieval by GP regression is successful, and able to cope with large structural differences between leaves. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Timing and duration of autumn leaf development in Sweden

    Science.gov (United States)

    Bolmgren, Kjell

    2014-05-01

    The growing season is changing in both ends and autumn phases seem to be responding in more diverse ways than spring events. Indeed, we know little about autumn leaf phenological strategies and how they are correlated with fitness components or ecosystem properties, and how they vary between species and over bioclimatic gradients. In this study more than 10 000 students were involved in observing autumn leaf development at 378 sites all over Sweden (55-68°N). They followed an image based observation protocol classifying autumn leaf development into five levels, from summer green (level 0) to 100% autumn leaf colored (level 4) canopy. In total, they submitted almost 12 000 observations between August 9 and November 15. 75% of the observations were made on the common species of Populus tremula, Betula pendula/pubescens and Sorbus aucuparia. The expected (negative) correlation between latitude and start of leaf senescence (level 2) was found in Populus and Betula, but not in Sorbus. The duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of the canopy autumn leaf colored, was negatively correlated with latitude in Populus and Betula, but not in Sorbus. There was also a strong (negative) correlation of the start (level 2) and the duration of the leaf senescence in the early senescing Sorbus and Betula, while this effect was weaker in the late senescing Populus.

  2. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  3. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    Science.gov (United States)

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  4. Leaf size indices and structure of the peat swamp forest

    Directory of Open Access Journals (Sweden)

    L.G. Aribal

    2017-12-01

    Full Text Available Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation.  Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently found on the established sampling plots were determined.  The species includes Ternstroemia philippinensis Merr., Polyscias aherniana Merr. Lowry and G.M. Plunkett, Calophyllum sclerophyllum Vesque, Fagraea racemosa Jack, Ilex cymosa Blume, Syzygium tenuirame (Miq. Merr. and Tristaniopsis micrantha Merr. Peter G.Wilson and J.T.Waterh.The LSI were correlated against the variables of the peat physico-chemical properties (such as bulk density, acrotelm thickness, peat depth, total organic carbon, nitrogen, phosphorus, and potassium, pH; water (pH, ammonium, nitrate, phosphate; and leaf tissue elements (nitrogen, phosphorus and potassium.  Result showed a decreasing leaf size indices and a three leaf size category consisting of mesophyllous, mesophyllous-notophyllous and microphyllous were observed which corresponds to the structure of vegetation i.e., from the tall-pole forest having the biggest average leaf area of 6,142.29 mm2 to the pygmy forest with average leaf area of 1,670.10 mm2.  Such decreased leaf size indices were strongly correlated to soil nitrogen, acrotelm thickness, peat depth, phosphate in water, nitrogen and phosphorus in the plant tissue.

  5. Photosynthesis-related infrared light transmission changes in spinach leaf segments

    International Nuclear Information System (INIS)

    Akimoto, T.

    1985-01-01

    The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to ''red drop.'' The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to ''enhancement.'' A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light

  6. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  7. Children's Literacy Interest and Its Relation to Parents' Literacy-Promoting Practices

    Science.gov (United States)

    Hume, Laura E.; Lonigan, Christopher J.; McQueen, Jessica D.

    2015-01-01

    This study examined how children's literacy interests related to parent literacy-promoting practices across time. Using a sample of 909 preschool-age children and the newly developed Child Activities Preference Checklist, literacy interest appeared to be a complex construct, not easily captured by a single measure. In a subsample of 230 children…

  8. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  9. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    Science.gov (United States)

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P

  10. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  11. Diversity, Mutation and Recombination Analysis of Cotton Leaf Curl Geminiviruses.

    Directory of Open Access Journals (Sweden)

    Huma Saleem

    Full Text Available The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV and cotton leaf curl Kokhran virus (CLCuKoV, led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4 and CLCuKoV-CP gene (2.706X10-4, whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent.

  12. Leaf optical properties shed light on foliar trait variability at individual to global scales

    Science.gov (United States)

    Shiklomanov, A. N.; Serbin, S.; Dietze, M.

    2016-12-01

    Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary within communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a potentially rich and widely available source of information on plant traits. In particular, the inversion of physically-based radiative transfer models (RTMs) is an effective and general method for estimating plant traits from spectral measurements. Here, we apply Bayesian inversion of the PROSPECT leaf RTM to a large database of field spectra and plant traits spanning tropical, temperate, and boreal forests, agricultural plots, arid shrublands, and tundra to identify dominant sources of variability and characterize trade-offs in plant functional traits. By leveraging such a large and diverse dataset, we re-calibrate the empirical absorption coefficients underlying the PROSPECT model and expand its scope to include additional leaf biochemical components, namely leaf nitrogen content. Our work provides a key methodological contribution as a physically-based retrieval of leaf nitrogen from remote sensing observations, and provides substantial insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.

  13. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    Science.gov (United States)

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  14. Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Teresa del Río-García

    2015-08-01

    Full Text Available Aims of study: Our aim is to check the effect of different environmental factors on the leaf senescence of four Quercus species with different leaf longevities, to help us better understand the implications of climate change on leaf demography. Area of study: The study was carried out in two sites of the province of Salamanca (central-western Spain, both sites showing differences in their temperatures and soil water availability. Material and Methods: Over four years (2007-2010 we monitored the number of leaves of the different cohorts labelled on five specimens of each species at both sites to elaborate life-tables and calculate mortality rates. Mortality rates were then related to several other variables measured during the same period: air temperature, soil water availability, precipitation, predawn water potentials (Ψpd and leaf N resorption. Main results: In the two deciduous species maximum daily temperatures and the time during which their values remain above a certain threshold (between 11 and 12ºC of maximum daily temperature are the main factors controlling the timing of leaf abscission. In the evergreen species abscission of old leaves showed no relationship with the environmental factors analyzed. By contrast, mortality rates of old leaves were related to seasonal N resorption values, with the maximum mortality of old leaves coinciding in time with the maximum withdrawal of N from shed leaves and also with the emergence of the new leaf cohort. Research highlights: The increase in the duration of the leaves of the two deciduous species, as a result of the delayed senescence by warmer autumnal temperatures, could contribute to reducing the differences in the length of the productive leaf life with respect to the evergreen species. This could improve the competitive capacity of deciduous species as opposed to that of evergreen species, and thus alter their respective distribution patterns.

  15. Antioxidant Activity and Cytotoxicity of the Leaf and Bark Extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant potential and cytotoxicity of the leaf and bark extracts of Tarchonanathus campharatus.. Methods: The antioxidant activity of the aqueous leaf extract (Aq LF), methanol leaf extract (MET LF), dichloromethane leaf extract (DCM LF), methanol bark extract (MET BK), dichloromethane bark ...

  16. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  17. Leaf area prediction models for Tsuga canadensis in Maine

    Science.gov (United States)

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  18. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    Evaluation of SAR effects on budding, flowering, leaf abscission and pollen development revealed that ... Keywords: Simulated acid rain, Helianthus annuus, flowering, leaf abscission, pollen germination, sunflower. ... HOW TO USE AJOL.

  19. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-11-25

    Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. IMRT sequencing for a six-bank multi-leaf system

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Lagendijk, J J W

    2005-01-01

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 0 . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments

  1. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    International Nuclear Information System (INIS)

    Arib, R.M.N.; Sapuan, S.M.; Ahmad, M.M.H.M.; Paridah, M.T.; Zaman, H.M.D. Khairul

    2006-01-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage

  2. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Arib, R.M.N. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Ahmad, M.M.H.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Paridah, M.T. [Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zaman, H.M.D. Khairul [Radiation Processing Technology Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi 43000 Kajang, Selangor (Malaysia)

    2006-07-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage.

  3. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?

    Science.gov (United States)

    Danger, Michael; Cornut, Julien; Chauvet, Eric; Chavez, Paola; Elger, Arnaud; Lecerf, Antoine

    2013-07-01

    In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous

  4. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  5. Promoter methylation and age-related downregulation of Klotho in rhesus monkey.

    Science.gov (United States)

    King, Gwendalyn D; Rosene, Douglas L; Abraham, Carmela R

    2012-12-01

    While overall DNA methylation decreases with age, CpG-rich areas of the genome can become hypermethylated. Hypermethylation near transcription start sites typically decreases gene expression. Klotho (KL) is important in numerous age-associated pathways including insulin/IGF1 and Wnt signaling and naturally decreases with age in brain, heart, and liver across species. Brain tissues from young and old rhesus monkeys were used to determine whether epigenetic modification of the KL promoter underlies age-related decreases in mRNA and protein levels of KL. The KL promoter in genomic DNA from brain white matter did not show evidence of oxidation in vivo but did exhibit an increase in methylation with age. Further analysis identified individual CpG motifs across the region of interest with increased methylation in old animals. In vitro methyl modification of these individual cytosine residues confirmed that methylation of the promoter can decrease gene transcription. These results provide evidence that changes in KL gene expression with age may, at least in part, be the result of epigenetic changes to the 5' regulatory region.

  6. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  7. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    Science.gov (United States)

    Godoy, Oscar; Castro-Díez, Pilar; Van Logtestijn, Richard S P; Cornelissen, Johannes H C; Valladares, Fernando

    2010-03-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.

  8. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2004-02-07

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  9. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay; Li, Jonathan

    2004-01-01

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  10. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  11. Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gai-Li Niu

    2018-01-01

    Full Text Available Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT, a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2, 642 bp (P3, 428 bp (P4 and 245 bp (P5 were constructed from the 1048 bp (P1 promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s. Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.

  12. Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient

    Science.gov (United States)

    Bastias, Cristina C.; Fortunel, Claire; Valladares, Fernando; Baraloto, Christopher; Benavides, Raquel; Cornwell, William; Markesteijn, Lars; de Oliveira, Alexandre A.; Sansevero, Jeronimo B. B.; Vaz, Marcel C.; Kraft, Nathan J. B.

    2017-01-01

    Disentangling the mechanisms that shape community assembly across diversity gradients is a central matter in ecology. While many studies have explored community assembly through species average trait values, there is a growing understanding that intraspecific trait variation (ITV) can also play a critical role in species coexistence. Classic biodiversity theory hypothesizes that higher diversity at species-rich sites can arise from narrower niches relative to species-poor sites, which would be reflected in reduced ITV as species richness increases. To explore how ITV in woody plant communities changes with species richness, we compiled leaf trait data (leaf size and specific leaf area) in a total of 521 woody plant species from 21 forest communities that differed dramatically in species richness, ranging from boreal to tropical rainforests. At each forest, we assessed ITV as an estimate of species niche breadth and we quantified the degree of trait overlap among co-occurring species as a measure of species functional similarity. We found ITV was relatively invariant across the species richness gradient. In addition, we found that species functional similarity increased with diversity. Contrary to the expectation from classic biodiversity theory, our results rather suggest that neutral processes or equalizing mechanisms can be acting as potential drivers shaping community assembly in hyperdiverse forests. PMID:28241033

  13. Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com [School of Environmental and Natural Resource Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Azahana, A., E-mail: bell-azahana@yahoo.com [Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang (Malaysia); Nordahlia, A. S., E-mail: nordahlia@frim.gov.my [Forest Research Institute of Malaysia, 52109 Kepong, Selangor (Malaysia)

    2015-09-25

    Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present in all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.

  14. Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection.

    Science.gov (United States)

    Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis

    2016-11-01

    Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.

  15. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  16. Antibacterial Activity of Vernonia amygdalina Leaf Extracts against ...

    African Journals Online (AJOL)

    ADOWIE PERE

    (Bitter leaf), Allium sativum (Garlic), O. gratissimum. (Scent leaf) ... complex active components that are useful ... hydroxide was added. .... KEY: CPX-Ciprofloxacin, Ro-Rocephin, St-Streptomycin, AU-Augmentin, SXT-Septrin, SP- Sparfloxacin, ...

  17. The effect of plant growth promoting rhizobacteria, nitrogen and phosphorus on relative agronomic efficiency of fertilizers, growth parameters and yield of wheat (Triticum aestivum L. cultivar N-80-19 in Sari

    Directory of Open Access Journals (Sweden)

    Z. Saber

    2016-05-01

    Full Text Available In order to evaluate the efficiency of plant growth promoting rhizobacteria (PGPR plus nitrogen and phosphorous chemical fertilizers on relative agronomic efficiency of P and N fertilizers and some agronomic parameters of wheat (Triticum aestivum L. cultivar N-80-19, an experiment was conducted at Sari Agricultural Sciences and Natural Resources University during growing season of 2008-2009. Experiment was arranged in split-split plot based on randomized complete block design with three levels (0, 25 and 50 kg.ha-1 and sub-plots were considered PGPR at four levels (control, inoculation with nitrogen fixing bacteria (PFB, phosphate solubilizing bacteria (PSB and dual inoculation with PFB and PSB with three replications. Results showed that the application of biofertilizers significantly increased relative agronomic efficiency of N and P fertilizers, spike number, plant height, flag leaf area, grain yield and grain weight of wheat. Application of biofertilizers increased wheat grain yield as much as 46.6% as compared to control. Double inoculation of biofertilizers improved relative agronomic efficiency of fertilizers by 58.4 and 76.5% as compared to control, respectively. Integrated treatments showed higher performance compared to separate treatments. Generally, biofertilizers with low levels of P and N fertilizers significantly improved yield components of wheat without any reduction in yield related parameters.

  18. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  19. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  20. TALE and Shape: How to Make a Leaf Different.

    Science.gov (United States)

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  1. Simple models for predicting leaf area of mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Maryam Ghoreishi

    2012-01-01

    Full Text Available Mango (Mangifera indica L., one of the most popular tropical fruits, is cultivated in a considerable part of southern Iran. Leaf area is a valuable parameter in mango research, especially plant physiological and nutrition field. Most of available methods for estimating plant leaf area are difficult to apply, expensive and destructive which could in turn destroy the canopy and consequently make it difficult to perform further tests on the same plant. Therefore, a non-destructive method which is simple, inexpensive, and could yield an accurate estimation of leaf area will be a great benefit to researchers. A regression analysis was performed in order to determine the relationship between the leaf area and leaf width, leaf length, dry and fresh weight. For this purpose 50 mango seedlings of local selections were randomly took from a nursery in the Hormozgan province, and different parts of plants were separated in laboratory. Leaf area was measured by different method included leaf area meter, planimeter, ruler (length and width and the fresh and dry weight of leaves were also measured. The best regression models were statistically selected using Determination Coefficient, Maximum Error, Model Efficiency, Root Mean Square Error and Coefficient of Residual Mass. Overall, based on regression equation, a satisfactory estimation of leaf area was obtained by measuring the non-destructive parameters, i.e. number of leaf per seedling, length of the longest and width of widest leaf (R2 = 0.88 and also destructive parameters, i.e. dry weight (R2 = 0.94 and fresh weight (R2= 0.94 of leaves.

  2. In-store promotional mix and the effects on female consumer buying decisions in relation to cosmetic products

    OpenAIRE

    Yang, Dong-Jenn; Lee, C. W.

    2016-01-01

    This study was conducted to ascertain the relationship between the females' in-store purchasing decision process and the promotional mix. Two cosmetic salesmen groups were interviewed by using focus group interview technique to understand females' buying decision process with in-store promotional mix. The results indicated that females with buying intention will improve the effectiveness of in-store promotional strategies. The purchase behavior stimulated by in-store promotions was related to...

  3. Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum.

    Science.gov (United States)

    Bundschuh, Mirco; Hahn, Torsten; Gessner, Mark O; Schulz, Ralf

    2017-05-01

    Pharmaceuticals contribute greatly to human and animal health. Given their specific biological targets, pharmaceuticals pose a significant environmental risk by affecting organisms and ecosystem processes, including leaf-litter decomposition. Although litter decomposition is a central process in forest streams, the consequences of exposure to pharmaceuticals remain poorly known. The present study assessed the impact of antibiotics as an important class of pharmaceuticals on the growth of the leaf-shredding amphipod Gammarus fossarum over 24 days. Exposure scenarios involved an antibiotic mixture (i.e. sulfamethoxazole, trimethoprim, erythromycin-H 2 O, roxithromycin, clarithromycin) at 0, 2 and 200 µg/L to assess impacts resulting from exposure to both water and food. The antibiotics had no effect on either leaf-associated fungal biomass or bacterial abundance. However, modification of leaf quality (e.g. through shifts in leaf-associated microbial communities) may have triggered faster growth of gammarids (assessed in terms of body mass gain) at the low antibiotic concentration relative to the control. At 200 µg/L, however, gammarid growth was not stimulated. This outcome might be due to a modified ability of the gut microflora to assimilate nutrients and carbon. Furthermore, the observed lack of increases in the diameter of the gammarids' peduncles, despite an increase in gammarid mass, suggests antibiotic-induced effects in the moulting cycle. Although the processes responsible for the observed effects have not yet been identified, these results suggest a potential role of food-quality, gammarid gut microflora and alteration in the moulting cycle in mediating impacts of antibiotics on these detritivores and the leaf decomposition process in streams.

  4. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    Science.gov (United States)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  5. Inter-annual variation in the response of leaf-out onset to soil moisture increase in a teak plantation in northern Thailand.

    Science.gov (United States)

    Yoshifuji, Natsuko; Igarashi, Yasunori; Tanaka, Nobuaki; Tanaka, Katsunori; Sato, Takanori; Tantasirin, Chatchai; Suzuki, Masakazu

    2014-11-01

    To understand the impact of inter-annual climate change on vegetation-atmosphere mass and energy exchanges, it has become necessary to explore changes in leaf-out onset in response to climatic fluctuations. We examined the response of leaf-out and transpiration onset dates to soil moisture in a teak plantation in northern Thailand based on a 12-year leaf area index and sap flow measurements. The date of leaf-out and transpiration onset varied between years by up to 40 days, and depended on the initial date when the relative extractable water in a soil layer of 0-0.6 m (Θ) was greater than 0.2 being consistent with our previous results. Our new finding is that the delay in leaf-out and transpiration onset relative to the initial date when Θ > 0.2 increases linearly as the initial date on which Θ > 0.2 becomes earlier. The delay spans about 20 days in years when Θ > 0.2 occurs in March (the late dry season)-much earlier than usual because of heavy pre-monsoon rainfalls-while there is little delay in years when Θ > 0.2 occurs in May. This delay indicates the influence of additional factors on leaf-out onset, which controls the delay in the response of leaf-out to soil moisture increase. The results increased our knowledge about the pattern and extent of the changes in leaf phenology that occur in response to the inter-annual climate variation in tropical regions, where, in particular, such research is needed.

  6. An intervention program to promote health-related physical fitness in nurses.

    Science.gov (United States)

    Yuan, Su-Chuan; Chou, Ming-Chih; Hwu, Lien-Jen; Chang, Yin-O; Hsu, Wen-Hsin; Kuo, Hsien-Wen

    2009-05-01

    To assess the effects of exercise intervention on nurses' health-related physical fitness. Regular exercise that includes gymnastics or aerobics has a positive effect on fitness. In Taiwan, there are not much data which assess the effects of exercise intervention on nurses' health-related physical fitness. Many studies have reported the high incidence of musculoskeletal disorders (MSDs) in nurses However, there has been limited research on intervention programs that are designed to improve the general physical fitness of nurses. A quasi-experimental study was conducted at a medical centre in central Taiwan. Ninety nurses from five different units of a hospital volunteered to participate in this study and participated in an experimental group and a control group. The experimental group engaged in a three-month intervention program consisting of treadmill exercise. Indicators of the health-related physical fitness of both groups were established and assessed before and after the intervention. Before intervention, the control group had significantly better grasp strength, flexibility and durability of abdominal muscles than the experimental group (p work duration, regular exercise and workload and found that the experimental group performed significantly better (p flexibility, durability of abdominal and back muscles and cardiopulmonary function. This study demonstrates that the development and implementation of an intervention program can promote and improve the health-related physical fitness of nurses. It is suggested that nurses engage in an exercise program while in the workplace to lower the risk of MSDs and to promote working efficiency.

  7. Comparative leaf and root anatomy of two Dendrobium species (Orchidaceae) from different habitat in relation to their potential adaptation to drought

    Science.gov (United States)

    Metusala, D.; Supriatna, J.; Nisyawati, Sopandie, D.

    2017-07-01

    Dendrobium capra and Dendrobium arcuatum are closely related in phylogeny, but they have very contrasting vegetative morphology and habitats. D. capra is known as a species that is well-adapted to dry lowland teak forest habitat in East Java, where most trees drop their leaves in summer, while D. arcuatum has adapted to mid or high land moist forest at elevation up to 800 m dpl. In order to investigate their potential adaptation to drought stress in the climate change era, we have compared and analyzed the leaf and root anatomical characteristics of both species. Transversal sections were made using hand mini microtome, dehydrated in graded alcohol series and stained with safranin 1 % and fastgreen 1 %. Leaf scraping technique has been used to prepare paradermal sections, and then dehydrated in graded alcohol series and stained with safranin 1 %. Quantitative anatomical characteristics between D. capra and D. arcuatum have been compared using a t-test. The result showed that there were significant differences on anatomical characters between both species. Compared to D. arcuatum, D. capra shows more developed anatomical features for adapting to drought and dry condition. These anatomical features were a thicker cuticle, thicker epidermis, presence of hypodermis, thicker mesophyll, broader primary vascular bundle, well developed xylem's sclerenchyma, lower stomatal density, thicker and high proportion of velamen.

  8. Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

    Directory of Open Access Journals (Sweden)

    Shuyan Lin

    2018-05-01

    Full Text Available The principle of similarity (Thompson, 1917 states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A, density (ρ, length (L, thickness (T, and weight (W. Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.

  9. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2015-04-01

    The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.

  11. [Factors related to awareness on tobacco advertisement and promotion among adults in six cities in China].

    Science.gov (United States)

    Yang, Yan; Wu, Xi; Li, Qiang; Jiao, Shu-fang; Li, Xun; Li, Xin-jian; Zhu, Guo-ping; Du, Lin; Zhao, Jian-hua; Jiang, Yuan; Feng, Guo-ze

    2009-04-01

    To know the situation of tobacco advertisement, promotions and related factors in six cities in China. 4815 adults (above 18 years), selected form Beijing, Shanghai, Shenyang, Changsha, Guangzhou and Yinchuan through probability proportionate sampling and simple random sampling, were investigated through questionnaires. The most commonly reported channels that smokers noticed tobacco advertisements were billboards (35.6%) and television (34.4%). The most commonly reported tobacco promotional activities that were noticed by smokers were free gifts when buying cigarettes (23.1%) and free samples of cigarettes (13.9%). Smokers in Changsha were more likely to report noticing tobacco advertisement on billboards (chi2 = 562.474, P advertisement and promotion. It was universal to see tobacco advertisement and promotions in cities in China but the laws and regulations about tobacco-control were not uniformly executed in different cities. It is necessary to perfect and uniform related laws and regulations.

  12. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuwei eSong

    2016-02-01

    Full Text Available Many studies have shown that exogenous abscisic acid (ABA promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling.

  13. Indirect Field Measurement of Wine-Grape Vineyard Canopy Leaf Area Index

    Science.gov (United States)

    Johnson, Lee F.; Pierce, Lars L.; Skiles, J. W. (Technical Monitor)

    2002-01-01

    Leaf area index (LAI) indirect measurements were made at 12 study plots in California's Napa Valley commercial wine-grape vineyards with a LI-COR LI-2000 Plant Canopy Analyzer (PCA). The plots encompassed different trellis systems, biological varieties, and planting densities. LAI ranged from 0.5 - 2.25 sq m leaf area/ sq m ground area according to direct (defoliation) measurements. Indirect LAI reported by the PCA was significantly related to direct LAI (r(exp 2) = 0.78, p less than 001). However, the PCA tended to underestimate direct LAI by about a factor of two. Narrowing the instrument's conical field of view from 148 deg to 56 deg served to increase readings by approximately 30%. The PCA offers a convenient way to discern relative differences in vineyard canopy density. Calibration by direct measurement (defoliation) is recommended in cases where absolute LAI is desired. Calibration equations provided herein may be inverted to retrieve actual vineyard LAI from PCA readings.

  14. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical

  15. #WaysToRelax: developing an online alcohol-related health promotion animation for people aged 55 and older.

    Science.gov (United States)

    Ferguson, Nyssa; Savic, Michael; Manning, Victoria; Lubman, Daniel

    2017-04-27

    Alcohol use among middle-aged and older adults (55 years and older) is increasingly becoming a public health concern. Despite this, there is relatively little research on the experiences of alcohol use and related concerns among people aged 55 and older to inform tailored and engaging health promotion activities. To address this gap, we aimed to develop an engaging alcohol-related health promotion resource for people aged 55 and older. We drew on a research-into-action approach, which involved: 1) thematic analysis of alcohol-related concerns in online counselling transcripts of 70 people aged 55 and older, 2) a review of health promotion literature, and 3) consultation with consumers of alcohol and other drug services, and carers. The research phase highlighted that people aged 55 and older were concerned that their reliance on alcohol use to manage stress had become a habit they wanted to shift. Alongside this, the literature showed that people aged 55 and older were often dismissive of conventional health promotion activities, and pointed to the benefits of conveying health promotion messages through animation. In response, we developed an animation to stimulate reflection and thought about other ways to relax and manage stress. We drew on health promotion principles to ensure that the animation had a positive message and was engaging without being ageist or paternalistic. It was further refined with input from consumers and carers, who thought the animation was appropriate, appealing and useful. Future activities will include further dissemination and evaluation of the animation and associated activities.

  16. #WaysToRelax: developing an online alcohol-related health promotion animation for people aged 55 and older

    Directory of Open Access Journals (Sweden)

    Nyssa Ferguson

    2017-04-01

    Full Text Available Alcohol use among middle-aged and older adults (55 years and older is increasingly becoming a public health concern. Despite this, there is relatively little research on the experiences of alcohol use and related concerns among people aged 55 and older to inform tailored and engaging health promotion activities. To address this gap, we aimed to develop an engaging alcohol-related health promotion resource for people aged 55 and older. We drew on a research-into-action approach, which involved: 1 thematic analysis of alcohol-related concerns in online counselling transcripts of 70 people aged 55 and older, 2 a review of health promotion literature, and 3 consultation with consumers of alcohol and other drug services, and carers. The research phase highlighted that people aged 55 and older were concerned that their reliance on alcohol use to manage stress had become a habit they wanted to shift. Alongside this, the literature showed that people aged 55 and older were often dismissive of conventional health promotion activities, and pointed to the benefits of conveying health promotion messages through animation. In response, we developed an animation to stimulate reflection and thought about other ways to relax and manage stress. We drew on health promotion principles to ensure that the animation had a positive message and was engaging without being ageist or paternalistic. It was further refined with input from consumers and carers, who thought the animation was appropriate, appealing and useful. Future activities will include further dissemination and evaluation of the animation and associated activities.

  17. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  18. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    AMIT KUMAR SINGH

    seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single ... closely or distantly related species of wheat (McIntosh et al. 2013 ... An effort was also made to determine the chromo- ... Materials and methods.

  19. Leaf surface anatomy in some woody plants from northeastern Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H.G.; Balboa, P.C.R.; Kumari, A

    2016-01-01

    Studies on leaf surface anatomy of woody plants and its significance are rare. The present study was undertaken in the Forest Science Faculty Experimental Research Station, UANL, Mexico, with objectives to determine the variability in leaf surface anatomy in the woody plants of the Tamaulipan thornscrub and its utility in taxonomy and possible adaptation to the prevailing semiarid conditions. The results show the presence of large variability in several leaf anatomical traits viz., waxy leaf surface, type of stomata, its size, and distribution. The species have been classified on the basis of various traits which can be used in species delimitation and adaptation to the semiarid condition such as waxy leaf surface, absence sparse stomata on the leaf surface, sunken stomata. The species identified as better adapters to semi-arid environments on the basis of the presence and absence of stomata on both adaxial and abaxial surface viz., Eysenhardtia texana, Parkinsonia texana, Gymnosperma glutinosum, Celtis laevigata, Condalia hookeri and Karwinskia humboldtiana. (author)

  20. Antibacterial activity, chemical composition, and cytotoxicity of leaf?s essential oil from brazilian pepper tree (schinus terebinthifolius, raddi)

    OpenAIRE

    Silva, A.B.; Silva, T.; Franco, E.S.; Rabelo, S.A.; Lima, E.R.; Mota, R.A.; da C?mara, C.A.G.; Pontes-Filho, N.T.; Lima-Filho, J.V.

    2010-01-01

    The antibacterial potential of leaf?s essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 ?g/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals.