WorldWideScience

Sample records for relating volumetric water

  1. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  2. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  3. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    Śliwiński Pawel

    2017-04-01

    Full Text Available In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.

  4. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  5. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  6. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  7. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  8. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  9. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    Science.gov (United States)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  10. Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: analysis from Western India

    International Nuclear Information System (INIS)

    Kumar, M.D.

    2005-01-01

    In recent years, power tariff policy has been increasingly advocated as a mean to influence groundwater use and withdrawal decisions of farmers in view of the failure of existing direct and indirect regulations on groundwater withdrawal in India. Many researchers argue that pro rata electricity tariff, with built in positive marginal cost of pumping could bring about efficient use of the resource, though some argue that the levels of tariff in which demand becomes elastic to pricing are too high to be viable from political and socio-economic points of view. The paper presents a theoretical model to analyze farmers' response to changes in power tariff and water allocation regimes vis a vis energy and groundwater use. It validates the model by analyzing water productivity in groundwater irrigation under different electricity pricing structures and water allocation regimes. Water productivity was estimated using primary data of gross crop inputs, cost of all inputs, and volumetric water inputs. The analysis shows that unit pricing of electricity influences groundwater use efficiency and productivity positively. It also shows that the levels of pricing at which demand for electricity and groundwater becomes elastic to tariff are socio-economically viable. Further, water productivity impacts of pricing would be highest when water is volumetrically allocated with rationing. Therefore, an effective power tariff policy followed by enforcement of volumetric water allocation could address the issue of efficiency, sustainability and equity in groundwater use in India

  11. Volumetric water control in a large-scale open canal irrigation system with many smallholders: The case of Chancay-Lambayeque in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.; Vincent, L.F.

    2011-01-01

    Volumetric water control (VWC) is widely seen as a means to increase productivity through flexible scheduling and user incentives to apply just enough water. However, the technical and social requirements for VWC are poorly understood. Also, many experts assert that VWC in large-scale open canals

  12. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  13. Reference method for total water in lint cotton by automated oven drying combined with volumetric Karl Fischer titration

    Science.gov (United States)

    In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...

  14. Volumetrics relate to the development of depression after traumatic brain injury.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B

    2014-09-01

    Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  16. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  17. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  18. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    Science.gov (United States)

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Determination of density and volumetric water content of soil at multiple photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Un, A., E-mail: ademun25@yahoo.co [Department of Physics, Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100 Agri (Turkey); Demir, D.; Sahin, Y. [Department of Physics, Faculty of Science, Atatuerk University, 25240 Erzurum (Turkey)

    2011-08-15

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm{sup 3} cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were {sup 241}Am, {sup 133}Ba and {sup 137}Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  20. Determination of density and volumetric water content of soil at multiple photon energies

    International Nuclear Information System (INIS)

    Un, A.; Demir, D.; Sahin, Y.

    2011-01-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm 3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241 Am, 133 Ba and 137 Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  1. Cost-effectiveness of volumetric alcohol taxation in Australia.

    Science.gov (United States)

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  2. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  3. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  4. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  5. Need and trends of volumetric tests in recurring inspection of pressurized components in pressurized water reactors

    International Nuclear Information System (INIS)

    Bergemann, W.

    1982-01-01

    On the basis of the types of stress occurring in nuclear power plants and of practical results it has been shown that cracks in primary circuit components arise due to operating stresses in both the materials surfaces and the bulk of the materials. For this reason, volumetric materials testing is necessary in addition to surface testing. An outlook is given on the trends of volumetric testing. (author)

  6. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  7. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  8. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  9. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  10. Volumetric humidity timely variation, at different depths, in soils of a toposequence of the Reconcavo Baiano - Brazil

    International Nuclear Information System (INIS)

    Ribeiro, Antonio Carlos; Costa, Liovando Marciano da; Paiva, Arlicelio de Queiroz; Souza, Luciano da Silva; Santana, Marlete Bastos

    1997-01-01

    Aiming the time basis volumetric humidity evaluation, at different depths, the present work has been developed in a Reconcavo Baiano toposequence consisting of three different soils, in accordance with the distances from the toposequence begin. A neutron probe has been used for determination of the soil water contents. The relative counting of the neutron probe has been converted to gravimetric humidity by using regression equation for each type of soil

  11. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  12. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  13. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  14. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  15. Measuring the layer-average volumetric water content in the uppermost 5 cm of soil using printed circuit board TDR probes

    International Nuclear Information System (INIS)

    Wang, W.; Kobayashi, T.; Chikushi, J.

    2000-01-01

    Newly designed printed circuit board TDR probes (PCBPs) were made, and they were calibrated by indoor experiment. A regression equation for estimating the volumetric water content from the dielectric constant measured with the PCBP was determined, which is almost the same as the well-known Topp's equation when the soil is rather wet while the difference becomes larger as the soil dries. The PCBP was designed to measure the average water content over a soil layer 5 cm thick because the thickness of soil layer involved in measuring water content by microwave remote sensing is several centimeters. A comparison experiment of measurements with PCBPs and those by microwave remote sensing was conducted in an arid area in the northwest of China. The results of this experiment show that the newly designed TDR probe is promising as the sensor to get ground truth of the surface wetness. This paper describes only the calibration of probes and the observations taken using them

  16. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  17. Volumetric properties of glucose in aqueous HCI solutions at temperatures from 278.15 to 318.15 K

    Institute of Scientific and Technical Information of China (English)

    ZHUO Kelei; ZHANG Qiufen; XUAN Xiaopeng; ZHANG Hucheng; WANG Jianji

    2007-01-01

    Densities have been measured for Glucose+HC1 +Water at 10-degree intervals from 278.15 to 318.15 K.The apparent molar volumes (Vφ,G) and standard partial molar volumes (V0φ,G) for Glucose in aqueous solution of 0.2,0.4,0.7,1.1,1.6,2.1 mol.kg-1 HCI have been calculated as well as volumetric interaction parameters (VEG) for Glucose-HC1 in water and standard partial molar expansion coefficients ((e)V0φ,G/(e)T)p.Results show that (1) the apparent molar volume for Glucose in aqueous HC1 solutions increases lineally with increasing molality of Glucose and HC1; (2) V0φ,Gfor Glucose in aqueous HC1 solutions increases lineally with increasing molality of HC1; (3) the volumetric interaction parameters for Glucose-HC1 pair in water are small positive and vary slightly with temperature; (4) the relation between V0φ,G and temperature exists as V0φ,G =α0+α1(T-273.15 K)2/3;(5)values of((e)V0φ,G/(e)T)p are positive and increase as temperatures rise,and at given temperatures decrease slightly with increasing molalities of HC1,indicating that the hydration of glucose decreases with increasing temperature and molality of HCI.These phenomena are interpreted successfully by the structure interaction model.

  18. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  19. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  20. Clarification of the volumetric properties of the (tetrahydrofuran + water) systems [J. Chem. Thermodyn. 41 (2009) 1382–1386]: Author’s statement

    International Nuclear Information System (INIS)

    Belandria, Veronica; Pimentel-Rodas, Alfredo; Mohammadi, Amir H.; Galicia-Luna, Luis A.; Richon, Dominique

    2013-01-01

    Highlights: ► New experimental density data are reported for the (THF + water) systems. ► A vibrating tube densimeter has been used to perform the measurements. ► A discussion is made on the reliability of the generated data and other questions raised in the literature. - Abstract: Although reliable and consistent volumetric data can be derived from density measurements, the greatest experimental difficulty and largest measurement errors often occur in the very dilute regions of concentration. Such data are of great interest in separation processes where a high degree of purity is required. In this communication, the densities of the (tetrahydrofuran + water) systems have been carefully investigated in dilute regions. A vibrating tube densimeter has been used to perform the measurements. A discussion is made on the reliability of the generated experimental data and the questions raised in the literature.

  1. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings.

    Science.gov (United States)

    Reinhardt, Keith; Germino, Matthew J; Kueppers, Lara M; Domec, Jean-Christophe; Mitton, Jeffry

    2015-07-01

    Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below -5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomass-gain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations. © The Author 2015. Published by Oxford University Press. All rights reserved

  2. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  3. Soft bilateral filtering volumetric shadows using cube shadow maps.

    Directory of Open Access Journals (Sweden)

    Hatam H Ali

    Full Text Available Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.

  4. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  5. Transfer laws between water and freon 113 for average volumetric steam quality, pressure drop, and critical heat flux

    International Nuclear Information System (INIS)

    Nabizadeh, H.

    1977-01-01

    Simulation of the thermohydraulic processes of the steady-state reactor operation with boiling water and typical fuel element geometries leads to considerable increase of the heat rates to be tranferred and thus to an increase of the experimental cost which can hardly be justified. By proper choice of a model fluid with low heat of evaporation the system parameters like pressure, temperature, and heat rate, while retaining the original geometry, may be reduced to a fraction of those of the original fluid water. This permits not only a decrease in experimental cost but also a modification of the existing calculation data under more favorable experimental conditions. Starting from these considerations the cooling medium R113 was used as model fluid in carrying out the experiments. The necessary knowledge of the thermodynamical laws of simularity, however, have to be determined first of all in simple geometries and the scaling factors are then derived from them. In this connection the following experimental studies have been carried out with R113: a) average volumetric steam quality; b) two-phase pressure drop; c) critical heat flux. (orig.) [de

  6. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  7. The Effect of Elevation on Volumetric Measurements of the Lower Extremity

    Directory of Open Access Journals (Sweden)

    Cordial M. Gillette

    2017-07-01

    Full Text Available Background: The empirical evidence for the use of RICE (rest, ice, compression, elevation has been questioned regarding its   clinical effectiveness. The component of RICE that has the least literature regarding its effectiveness is elevation. Objective: The objective of this study was to determine if various positions of elevation result in volumetric changes of the lower extremity. Methodology: A randomized crossover design was used to determine the effects of the four following conditions on volumetric changes of the lower extremity: seated at the end of a table (seated, lying supine (flat, lying supine with the foot elevated 12 inches off the table (elevated, and lying prone with the knees bent to 90 degrees (prone. The conditions were randomized using a Latin Square. Each subject completed all conditions with at least 24 hours between each session. Pre and post volumetric measurements were taken using a volumetric tank. The subject was placed in one of the four described testing positions for 30 minutes. The change in weight of the displaced water was the main outcome measure. The data was analyzed using an ANOVA of the pre and post measurements with a Bonferroni post hoc analysis. The level of significance was set at P<.05 for all analyses. Results: The only statistically significant difference was between the gravity dependent position (seated and all other positions (p <.001. There was no significant difference between lying supine (flat, on a bolster (elevated, or prone with the knees flexed to 90 degrees (prone. Conclusions: From these results, the extent of elevation does not appear to have an effect on changes in low leg volume. Elevation above the heart did not significantly improve reduction in limb volume, but removing the limb from a gravity dependent position might be beneficial.

  8. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  9. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  10. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    Science.gov (United States)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the

  11. Volumetric and viscometric properties of binary and ternary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, monoethanolamine and water

    International Nuclear Information System (INIS)

    Yin, Yaran; Zhu, Chunying; Ma, Youguang

    2016-01-01

    Highlights: • Densities and viscosities of [Bmim][BF 4 ] + MEA + H 2 O solutions were measured. • Volumetric and viscometric properties were deduced from experimental results. • Intermolecular interactions were analysed by volumetric and viscometric properties. - Abstract: Densities and viscosities of binary {[Bmim][BF 4 ] + H 2 O}, {[Bmim][BF 4 ] + MEA}, (MEA + H 2 O) and ternary mixtures {[Bmim][BF 4 ] + MEA + H 2 O} were measured at T = (293.15–333.15) K. The volumetric and viscometric properties, such as excess molar volume V E , viscosity deviation Δη, and excess Gibbs energy of activation of viscous flow ΔG ∗E for all mixtures, and apparent molar volume, excess partial molar volume and Grunberg-Nissan interaction parameter G 12 for binary mixtures, were deduced from experimental results, and the intermolecular interactions in solutions were also analysed. The excess molar volumes were correlated using the Redlich-Kister polynomial equation for binary mixtures, and Singh et al. equation for the ternary mixture with corresponding binary parameters. The viscosities of binary and ternary solutions were respectively fitted by Jouyban-Acree equation and its extended equation at each measurement temperature, the correlated values are in good agreement with the corresponding experimental data.

  12. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  13. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  14. Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space

    Science.gov (United States)

    Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar

    2010-01-01

    Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and

  15. [The water content reference material of water saturated octanol].

    Science.gov (United States)

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  16. Verbal Memory Decline following DBS for Parkinson's Disease: Structural Volumetric MRI Relationships.

    Science.gov (United States)

    Geevarghese, Ruben; Lumsden, Daniel E; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Parkinson's disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes.

  17. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  18. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  19. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were......) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... be a marker of neurodegenerative disease. KEY POINTS: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related...

  20. Review of state of the art methods for measuring water in landfills

    International Nuclear Information System (INIS)

    Imhoff, Paul T.; Reinhart, Debra R.; Englund, Marja; Guerin, Roger; Gawande, Nitin; Han, Byunghyun; Jonnalagadda, Sreeram; Townsend, Timothy G.; Yazdani, Ramin

    2007-01-01

    In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field

  1. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  2. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  3. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    Science.gov (United States)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  4. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  5. Examining the Effectiveness of Hacked, Commercial, Self-Tuning RFID Tags to Passively Sense the Volumetric Water Content of Soil

    Science.gov (United States)

    Stoddard, B. S.; Udell, C.; Selker, J. S.

    2017-12-01

    Currently available soil volumetric water content (VWC) sensors have several drawbacks that pose certain challenges for implementation on large scale for farms. Such issues include cost, scalability, maintenance, wires running through fields, and single-spot resolution. The development of a passive soil moisture sensing system utilizing Radio Frequency Identification (RFID) would allay many of these issues. The type of passive RFID tags discussed in this paper currently cost between 8 to 15 cents retail per tag when purchased in bulk. An incredibly cheap, scalable, low-maintenance, wireless, high-resolution system for sensing soil moisture would be possible if such tags were introduced into the agricultural world. This paper discusses both the use cases as well as examines one implementation of the tags. In 2015, RFID tag manufacturer SmarTrac started selling RFID moisture sensing tags for use in the automotive industry to detect leaks during quality assurance. We place those tags in soil at a depth of 4 inches and compared the moisture levels sensed by the RFID tags with the relative permittivity (ɛr) of the soil as measured by an industry-standard probe. Using an equation derived by Topp et al, we converted to VWC. We tested this over a wide range of moisture conditions and found a statistically significant, correlational relationship between the sensor values from the RFID tags and the probe's measurement of ɛr. We also identified a possible function for mapping vales from the RFID tag to the probe bounded by a reasonable margin of error.

  6. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  7. Determination of Uncertainty for a One Milli Litre Volumetric Pipette

    International Nuclear Information System (INIS)

    Torowati; Asminar; Rahmiati; Arif-Sasongko-Adi

    2007-01-01

    An observation had been conducted to determine the uncertainty of volumetric pipette. The uncertainty was determined from data obtained from a determine process which used method of gravimetry. Calculation result from an uncertainty of volumetric pipette the confidence level of 95% and k=2. (author)

  8. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study.

    Science.gov (United States)

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Hernández, Virginia; Serrano-Sánchez, Pedro; Guarinos, Juan; Paredes-Gallardo, Vanessa

    2017-09-20

    The accuracy of Cone-Beam Computed Tomography (CBCT) on linear and volumetric measurements on condyles has only been assessed on dry skulls. The aim of this study was to evaluate the reliability and accuracy of linear and volumetric measurements of mandibular condyles in the presence of soft tissues using CBCT. Six embalmed cadaver heads were used. CBCT scans were taken, followed by the extraction of the condyles. The water displacement technique was used to calculate the volumes of the condyles and three linear measurements were made using a digital caliper, these measurements serving as the gold standard. Surface models of the condyles were obtained using a 3D scanner, and superimposed onto the CBCT images. Condyles were isolated on the CBCT render volume using the surface models as reference and volumes were measured. Linear measurements were made on CBCT slices. The CBCT method was found to be reliable for both volumetric and linear measurements (CV  0.90). Highly accurate values were obtained for the three linear measurements and volume. CBCT is a reliable and accurate method for taking volumetric and linear measurements on mandibular condyles in the presence of soft tissue, and so a valid tool for clinical diagnosis.

  9. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  10. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures

    International Nuclear Information System (INIS)

    Xu, Yingjie

    2013-01-01

    Highlights: • Densities and viscosities of N4AC + water and N4NO 3 + water mixtures were measured. • Volumetric and viscosity properties were calculated. • Redlich–Kister equation was used to correlate the excess molar volumes and viscosity deviations. • Electrical conductivity was fitted according to the empirical Casteel–Amis equation. • The interactions and structural effects of N4AC or N4NO 3 with water were analyzed. -- Abstract: Densities and viscosities of (n-butylammonium acetate (N4AC) protic ionic liquid + water) and (n-butylammonium nitrate (N4NO 3 ) protic ionic liquid + water) mixtures were measured at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K under atmospheric pressure. Electrical conductivities of the above-mentioned systems were determined at 298.15 K. Excess molar volumes and viscosity deviations were obtained from the experimental results and fitted to the Redlich–Kister equation with satisfactory results. Other volumetric properties, such as apparent molar volumes, partial molar volumes, and excess partial molar volumes were also calculated. The concentration dependence of electrical conductivity was fitted according to the empirical Casteel–Amis equation. Based on the measured and derived properties, the molecular interactions and structural factors in the above-mentioned systems were discussed

  11. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  12. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  13. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  14. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  15. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  16. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures.

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    Full Text Available Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging has been extensively studied in the past decades for prediction of Alzheimer's disease (AD and mild cognitive impairment (MCI. The volumes of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental

  17. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  18. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  19. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  20. Volumetric PIV behind mangrove-type root models

    Science.gov (United States)

    Kazemi, Amirkhosro; van de Riet, Keith; Curet, Oscar M.

    2017-11-01

    Mangrove trees form dense networks of prop roots in coastal intertidal zones. The interaction of mangroves with the tidal flow is fundamental in estuaries and shoreline by providing water filtration, protection against erosion and habitat for aquatic animals. In this work, we modeled the mangrove prop roots with a cluster of rigid circular cylinders (patch) to investigate its hydrodynamics. We conducted 2-D PIV and V3V in the near- and far-wake in the recirculating water channel. Two models were considered: (1) a rigid patch, and (2) a flexible patch modeled as rigid cylinders with a flexible hinge. We found that Strouhal number changes with porosity while the patch diameter is constant. Based on the wake signature, we defined an effective diameter length scale. The volumetric flow measurements revealed a regular shedding forming von Kármán vortices for the rigid patch while the flexible patch produced a less uniform wake where vortices were substantially distorted. We compare the wake structure between that 2-D PIV and V3V. This analysis of the hydrodynamics of mangrove-root like models can also be extended to understand other complex flows including bio-inspired coastal infrastructures, damping-wave systems, and energy harvesting devices.

  1. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  2. Soil sheaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.; North, G.B.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-09-01

    Soil sheaths incorporating aggregated soil particles surround young roots of many species, but the effects of such sheaths on water movement between roots and the soil are largely unknown. The quantity and location of root exudates associated with soil sheath along the entire length of its young roots, except within 1.4 cm of the tip. The soil sheaths, which average 0.7 mm in thickness, were composed of soil particles and root hairs, both of which were covered with exuded mucilaginous material. As determined with a [sup 14]C pulse-labeling technique, 2% of newly fixed [sup 14]C-photosynthate was translocated into the roots at 3d, 6% at 9 d, and 8% at 15 d after labeling. The fraction of insoluble [sup 14]C in the roots increased twofold from 3 d to 15 d. Over the same time period, 6%-9% of the [sup 14]C translocated to the roots was exuded into the soil. The soluble [sup 14]C compounds exuded into the soil were greater in the 3-cm segment at the root tip than elsewhere along the root, whereas mucilage was exuded relatively uniformly along roots 15 cm in length. The volumetric efflux of water increase for both sheathed and unsheathed roots as the soil water potential decreased form -0.1 MPa to -1.0 MPa. The efflux rate was greater for unsheathed roots than for sheathed roots, which were more turgid and had a higher water potential, especially at lower soil water potentials. During drying, soil particles in the sheaths aggregate more tightly, making the sheaths less permeable to water and possibly creating air gaps. The soil sheaths of O. ficus-indica thus reduce water loss from the roots to a drying soil. 34 refs., 6 figs., 1 tab.

  3. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  4. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  5. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  6. Assessing the Blue and Green Water Footprint of Lucerne for Milk Production in South Africa

    OpenAIRE

    Morne E. Scheepers; Henry Jordaan

    2016-01-01

    The Global Water Footprint Standard approach was used to calculate the volumetric blue and green water footprint indicator for lucerne production as important feed for dairy cows in a major lucerne production region in South Africa. The degree of sustainability of water use then was assessed by comparing water use to water availability for the region. The results show a volumetric water footprint indicator of 378 m3/tonne of lucerne. Of the total blue and green water footprint, 55% is green w...

  7. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  8. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    Science.gov (United States)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  9. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  10. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  11. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    Science.gov (United States)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  12. Reference volumetric samples of gamma-spectroscopic sources

    International Nuclear Information System (INIS)

    Taskaev, E.; Taskaeva, M.; Grigorov, T.

    1993-01-01

    The purpose of this investigation is to determine the requirements for matrices of reference volumetric radiation sources necessary for detector calibration. The first stage of this determination consists in analysing some available organic and nonorganic materials. Different sorts of food, grass, plastics, minerals and building materials have been considered, taking into account the various procedures of their processing (grinding, screening, homogenizing) and their properties (hygroscopy, storage life, resistance to oxidation during gamma sterilization). The procedures of source processing, sample preparation, matrix irradiation and homogenization have been determined. A rotation homogenizing device has been elaborated enabling to homogenize the matrix activity irrespective of the vessel geometry. 33 standard volumetric radioactive sources have been prepared: 14 - on organic matrix and 19 - on nonorganic matrix. (author)

  13. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  14. Systematic bias in the measurement of water in oils by tubular oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Margolis, S A; Mele, T

    2001-10-15

    Water in oil has been measured by tubular oven evaporation and by azeotropic distillation into a coulometric moisture analyzer. The results of these measurements were compared to the results obtained by volumetric titration of water in oil. The volumetric measurements were consistently higher than the measurements made by tubular oven evaporation or azeotropic distillation. A mass balance study was performed by volumetric Karl Fischer titration of the water in the oil that remained in the tubular oven and in the distillation apparatus. This study indicated that measurable amounts of water were not removed after exhaustive evaporation or distillation. The sum of the water removed by distillation from toluene and that remaining in the distillation chamber was equal to the amount of water measured in the oil by the volumetric method. The data are consistent with the existence of an oil-water azeotrope that does not release water upon evaporation at 160 degrees C or upon dissolution in toluene and distillation of the water-toluene azeotrope. These results were obtained for oils varying in viscosity from 8 to 850 m2/s, and the amount of water remaining associated with the oil appears to be dependent upon the composition of the oil and the method of analysis.

  15. A volumetric three-dimensional digital light photoactivatable dye display

    Science.gov (United States)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  16. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  17. Effect of Drought Stress and Methanol on Chlorophyll Parameters, Chlorophyll Content and Relative Water Content of Soybean (Glycine max L., var. L 17

    Directory of Open Access Journals (Sweden)

    M Mirakhori

    2011-01-01

    Full Text Available Abstract In order to investigate the effects of methanol application on some physiological properties of soybean under low water stress, a factorial experiment was conducted at Research Field of Faculty of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj, Iran, during 2008, based on a randomized complete block design with three replications. The first factor was consisted of different levels of methanol equal to 0 (control, 7, 14, 21, 28 and 35 volumetric percentage (v/v, which were used as foliar applications at three times during growth season of soybean, with 15 days intervals. The second factor was water stress conditions in two levels, based on depletion of 40 and 70% of available soil moisture. Some traits such as grain yield (GY, relative water content (RWC, chlorophyll fluorescence parameters, and chlorophyll content were measured, one day before and after the third methanol application. Results showed that chlorophyll content (Chl, GY, electrolytes leakage (EL at second sampling, photochemical capacity of PSII (Fv/Fm, maximum and variable fluorescence (Fm and FV, respectively were affected by water stress significantly (p

  18. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  19. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  20. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  1. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  2. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  3. Critical properties and high-pressure volumetric behavior of the carbon dioxide+propane system at T=308.15 k. Krichevskii function and related thermodynamic properties.

    Science.gov (United States)

    Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada

    2009-05-21

    Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTcStructural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept. Both the critical and volumetric behavior have been compared with literature data and with those obtained from the PC-SAFT and Patel-Teja equations of state.

  4. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  5. Potential Effects of a Water Market on Enhancing Water Productivity and Reducing Water-Related Conflicts in Fars Province, Iran

    Directory of Open Access Journals (Sweden)

    Mansour Zibaei

    2017-03-01

    annual irrigation water allocations to the representative farms in groups 1 and 2 are reduced by 20 and 30%, respectively, to observe reductions in farmers’ income levels of only 8 to 11%. This indicates that the simultaneous implementation of both water extraction rationing and water marketing is able to guarantee reductions in water consumption without any considerable decline in farm income levels. The water thus saved can then be used for groundwater protective measures and environmental water allocations. Water meters and volumetric water delivery systems as components of a sound water bookkeeping system considerable at both farm and basin levels will form the prerequisite measures to any water saving policies such as water marketing.

  6. Volumetric B1 (+) mapping of the brain at 7T using DREAM.

    Science.gov (United States)

    Nehrke, Kay; Versluis, Maarten J; Webb, Andrew; Börnert, Peter

    2014-01-01

    To tailor and optimize the Dual Refocusing Echo Acquisition Mode (DREAM) approach for volumetric B1 (+) mapping of the brain at 7T. A new DREAM echo timing scheme based on the virtual stimulated echo was derived to minimize potential effects of transverse relaxation. Furthermore, the DREAM B1 (+) mapping performance was investigated in simulations and experimentally in phantoms and volunteers for volumetric applications, studying and optimizing the accuracy of the sequence with respect to saturation effects, slice profile imperfections, and T1 and T2 relaxation. Volumetric brain protocols were compiled for different isotropic resolutions (5-2.5 mm) and SENSE factors, and were studied in vivo for different RF drive modes (circular/linear polarization) and the application of dielectric pads. Volumetric B1 (+) maps with good SNR at 2.5 mm isotropic resolution were acquired in about 20 s or less. The specific absorption rate was well below the safety limits for all scans. Mild flow artefacts were observed in the large vessels. Moreover, a slight contrast in the ventricle was observed in the B1 (+) maps, which could be attributed to T1 and T2 relaxation effects. DREAM enables safe, very fast, and robust volumetric B1 (+) mapping of the brain at ultrahigh fields. Copyright © 2013 Wiley Periodicals, Inc.

  7. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  8. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    Science.gov (United States)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA

  9. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    International Nuclear Information System (INIS)

    Neyman, G

    2016-01-01

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB

  10. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    Energy Technology Data Exchange (ETDEWEB)

    Neyman, G [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.

  11. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel; Kuester, Falko

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual

  12. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  13. Volumetric breast density measurement: sensitivity analysis of a relative physics approach.

    Science.gov (United States)

    Lau, Susie; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah

    2016-10-01

    To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.

  14. Water quality determination by photographic analysis. [optical density and water turbidity

    Science.gov (United States)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  15. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos

    2016-01-01

    tracer mass could be well fitted to an analytical solution to the classical convection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were hereby reasonable well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass......Solute transport through the soil matrix is heterogeneous and greatly affected by soil texture, soil structure, and macropore networks. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. Hundred...... of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5 % and up to 50 % of the tracer mass were found to be strongly correlated with volumetric fines content. The hereby predicted tracer concentration breakthrough points up to 50% of applied...

  16. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  17. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  18. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  19. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  20. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  1. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    Science.gov (United States)

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    Science.gov (United States)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  3. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

    International Nuclear Information System (INIS)

    Falcão Carneiro, J.; Gomes de Almeida, F.

    2016-01-01

    Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed. - Highlights: • A new model of a thermal driven volumetric pump for underwater gliders is proposed. • The effect hydraulic system parameters have on the cycle efficiency is analyzed. • The energy efficiency may be increased tenfold using adequate hydraulic parameters. • It's shown that the PCM PVT transition surface may not alter the cycle efficiency.

  4. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  5. Correlation of volumetric mismatch and mismatch of Alberta Stroke program Early CT scores on CT perfusion maps

    International Nuclear Information System (INIS)

    Lin, Ke; Rapalino, Otto; Lee, Benjamin; Do, Kinh G.; Sussmann, Amado R.; Pramanik, Bidyut K.; Law, Meng

    2009-01-01

    We aimed to determine if volumetric mismatch between tissue at risk and tissue destined to infarct on computed tomography perfusion (CTP) can be described by the mismatch of Alberta Stroke Program Early CT Score (ASPECTS). Forty patients with nonlacunar middle cerebral artery infarct 6 s and <2.0 mL per 100 g, respectively. Two other raters assigned ASPECTS to the same MTT and CBV maps while blinded to the volumetric data. Volumetric mismatch was deemed present if ≥20%. ASPECTS mismatch (=CBV ASPECTS - MTT ASPECTS) was deemed present if ≥1. Correlation between the two types of mismatches was assessed by Spearman's coefficient (ρ). ROC curve analyses were performed to determine the optimal ASPECTS mismatch cut point for volumetric mismatch ≥20%, ≥50%, ≥100%, and ≥150%. Median volumetric mismatch was 130% (range 10.9-2,031%) with 31 (77.5%) being ≥20%. Median ASPECTS mismatch was 2 (range 0-6) with 26 (65%) being ≥1. ASPECTS mismatch correlated strongly with volumetric mismatch with ρ = 0.763 [95% CI 0.585-0.870], p < 0.0001. Sensitivity and specificity for volumetric mismatch ≥20% was 83.9% [95% CI 65.5-93.5] and 100% [95% CI 65.9-100], respectively, using ASPECTS mismatch ≥1. Volumetric mismatch ≥50%, ≥100%, and ≥150% were optimally identified using ASPECTS mismatch ≥1, ≥2, and ≥2, respectively. On CTP, ASPECTS mismatch showed strong correlation to volumetric mismatch. ASPECTS mismatch ≥1 was the optimal cut point for volumetric mismatch ≥20%. (orig.)

  6. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  7. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  8. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    Science.gov (United States)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    performed on days with slight or no rainfall during the whole study period in the grassland field and during the cultural cycle in the maize field. Simultaneously, the water volumetric content of the soil was estimated. The daily humidity data in the root-influenced zone were related to daily average of the soil water volumetric content using simple correlation. For the whole study period, in the grassland field, the average of soil water volumetric content was 22.77%, ranging from 15.10% to 36.07%. In the case of the maize field, the average was 25.29%, varying from 19.09% to 33.26%. The averages of daily variation of the soil water content (for days with no rainfall) were 1.36 mm and 2.95 mm for grassland and maize fields, respectively. Correlation coefficients between daily volumetric content and soil water variation were 0.61 for grassland and 0.64 for maize, both of them significant and positive. This indicates that water volumetric content of the soil is an important factor in daily variations of soil water content influencing evapotranspiration, water uptake by roots and infiltration. Therefore, monitoring soil water content would be useful in the decision making concerning the irrigation management.

  9. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    Science.gov (United States)

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.

  10. Spatial and volumetric changes of retroperitoneal sarcomas during pre-operative radiotherapy

    International Nuclear Information System (INIS)

    Wong, Philip; Dickie, Colleen; Lee, David; Chung, Peter; O’Sullivan, Brian; Letourneau, Daniel; Xu, Wei; Swallow, Carol; Gladdy, Rebecca; Catton, Charles

    2014-01-01

    Purpose: To determine the positional and volumetric changes of retroperitoneal sarcomas (RPS) during pre-operative external beam radiotherapy (PreRT). Material and methods: After excluding 2 patients who received chemotherapy prior to PreRT and 15 RPS that were larger than the field-of-view of cone-beam CT (CBCT), the positional and volumetric changes of RPS throughout PreRT were characterized in 19 patients treated with IMRT using CBCT image guidance. Analysis was performed on 118 CBCT images representing one image per week of those acquired daily during treatment. Intra-fraction breathing motions of the gross tumor volume (GTV) and kidneys were measured in 22 RPS patients simulated using 4D-CT. Fifteen other patients were excluded whose tumors were incompletely imaged on CBCT or who received pre-RT chemotherapy. Results: A GTV volumetric increase (mean: 6.6%, p = 0.035) during the first 2 weeks (CBCT1 vs. CBCT2) of treatment was followed by GTV volumetric decrease (mean: 4%, p = 0.009) by completion of radiotherapy (CBCT1 vs. CBCT6). Internal margins of 8.6, 15 and 15 mm in the lateral, anterior/posterior and superior/inferior directions would be required to account for inter-fraction displacements. The extent of GTV respiratory motion was significantly (p < 0.0001) correlated with more superiorly positioned tumors. Conclusion: Inter-fraction CBCT provides important volumetric and positional information of RPS which may improve PreRT quality and prompt re-planning. Planning target volume may be reduced using online soft-tissue matching to account for interfractional displacements of GTVs. Important breathing motion occurred in superiorly placed RPS supporting the utility of 4D-CT planning

  11. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  12. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  13. Thermal expansion and volumetric changes during indium phosphide melting

    International Nuclear Information System (INIS)

    Glazov, V.M.; Davletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    The results of the measurements of a thermal expansion were summed up at various temperatures as a diagram in coordinates (Δ 1/1) approximately F(t). It was shown that an appreciable deviation of the relationship (Δ1/1) approximately f(t) from the linear law corresponded to a temperature of 500-550 deg C. It was noted that the said deviation was related to an appreciable thermal decomposition of indium phosphide as temperature increased. The strength of the inter-atomic bond of indium phosphide was calculated. Investigated were the volumetric changes of indium phosphide on melting. The resultant data were analyzed with the aid of the Clausius-Clapeyron equation

  14. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation... ADDITIVES Detergent Gasoline § 80.170 Volumetric additive reconciliation (VAR), equipment calibration, and...) For a facility which uses a gauge to measure the inventory of the detergent storage tank, the total...

  15. QUANTITATIVE ESTIMATION OF VOLUMETRIC ICE CONTENT IN FROZEN GROUND BY DIPOLE ELECTROMAGNETIC PROFILING METHOD

    Directory of Open Access Journals (Sweden)

    L. G. Neradovskiy

    2018-01-01

    Full Text Available Volumetric estimation of the ice content in frozen soils is known as one of the main problems in the engineering geocryology and the permafrost geophysics. A new way to use the known method of dipole electromagnetic profiling for the quantitative estimation of the volumetric ice content in frozen soils is discussed. Investigations of foundation of the railroad in Yakutia (i.e. in the permafrost zone were used as an example for this new approach. Unlike the conventional way, in which the permafrost is investigated by its resistivity and constructing of geo-electrical cross-sections, the new approach is aimed at the study of the dynamics of the process of attenuation in the layer of annual heat cycle in the field of high-frequency vertical magnetic dipole. This task is simplified if not all the characteristics of the polarization ellipse are measured but the only one which is the vertical component of the dipole field and can be the most easily measured. Collected data of the measurements were used to analyze the computational errors of the average values of the volumetric ice content from the amplitude attenuation of the vertical component of the dipole field. Note that the volumetric ice content is very important for construction. It is shown that usually the relative error of computation of this characteristic of a frozen soil does not exceed 20% if the works are performed by the above procedure using the key-site methodology. This level of accuracy meets requirements of the design-and-survey works for quick, inexpensive, and environmentally friendly zoning of built-up remote and sparsely populated territories of the Russian permafrost zone according to a category of a degree of the ice content in frozen foundations of engineering constructions.

  16. Water-powder mixtures at the onset of flowing

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    The knowledge of water demands of the manifold concrete ingredients is of vital interest for the design of concrete mixes. Physical properties like workability or strength and durability in hardened state are controlled by the total water content. Water demand is defined as the volumetric ratio of

  17. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  18. Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K

    International Nuclear Information System (INIS)

    Sastry, Nandhibatla V.; Valand, Pinakin H.; Macwan, Pradip M.

    2012-01-01

    Highlights: ► Densities and viscosities of amino acids in aqueous additive solutions at different temperatures. ► Side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes ΔV tr ∘ were calculated. ► Temperature effect on volumetric functions and B-coefficients were analyzed. ► Hydrophobic side chains facilitate the solute–solute interactions and hydrophobic hydration. - Abstract: Apparent molar volumes and partial molar volumes at infinite dilution, V ¯ 2 ∘ for amino acids (glycine, L-valine, L-leucine, L-phenylalanine, and L-aspargine) aqueous solutions in sucrose (0.05 to 0.2 (w/w)), urea (0.05), 2,3-butane diol (0.05) and 2-butoxyethanol (0.05) as additives have been calculated from the experimental densities at T = (283.15 to 233.15) K. Limiting partial molar expansibilities, E 2 ∘ , side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes (from water to aqueous additive environment), ΔV tr ∘ for both the amino acids and their side chains have also been calculated. Relative viscosities for same systems were also calculated over the same temperature range and were analyzed in terms of Jones–Dole equation to calculate B-coefficients. The analysis of volumetric functions and B-coefficients suggests that the solute–co-solute interactions are more favored at elevated temperatures and in presence of high concentration of sucrose. Otherwise the hydrophobic side chains facilitate the solute–solute interactions and also time induced hydrophobic hydration in the bulk water.

  19. Lung, liver and lymph node metastases in follow-up MSCT. Comprehensive volumetric assessment of lesion size changes

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fischer, S.; Biederer, J.; Heller, M.; Fabel, M.; Bolte, H.; Freitag-Wolf, S.; Soza, G.; Tietjen, C.

    2012-01-01

    Purpose: To investigate measurement accuracy in terms of precision and inter-rater variability in the simultaneous volumetric assessment of lung, liver and lymph node metastasis size change over time in comparison to RECIST 1.1. Materials and Methods: Three independent readers evaluated multislice CT data from clinical follow-up studies (chest/abdomen) in 50 patients with metastases. A total of 117 lung, 77 liver and 97 lymph node metastases were assessed manually (RECIST 1.1) and by volumetry with semi-automated software. The quality of segmentation and need for manual adjustments were recorded. Volumes were converted to effective diameters to allow comparison to RECIST. For statistical assessment of precision and interobserver agreement, the Wilcoxon-signed rank test and Bland-Altman plots were utilized. Results: The quality of segmentation after manual correction was acceptable to excellent in 95 % of lesions and manual corrections were applied in 21 - 36 % of all lesions, most predominantly in lymph nodes. Mean precision was 2.6 - 6.3 % (manual) with 0.2 - 1.5 % (effective) relative measurement deviation (p <.001). Inter-reader median variation coefficients ranged from 9.4 - 12.8 % (manual) and 2.9 - 8.2 % (volumetric) for different lesion types (p <.001). The limits of agreement were ± 9.8 to ± 11.2 % for volumetric assessment. Conclusion: Superior precision and inter-rater variability of volumetric over manual measurement of lesion change over time was demonstrated in a whole body setting. (orig.)

  20. Lung, liver and lymph node metastases in follow-up MSCT. Comprehensive volumetric assessment of lesion size changes

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M.; Fischer, S.; Biederer, J.; Heller, M.; Fabel, M. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Diagnostische Radiologie; Bolte, H. [Universitaetsklinikum Muenster (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Freitag-Wolf, S. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Medizinische Informatik und Statistik; Soza, G.; Tietjen, C. [Siemens AG (Germany). Imaging and IT Div. Computed Tomography

    2012-09-15

    Purpose: To investigate measurement accuracy in terms of precision and inter-rater variability in the simultaneous volumetric assessment of lung, liver and lymph node metastasis size change over time in comparison to RECIST 1.1. Materials and Methods: Three independent readers evaluated multislice CT data from clinical follow-up studies (chest/abdomen) in 50 patients with metastases. A total of 117 lung, 77 liver and 97 lymph node metastases were assessed manually (RECIST 1.1) and by volumetry with semi-automated software. The quality of segmentation and need for manual adjustments were recorded. Volumes were converted to effective diameters to allow comparison to RECIST. For statistical assessment of precision and interobserver agreement, the Wilcoxon-signed rank test and Bland-Altman plots were utilized. Results: The quality of segmentation after manual correction was acceptable to excellent in 95 % of lesions and manual corrections were applied in 21 - 36 % of all lesions, most predominantly in lymph nodes. Mean precision was 2.6 - 6.3 % (manual) with 0.2 - 1.5 % (effective) relative measurement deviation (p <.001). Inter-reader median variation coefficients ranged from 9.4 - 12.8 % (manual) and 2.9 - 8.2 % (volumetric) for different lesion types (p <.001). The limits of agreement were {+-} 9.8 to {+-} 11.2 % for volumetric assessment. Conclusion: Superior precision and inter-rater variability of volumetric over manual measurement of lesion change over time was demonstrated in a whole body setting. (orig.)

  1. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman Al-Shakhrah, Issa [Department of Physics, University of Jordan, Queen Rania Street, Amman (Jordan)], E-mail: issashak@yahoo.com

    2009-04-15

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  2. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    International Nuclear Information System (INIS)

    Abdel-Rahman Al-Shakhrah, Issa

    2009-01-01

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  3. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  4. Volumetric formulation for a class of kinetic models with energy conservation.

    Science.gov (United States)

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  5. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    Science.gov (United States)

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  6. Non-uniform volumetric structures in Richtmyer-Meshkov flows

    NARCIS (Netherlands)

    Staniç, M.; McFarland, J.; Stellingwerf, R.F.; Cassibry, J.T.; Ranjan, D.; Bonazza, R.; Greenough, J.A.; Abarzhi, S.I.

    2013-01-01

    We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with

  7. Tree tomato water requirements determined by neutron probe

    International Nuclear Information System (INIS)

    1994-01-01

    The dynamics of water was studied at ''La Tola'', experimental teaching center of the Central University of Ecuador, in a sandy-loan, typic durustoll soil in which trees tomato were growing. All the components of the crop water balance were determined. Real evapotranspiration (ETR) was estimated through the mass balance method, using every 5-10 days a neutron probe to access the volumetric humidity of the soil. The real evapotranspiration was in direct relation with the growth of the crop, reaching its maximum value of 3,8 mm day-1, at vegetative stage. The soil layer supplying most of the water for the consumptive use of the crop was between 0-40 cm being the root activity also greater in that layer

  8. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fabel, M.; Freitag-Wolf, S.; Tepper, M.; Knabe, H.M.; Schäfer, J.P.; Jansen, O.; Bolte, H.

    2013-01-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future

  9. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  10. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  11. Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance.

    Science.gov (United States)

    Qin, Ping; Li, Xingxing; Gao, Biao; Fu, Jijiang; Xia, Lu; Zhang, Xuming; Huo, Kaifu; Shen, Wenli; Chu, Paul K

    2018-05-10

    Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.

  12. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  13. Correlation between macro texture measures carried out by the volumetric method and by different laser texture meter

    International Nuclear Information System (INIS)

    Parra Ruiz, L.; Yanguas Gonzalez, S. J.

    2013-01-01

    The reference value for the measurement of surface macro texture in the Spanish Main Road Network is the MTD or Mean Texture Depth (PMT, Profundidad Media de Textura), obtained by means of the volumetric methods, in accordance with the standard UNE EN 13036-1:12010. The fact that it is a spot measurement that requires road closures makes it an expensive procedure as well as slow and dangerous. In addition to this, the test results are relatively sensitive to the operator, being the procedure not too suitable for systematic surveys. These are some of the reasons that have contributed to the development of texture meter laser devices that can be assembled on board of vehicles, circulating without interfering with the normal traffic flow and providing a parameter named the MPD (Mean Depth Profile). According to the standard UNE-EN ISO 13473-1:2006, it is possible to estimate the texture obtained by volumetric methods, with the parameter ETD (Estimated Texture Depth) through the equation: ETD=0,8 x MPD+0.2 In 2008 CEDEX conducted a study that correlated macro texture measures obtained by means of the volumetric method with such carried out by different laser texture meters. The equations yield a better relation between MPD and MTD were dependent on the measurement device used and were not linear equations type, as is it indicated in the standard, but exponential type equations. (Author) 6 refs.

  14. 40 CFR 80.157 - Volumetric additive reconciliation (“VAR”), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation (â... ADDITIVES Detergent Gasoline § 80.157 Volumetric additive reconciliation (“VAR”), equipment calibration, and... other comparable VAR supporting documentation. (ii) For a facility which uses a gauge to measure the...

  15. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  16. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  17. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement.

    Science.gov (United States)

    Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D

    2015-01-01

    In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.

  18. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    International Nuclear Information System (INIS)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi; Has, Arzu Ceylan; Ogur, Methiye Gonul; Alhan, Aslihan

    2017-01-01

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  19. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  20. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Mehmet, E-mail: dtmehmetbayram@yahoo.com [Karadeniz Technical University, Faculty of Dentistry, Department of Orthodontics, 61080 Trabzon (Turkey); Kayipmaz, Saadettin; Sezgin, Oemer Said [Karadeniz Technical University, Faculty of Dentistry, Department of Oral Radiology, Trabzon (Turkey); Kuecuek, Murat [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Trabzon (Turkey)

    2012-08-15

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers' measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers' measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  1. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    International Nuclear Information System (INIS)

    Bayram, Mehmet; Kayipmaz, Saadettin; Sezgin, Ömer Said; Küçük, Murat

    2012-01-01

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers’ measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers’ measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  2. Determining the water content in concrete by gamma scattering method

    International Nuclear Information System (INIS)

    Priyada, P.; Ramar, R.; Shivaramu

    2014-01-01

    Highlights: • Gamma scattering technique for estimation of water content in concrete is given. • The scattered intensity increases with the volumetric water content. • Attenuation correction is provided to the scattered intensities. • Volumetric water content of 137 Cs radioactive source and a high resolution HPGe detector based energy dispersive gamma ray spectrometer. Concrete samples of uniform density ≈2.4 g/cm 3 are chosen for the study and the scattered intensities found to vary with the amount of water present in the specimen. The scattered intensities are corrected for attenuation effects and the results obtained with reference to a dry sample are compared with those obtained by gravimetrical and gamma transmission methods. A good agreement is seen between gamma scattering results and those obtained by gravimetric and transmission methods within accuracy of 6% and <2% change in water content can be detected

  3. Volumetric determination of tumor size abdominal masses. Problems -feasabilities

    International Nuclear Information System (INIS)

    Helmberger, H.; Bautz, W.; Sendler, A.; Fink, U.; Gerhardt, P.

    1995-01-01

    The most important indication for clinically reliable volumetric determination of tumor size in the abdominal region is monitoring liver metastases during chemotherapy. Determination of volume can be effectively realized using 3D reconstruction. Therefore, the primary data set must be complete and contiguous. The mass should be depicted strongly enhanced and free of artifacts. At present, this prerequisite can only be complied with using thin-slice spiral CT. Phantom studies have proven that a semiautomatic reconstruction algorithm is recommendable. The basic difficulties involved in volumetric determination of tumor size are the problems in differentiating active malignant mass and changes in the surrounding tissue, as well as the lack of histomorphological correlation. Possible indications for volumetry of gastrointestinal masses in the assessment of neoadjuvant therapeutic concepts are under scientific evaluation. (orig./MG) [de

  4. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  5. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  6. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  7. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

    International Nuclear Information System (INIS)

    Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed

    2015-01-01

    New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature

  8. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    Science.gov (United States)

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  10. Epidemicity thresholds for water-borne and water-related diseases.

    Science.gov (United States)

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Hydrology, water resources and the epidemiology of water-related diseases

    Science.gov (United States)

    Bertuzzo, Enrico; Mari, Lorenzo

    2017-10-01

    Water-borne and water-based diseases are infections in which the causative agent (or one of its hosts) spends at least part of its lifecycle in water [1]. They still represent a major threat to human health, especially in the developing world. As an example, diarrhoea, commonly linked to water-borne diseases like cholera, is responsible for the death of about 525,000 children under five every year (out of nearly 1.7 billion cases globally), thus representing one of the leading causes of death among infants and children in low-income countries [2]. A wide range of micro- (protozoa, bacteria, viruses, algae) and macro-parasites (mostly flatworms and roundworms) is associated with water-borne and water-based diseases. Infection is generally caused by ingestion of, or exposure to, contaminated water, and is thus tightly linked to water excess, scarcity, availability or quality. More broadly, the term water-related diseases may also include vector-borne infections in which the ecology of the vector population is closely related to the presence of environmental water. This is the case, for instance, of mosquitoes acting as vectors of deadly diseases like malaria, dengue fever and yellow fever. Malaria alone exacted a toll of 429,000 deaths in 2015 (out of 212 million cases globally), according to the latest WHO estimates [3].

  12. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  13. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  14. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  15. Volumetric properties of ammonium nitrate in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Vranes, Milan; Dozic, Sanja; Djeric, Vesna; Gadzuric, Slobodan

    2012-01-01

    Highlights: ► We observed interactions and changes in the solution using volumetric properties. ► The greatest influence on the solvent–solvent interactions has temperature. ► The smallest influence temperature has on the ion–ion interactions. ► Temperature has no influence on concentrated systems and partially solvated melts. - Abstract: The densities of the ammonium nitrate in N,N-dimethylformamide (DMF) mixtures were measured at T = (308.15 to 348.15) K for different ammonium nitrate molalities in the range from (0 to 6.8404) mol·kg −1 . From the obtained density data, volumetric properties (apparent molar volumes and partial molar volumes) have been evaluated and discussed in the term of respective ionic and dipole interactions. From the apparent molar volume, determined at various temperatures, the apparent molar expansibility and the coefficients of thermal expansion were also calculated.

  16. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  17. What are the potential advantages and disadvantages of volumetric CT scanning?

    Science.gov (United States)

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  18. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  19. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    Science.gov (United States)

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  20. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.; Martin, Tobias; Grosset, A. V Pascal; Brownlee, Carson; Hollt, Thomas; Brown, Benjamin P.; Smith, Sean T.; Hansen, Charles D.

    2012-01-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  1. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  2. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Kotoula, Vassiliki; Chatzisotiriou, Athanasios; Televantou, Despina; Eleftheraki, Anastasia G; Lambaki, Sofia; Misailidou, Despina; Selviaridis, Panagiotis; Fountzilas, George

    2012-01-01

    In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O 6 -methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore

  3. Volumetric capnography: In the diagnostic work-up of chronic thromboembolic disease

    Directory of Open Access Journals (Sweden)

    Marcos Mello Moreira

    2010-05-01

    Full Text Available Marcos Mello Moreira1, Renato Giuseppe Giovanni Terzi1, Laura Cortellazzi2, Antonio Luis Eiras Falcão1, Heitor Moreno Junior2, Luiz Cláudio Martins2, Otavio Rizzi Coelho21Department of Surgery, 2Department of Internal Medicine, State University of Campinas, School of Medical Sciences, Campinas, Sao Paulo, BrazilAbstract: The morbidity and mortality of pulmonary embolism (PE have been found to be related to early diagnosis and appropriate treatment. The examinations used to diagnose PE are expensive and not always easily accessible. These options include noninvasive examinations, such as clinical pretests, ELISA D-dimer (DD tests, and volumetric capnography (VCap. We report the case of a patient whose diagnosis of PE was made via pulmonary arteriography. The clinical pretest revealed a moderate probability of the patient having PE, and the DD result was negative; however, the VCap associated with arterial blood gases result was positive. The patient underwent all noninvasive exams following admission to hospital and again eight months after discharge. Results gained from invasive tests were similar to those produced by image exams, highlighting the importance of VCap as an important noninvasive tool.Keywords: pulmonary embolism, pulmonary hypertension, volumetric capnography, d-dimers, pretest probability

  4. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  5. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  6. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    Science.gov (United States)

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  8. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  9. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    Science.gov (United States)

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. GPU-based Scalable Volumetric Reconstruction for Multi-view Stereo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Duchaineau, M; Max, N

    2011-09-21

    We present a new scalable volumetric reconstruction algorithm for multi-view stereo using a graphics processing unit (GPU). It is an effectively parallelized GPU algorithm that simultaneously uses a large number of GPU threads, each of which performs voxel carving, in order to integrate depth maps with images from multiple views. Each depth map, triangulated from pair-wise semi-dense correspondences, represents a view-dependent surface of the scene. This algorithm also provides scalability for large-scale scene reconstruction in a high resolution voxel grid by utilizing streaming and parallel computation. The output is a photo-realistic 3D scene model in a volumetric or point-based representation. We demonstrate the effectiveness and the speed of our algorithm with a synthetic scene and real urban/outdoor scenes. Our method can also be integrated with existing multi-view stereo algorithms such as PMVS2 to fill holes or gaps in textureless regions.

  11. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  12. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  13. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  14. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Directory of Open Access Journals (Sweden)

    Angela J Dean

    Full Text Available Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172. Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15. Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  15. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Science.gov (United States)

    Dean, Angela J; Fielding, Kelly S; Newton, Fiona J

    2016-01-01

    Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172). Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15). Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  16. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  17. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  18. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  19. Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs

    Science.gov (United States)

    Afife, Mohamed M.; Sallam, Emad S.; Faris, Mohamed

    2017-10-01

    This study aims to integrate sedimentological, log and core analyses data of the Middle Miocene Nullipore Formation at the Ras Fanar Field (west central Gulf of Suez, Egypt) to evaluate and reconstruct a robust petrophysical model for this reservoir. The Nullipore Formation attains a thickness ranging from 400 to 980 ft and represents a syn-rift succession of the Middle Miocene marine facies. It consists of coralline-algal-reefal limestone, dolomitic limestone and dolostone facies, with few clay and anhydrite intercalations. Petrographically, seven microfacies types (MF1 to MF7) have been recognized and assembled genetically into three related facies associations (FA1 to FA3). These associations accumulated in three depositional environments: 1) peritidal flat, 2) restricted lagoon, and 3) back-shoal environments situated on a shallow inner ramp (homoclinal) setting. The studied rocks have been influenced by different diagenetic processes (dolomitization, cementation, compaction, authigenesis and dissolution), which led to diminishing and/or enhancing the reservoir quality. Three superimposed 3rd-order depositional sequences are included in the Nullipore succession displaying both retrogradational and aggradational packages of facies. Given the hydrocarbon potential of the Nullipore Formation, conventional well logs of six boreholes and core analyses data from one of these wells (RF-B12) are used to identify electrofacies zones of the Nullipore Formation. The Nullipore Formation has been subdivided into three electrofacies zones (the Nullipore-I, Nullipore-II, and Nullipore-III) that are well-correlated with the three depositional sequences. Results of petrographical studies and log analyses data have been employed in volumetric calculations to estimate the amount of hydrocarbon-in-place and then the ultimate recovery of the Nullipore reservoir. The volumetric calculations indicate that the total volume of oil-in-place is 371 MMSTB at 50% probability (P50), whereas

  20. Fruit response to water-scarcity and biochemical changes : Water relations and biochemical changes

    NARCIS (Netherlands)

    Rodríguez, P.; Galindo Egea, Alejandro; Collado-González, J.; Medina, S.; Corell, M.; Memmi, H.; Girón, I.F.; Centeno, A.; Martín-Palomo, M.J.; Cruz, Z.N.; Carbonell-Barrachina, A.A.; Hernandez, F.; Torrecillas, A.; Moriana, A.; Pérez-López, D.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2018-01-01

    The aim of this chapter is to give a general idea of the fruit response to water-scarcity conditions, paying special attention to fruit water relations modification and fruit composition changes, which are key for fruit quality. The strengths and weaknesses of fruit water relations measurement

  1. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

    Directory of Open Access Journals (Sweden)

    Abbas Cheddad

    Full Text Available INTRODUCTION: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images. METHODS: The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area and a volumetric-based approach (CASAM-Vol. The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects. RESULTS: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p0.10 for risk, p>0.03 for rs10995190. CONCLUSIONS: Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

  2. Scanners and drillers: Characterizing expert visual search through volumetric images

    Science.gov (United States)

    Drew, Trafton; Vo, Melissa Le-Hoa; Olwal, Alex; Jacobson, Francine; Seltzer, Steven E.; Wolfe, Jeremy M.

    2013-01-01

    Modern imaging methods like computed tomography (CT) generate 3-D volumes of image data. How do radiologists search through such images? Are certain strategies more efficient? Although there is a large literature devoted to understanding search in 2-D, relatively little is known about search in volumetric space. In recent years, with the ever-increasing popularity of volumetric medical imaging, this question has taken on increased importance as we try to understand, and ultimately reduce, errors in diagnostic radiology. In the current study, we asked 24 radiologists to search chest CTs for lung nodules that could indicate lung cancer. To search, radiologists scrolled up and down through a “stack” of 2-D chest CT “slices.” At each moment, we tracked eye movements in the 2-D image plane and coregistered eye position with the current slice. We used these data to create a 3-D representation of the eye movements through the image volume. Radiologists tended to follow one of two dominant search strategies: “drilling” and “scanning.” Drillers restrict eye movements to a small region of the lung while quickly scrolling through depth. Scanners move more slowly through depth and search an entire level of the lung before moving on to the next level in depth. Driller performance was superior to the scanners on a variety of metrics, including lung nodule detection rate, percentage of the lung covered, and the percentage of search errors where a nodule was never fixated. PMID:23922445

  3. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    Science.gov (United States)

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  4. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi [Ondokuz Mayis University, Faculty of Medicine, Department of Radiology, Kurupelit, Samsun (Turkey); Has, Arzu Ceylan [Bilkent University, National Magnetic Resonance Research Center, Ankara (Turkey); Ogur, Methiye Gonul [Ondokuz Mayis University, Department of Genetics, Samsun (Turkey); Alhan, Aslihan [Ufuk University, Department of Statistics, Ankara (Turkey)

    2017-07-15

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  5. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy.

    Science.gov (United States)

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-12-01

    Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.

  6. 40 CFR 230.52 - Water-related recreation.

    Science.gov (United States)

    2010-07-01

    ... Section 230.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation.... canoeing and sight-seeing. (b) Possible loss of values: One of the more important direct impacts of dredged...

  7. levels of common ions in bottled mineral waters consumed in addis

    African Journals Online (AJOL)

    Preferred Customer

    ment, cancer, organ damage, nervous system damage, and in ... consumed in any desired amount without adverse effect on ... drinking water which practically costs much .... mg/L) in 100 mL volumetric flask and working .... water and the lowest was in tap water sample. The ... blood pressure and a long list of degenerative.

  8. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  9. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  10. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  11. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  12. Continuous assessment of carotid intima-media thickness applied to estimate a volumetric compliance using B-mode ultrasound sequences

    International Nuclear Information System (INIS)

    Pascaner, A F; Craiem, D; Casciaro, M E; Graf, S; Danielo, R; Guevara, E

    2015-01-01

    Recent reports have shown that the carotid artery wall had significant movements not only in the radial but also in the longitudinal direction during the cardiac cycle. Accordingly, the idea that longitudinal elongations could be systematically neglected for compliance estimations became controversial. Assuming a dynamic change in vessel length, the standard measurement of cross-sectional compliance can be revised. In this work, we propose to estimate a volumetric compliance based on continuous measurements of carotid diameter and intima-media thickness (IMT) from B-mode ultrasound sequences. Assuming the principle of conservation of the mass of wall volume (compressibility equals zero), a temporal longitudinal elongation can be calculated to estimate a volumetric compliance. Moreover, elongations can also be estimated allowing small compressibility factors to model some wall leakage. The cross-sectional and the volumetric compliance were estimated in 45 healthy volunteers and 19 asymptomatic patients. The standard measurement underestimated the volumetric compliance by 25% for young volunteers (p < 0.01) and 17% for patients (p < 0.05). When compressibility factors different from zero were allowed, volunteers and patients reached values of 9% and 4%, respectively. We conclude that a simultaneous assessment of carotid diameter and IMT can be employed to estimate a volumetric compliance incorporating a longitudinal elongation. The cross-sectional compliance, that neglects the change in vessel length, underestimates the volumetric compliance. (paper)

  13. A comparison of semi-automated volumetric vs linear measurement of small vestibular schwannomas.

    Science.gov (United States)

    MacKeith, Samuel; Das, Tilak; Graves, Martin; Patterson, Andrew; Donnelly, Neil; Mannion, Richard; Axon, Patrick; Tysome, James

    2018-04-01

    Accurate and precise measurement of vestibular schwannoma (VS) size is key to clinical management decisions. Linear measurements are used in routine clinical practice but are prone to measurement error. This study aims to compare a semi-automated volume segmentation tool against standard linear method for measuring small VS. This study also examines whether oblique tumour orientation can contribute to linear measurement error. Experimental comparison of observer agreement using two measurement techniques. Tertiary skull base unit. Twenty-four patients with unilateral sporadic small (linear dimension following reformatting to correct for oblique orientation of VS. Intra-observer ICC was higher for semi-automated volumetric when compared with linear measurements, 0.998 (95% CI 0.994-0.999) vs 0.936 (95% CI 0.856-0.972), p linear measurements, 0.989 (95% CI 0.975-0.995) vs 0.946 (95% CI 0.880-0.976), p = 0.0045. The intra-observer %SDD was similar for volumetric and linear measurements, 9.9% vs 11.8%. However, the inter-observer %SDD was greater for volumetric than linear measurements, 20.1% vs 10.6%. Following oblique reformatting to correct tumour angulation, the mean increase in size was 1.14 mm (p = 0.04). Semi-automated volumetric measurements are more repeatable than linear measurements when measuring small VS and should be considered for use in clinical practice. Oblique orientation of VS may contribute to linear measurement error.

  14. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  15. Volumetric Analysis of Cerebral Peduncles and Cerebellar Hemispheres for Predicting Hemiparesis After Hemispherectomy.

    Science.gov (United States)

    Mullin, Jeffrey P; Soni, Pranay; Lee, Sungho; Jehi, Lara; Naduvil Valappi, Ahsan Moosa; Bingaman, William; Gonzalez-Martinez, Jorge

    2016-09-01

    In some cases of refractory epilepsy, hemispherectomy is the final invasive treatment option. However, predictors of postoperative hemiparesis in these patients have not been widely studied. To investigate how the volumetric analysis of cerebral peduncles and cerebellar hemispheres in patients who have undergone hemispherectomy may determine prognostic implications for postoperative hemiparesis. Twenty-two patients who underwent hemispherectomy at our institution were retrospectively included. Using iPlan/BrainLAB (BrainLAB, Feldkirchen, Germany) imaging software and a semiautomatic voxel-based segmentation method, we calculated the preoperative cerebral peduncle and cerebellar hemisphere volumes. Cerebral peduncle and cerebellar hemisphere ratios were compared between patients with worsened or unchanged/better hemiparesis postoperatively. The ratios of ipsilateral/contralateral cerebral peduncles (0.570 vs 0.828; P = .02) and contralateral/ipsilateral cerebellar hemispheres (0.885 vs 1.031; P = .009) were significantly lower in patients who had unchanged/improved hemiparesis postoperatively compared with patients who had worsened hemiparesis. Relative risk of worsening hemiparesis was significantly higher in patients with a cerebral peduncle ratio hemiparesis using only standard volumetric magnetic resonance imaging. This information could be used in preoperative discussions with patients and families to help better understand that chance of retaining baseline motor function. CST, corticospinal tractfMRI, functional magnetic resonance imagingTMS, transcranial magnetic stimulation.

  16. Volumetric properties of (piperidine + water) binary system: Measurements and modeling

    International Nuclear Information System (INIS)

    Afzal, Waheed; Valtz, Alain; Coquelet, Christophe; Richon, Dominique

    2008-01-01

    Densities of pure piperidine (CAS No.: 110-89-4) and of its mixtures with water have been measured over the whole range of compositions at temperatures from 283.15 K to 347.15 K using Anton Paar TM digital vibrating tube densimeter. The density of this system has been found increasing with mass fraction of water. Excess molar volumes have been calculated using the measured experimental densities and correlated using the Redlich-Kister equation. Redlich-Kister equation parameters have been adjusted on experimental data. In addition, partial molar volumes and partial excess molar volumes at infinite dilution have been calculated for each component

  17. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  18. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  19. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  20. Gamma-index method sensitivity for gauging plan delivery accuracy of volumetric modulated arc therapy.

    Science.gov (United States)

    Park, Jong In; Park, Jong Min; Kim, Jung-In; Park, So-Yeon; Ye, Sung-Joon

    2015-12-01

    The aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT). Twenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose-volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences. Considerable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = -0.712, -0.628 and -0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose-volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria. Local gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  2. Volumetric evaluation of dual-energy perfusion CT by the presence of intrapulmonary clots using a 64-slice dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Munemasa; Nakashima, Yoshiteru; Kunihiro, Yoshie; Nakao, Sei; Matsunaga, Naofumi [Dept. of Radiology, Yamaguchi Univ. Graduate School of Medicine, Yamaguchi (Japan)], e-mail: radokada@yamaguchi-u.ac.jp; Morikage, Noriyasu [Medical Bioregulation Dept. of Organ Regulatory Surgery, Yamaguchi Univ. Graduate School of Medicine, Yamaguchi (Japan); Sano, Yuichi [Dept. of Radiology, Yamaguchi Univ. Hospital, Yamaguchi (Japan); Suga, Kazuyoshi [Dept. of Radiology, St Hills Hospital, Yamaguchi (Japan)

    2013-07-15

    Background: Dual-energy perfusion CT (DE{sub p}CT) directly represents the iodine distribution in lung parenchyma and low perfusion areas caused by intrapulmonary clots (IPCs) are visualized as low attenuation areas. Purpose: To evaluate if volumetric evaluation of DE{sub p}CT can be used as a predictor of right heart strain by the presence of IPCs. Material and Methods: One hundred and ninety-six patients suspected of having acute pulmonary embolism (PE) underwent DE{sub p}CT using a 64-slice dual-source CT. DE{sub p}CT images were three-dimensionally reconstructed with four threshold ranges: 1-120 HU (V{sub 120}), 1-15 HU (V{sub 15}), 1-10 HU (V{sub 10}), and 1-5 HU (V{sub 5}). Each relative ratio per V{sub 120} was expressed as the %V{sub 15}, %V{sub 10}, and %V{sub 5}. Volumetric data-sets were compared with D-dimer, pulmonary arterial (PA) pressure, right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio, PA diameter, and PA/aorta (PA/Ao) diameter ratio. The areas under the ROC curves (AUCs) were examined for their relationship to the presence of IPCs. This study was approved by the local ethics committee. Results: PA pressure and D-dimer were significantly higher in the patients who had IPCs. In the patients with IPCs, V{sub 15}, V{sub 10}, V{sub 5}, %V{sub 15}, %V{sub 10}, and %V{sub 5} were also significantly higher than those without IPC (P = 0.001). %V{sub 5} had a better correlation with D-dimer (r = 0.30, P < 0.001) and RV/LV diameter ratio (r = 0.27, P < 0.001), and showed a higher AUC (0.73) than the other CT measurements. Conclusion: The volumetric evaluation by DE{sub p}CT had a correlation with D-dimer and RV/LV diameter ratio, and the relative ratio of volumetric CT measurements with a lower attenuation threshold might be recommended for the analysis of acute PE.

  3. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  4. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Drexel Univ., Philadelphia, PA (United States); Harbin Engineering Univ., Harbin (China); Ren, Chang E. [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Hatter, Christine B. [Drexel Univ., Philadelphia, PA (United States); Anasori, Babak [Drexel Univ., Philadelphia, PA (United States); Urbankowski, Patrick [Drexel Univ., Philadelphia, PA (United States); Sarycheva, Asya [Drexel Univ., Philadelphia, PA (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-06-30

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm–3 at a scan rate of 2 mV s–1, an impressive rate capability with 61% capacitance retention at 1 V s–1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L–1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.

  5. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  6. Can irrigation water use be guided by market forces? Theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2006-01-01

    This paper provides insight into the relevance of market forces to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, such as volumetric water charges and tradable water rights, then considers their usefulness in the context

  7. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    Science.gov (United States)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  8. Evaluation of yield and water-level relations

    International Nuclear Information System (INIS)

    Cushman, R.L.; Purtymun, W.D.

    1975-10-01

    Yield and water relations in the Los Alamos supply wells were evaluated because of the increasing demand for water. Water-level declines were extrapolated for 10 yr, to 1983, on the basis of past records. On the basis of current pumpage, the extrapolations indicate that nonpumping water levels in individual wells will decline from 10 to 30 ft. Well characteristics were compiled to provide an individual history of each well, and recommendations for improving water production are presented

  9. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    Science.gov (United States)

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  10. Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV-A feasibility study

    International Nuclear Information System (INIS)

    Fabel, M.; Tengg-Kobligk, H. von; Giesel, F.L.; Delorme, S.; Kauczor, H.-U.; Bornemann, L.; Dicken, V.; Kopp-Schneider, A.; Moser, C.

    2008-01-01

    Therapy monitoring in oncological patient care requires accurate and reliable imaging and post-processing methods. RECIST criteria are the current standard, with inherent disadvantages. The aim of this study was to investigate the feasibility of semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma compared to manual volumetric analysis and RECIST. Multislice CT was performed in 47 patients, covering the chest, abdomen and pelvis. In total, 227 suspicious, enlarged lymph nodes were evaluated retrospectively by two radiologists regarding diameters (RECIST), manually measured volume by placement of ROIs and semi-automated volumetric analysis. Volume (ml), quality of segmentation (++/-) and time effort (s) were evaluated in the study. The semi-automated volumetric analysis software tool was rated acceptable to excellent in 81% of all cases (reader 1) and 79% (reader 2). Median time for the entire segmentation process and necessary corrections was shorter with the semi-automated software than by manual segmentation. Bland-Altman plots showed a significantly lower interobserver variability for semi-automated volumetric than for RECIST measurements. The study demonstrated feasibility of volumetric analysis of lymph node metastases. The software allows a fast and robust segmentation in up to 80% of all cases. Ease of use and time needed are acceptable for application in the clinical routine. Variability and interuser bias were reduced to about one third of the values found for RECIST measurements. (orig.)

  11. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  12. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  13. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    Directory of Open Access Journals (Sweden)

    Tae-Yub Kwon

    2014-01-01

    Full Text Available Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control. The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P>0.05 or significantly larger (P<0.05 than that of the control resin and were related to the polymerization kinetics (P<0.05 rather than the PMMA bead size (P=0.335. Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.

  14. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  15. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  16. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  17. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  18. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Volumetric changes and clinical outcome for petroclival meningiomas after primary treatment with Gamma Knife radiosurgery.

    Science.gov (United States)

    Sadik, Zjiwar H A; Lie, Suan Te; Leenstra, Sieger; Hanssens, Patrick E J

    2018-01-26

    OBJECTIVE Petroclival meningiomas (PCMs) can cause devastating clinical symptoms due to mass effect on cranial nerves (CNs); thus, patients harboring these tumors need treatment. Many neurosurgeons advocate for microsurgery because removal of the tumor can provide relief or result in symptom disappearance. Gamma Knife radiosurgery (GKRS) is often an alternative for surgery because it can cause tumor shrinkage with improvement of symptoms. This study evaluates qualitative volumetric changes of PCM after primary GKRS and its impact on clinical symptoms. METHODS The authors performed a retrospective study of patients with PCM who underwent primary GKRS between 2003 and 2015 at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg, the Netherlands. This study yields 53 patients. In this study the authors concentrate on qualitative volumetric tumor changes, local tumor control rate, and the effect of the treatment on trigeminal neuralgia (TN). RESULTS Local tumor control was 98% at 5 years and 93% at 7 years (Kaplan-Meier estimates). More than 90% of the tumors showed regression in volume during the first 5 years. The mean volumetric tumor decrease was 21.2%, 27.1%, and 31% at 1, 3, and 6 years of follow-up, respectively. Improvement in TN was achieved in 61%, 67%, and 70% of the cases at 1, 2, and 3 years of follow-up, respectively. This was associated with a mean volumetric tumor decrease of 25% at the 1-year follow-up to 32% at the 3-year follow-up. CONCLUSIONS GKRS for PCMs yields a high tumor control rate with a low incidence of neurological deficits. Many patients with TN due to PCM experienced improvement in TN after radiosurgery. GKRS achieves significant volumetric tumor decrease in the first years of follow-up and thereafter.

  20. SU-D-BRE-06: Modeling the Dosimetric Effects of Volumetric and Layer-Based Repainting Strategies in Spot Scanning Proton Treatment Plans

    International Nuclear Information System (INIS)

    Johnson, J E; Beltran, C; Herman, M G; Kruse, J J

    2014-01-01

    Purpose: To compare multiple repainting techniques as strategies for mitigating the interplay effect in free-breathing, spot scanning proton plans. Methods: An analytic routine modeled three-dimensional dose distributions of pencil-beam proton plans delivered to a moving target. The interplay effect was studied in subsequent calculations by modeling proton delivery from a clinical synchrotron based spot scanning system and respiratory target motion, patterned from surrogate breathing traces from clinical 4DCT scans and normalized to nominal 0.5 and 1 cm amplitudes. Two distinct repainting strategies were modeled. In idealized volumetric repainting, the plan is divided up and delivered multiple times successively, with each instance only delivering a fraction of the total MU. Maximum-MU repainting involves delivering a fixed number of MU per spot and repeating a given energy layer until the prescribed MU are reached. For each of 13 patient breathing traces, the dose was computed for up to four volumetric repaints and an array of maximum-MU values. Delivery strategies were inter-compared based on target coverage, dose homogeneity, and delivery time. Results: Increasing levels of repainting generally improved plan quality and reduced dosimetric variability at the expense of longer delivery time. Motion orthogonal to the scan direction yielded substantially greater dose deviations than motion parallel to the scan direction. For a fixed delivery time, maximum-MU repainting was most effective relative to idealized volumetric repainting at small maximum-MU values. For 1 cm amplitude motion orthogonal to the scan direction, the average homogeneity metric (D5 – D95)[%] of 23.4% was reduced to 7.6% with a 168 s delivery using volumetric repainting compared with 8.7% in 157.2 s for maximum-MU repainting. The associated static target homogeneity metric was 2.5%. Conclusion: Maximum-MU repainting can provide a reasonably effective alternative to volumetric repainting for

  1. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  2. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  3. The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

    Directory of Open Access Journals (Sweden)

    L. Bonilha

    2005-03-01

    Full Text Available There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001. An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.

  4. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  5. Squeezed Interstitial Water and Soil Properties in Pleistocene Blue Clays under Different Natural Environments

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fidelibus

    2018-03-01

    Full Text Available Studies dating almost a century relate clay properties with the structure of the diffuse double layer (DDL, where the charged surfaces of clay crystal behave like an electric capacitor, whose dielectric is the interstitial fluid. The intensity of the inner electric field relates to the concentration and type of ions in the DDL. Other important implications of the model are less stressed: this part of the clay soil system, energetically speaking, is conservative. External contribution of energy, work of overburden or sun driven capillarity and long exposure to border low salinity waters can modify the concentration of pore-waters, thus affecting the DDL geometry, with electric field and energy storage variations. The study of clay soils coming from various natural geomorphological and hydrogeological contexts, determining a different salinity of interacting groundwater, shows how the clay interaction with freely circulating waters at the boundaries produces alterations in the native pore water salinity, and, at the nano-scale, variations of electric field and stored energy from external work. The swelling and the shrinkage of clay soil with their volumetric and geotechnical implications should be regarded as variations of the electrostatic and mechanical energy of the system. The study is based on tests on natural clay soil samples coming from a formation of stiff blue clays, widespread in southern Italy. Geotechnical identification and oedometer tests have been performed, and pore waters squeezed out from the specimens have been analyzed. Tested samples have similar grain size, clay fraction and plasticity; sorted according to the classified geomorphological/hydrogeological contexts, they highlight good correlations among dry density, mechanical work performed in selected stages of the oedometric test, swelling and non-swelling behaviour, and electrical conductivity of the squeezed pore waters. The work performed for swelling and non

  6. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  8. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  9. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  10. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    International Nuclear Information System (INIS)

    Gutman, David A.; Dunn, William D.; Grossmann, Patrick; Alexander, Brian M.; Cooper, Lee A.D.; Holder, Chad A.; Ligon, Keith L.; Aerts, Hugo J.W.L.

    2015-01-01

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  11. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  12. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    Science.gov (United States)

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  13. Systems analysis approach to the design of efficient water pricing policies under the EU water framework directive

    DEFF Research Database (Denmark)

    Riegels, Niels; Pulido-Velazquez, Manuel; Doulgeris, Charalampos

    2013-01-01

    management objectives. However, the design and implementation of economic instruments for water management, including water pricing, has emerged as a challenging aspect of WFD implementation. This study demonstrates the use of a systems analysis approach to designing and comparing two economic approaches......Economic theory suggests that water pricing can contribute to efficient management of water scarcity. The European Union (EU) Water Framework Directive (WFD) is a major legislative effort to introduce the use of economic instruments to encourage efficient water use and achieve environmental...... to efficient management of groundwater and surface water given EU WFD ecological flow requirements. Under the first approach, all wholesale water users in a river basin face the same volumetric price for water. This water price does not vary in space or in time, and surface water and groundwater are priced...

  14. VOLUMETRIC METHOD FOR EVALUATION OF BEACHES VARIABILITY BASED ON GIS-TOOLS

    Directory of Open Access Journals (Sweden)

    V. V. Dolotov

    2015-01-01

    Full Text Available In frame of cadastral beach evaluation the volumetric method of natural variability index is proposed. It base on spatial calculations with Cut-Fill method and volume accounting ofboththe common beach contour and specific areas for the each time.

  15. The analysis of colour uniformity for a volumetric display based on a rotating LED array

    International Nuclear Information System (INIS)

    Wu, Jiang; Liu, Xu; Yan, Caijie; Xia, XinXing; Li, Haifeng

    2011-01-01

    There is a colour nonuniformity zone existing in three-dimensional (3D) volumetric displays which is based on the rotating colour light-emitting diode (LED) array. We analyse the reason for the colour nonuniformity zone by measuring the light intensity distribution and chromaticity coordinates of the LED in the volumetric display. Two boundaries of the colour nonuniformity zone are calculated. We measure the colour uniformities for a single cuboid of 3*3*4 voxels to display red, green, blue and white colour in different horizontal viewing angles, and for 64 cuboids distributed in the whole cylindrical image space with a fixed viewpoint. To evaluate the colour uniformity of a 3D image, we propose three evaluation indices of colour uniformity: the average of colour difference, the maximum colour difference and the variance of colour difference. The measurement results show that the character of colour uniformity is different for the 3D volumetric display and the two-dimensional display

  16. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  17. A spiral-based volumetric acquisition for MR temperature imaging.

    Science.gov (United States)

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  19. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Jenkins, Thomas M; Burness, Christine; Connolly, Daniel J; Rao, D Ganesh; Hoggard, Nigel; Mawson, Susan; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J

    2013-09-01

    Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.

  20. A Hierarchical Volumetric Shadow Algorithm for Single Scattering

    OpenAIRE

    Baran, Ilya; Chen, Jiawen; Ragan-Kelley, Jonathan Millar; Durand, Fredo; Lehtinen, Jaakko

    2010-01-01

    Volumetric effects such as beams of light through participating media are an important component in the appearance of the natural world. Many such effects can be faithfully modeled by a single scattering medium. In the presence of shadows, rendering these effects can be prohibitively expensive: current algorithms are based on ray marching, i.e., integrating the illumination scattered towards the camera along each view ray, modulated by visibility to the light source at each sample. Visibility...

  1. Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Mosegaard, Jesper; Sørensen, Thomas Sangild

    2008-01-01

    ) from Nvidia. This paper investigates multiple implementations of volumetric Mass-Spring-Damper systems in CUDA. The obtained performance is compared to previous implementations utilizing the GPU through the OpenGL graphics API. We find that both performance and optimization strategies differ widely...

  2. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  3. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  4. Methodology for monitoring radionuclide activity in waste waters

    International Nuclear Information System (INIS)

    Padilla, R.; Hernandez, R.; Fernandez, J.; Vizcaino, M.

    1996-01-01

    A procedure for the determination of the volumetric specific activity of the liquid effluents of the CEADEN was established. The waters of the retention tank are sampled weekly and analyzed by gamma and beta spectrometry, determining the activity of several isotopes used in the radiochemistry works

  5. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  6. Dose-volumetric parameters for predicting hypothyroidism after radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Mi Young; Yu, Tosol; Wu, Hong-Gyun

    2014-01-01

    To investigate predictors affecting the development of hypothyroidism after radiotherapy for head and neck cancer, focusing on radiation dose-volumetric parameters, and to determine the appropriate radiation dose-volumetric threshold of radiation-induced hypothyroidism. A total of 114 patients with head and neck cancer whose radiotherapy fields included the thyroid gland were analysed. The purpose of the radiotherapy was either definitive (n=81) or post-operative (n=33). Thyroid function was monitored before starting radiotherapy and after completion of radiotherapy at 1 month, 6 months, 1 year and 2 years. A diagnosis of hypothyroidism was based on a thyroid stimulating hormone value greater than the maximum value of laboratory range, regardless of symptoms. In all patients, dose volumetric parameters were analysed. Median follow-up duration was 25 months (range; 6-38). Forty-six percent of the patients were diagnosed as hypothyroidism after a median time of 8 months (range; 1-24). There were no significant differences in the distribution of age, gender, surgery, radiotherapy technique and chemotherapy between the euthyroid group and the hypothyroid group. In univariate analysis, the mean dose and V35-V50 results were significantly associated with hypothyroidism. The V45 is the only variable that independently contributes to the prediction of hypothyroidism in multivariate analysis and V45 of 50% was a threshold value. If V45 was <50%, the cumulative incidence of hypothyroidism at 1 year was 22.8%, whereas the incidence was 56.1% if V45 was ≥50%. (P=0.034). The V45 may predict risk of developing hypothyroidism after radiotherapy for head and neck cancer, and a V45 of 50% can be a useful dose-volumetric threshold of radiation-induced hypothyroidism. (author)

  7. Thermodynamic and volumetric databases and software for magnesium alloys

    Science.gov (United States)

    Kang, Youn-Bae; Aliravci, Celil; Spencer, Philip J.; Eriksson, Gunnar; Fuerst, Carlton D.; Chartrand, Patrice; Pelton, Arthur D.

    2009-05-01

    Extensive databases for the thermodynamic and volumetric properties of magnesium alloys have been prepared by critical evaluation, modeling, and optimization of available data. Software has been developed to access the databases to calculate equilibrium phase diagrams, heat effects, etc., and to follow the course of equilibrium or Scheil-Gulliver cooling, calculating not only the amounts of the individual phases, but also of the microstructural constituents.

  8. PEMODELAN OBYEK TIGA DIMENSI DARI GAMBAR SINTETIS DUA DIMENSI DENGAN PENDEKATAN VOLUMETRIC

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2005-01-01

    Full Text Available In this paper, we implemented 3D object modeling from 2D input images. Modeling is performed by using volumetric reconstruction approaches by using volumetric reconstruction approaches, the 3D space is tesselated into discrete volumes called voxels. We use voxel coloring method to reconstruct 3D object from synthetic input images by using voxel coloring, we can get photorealistic result and also has advantage to solve occlusion problem that occur in many case of 3D reconstruction. Photorealistic 3D object reconstruction is a challenging problem in computer graphics and still an active area nowadays. Many applications that make use the result of reconstruction, include virtual reality, augmented reality, 3D games, and another 3D applications. Voxel coloring considered the reconstruction problem as a color reconstruction problem, instead of shape reconstruction problem. This method works by discretizing scene space into voxels, then traversed and colored those voxels in special order. The result is photorealitstic 3D object. Abstract in Bahasa Indonesia : Dalam penelitian ini dilakukan implementasi untuk pemodelan obyek tiga dimensi yang berasal dari gambar dua dimensi. Pemodelan ini dilakukan dengan menggunakan pendekatan volumetric. Dengan menggunakan pendekatan volumetric, ruang tiga dimensi dibagi menjadi bentuk diskrit yang disebut voxel. Kemudian pada voxel-voxel tersebut dilakukan metode pewarnaan voxel untuk mendapatkan hasil berupa obyek tiga dimensi yang bersifat photorealistic. Bagaimana memodelkan obyek tiga dimensi untuk menghasilkan hasil photorealistic merupakan masalah yang masih aktif di bidang komputer grafik. Banyak aplikasi lain yang dapat memanfaatkan hasil dari pemodelan tersebut seperti virtual reality, augmented reality dan lain-lain. Pewarnaan voxel merupakan pemodelan obyek tiga dimensi dengan melakukan rekonstruksi warna, bukan rekonstruksi bentuk. Metode ini bekerja dengan cara mendiskritkan obyek menjadi voxel dan

  9. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    Science.gov (United States)

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  10. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    Science.gov (United States)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  11. A prototype table-top inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-01-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a ±5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  12. Geochemistry of water in relation to cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Relations between trace and major element chemistry of drinking water and cardiovascular diseases are reviewed and documented. Several aspects of the problem, related both to the pathway that drinking water takes to man and to its transit through man, are reviewed. Several steps in the pathogenesis of cardiovascular disease that could be affected by water factors were explored. There is little evidence bearing on the contribution from drinking water to human tissue levels of cadmium, chromium, or zinc. Copper and magnesium levels of tissues may be related to drinking water, but confirmatory evidence is needed. Lead levels in blood and other tissues are most certainly affected by lead levels in drinking water in areas where these levels are unusually elevated. There is little evidence that relatively low levels of lead are toxic to the cardiovascular system, except for the causation of cardiomyopathy. The protective action of selenium and zinc applies mainly to cadmium toxicity. The mode of the protective action of silicon, if any, is unclear at present. Some epidemiological associations between the cadmium level or cadmium:zinc ratio and cardiovascular disease have been reported, but are contradictory. Some epidemiological support exists for a protective effect by selenium; results for zinc are equivocal. Interactions within the human system involving calcium and selected trace elements might be very important for the cardiovascular system. Review of the epidemiological literature indicates that there may be a water factor associated with cardiovascular disease. Its effects, if any, must be very weak in comparison with the effects of known risk factors. The reported inverse relationship between mortality from cardiovascular diseases and hardness of local drinking water supplies appears to be considerably less distinctive in small regional studies. (ERB)

  13. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  14. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  15. Three-dimensional volumetric assessment of response to treatment

    International Nuclear Information System (INIS)

    Willett, C.G.; Stracher, M.A.; Linggood, R.M.; Leong, J.C.; Skates, S.J.; Miketic, L.M.; Kushner, D.C.; Jacobson, J.O.

    1988-01-01

    From 1981 to 1986, 12 patients with Stage I and II diffuse large cell lymphoma of the mediastinum were treated with 4 or more cycles of multiagent chemotherapy and for nine patients this was followed by mediastinal irradiation. The response to treatment was assessed by three-dimensional volumetric analysis utilizing thoracic CT scans. The initial mean tumor volume of the five patients relapsing was 540 ml in contrast to an initial mean tumor volume of 360 ml for the seven patients remaining in remission. Of the eight patients in whom mediastinal lymphoma volumes could be assessed 1-2 months after chemotherapy prior to mediastinal irradiation, the three patients who have relapsed had volumes of 292, 92 and 50 ml (mean volume 145 ml) in contrast to five patients who have remained in remission with residual volume abnormalities of 4-87 ml (mean volume 32 ml). Four patients in prolonged remission with CT scans taken one year after treatment have been noted to have mediastinal tumor volumes of 0-28 ml with a mean value of 10 ml. This volumetric technique to assess the extent of mediastinal large cell lymphoma from thoracic CT scans appears to be a useful method to quantitate the amount of disease at presentation as well as objectively monitor response to treatment. 13 refs.; 2 figs.; 1 table

  16. Water-related planning and design at energy firms

    International Nuclear Information System (INIS)

    Abbey, D.; Lucero, F.

    1980-11-01

    Water related planning and design at energy firms are examined. By identifying production alternatives and specifying the cost of these alternatives under a variety of conditions, one gains insight into the future pattern of water use in the energy industry and the response of industry to water-related regulation. In Part II, the three principal decisions of industry that affect water allocation are reviewed: where to build plants, where to get water, and how much water to use. The cost of water use alternatives is reviewed. Part III presents empirical data to substantiate the inferences derived from engineering/economic analysis. The source of water, type of cooling system, and pattern of discharge for electric plants constructed during the 1970s or projected to come on line in this decade are reported. In the 1970s in the US, there was a trend away from once-through cooling toward use of evaporative cooling. Freshwater, as a source of supply, and discharge of effluent were standard practice. In the 1980s, almost all new capacity in the states and basins surveyed will use evaporative cooling. It is pointed out that a thorough understanding of industrial water use economics and water markets is a precursor to successful regulation

  17. Degree of contribution (DoC) feature selection algorithm for structural brain MRI volumetric features in depression detection.

    Science.gov (United States)

    Kipli, Kuryati; Kouzani, Abbas Z

    2015-07-01

    Accurate detection of depression at an individual level using structural magnetic resonance imaging (sMRI) remains a challenge. Brain volumetric changes at a structural level appear to have importance in depression biomarkers studies. An automated algorithm is developed to select brain sMRI volumetric features for the detection of depression. A feature selection (FS) algorithm called degree of contribution (DoC) is developed for selection of sMRI volumetric features. This algorithm uses an ensemble approach to determine the degree of contribution in detection of major depressive disorder. The DoC is the score of feature importance used for feature ranking. The algorithm involves four stages: feature ranking, subset generation, subset evaluation, and DoC analysis. The performance of DoC is evaluated on the Duke University Multi-site Imaging Research in the Analysis of Depression sMRI dataset. The dataset consists of 115 brain sMRI scans of 88 healthy controls and 27 depressed subjects. Forty-four sMRI volumetric features are used in the evaluation. The DoC score of forty-four features was determined as the accuracy threshold (Acc_Thresh) was varied. The DoC performance was compared with that of four existing FS algorithms. At all defined Acc_Threshs, DoC outperformed the four examined FS algorithms for the average classification score and the maximum classification score. DoC has a good ability to generate reduced-size subsets of important features that could yield high classification accuracy. Based on the DoC score, the most discriminant volumetric features are those from the left-brain region.

  18. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    Science.gov (United States)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  19. Daily Megavoltage Computed Tomography in Lung Cancer Radiotherapy: Correlation Between Volumetric Changes and Local Outcome

    International Nuclear Information System (INIS)

    Bral, Samuel; De Ridder, Mark; Duchateau, Michael; Gevaert, Thierry; Engels, Benedikt; Schallier, Denis; Storme, Guy

    2011-01-01

    Purpose: To assess the predictive or comparative value of volumetric changes, measured on daily megavoltage computed tomography during radiotherapy for lung cancer. Patients and Methods: We included 80 patients with locally advanced non-small-cell lung cancer treated with image-guided intensity-modulated radiotherapy. The radiotherapy was combined with concurrent chemotherapy, combined with induction chemotherapy, or given as primary treatment. Patients entered two parallel studies with moderately hypofractionated radiotherapy. Tumor volume contouring was done on the daily acquired images. A regression coefficient was derived from the volumetric changes on megavoltage computed tomography, and its predictive value was validated. Logarithmic or polynomial fits were applied to the intratreatment changes to compare the different treatment schedules radiobiologically. Results: Regardless of the treatment type, a high regression coefficient during radiotherapy predicted for a significantly prolonged cause-specific local progression free-survival (p = 0.05). Significant differences were found in the response during radiotherapy. The significant difference in volumetric treatment response between radiotherapy with concurrent chemotherapy and radiotherapy plus induction chemotherapy translated to a superior long-term local progression-free survival for concurrent chemotherapy (p = 0.03). An enhancement ratio of 1.3 was measured for the used platinum/taxane doublet in comparison with radiotherapy alone. Conclusion: Contouring on daily megavoltage computed tomography images during radiotherapy enabled us to predict the efficacy of a given treatment. The significant differences in volumetric response between treatment strategies makes it a possible tool for future schedule comparison.

  20. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Yuan, Huishu [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China); Duan, Jianghui [Medical School, Peking University, Beijing 100191 (China); Du, Yipeng; Shen, Ning; He, Bei [Department of Respiration Internal Medicine, Peking University Third Hospital, Beijing 100191 (China)

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

  1. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cécile J.; van der Gijp, Anouk; van der Schaaf, Marieke F.; Huige, Josephine C B M; Vincken, Koen L.; Mol, Christian P.; Bleys, Ronald L A W; ten Cate, Olle T.; van Schaik, Jan P J

    2015-01-01

    Rationale and Objectives: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  2. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cecile J.; van der Gijp, Anouk; van der Schaaf, Marieke F; Huige, Josephine C B M; Vincken, Koen L; Mol, Christian P; Bleys, Ronald L A W; ten Cate, Olle T; van Schaik, JPJ

    2015-01-01

    RATIONALE AND OBJECTIVES: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  3. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    Science.gov (United States)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  4. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  5. The Water Risks of Hydraulic Fracturing (Fracking): Key Issues from the New California Assessment

    Science.gov (United States)

    Gleick, P. H.

    2015-12-01

    A key component of the Water-Energy Nexus is the effort over the past decade or so to quantify the volumes and form of water required for the energy fuel cycle from extraction to generation to waste disposal. The vast majority of the effort in this area has focused on the water needs of electricity generation, but other fuel-cycle components also entail significant water demands and threats to water quality. Recent work for the State of California (managed by the California Council on Science and Technology - CCST) has produced a new state-of-the-art assessment of a range of potential water risks associated with hydraulic fracturing and related oil and gas extraction, including volumetric water demands, methods of disposal of produced water, and aquifer contamination. For example, this assessment produced new information on the disposal of produced water in surface percolation pits and the potential for contamination of local groundwater (see Figure). Understanding these risks raises questions about current production and future plans to expand production, as well as tools used by state and federal agencies to manage these risks. This talk will summarize the science behind the CCST assessment and related policy recommendations for both water and energy managers.

  6. On the relation between water pools and water holding capacity in cod muscle

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Jørgensen, Bo

    2004-01-01

    Low-field 1H nuclear magnetic resonance (NMR) relaxations were measured on muscle, minced muscle and centrifuged mince from cod that had been treated under various frozen and chill storage conditions. By using multi-way chemometrics, uni-exponential profiles were obtained, from which the transverse...... relaxation times (T2-values) and the water pool sizes (m- values) were determined. Three pools of water were identified with the different relaxation times and m-values in the centrifuged samples reflecting the removal of loosely bound water. The m-values and the full NMR-signal decays were correlated to two...... measures of water holding capacity (WHC) in a way that WHC related to the original water content could be predicted well for the whole and the minced muscle. The centrifuged samples gave optimal predictions of WHC related to the dry matter content, probably because the centrifuged samples are similar...

  7. Volumetric brain differences in children with periventricular T2-signal hyperintensities: a grouping by gestational age at birth.

    Science.gov (United States)

    Panigrahy, A; Barnes, P D; Robertson, R L; Back, S A; Sleeper, L A; Sayre, J W; Kinney, H C; Volpe, J J

    2001-09-01

    The purpose of this study was to compare both the volumes of the lateral ventricles and the cerebral white matter with gestational age at birth of children with periventricular white matter (PVWM) T2-signal hyperintensities on MR images. The spectrum of neuromotor abnormalities associated with these hyperintensities was also determined. We retrospectively reviewed the MR images of 70 patients who were between the ages of 1 and 5 years and whose images showed PVWM T2-signal hyperintensities. The patients were divided into premature (n = 35 children) and term (n = 35) groups depending on their gestational age at birth. Volumetric analysis was performed on four standardized axial sections using T2-weighted images. Volumes of interest were digitized on the basis of gray-scale densities of signal intensities to define the hemispheric cerebral white matter and lateral ventricles. Age-adjusted comparisons of volumetric measurements between the premature and term groups were performed using analysis of covariance. The volume of the cerebral white matter was smaller in the premature group (54 +/- 2 cm(3)) than in the term group (79 +/- 3 cm(3), p group (30 +/- 2 cm(3)) than among those in the term group (13 +/- 1 cm(3), p groups whose PVWM T2-signal hyperintensities did not correlate with any neuromotor abnormalities but were associated with seizures or developmental delays. The differences in volumetric measurements of cerebral white matter and lateral ventricles in children with PVWM T2-signal hyperintensities are related to their gestational age at birth. Several neurologic motor abnormalities are found in children with such hyperintensities.

  8. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  9. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    OpenAIRE

    Fischer, Felix; Selver, M. Alper; Gezer, Sinem; Dicle, O?uz; Hillen, Walter

    2015-01-01

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant addi...

  10. Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan

    Science.gov (United States)

    Shibata, Tomo; Akita, Fujio

    The height of water levels in two wells located near Usu volcano, Japan, changed in a systematic fashion for several months prior to the eruption of Usu volcano on 31 March 2000. In one well, water-level decrease relative to normal levels was first observed at the beginning of October 1999. The decreasing water-level is postulated to result from groundwater flow into cracks widened by intruding magma during dike formation. From the beginning of January 2000, the rate of decrease became higher. During this time, the water level of the second well increased by 0.05 m and then gradually decreased. The water-level changes are consistent with volumetric expansion of magma inside the magma chamber, followed by intrusion of magma into the fracture system associated with widening of cracks. We conclude that water-level observations can provide information that may potentially be used to predict further volcanic eruptions.

  11. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  12. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  13. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  14. Volumetric and calorimetric properties of aqueous ionene solutions.

    Science.gov (United States)

    Lukšič, Miha; Hribar-Lee, Barbara

    2017-02-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions - ionenes - were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion's charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH 2 group of the polyion's backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found.

  15. Volumetric evaluation of dual-energy perfusion CT by the presence of intrapulmonary clots using a 64-slice dual-source CT

    International Nuclear Information System (INIS)

    Okada, Munemasa; Nakashima, Yoshiteru; Kunihiro, Yoshie; Nakao, Sei; Matsunaga, Naofumi; Morikage, Noriyasu; Sano, Yuichi; Suga, Kazuyoshi

    2013-01-01

    Background: Dual-energy perfusion CT (DE p CT) directly represents the iodine distribution in lung parenchyma and low perfusion areas caused by intrapulmonary clots (IPCs) are visualized as low attenuation areas. Purpose: To evaluate if volumetric evaluation of DE p CT can be used as a predictor of right heart strain by the presence of IPCs. Material and Methods: One hundred and ninety-six patients suspected of having acute pulmonary embolism (PE) underwent DE p CT using a 64-slice dual-source CT. DE p CT images were three-dimensionally reconstructed with four threshold ranges: 1-120 HU (V 120 ), 1-15 HU (V 15 ), 1-10 HU (V 10 ), and 1-5 HU (V 5 ). Each relative ratio per V 120 was expressed as the %V 15 , %V 10 , and %V 5 . Volumetric data-sets were compared with D-dimer, pulmonary arterial (PA) pressure, right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio, PA diameter, and PA/aorta (PA/Ao) diameter ratio. The areas under the ROC curves (AUCs) were examined for their relationship to the presence of IPCs. This study was approved by the local ethics committee. Results: PA pressure and D-dimer were significantly higher in the patients who had IPCs. In the patients with IPCs, V 15 , V 10 , V 5 , %V 15 , %V 10 , and %V 5 were also significantly higher than those without IPC (P = 0.001). %V 5 had a better correlation with D-dimer (r = 0.30, P p CT had a correlation with D-dimer and RV/LV diameter ratio, and the relative ratio of volumetric CT measurements with a lower attenuation threshold might be recommended for the analysis of acute PE

  16. Assessment of Volumetric versus Manual Measurement in Disseminated Testicular Cancer; No Difference in Assessment between Non-Radiologists and Genitourinary Radiologist.

    Directory of Open Access Journals (Sweden)

    Çiğdem Öztürk

    Full Text Available The aim of this study was to assess the feasibility and reproducibility of semi-automatic volumetric measurement of retroperitoneal lymph node metastases in testicular cancer (TC patients treated with chemotherapy versus the standardized manual measurements based on RECIST criteria.21 TC patients with retroperitoneal lymph node metastases of testicular cancer were studied with a CT scan of chest and abdomen before and after cisplatin based chemotherapy. Three readers, a surgical resident, a radiological technician and a radiologist, assessed tumor response independently using computerized volumetric analysis with Vitrea software® and manual measurement according to RECIST criteria (version 1.1. Intra- and inter-rater variability were evaluated with intra class correlations and Bland-Altman analysis.Assessment of intra observer and inter observer variance proved non-significant in both measurement modalities. In particularly all intraclass correlation (ICC values for the volumetric analysis were > .99 per observer and between observers. There was minimal bias in agreement for manual as well as volumetric analysis.In this study volumetric measurement using Vitrea software® appears to be a reliable, reproducible method to measure initial tumor volume of retroperitoneal lymph node metastases of testicular cancer after chemotherapy. Both measurement methods can be performed by experienced non-radiologists as well.

  17. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  18. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  19. Multi-camera volumetric PIV for the study of jumping fish

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  20. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  1. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    Science.gov (United States)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, pwomen with very low-density breasts (peffects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  2. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  3. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  4. Enhancing Resilience to Water-Related Impacts of Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Resilience to Water-Related Impacts of Climate Change in Uganda's ... technologies (ICTs) can be used to help communities address water stress. ... This work will support the Uganda Ministry of Water and Environment's efforts to ...

  5. Improvement in, or relating to, waste-waters

    International Nuclear Information System (INIS)

    Crossley, T.J.

    1974-01-01

    The invention relates to a method for eliminating impurities consisting of fluorides, ammonia and uranium traces from waste waters. That method eliminates fluorides through precipitating alkaline earth fluoride, ammonia through evaporation and the excess alkaline earth metal through passing over an ion exchange resin. The water resulting from such a treatment contains but uranium traces and is suitable for re-cycling. The method can be applied to the treatment of waste waters resulting from the preparation of ammonium di-uranate from uranium hexafluoride [fr

  6. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma

    International Nuclear Information System (INIS)

    Grossmann, Patrick; Gutman, David A.; Dunn, William D. Jr; Holder, Chad A.; Aerts, Hugo J. W. L.

    2016-01-01

    Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10 −4 ). GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users

  7. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  8. The relationship between anatomic noise and volumetric breast density for digital mammography

    International Nuclear Information System (INIS)

    Mainprize, James G.; Tyson, Albert H.; Yaffe, Martin J.

    2012-01-01

    Purpose: The appearance of parenchymal/stromal patterns in mammography have been characterized as having a Wiener power spectrum with an inverse power-law shape described by the exponential parameter, β. The amount of fibroglandular tissue, which can be quantified in terms of volumetric breast density (VBD), influences the texture and appearance of the patterns formed in a mammogram. Here, a large study is performed to investigate the variations in β in a clinical population and to indicate the relationship between β and breast density. Methods: From a set of 2686 cranio-caudal normal screening mammograms, the parameter β was extracted from log-log fits to the Wiener spectrum over the range 0.15–1 mm −1 . The Wiener spectrum was calculated from regions of interest in the compression paddle contact region of the breast. An in-house computer program, Cumulus V, was used to extract the volumetric breast density and identify the compression paddle contact regions of the breast. The Wiener spectra were calculated with and without modulation transfer function (MTF) correction to determine the impact of VBD on the intrinsic anatomic noise. Results: The mean volumetric breast density was 25.5% (±12.6%) over all images. The mean β following a MTF correction which decreased the β slightly (≈−0.08) was found to be 2.87. Varying the maximum of the spatial frequency range of the fits from 0.7 to 1.0, 1.25 or 1.5 mm −1 showing small decreases in the result, although the effect of the quantum noise power component on reducing β was clearly observed at 1.5 mm −1 . Conclusions: The texture parameter, β, was found to increase with VBD at low volumetric breast densities with an apparent leveling off at higher densities. The relationship between β and VBD measured here can be used to create probabilistic models for computer simulations of detectability. As breast density is a known risk predictor for breast cancer, the correlation between β and VBD suggests that

  9. Liquid-liquid critical point in a simple analytical model of water

    Science.gov (United States)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  10. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  11. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  12. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  13. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    Science.gov (United States)

    Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan

    2014-06-25

    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.

  14. Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment

    NARCIS (Netherlands)

    Hoekstra, Arjen Y.; Gerbens-Leenes, Winnie; van der Meer, Theo H.

    2009-01-01

    In response to our article on the blue and green water footprint (WF) of bioenergy (1), others propose to multiply each blue WF component by a water-stress index and neglect green WFs, because impacts would be nil (2). They propose to redefine the WF from a volumetric measure to an index resulting

  15. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  16. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Ozmanyan, Kh.R.; Sandomirskij, B.B.

    1988-01-01

    A superconducting transition with T c0 =82-95 K and T c (R=0)=82-72 K was observed in volumetric and film Bi(Sr 1-x Ca x ) 2 Cu 3 O y samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured

  17. Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations

    International Nuclear Information System (INIS)

    Belandria, Veronica; Mohammadi, Amir H.; Richon, Dominique

    2009-01-01

    In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar TM digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich-Kister equation. The Redlich-Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.

  18. Historical development of crop-related water footprints and inter-regional virtual water flows within China

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2015-04-01

    China is facing water-related challenges, including an uneven distribution of water resources, both temporally and spatially, and an increasing competition over the limited water resources among different sectors. This issue has been widely researched and was finally included into the National Plan 2011 (the 2011 No. 1 Document by the State Council of China). However, there is still lack of information on how population growth and rapid urbanization have affected the water resources in China over the last decades. The current study aims at investigating (i) the intra-annual variation of green and blue water footprints (WFs) of crop production in China over the period 1978-2009 at a spatial resolution of 5 by 5 arc-minute; (ii) the yearly virtual water (VW) balances of 31 provinces within China, related water savings for the country, as well as the VW flows among eight economic regions resulting from inter-regional crop trade over the same period; and (iii) the development of the WF related to crop consumption by Chinese consumers. Results show that, over the period 1978-2009, the total WF related to crop production within China increased by only 4%), but regional changes were significant. From the 1980s to the 2000s, the shift of the cropping centre from the South to the North resulted in an increase of about 16% in the blue WF and 19% in the green WF in the North and a reduction of the blue and green WF in the South by 11% and 3%, respectively. China as a whole was a net virtual water importer related to crop trade, thus saving domestic water resources. China's inter-regional crop trade generated a blue water 'loss' annually by transferring crops from provinces with relatively low crop water productivity to provinces with relatively high productivity. Over the decades, the original VW flow from the South coastal region to the Northeast was reversed. Rice was the all-time dominant crop in the inter-regional VW flows (accounting for 34% in 2009), followed by wheat

  19. Development of a volumetric projection technique for the digital evaluation of field of view.

    Science.gov (United States)

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  20. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  1. Measure of the volumetric efficiency and evaporator device performance for a liquefied petroleum gas spark ignition engine

    International Nuclear Information System (INIS)

    Masi, Massimo; Gobbato, Paolo

    2012-01-01

    Highlights: ► Measure of the effect of LPG fuel on volumetric efficiency of a SI petrol ICE. ► Steady-state and transient performance of a LPG evaporator device on a SI ICE. ► Volume displaced by LPG causes slight performance loss in SI petrol engines. ► LPG reveals peak efficiency and high-efficiency range wider than petrol in SI ICE’s. ► One-stage pressure reducer for LPG performs satisfactorily during SI ICE transients. - Abstract: The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.

  2. Aplicação do diagrama T-S estatístico: volumétrico à análise das massas de água da plataforma continental do Rio Grande do Sul The statistical volumetric T-S diagram applied to the analysis of water masses of Rio Grande do Sul continental shelf

    Directory of Open Access Journals (Sweden)

    Luiz Bruner de Miranda

    1979-06-01

    Full Text Available The general characteristics of the seasonal variation of the thermohaline properties of the continental shelf water off Rio Grande do Sul, under non-conservative and quasi-synoptic conditions were analysed. The method applied - volumetric statistical T-S analysis allows the computation of the water masses budget from the knowledge of their temperature and salinity ranges. The data of 194 hydrographic stations from six oceanographic cruises between April 1968 and March 1969, were used. Water of Tropical and Subtropical origin (47,5% and 64% of the total volume during the winter and summer, respectively was always present during the observation period. Subantarctic water has its maximum and minimum influences during the winter (15% and summer (<3%, respectively. The average minimum and maximum temperature and salinity values of the water masses in the investigated region were observed in June (16,85ºC and 34,72‰, December (35,58‰ and March (20,82ºC.

  3. EU-Russia Relations Regarding Water Resources in Central Asia

    Directory of Open Access Journals (Sweden)

    Anastasia Likhacheva

    2014-05-01

    Full Text Available In Central Asia, the water deficit and water-energy problem have been one of among the most acute and conflict-ridden challenges for the sustainable development of the region and for regional security. Key trade and investment partners, including Russia and the European Union, could play a considerable role in influencing this issue, due to the long-lasting status quo, the inability to find a solution through intra-regional dialogue and the region’s rising dependence on foreign trade. Indeed, water-related interactions between Russia and the EU have been developing in a complementary manner. The EU possesses new technologies and its members have access to long-term capital markets, while Russia carries influence through providing security, regulating migration and holding a favourable political position for offering mediation services to the republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. This article examines EU-Russia relations regarding water issues in Central Asia over the medium term. By analyzing cooperative and non-cooperative strategies used by the major stakeholders in the water conflict (the five republics and the third parties of Russia and the EU, it confirms the continuous complementary character of EU and Russian activities in this context. Russia will take responsibility for moderating the principal questions (as with the construction of big dams such as Rogunor Kambarata, as they relate to the provision of security guarantees. The EU will act through providing support for water companies from small and medium-sized enterprises, and promoting the European Water Initiative principles and by developing its investment policy. The intersection of interests is possible when if Russia will attracts an independent arbiter, such as an actor available to provide guarantees related to the values of professional objectivism, human rights support and environment protection. These issues inevitably arise with

  4. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  5. Water tubing-related injuries treated in US emergency departments, 1991-2009.

    Science.gov (United States)

    Heinsimer, Kevin R; Nelson, Nicolas G; Roberts, Kristin J; McKenzie, Lara B

    2013-02-01

    The objective was to describe the patterns and mechanisms of water tubing-related injuries treated in U.S. emergency departments. The National Electronic Injury Surveillance System was used to examine cases of water tubing-related injuries. Sample weights were used to calculate national estimates of water tubing-related injuries. Analyses were conducted in 2010. From 1991-2009 an estimated 69,471 injuries were treated in US emergency departments for water tubing-related injuries. The annual number of cases increased 250% over the 19-year study period (P tubing-related injuries differ for children and adults. Research is needed to determine how best to reduce these injuries.

  6. Mapping soil water content on golf course greens with GPR

    Science.gov (United States)

    Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...

  7. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    International Nuclear Information System (INIS)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu; Li, Hai; Wu, Jiang-Fen

    2017-01-01

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  8. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu [First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing, Jiangsu Province (China); Li, Hai [First Affiliated Hospital of Nanjing Medical University, Department of Pathology, Nanjing (China); Wu, Jiang-Fen [GE Healthcare, Shanghai (China)

    2017-11-15

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  9. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  10. Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer.

    Science.gov (United States)

    Mayoral, M; Fernandez-Martinez, A; Vidal, L; Fuster, D; Aya, F; Pavia, J; Pons, F; Lomeña, F; Paredes, P

    2016-01-01

    Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in various solid neoplasms. These volumetric parameters and the SUVmax have shown to be useful criteria for disease prognostication in preoperative and post-treatment epithelial ovarian cancer (EOC) patients. The purpose of this study was to evaluate the utility of (18)F-FDG PET/CT measurements to predict survival in patients with recurrent EOC. Twenty-six patients with EOC who underwent a total of 31 (18)F-FDG PET/CT studies for suspected recurrence were retrospectively included. SUVmax and volumetric parameters whole-body MTV (wbMTV) and whole-body TLG (wbTLG) with a threshold of 40% and 50% of the SUVmax were obtained. Correlation between PET parameters and progression-free survival (PFS) and the survival analysis of prognostic factors were calculated. Serous cancer was the most common histological subtype (76.9%). The median PFS was 12.5 months (range 10.7-20.6 months). Volumetric parameters showed moderate inverse correlation with PFS but there was no significant correlation in the case of SUVmax. The correlation was stronger for first recurrences. By Kaplan-Meier analysis and log-rank test, wbMTV 40%, wbMTV 50% and wbTLG 50% correlated with PFS. However, SUVmax and wbTLG 40% were not statistically significant predictors for PFS. Volumetric parameters wbMTV and wbTLG 50% measured by (18)F-FDG PET/CT appear to be useful prognostic predictors of outcome and may provide valuable information to individualize treatment strategies in patients with recurrent EOC. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  11. Water relations of cucumber, tomato, and sweet pepper

    NARCIS (Netherlands)

    Behboudian, M.H.

    1977-01-01

    The ever increasing importance of water as a critical resource for agricultural production has encouraged more research on water relations in recent years. Most attention has been paid to field crops and less information is available for horticultural crops, especially vegetables. The

  12. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  13. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Varjabedian, Ani; Tirrell, Lee S; Stevens, Allison; Augustinack, Jean C; Konukoglu, Ender; Aganj, Iman; Frosch, Matthew P; Schmahmann, Jeremy D; Fischl, Bruce; Boas, David A

    2018-01-15

    Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Large-scale Water-related Innovative Renewable Energy Projects and the Water Framework Directive : Legal Issues and Solutions

    NARCIS (Netherlands)

    van Hees, S.R.W.

    2017-01-01

    This article discusses two legal issues that relate to the conflict between the interest of protecting water quality under the Water Framework Directive (WFD), versus the interest of promoting the use of innovative water-related renewable energy, with regard to the quota in the Renewable Energy

  15. 76 FR 44948 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-07-27

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... SUPPLEMENTARY INFORMATION section. FOR FURTHER INFORMATION CONTACT: Michelle Kelly, Water and Environmental...

  16. Simulation of water movement and NaCl transport

    International Nuclear Information System (INIS)

    Li Xun; Zheng Zhihong; Yang Zeping

    2008-01-01

    Modeling of water flow and solute transport in the near-field of a high-level radioactive waste repository with TOUGH2 is done. The results show that salt accumulation in buffer material is not so significant, precipitation does not occur throughout the period covered by our simualtions. Further more, the changeable law of volumetric water content, liquid velocity and dissolved concentration of sodium chloride with simulated time or distance are attained, which is the base of understanding evolvement of near-field. (authors)

  17. Performance-scalable volumetric data classification for online industrial inspection

    Science.gov (United States)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  18. Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety

    Directory of Open Access Journals (Sweden)

    Baur Volker

    2012-01-01

    Full Text Available Abstract Background Recent investigations of white matter (WM connectivity suggest an important role of the uncinate fasciculus (UF, connecting anterior temporal areas including the amygdala with prefrontal-/orbitofrontal cortices, for anxiety-related processes. Volume of the UF, however, has rarely been investigated, but may be an important measure of structural connectivity underlying limbic neuronal circuits associated with anxiety. Since UF volumetric measures are newly applied measures, it is necessary to cross-validate them using further neural and behavioral indicators of anxiety. Results In a group of 32 subjects not reporting any history of psychiatric disorders, we identified a negative correlation between left UF volume and trait anxiety, a finding that is in line with previous results. On the other hand, volume of the left amygdala, which is strongly connected with the UF, was positively correlated with trait anxiety. In addition, volumes of the left UF and left amygdala were inversely associated. Conclusions The present study emphasizes the role of the left UF as candidate WM fiber bundle associated with anxiety-related processes and suggests that fiber bundle volume is a WM measure of particular interest. Moreover, these results substantiate the structural relatedness of UF and amygdala by a non-invasive imaging method. The UF-amygdala complex may be pivotal for the control of trait anxiety.

  19. Spirometry and volumetric capnography in lung function assessment of obese and normal-weight individuals without asthma.

    Science.gov (United States)

    Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D

    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. 75 FR 42774 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2010-07-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... region in the SUPPLEMENTARY INFORMATION section. FOR FURTHER INFORMATION CONTACT: Michelle Kelly, Water...

  1. 76 FR 73674 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... INFORMATION CONTACT: Michelle Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O...

  2. Future land-use related water demand in California

    Science.gov (United States)

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  3. Adsorption indicators in double precipitation volumetric. II. Use of radioactive indicators

    International Nuclear Information System (INIS)

    Carnicero Tejerina, M. I.

    1961-01-01

    1 31I-fluorescein and 1 10Ag-silver sulphate have been used in order to check the role of adsorption indicators in the volumetric analysis of double precipitation reactions. It has been shown by using isotopes that adsorption of fluorescein on silver halides depends on the foreign cations present in the solution. (Author) 8 refs

  4. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanyan, Kh R; Sandomirskij, B B

    1988-07-10

    A superconducting transition with T/sub c0/=82-95 K and T/sub c/(R=0)=82-72 K was observed in volumetric and film Bi(Sr/sub 1-x/Ca/sub x/)/sub 2/Cu/sub 3/O/sub y/ samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured.

  5. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  6. Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced Geometry

    Directory of Open Access Journals (Sweden)

    Carlos Jiménez de Parga

    2018-04-01

    Full Text Available This paper presents several new techniques for volumetric cloud rendering using efficient algorithms and data structures based on ray-tracing methods for cumulus generation, achieving an optimum balance between realism and performance. These techniques target applications such as flight simulations, computer games, and educational software, even with conventional graphics hardware. The contours of clouds are defined by implicit mathematical expressions or triangulated structures inside which volumetric rendering is performed. Novel techniques are used to reproduce the asymmetrical nature of clouds and the effects of light-scattering, with low computing costs. The work includes a new method to create randomized fractal clouds using a recursive grammar. The graphical results are comparable to those produced by state-of-the-art, hyper-realistic algorithms. These methods provide real-time performance, and are superior to particle-based systems. These outcomes suggest that our methods offer a good balance between realism and performance, and are suitable for use in the standard graphics industry.

  7. MDCT linear and volumetric analysis of adrenal glands: Normative data and multiparametric assessment

    International Nuclear Information System (INIS)

    Carsin-Vu, Aline; Mule, Sebastien; Janvier, Annaelle; Hoeffel, Christine; Oubaya, Nadia; Delemer, Brigitte; Soyer, Philippe

    2016-01-01

    To study linear and volumetric adrenal measurements, their reproducibility, and correlations between total adrenal volume (TAV) and adrenal micronodularity, age, gender, body mass index (BMI), visceral (VAAT) and subcutaneous adipose tissue volume (SAAT), presence of diabetes, chronic alcoholic abuse and chronic inflammatory disease (CID). We included 154 patients (M/F, 65/89; mean age, 57 years) undergoing abdominal multidetector row computed tomography (MDCT). Two radiologists prospectively independently performed adrenal linear and volumetric measurements with semi-automatic software. Inter-observer reliability was studied using inter-observer correlation coefficient (ICC). Relationships between TAV and associated factors were studied using bivariate and multivariable analysis. Mean TAV was 8.4 ± 2.7 cm 3 (3.3-18.7 cm 3 ). ICC was excellent for TAV (0.97; 95 % CI: 0.96-0.98) and moderate to good for linear measurements. TAV was significantly greater in men (p < 0.0001), alcoholics (p = 0.04), diabetics (p = 0.0003) and those with micronodular glands (p = 0.001). TAV was lower in CID patients (p = 0.0001). TAV correlated positively with VAAT (r = 0.53, p < 0.0001), BMI (r = 0.42, p < 0.0001), SAAT (r = 0.29, p = 0.0003) and age (r = 0.23, p = 0.005). Multivariable analysis revealed gender, micronodularity, diabetes, age and BMI as independent factors influencing TAV. Adrenal gland MDCT-based volumetric measurements are more reproducible than linear measurements. Gender, micronodularity, age, BMI and diabetes independently influence TAV. (orig.)

  8. 75 FR 82066 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... CONTACT: Michelle Kelly, Water and Environmental Services Division, Bureau of Reclamation, P.O. Box 25007...

  9. 76 FR 60527 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... CONTACT: Michelle Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O. Box 25007...

  10. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?

    Directory of Open Access Journals (Sweden)

    Frank Anders

    2009-08-01

    Full Text Available Abstract Background The work presented here investigates parallel imaging applied to T1-weighted high resolution imaging for use in longitudinal volumetric clinical studies involving Alzheimer's disease (AD and Mild Cognitive Impairment (MCI patients. This was in an effort to shorten acquisition times to minimise the risk of motion artefacts caused by patient discomfort and disorientation. The principle question is, "Can parallel imaging be used to acquire images at 1.5 T of sufficient quality to allow volumetric analysis of patient brains?" Methods Optimisation studies were performed on a young healthy volunteer and the selected protocol (including the use of two different parallel imaging acceleration factors was then tested on a cohort of 15 elderly volunteers including MCI and AD patients. In addition to automatic brain segmentation, hippocampus volumes were manually outlined and measured in all patients. The 15 patients were scanned on a second occasion approximately one week later using the same protocol and evaluated in the same manner to test repeatability of measurement using images acquired with the GRAPPA parallel imaging technique applied to the MPRAGE sequence. Results Intraclass correlation tests show that almost perfect agreement between repeated measurements of both segmented brain parenchyma fraction and regional measurement of hippocampi. The protocol is suitable for both global and regional volumetric measurement dementia patients. Conclusion In summary, these results indicate that parallel imaging can be used without detrimental effect to brain tissue segmentation and volumetric measurement and should be considered for both clinical and research studies where longitudinal measurements of brain tissue volumes are of interest.

  11. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  12. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  13. A Reflectance Model for Relatively Clear and Turbid Waters

    Directory of Open Access Journals (Sweden)

    S. P. Tiwari

    2013-02-01

    Full Text Available Accurate modeling of spectral remote sensing reflectance (Rrs is of great interest for ocean colour studies in highly turbid and relatively clear waters. In this work a semianalytical model that simulates the spectral curves of remote sensing reflectance of these waters is developed based on the inherent optical properties (IOPs and f and Q factors. For accommodating differences in the optical properties of the water and accounting for their directional variations, IOPs and f and Q factors are derived as a function of phytoplankton pigments, suspended sediments and solar zenith angle. Results of this model are compared with in-situ bio-optical data collected at 83 stations encompassing highly turbid/relatively cleared waters of the South Sea of Korea. Measured and modeled remote sensing reflectances agree favorably in both magnitude and spectral shape, with considerably low errors (mean relative error MRE -0.0327; root mean square error RMSE 0.205, bias -0.0727 and slope 1.15 and correlation coefficient R2 0.74. These results suggest that the new model has the ability to reproduce measured reflectance values and has potentially profound implications for remote sensing of complex waters in this region.

  14. Evaluating water policy options in agriculture: a whole-farm study for the broye river basin (switzerland)†

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.

    2013-01-01

    In this study, we evaluate the impact of an increased volumetric water price and the implementation of a water quota on management decisions, income, income risk and utility of an arable farmer in the Broye River Basin, western Switzerland. We develop a bio-economic whole-farm model, which couples

  15. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  16. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  17. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    International Nuclear Information System (INIS)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S.

    2013-01-01

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD

  18. [Benefits of volumetric to facial rejuvenation. Part 1: Fat grafting].

    Science.gov (United States)

    Bui, P; Lepage, C

    2017-10-01

    For a number of years, a volumetric approach using autologous fat injection has been implemented to improve cosmetic outcome in face-lift procedures and to achieve lasting rejuvenation. Autologous fat as filling tissue has been used in plastic surgery since the late 19th century, but has only recently been associated to face lift procedures. The interest of the association lies on the one hand in the pathophysiology of facial aging, involving skin sag and loss of volume, and on the other hand in the tissue induction properties of grafted fat, "rejuvenating" the injected area. The strict methodology consisting in harvesting, treating then injecting an autologous fat graft is known as LipoStructure ® or lipofilling. We here describe the technique overall, then region by region. It is now well known and seems simple, effective and reproducible, but is nevertheless delicate. For each individual, it is necessary to restore a harmonious face with well-distributed volumes. By associating volumetric to the face lift procedure, the plastic surgeon plays a new role: instead of being a tailor, cutting away excess skin, he or she becomes a sculptor, remodeling the face to restore the harmony of youth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Automated volumetric breast density estimation: A comparison with visual assessment

    International Nuclear Information System (INIS)

    Seo, J.M.; Ko, E.S.; Han, B.-K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y.

    2013-01-01

    Aim: To compare automated volumetric breast density (VBD) measurement with visual assessment according to Breast Imaging Reporting and Data System (BI-RADS), and to determine the factors influencing the agreement between them. Materials and methods: One hundred and ninety-three consecutive screening mammograms reported as negative were included in the study. Three radiologists assigned qualitative BI-RADS density categories to the mammograms. An automated volumetric breast-density method was used to measure VBD (% breast density) and density grade (VDG). Each case was classified into an agreement or disagreement group according to the comparison between visual assessment and VDG. The correlation between visual assessment and VDG was obtained. Various physical factors were compared between the two groups. Results: Agreement between visual assessment by the radiologists and VDG was good (ICC value = 0.757). VBD showed a highly significant positive correlation with visual assessment (Spearman's ρ = 0.754, p < 0.001). VBD and the x-ray tube target was significantly different between the agreement group and the disagreement groups (p = 0.02 and 0.04, respectively). Conclusion: Automated VBD is a reliable objective method to measure breast density. The agreement between VDG and visual assessment by radiologist might be influenced by physical factors

  20. Computational assessment of visual search strategies in volumetric medical images.

    Science.gov (United States)

    Wen, Gezheng; Aizenman, Avigael; Drew, Trafton; Wolfe, Jeremy M; Haygood, Tamara Miner; Markey, Mia K

    2016-01-01

    When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: "drilling" (restrict eye movements to a small region of the image while quickly scrolling through slices), or "scanning" (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either "drilling" or "scanning" when searching for target T's in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers' gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers' fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus "drilling" may be more efficient than "scanning."

  1. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  2. Roles and significance of water conducting features for transport models in performance assessment

    International Nuclear Information System (INIS)

    Carrera, J.; Sanchez-Vila, X.; Medina, A.

    1999-01-01

    The term water conducting features (WCF) refers to zones of high hydraulic conductivity. In the context of waste disposal, it is further implied that they are narrow so that chances of sampling them are low. Yet, they may carry significant amounts of water. Moreover, their relatively small volumetric water content causes solutes to travel fast through them. Water-conducting features are a rather common feature of natural media. The fact that they have become a source of concern in recent years, reflects more the increased level of testing and monitoring than any intrinsic property of low permeability media. Accurate simulations of solute transport require a realistic accounting for water conducting features. Methods are presented to do so and examples are shown to illustrate these methods. Since detailed accounting of WCF's will not be possible in actual performance assessments, efforts should be directed towards typification, so as to identify the essential effects of WCF's on solute transport through different types of rocks. Field evidence suggests that, although individual WCF's may be difficult to characterize, their effects are quite predictable. (author)

  3. CT volumetric measurements of the orbits in Graves' disease

    International Nuclear Information System (INIS)

    Krahe, T.; Schlolaut, K.H.; Poss, T.; Trier, H.G.; Lackner, K.; Bonn Univ.; Bonn Univ.

    1989-01-01

    The volumes of the four recti muscles and the orbital fat was measured by CT in 40 normal persons and in 60 patients with clinically confirmed Graves' disease. Compared with normal persons, 42 patients (70%) showed an increase in muscle volume and 28 patients (46.7%) an increase in the amount of fat. In nine patients (15%) muscle volume was normal, but the fat was increased. By using volumetric measurements, the amount of fat in the orbits in patients with Graves' disease could be determined. (orig.) [de

  4. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...

  5. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    International Nuclear Information System (INIS)

    Wang Silu; Jacquemin, Johan; Husson, Pascale; Hardacre, Christopher; Costa Gomes, Margarida F.

    2009-01-01

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C 1 C 4 Im][BF 4 ]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C 1 C 2 Im][EtSO 4 ])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 2 Im][NTf 2 ]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Im][NTf 2 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C 1 C 4 Im][PF 6 ]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Pyrro][NTf 2 ]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N 4111 ][NTf 2 ])) were chosen. Small excess volumes (less than 0.5 cm 3 . mol -1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C 1 C 2 Im][EtSO 4 ] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.

  6. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  7. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    International Nuclear Information System (INIS)

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-01-01

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  8. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  9. Relative transport of water (H2O) and tritiated water (HTO) across cellulose acetate (CA) membranes

    International Nuclear Information System (INIS)

    Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1986-01-01

    The relative transport characteristics of water (H 2 O) and tritiated water (HTO) were evaluated through cellulose acetate membranes under osmosis, reverse osmosis and pervaporation. The results indicate that the relative transport is independent of the process. The anamolous observations under osmotic conditions are explained. (orig.)

  10. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  11. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  12. Prediction of breast cancer recurrence using lymph node metabolic and volumetric parameters from {sup 18}F-FDG PET/CT in operable triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [CHA University, Department of Nuclear Medicine, CHA Bundang Medical Center, Seongnam (Korea, Republic of); Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Yong Joong [Veterans Health Service Medical Center, Seoul (Korea, Republic of); Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-10-15

    Triple-negative breast cancer has a poor prognosis. We evaluated several metabolic and volumetric parameters from preoperative {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in the prognosis of triple-negative breast cancer and compared them with current clinicopathologic parameters. A total of 228 patients with triple-negative breast cancer (mean age 47.0 ± 10.8 years, all women) who had undergone preoperative PET/CT were included. The PET/CT metabolic parameters evaluated included maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, and SUVmean, respectively). The volumetric parameters evaluated included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Metabolic and volumetric parameters were evaluated separately for tumor (T) and lymph nodes (N). The prognostic value of these parameters was compared with that of clinicopathologic parameters. All lymph node metabolic and volumetric parameters showed significant differences between patients with and without recurrence. However, tumor metabolic and volumetric parameters showed no significant differences. In a univariate survival analysis, all lymph node metabolic and volumetric parameters (SUVmax-N, SUVpeak-N, SUVmean-N, MTV-N, and TLG-N; all P < 0.001), T stage (P = 0.010), N stage (P < 0.001), and TNM stage (P < 0.001) were significant parameters. In a multivariate survival analysis, SUVmax-N (P = 0.005), MTV (P = 0.008), and TLG (P = 0.006) with TNM stage (all P < 0.001) were significant parameters. Lymph node metabolic and volumetric parameters were significant predictors of recurrence in patients with triple-negative breast cancer after surgery. Lymph node metabolic and volumetric parameters were useful parameters for evaluating prognosis in patients with triple-negative breast cancer by {sup 18}F-FDG PET/CT, rather than tumor parameters. (orig.)

  13. Kinetic, volumetric and structural effects induced by liquid Ga penetration into ultrafine grained Al

    International Nuclear Information System (INIS)

    Naderi, Mehrnoosh; Peterlechner, Martin; Schafler, Erhard; Divinski, Sergiy V.; Wilde, Gerhard

    2015-01-01

    Kinetic, volumetric and structural effects induced by penetration of liquid Ga in ultrafine grained (UFG) Al produced by severe plastic deformation using high-pressure torsion were studied by isothermal dilatometric measurements, electron microscopy, atomic force microscopy and X-ray diffraction. Severe plastic deformation changed the distribution of impurities and their segregation was revealed by transmission electron microscopy. Two-stage length changes of UFG Al were observed which are explained by counteracting effects of expansion due to grain boundary segregation of Ga and contraction due to precipitation and recrystallization. After applying Ga, the kinetics of the liquid Ga penetration in UFG Al is studied in-situ in the electron microscope by the “first appearance” method and the time scales are in agreement with those inducing the volumetric changes

  14. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    International Nuclear Information System (INIS)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W; Lu Wei; Low, Daniel

    2009-01-01

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 ± 0.005, p 2 = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 ± 0.092, R 2 = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 ± 0.44 and 0.82 ± 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  15. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    Science.gov (United States)

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm-3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm-3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  16. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  17. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  18. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    Science.gov (United States)

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  19. Growth, water relations and photosynthesis of seedlings and resprouts after fire

    Science.gov (United States)

    Clemente, Adelaide S.; Rego, Francisco C.; Correia, Otília A.

    2005-05-01

    Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders ( Cistus monspeliensis and Cistus ladanifer) and resprouters ( Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean

  20. Multicenter assessment of the reproducibility of volumetric radiofrequency-based intravascular ultrasound measurements in coronary lesions that were consecutively stented

    DEFF Research Database (Denmark)

    Huisman, Jennifer; Egede, Rasmus; Rdzanek, Adam

    2012-01-01

    To assess in a multicenter design the between-center reproducibility of volumetric virtual histology intravascular ultrasound (VH-IVUS) measurements with a semi-automated, computer-assisted contour detection system in coronary lesions that were consecutively stented. To evaluate the reproducibility...... of volumetric VH-IVUS measurements, experienced analysts of 4 European IVUS centers performed independent analyses (in total 8,052 cross-sectional analyses) to obtain volumetric data of 40 coronary segments (length 20.0 ± 0.3 mm) from target lesions prior to percutaneous intervention that were performed...... in the setting of stable (65%) or unstable angina pectoris (35%). Geometric and compositional VH-IVUS measurements were highly correlated for the different comparisons. Overall intraclass correlation for vessel, lumen, plaque volume and plaque burden was 0.99, 0.92, 0.96, and 0.83, respectively; for fibrous...

  1. Toward public volume database management: a case study of NOVA, the National Online Volumetric Archive

    Science.gov (United States)

    Fletcher, Alex; Yoo, Terry S.

    2004-04-01

    Public databases today can be constructed with a wide variety of authoring and management structures. The widespread appeal of Internet search engines suggests that public information be made open and available to common search strategies, making accessible information that would otherwise be hidden by the infrastructure and software interfaces of a traditional database management system. We present the construction and organizational details for managing NOVA, the National Online Volumetric Archive. As an archival effort of the Visible Human Project for supporting medical visualization research, archiving 3D multimodal radiological teaching files, and enhancing medical education with volumetric data, our overall database structure is simplified; archives grow by accruing information, but seldom have to modify, delete, or overwrite stored records. NOVA is being constructed and populated so that it is transparent to the Internet; that is, much of its internal structure is mirrored in HTML allowing internet search engines to investigate, catalog, and link directly to the deep relational structure of the collection index. The key organizational concept for NOVA is the Image Content Group (ICG), an indexing strategy for cataloging incoming data as a set structure rather than by keyword management. These groups are managed through a series of XML files and authoring scripts. We cover the motivation for Image Content Groups, their overall construction, authorship, and management in XML, and the pilot results for creating public data repositories using this strategy.

  2. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  3. INCREASING EXTINGUISHING EFFECT OF WATER MIST BY ELEKTRIFICATION

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2017-04-01

    Full Text Available This paper describes extinguishing experiments to verify the possibility of increasing the fire-extinguishing efficiency of low-, medium- and high-pressure water mist by its charging by the electric field of high DC voltage. The experimental results confirmed the effects of the electrical voltage, the configuration of electrodes (anode, cathode, the volumetric water flow rate, water pressure and the type of mist nozzle. Higher fire-extinguishing effect of electrically-charged water mist was shown by a shorter extinguishing time, a smaller volume of water to extinguish the fire and a higher percentage of successful extinguishing attempts. Benefit: faster and more efficient fire-fighting with a smaller risk of injury of persons and smaller subsequent damage in the protected space.

  4. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  5. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  6. Conservation of Water and Related Land Resources

    Science.gov (United States)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  7. Dinitrogen Fixation Within and Adjacent to Oxygen Deficient Waters of the Eastern Tropical South Pacific Ocean

    Science.gov (United States)

    Widner, B.; Mulholland, M. R.; Bernhardt, P. W.; Chang, B. X.; Jayakumar, A.

    2016-02-01

    Recent work suggests that planktonic diazotrophs are geographically more widely distributed than previously thought including relatively warm (14-23oC) aphotic oxygenated pelagic waters and in aphotic waters within oxygen deficient zones. Because the volume of aphotic water in the ocean is large and may increase in the future, if dinitrogen (N2) fixation is widely occurring at sub-euphotic depths, this could result in a dramatic upward revision of global nitrogen (N) inputs via this process. N2 fixation rates were measured during a cruise in the Eastern Tropical South Pacific using stable isotope tracer techniques that account for slow gas dissolution. Results are compared with light, nutrient, and oxygen gradients (and necessarily temperature gradients). In addition, rates of N2 fixation made in vertical profiles within and above oxygen deficient waters are compared with those measured in vertical profiles adjacent to oxygen deficient waters. Results suggest that while rates of N2 fixation were measurable in deeper anoxic waters, volumetric N2 fixation rates were higher in surface waters.

  8. Volumetric 3-component velocimetry measurements of the flow field on the rear window of a generic car model

    Directory of Open Access Journals (Sweden)

    Tounsi Nabil

    2012-01-01

    Full Text Available Volumetric 3-component Velocimetry measurements are carried out in the flow field around the rear window of a generic car model, the so-called Ahmed body. This particular flow field is known to be highly unsteady, three dimensional and characterized by strong vortices. The volumetric velocity measurements from the present experiments provide the most comprehensive data for this flow field to date. The present study focuses on the wake flow modifications which result from using a simple flow control device, such as the one recently employed by Fourrié et al. [1]. The mean data clearly show the structure of this complex flow and confirm the drag reduction mechanism suggested by Fourrié et al. The results show that strengthening the separated flow leads to weakening the longitudinal vortices and vice versa. The present paper shows that the Volumetric 3-component Velocimetry technique is a powerful tool used for a better understanding of a threedimensional unsteady complex flow such that developing around a bluffbody.

  9. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  10. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  11. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  12. Determination of Geometrical REVs Based on Volumetric Fracture Intensity and Statistical Tests

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-05-01

    Full Text Available This paper presents a method to estimate a representative element volume (REV of a fractured rock mass based on the volumetric fracture intensity P32 and statistical tests. A 150 m × 80 m × 50 m 3D fracture network model was generated based on field data collected at the Maji dam site by using the rectangular window sampling method. The volumetric fracture intensity P32 of each cube was calculated by varying the cube location in the generated 3D fracture network model and varying the cube side length from 1 to 20 m, and the distribution of the P32 values was described. The size effect and spatial effect of the fractured rock mass were studied; the P32 values from the same cube sizes and different locations were significantly different, and the fluctuation in P32 values clearly decreases as the cube side length increases. In this paper, a new method that comprehensively considers the anisotropy of rock masses, simplicity of calculation and differences between different methods was proposed to estimate the geometrical REV size. The geometrical REV size of the fractured rock mass was determined based on the volumetric fracture intensity P32 and two statistical test methods, namely, the likelihood ratio test and the Wald–Wolfowitz runs test. The results of the two statistical tests were substantially different; critical cube sizes of 13 m and 12 m were estimated by the Wald–Wolfowitz runs test and the likelihood ratio test, respectively. Because the different test methods emphasize different considerations and impact factors, considering a result that these two tests accept, the larger cube size, 13 m, was selected as the geometrical REV size of the fractured rock mass at the Maji dam site in China.

  13. Programmable segmented volumetric modulated arc therapy for respiratory coordination in pancreatic cancer

    International Nuclear Information System (INIS)

    Wu, Jian-Kuen; Wu, Chien-Jang; Cheng, Jason Chia-Hsien

    2012-01-01

    We programmably divided long-arc volumetric modulated arc therapy (VMAT) into split short arcs, each taking less than 30 s for respiratory coordination. The VMAT plans of five pancreatic cancer patients were modified; the short-arc plans had negligible dose differences and satisfied the 3%/3-mm gamma index on a MapCHECK-2 device.

  14. Water relations of Eucalyptus nitens x Eucalyptus grandis : is there ...

    African Journals Online (AJOL)

    Water relations of Eucalyptus nitens x Eucalyptus grandis : is there interclonal variation in response to experimentally imposed water stress? ... Southern Forests: a Journal of Forest Science ... However, water stress reduced shoot hydraulic conductance and stem hydraulic conductivity with significant interclonal effects.

  15. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  16. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules.

    Science.gov (United States)

    Milanese, Gianluca; Eberhard, Matthias; Martini, Katharina; Vittoria De Martini, Ilaria; Frauenfelder, Thomas

    2018-04-01

    To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. Standard of reference nodule volume ranged from 13 to 366 mm 3 . The mean overestimation between readers was 3 mm 3 and 2.9 mm 3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm 3 ) and (15.5, -21.4 mm 3 ) for SCT and VSCT, respectively. VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Water Relations, Gas Exchange, and Nutrient Response to a Long Term Constant Water Deficit

    Science.gov (United States)

    Berry, Wade L.; Goldstein, Guillermo; Dreschel, Thomas W.; Wheeler, Raymond M.; Sager, John C.; Knott, William M.

    1992-01-01

    Wheat plants (Triticum aestivum) were grown for 43 days in a micro-porous tube nutrient delivery system. Roots were unable to penetrate the microporous tube, but grew on the surface and maintained capillary contact with the nutrient solution on the inside of the tube through the 5-micron pores of the porous tube. Water potential in the system was controlled at -0.4, -0.8, and -3.0 kPa by adjusting the applied pressure (hydrostatic head) to the nutrient solution flowing through the microporous tubes. A relatively small decrease in applied water potential from -0.4 to -3.0 kPa resulted in a 34% reduction of shoot growth but only a moderate reduction in the midday leaf water potential from -1.3 to -1.7 MPa. Carbon dioxide assimilation decreased and water use efficiency increased with the more negative applied water potentials, while intercellular CO2 concentration remained constant. This was associated with a decrease in stomatal conductance to water vapor from 1.90 to 0.98 mol/(sq m sec) and a decrease in total apparent hydraulic conductance from 47 to 12 (micro)mol/(sec MPa). Although the applied water potentials were in the -0.4 to -3.0 kPa range, the actual water potential perceived by the plant roots appeared to be in the range of -0.26 to -0.38 MPa as estimated by the leaf water potential of bagged plants. The amount of K, Ca, Mg, Zn, Cu, and B accumulated with each unit of transpired water increased as the applied water potential became less negative. The increase in accumulation ranged from 1.4-fold for K to 2.2-fold for B. The physiological responses observed in this study in response to small constant differences in applied water potentials were much greater than expected from either the applied water potential or the observed plant water potential. Even though the micro-porous tube may not represent natural conditions and could possibly introduce morphological and physiological artifacts, it enables a high degree of control of water potential that

  18. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  19. Relative frequencies and significance of faecal coliforms as indicators related to water temperature.

    Science.gov (United States)

    Auban, E G; Ripolles, A A; Domarco, M J

    1983-01-01

    The faecal coliforms at different sites of a hypereutrophic lake near Valencia (Albufera) were identified and their relative amounts established along an annual cycle. Using lauryl tryptose broth at 35 degrees C, followed by incubation at 44.4 degrees C in 2% brilliant green bile, Escherichia coli and Klebsiella pneumoniae are practically the only coliforms present. A positive correlation was found between the water temperature and the relative amount of these two coliforms: K. pneumoniae predominates at high water temperatures, whereas E. coli shows preponderance during the cold period. The role of K. pneumoniae as the only faecal indicator under the circumstances described in the work is emphasized and discussed.

  20. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  1. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  2. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  3. Effects of soil water depletion on the water relations in tropical kudzu

    Directory of Open Access Journals (Sweden)

    Adaucto Bellarmino de Pereira-Netto

    1999-07-01

    Full Text Available Tropical kudzu (Pueraria phaseoloides (Roxb. Benth., Leguminosae: Faboideae is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC, stomatal conductance (g and temperature (T L in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O.g (dry soil-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC. The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.

  4. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  5. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  6. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  7. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  8. Farmer Perceptions of Conflict Related to Water in Zambia

    Directory of Open Access Journals (Sweden)

    Richard A. Marcantonio

    2018-01-01

    Full Text Available The relationship between climate change, water scarcity, and conflict is still debated. Much of the existing work relating resource scarcity to conflict has involved regional-scale analysis linking instances of violent outbreaks to environmental conditions. But how do individual farmers in Africa define conflict? Do they perceive that conflict will change as a function of water scarcity, and, if so, how? Here, we address these questions by surveying farmers in southern Zambia in 2015, where we asked respondents to define conflict, assessed their perceptions of past and future conflict, as well as perceptions of rainfall and water availability. We find that the majority of our respondents (75% think of conflict as misunderstandings or disagreements between people and that 91% of our sample has experienced past conflict, 70% expect to experience future conflict, and 58% expect to experience future physical violent conflict. When asked about the sources of conflict, respondents mainly mention land grabbing, crop damage by animals, and politics rather than water related issues. However, we find a significant relationship between perceptions of future rainfall decreasing and future physical violent conflict. These results imply that even though respondents do not think water scarcity is a direct source of conflict, the perception of decreased rain in the future is significantly related to the perception that future conflict and future physical violent conflict will occur.

  9. Availability and quality of water related to western energy

    International Nuclear Information System (INIS)

    Hudson, H.H.

    1981-01-01

    Much of the nation's energy resources is contained in seven states of the western United States. Arizona, New Mexico, Colorado, Utah, Wyoming, Montana, and North Dakota contain 40% of the nation's coal and 90% of its uranium and shale oil. Although rich in energy resources, these states are chronically deficient in water. Coal mining and subsequent land reclamation require relatively small amounts of water. Plans that require large quantities of water to transport and convert the coal to energy include the operation of coal-slurry pipelines, thermal-electric power generation, and coal gasification. Production of oil from shale by conventional mining techniques may require about three or four unit volumes of water for each unit volume of shale oil produced. Nearly half of this water would be needed to reestablish vegetation on waste material. In-situ extraction of oil would require substantially less water. Extracting and processing uranium require relatively small amounts of water. There may be problems of the quality of local groundwater where solution mining is practiced and where uranium ore is removed from water-saturated rocks that are then exposed to oxidation. Estimates of amounts of water required to support the development of western energy resources are highly variable and depend on the conversion technology, the level of anticipated development, and the quality of the water required by any given use or process. Conservative estimates exceed 2000 cu hm/year by the year 2000. Although water supplies in the amounts anticipated as being needed for energy development are available within the seven states, their availability locally may depend on satisfying environmental objections, modifying legal and institutional arrangements that presently control water distribution and use, and constructing additional reservoirs and distribution systems

  10. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  11. Political Economy and Irrigation Technology Adoption Implications of Water Pricing under Asymmetric Information

    OpenAIRE

    Dridi, Chokri; Khanna, Madhu

    2005-01-01

    We analyze the design of water pricing rules emerging from farmers' lobbying and their implications for the size of the lobby, water use, profits and social welfare. The lobbying groups are the adopters of modern irrigation technology and the non-adopters. The pricing rules are designed to meet budget balance of water provision; we considered (i) a two-part tariff composed of a mandatory per-acre fee plus a volumetric charge and (ii) a nonlinear pricing schedule. Our results show that under e...

  12. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  13. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  14. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  15. 3-dimensional charge collection efficiency measurements using volumetric tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Daniel [CERN, Geneva (Switzerland)

    2016-07-01

    For a better understanding of the electrical field distribution of 3D semiconductor detectors and to allow efficiency based design improvements, a method to measure the 3D spatial charge collection efficiency of planar, 3D silicon and diamond sensors using 3D volumetric reconstruction techniques is possible. Simulation results and first measurements demonstrated the feasibility of this method and show that with soon available 10 times faster beam telescopes even small structures and efficiency differences will become measurable in few hours.

  16. Evaluation of the effect of temperature, concentration and volumetric flow in the hydrolysis of sucrose by an immobilized invertase in a spherical reactor

    International Nuclear Information System (INIS)

    Zamora Leiton, Maria Monserrath; Molina Cordoba, Manuel; Chacon Valle, Gerardo

    2011-01-01

    The effect of the volumetric flow, the temperature and the initial concentration of sucrose in the reaction of hydrolysis of sucrose by immobilized invertase were evaluated in the laboratory. Invertase was immobilized in 20 g of support of mesh size between 120 and 140. The maximum quantity of immobilized invertase obtained has been 0,130 mg/g of support at 220 min. The first experimental stage has consisted in the evaluation of the effect of the initial concentration of sucrose (1,0 and 1,5 mol/L), the volumetric flow (3,0 mL/min and 4,0 mL/min) and the temperature (45 degrees C and 50 degrees C). The effect of the above three variable has been statistically significant. The conversion has been favorable for a concentration of sucrose 1,0 mol/L, a volumetric flow of 3 mL/min and a temperature of 50 degrees C. The maximum conversion obtained has been 95,4 %. The second experimental stage has analyzed the effect of the initial concentration of sucrose (0,75 and 1,0 mol/L), the volumetric flow (2,5 mL/min and 3,0 mL/min) and the temperature (50 degrees C and 55 degrees C). The variable of volumetric flow and the interaction concentration of sucrose - temperature are found statistically significant. The conversion has been favorable for a volumetric flow of 2,5 mL/min, and it has been preferable to work at a temperature of 50 degrees C with an initial concentration of sucrose of 1,0 mol/L. The maximum conversion has been 94,8 %. The effect of the concentration was analyzed in the last experimental stage, it was found that the maximum conversion percentage was 95,0 % for a concentration of 1,1 mol/L, for a temperature of 50 degrees C and for a volumetric flow of 2,5 mL/min. (author) [es

  17. The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism

    Science.gov (United States)

    Tkalcic, Hrvoje; Dreger, Douglas S.; Foulger, Gillian R.; Julian, Bruce R.

    2009-01-01

    A volcanic earthquake with Mw 5.6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of  events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% double-couple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.

  18. Assessment of the water quality parameters in relation to fish ...

    African Journals Online (AJOL)

    Physicochemical indices of water body changed seasonally and this necessitated an investigation to assess the water quality parameters of Osinmo reservoir in relation to its fish species. The water quality parameters were measured using standard methods. Results obtained show that the reservoir is alkaline in nature with ...

  19. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions

    OpenAIRE

    Rahmati, Mitra; Davarynejad, Gholam Hossein; G?nard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The...

  20. Volumetric water content measurement probes in earth-dam construction

    Directory of Open Access Journals (Sweden)

    Bardanis Michael

    2016-01-01

    Full Text Available Two frequency domain reflectometry (FDR probes have been used. They were used on compacted soils both in the laboratory and in the field. Measurements in the laboratory were intended for calibration. The range of densities and types of materials where insertion of the probes can be achieved was investigated first. The effect of sporadic presence of coarser grains and density on these calibrations, once insertion could be achieved, were investigated second. Measurements on laboratory prepared samples with the same moisture content were different when the sample was kept in the mould from when it was extruded from it. Also both these measurements were different from that in a sample of the same density but significantly larger in diameter. It was found that measurements with these probes are affected by dilation exhibited by soil around the rods of the probes during insertion. Readings immediately after insertion of the sensors on samples extruded from their moulds were the ones closer to measured values. These readings combined with total volume and mass obtained from sand-cone tests during the construction of an earth-dam allowed fairly accurate estimation of the dry unit weight but not the gravimetric water content.

  1. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  2. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lu Wei; Low, Daniel [Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63110 (United States)], E-mail: ligeorge@mail.nih.gov

    2009-04-07

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 {+-} 0.005, p < 0.0001) as well as a linear relationship (slope = 1.027 {+-} 0.061, R{sup 2} = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 {+-} 0.092, R{sup 2} = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 {+-} 0.44 and 0.82 {+-} 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  3. Coping with gravity: the foliar water relations of giant sequoia.

    Science.gov (United States)

    Williams, Cameron B; Reese Næsborg, Rikke; Dawson, Todd E

    2017-10-01

    In tall trees, the mechanisms by which foliage maintains sufficient turgor pressure and water content against height-related constraints remain poorly understood. Pressure-volume curves generated from leafy shoots collected crown-wide from 12 large Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees provided mechanistic insights into how the components of water potential vary with height in tree and over time. The turgor loss point (TLP) decreased with height at a rate indistinguishable from the gravitational potential gradient and was controlled by changes in tissue osmotica. For all measured shoots, total relative water content at the TLP remained above 75%. This high value has been suggested to help leaves avoid precipitous declines in leaf-level physiological function, and in giant sequoia was controlled by both tissue elasticity and the balance of water between apoplasm and symplasm. Hydraulic capacitance decreased only slightly with height, but importantly this parameter was nearly double in value to that reported for other tree species. Total water storage capacity also decreased with height, but this trend essentially disappeared when considering only water available within the typical range of water potentials experienced by giant sequoia. From summer to fall measurement periods we did not observe osmotic adjustment that would depress the TLP. Instead we observed a proportional shift of water into less mobile apoplastic compartments leading to a reduction in hydraulic capacitance. This collection of foliar traits allows giant sequoia to routinely, but safely, operate close to its TLP, and suggests that gravity plays a major role in the water relations of Earth's largest tree species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Models for moisture estimation in different horizons of yellow argisol using TDR

    Directory of Open Access Journals (Sweden)

    Karla Silva Santos Alvares de Almeida

    2017-08-01

    Full Text Available The determination of soil moisture is very important because it is the property with the most influence on the dielectric constant of the medium. Time-domain reflectometry (TDR is an indirect technique used to estimate the water content of the soil (? based on its dielectric constant (Ka. Like any other technique, it has advantages and disadvantages. Among the major disadvantages is the need for calibration, which requires consideration of the soil characteristics. This study aimed to perform the calibration of a TDR100 device to estimate the volumetric water content of four horizons of a Yellow Argisol. Calibration was performed under laboratory conditions using disturbed soil samples contained in PVC columns. The three rods of the handcrafted probes were vertically installed in the soil columns. Weight measurements with digital scales and daily readings of the dielectric constant with the TDR device were taken. For all soil horizons evaluated, the best fits between the dielectric constant and the volumetric water content were related to the cubic polynomial model. The Ledieu model overestimated by approximately 68 % the volumetric water content in the A and AB horizons, and underestimating by 69 % in Bt2, in relation to volumetric water content obtained by gravimetry. The underestimation by linear, Topp, Roth, and Malicki models ranged from 50 % to 85 % for all horizons.

  5. Aerodynamic and related hydrodynamic studies using water facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Related problems, experiences and advancements in aeronautical and maritime fluid dynamics through the use of water facilities are reviewed. In recent years there has been an increasing use of water facilities for aerodynamic investigations. These include water tunnels, towing channels, and stationary tanks. Examples include basic research problems as well as flow fields around fighter aircraft, inlet flows, recirculation flow patterns associated with VTOL, ramjet simulation, etc., and, in general, 3-D flows with vortices or separated regimes as prominent features. The Symposium was organized to provide an appropriate forum for the exchange of information within the aeronautical and maritime fluid dynamics community.

  6. MR volumetric analysis of the course of nephroblastomatosis under chemotherapy in childhood

    International Nuclear Information System (INIS)

    Guenther, Patrick; Waag, Karl Ludwig; Troeger, Jochen; Schenk, Jens-Peter; Graf, Norbert

    2004-01-01

    Nephroblastomatosis is a paediatric renal disease that may undergo malignant transformation. When neoadjuvant chemotherapy is indicated for nephroblastomatosis or bilateral Wilms' tumours, exact volumetric analysis using high-speed data processing and visualization may aid in determining tumour response. Using 3D-volume-rendering software, the 0.5-T MRI data of a 2-year-old girl with bilateral nephroblastomatosis was analysed. Exact volume determination of foci of nephroblastomatosis was performed by automatic and manual segmentation, and the relation to normal renal parenchyma was determined over a 12-month period. At the first visit, 80% (460/547 ml) of the extremely enlarged right kidney was due to nephroblastomatosis. Total tumour volume within the right kidney decreased to 74 ml under chemotherapy. Volume analysis of the two emerging right-sided masses after treatment correctly suggested Wilms' tumour. Three-dimensional rendering of the growing masses aided the surgeon in nephron-sparing surgery during tumour resection. (orig.)

  7. MR volumetric analysis of the course of nephroblastomatosis under chemotherapy in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Patrick; Waag, Karl Ludwig [Department of Paediatric Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Troeger, Jochen; Schenk, Jens-Peter [Department of Paediatric Radiology, University of Heidelberg (Germany); Graf, Norbert [Department of Paediatric Oncology, Children' s Hospital, University of Homburg/Saar (Germany)

    2004-08-01

    Nephroblastomatosis is a paediatric renal disease that may undergo malignant transformation. When neoadjuvant chemotherapy is indicated for nephroblastomatosis or bilateral Wilms' tumours, exact volumetric analysis using high-speed data processing and visualization may aid in determining tumour response. Using 3D-volume-rendering software, the 0.5-T MRI data of a 2-year-old girl with bilateral nephroblastomatosis was analysed. Exact volume determination of foci of nephroblastomatosis was performed by automatic and manual segmentation, and the relation to normal renal parenchyma was determined over a 12-month period. At the first visit, 80% (460/547 ml) of the extremely enlarged right kidney was due to nephroblastomatosis. Total tumour volume within the right kidney decreased to 74 ml under chemotherapy. Volume analysis of the two emerging right-sided masses after treatment correctly suggested Wilms' tumour. Three-dimensional rendering of the growing masses aided the surgeon in nephron-sparing surgery during tumour resection. (orig.)

  8. MR volumetric analysis of the course of nephroblastomatosis under chemotherapy in childhood.

    Science.gov (United States)

    Günther, Patrick; Tröger, Jochen; Graf, Norbert; Waag, Karl Ludwig; Schenk, Jens-Peter

    2004-08-01

    Nephroblastomatosis is a paediatric renal disease that may undergo malignant transformation. When neoadjuvant chemotherapy is indicated for nephroblastomatosis or bilateral Wilms' tumours, exact volumetric analysis using high-speed data processing and visualization may aid in determining tumour response. Using 3D-volume-rendering software, the 0.5-T MRI data of a 2-year-old girl with bilateral nephroblastomatosis was analysed. Exact volume determination of foci of nephroblastomatosis was performed by automatic and manual segmentation, and the relation to normal renal parenchyma was determined over a 12-month period. At the first visit, 80% (460/547 ml) of the extremely enlarged right kidney was due to nephroblastomatosis. Total tumour volume within the right kidney decreased to 74 ml under chemotherapy. Volume analysis of the two emerging right-sided masses after treatment correctly suggested Wilms' tumour. Three-dimensional rendering of the growing masses aided the surgeon in nephron-sparing surgery during tumour resection.

  9. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  10. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  11. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  12. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Le, Manh-Trung; Phuc, Dao Cong; Lin, Shyh-Tsong

    2014-01-01

    The article presents the development of in-situ integrated circuit (IC) chip defect detection techniques for automated clipping detection by proposing infrared imaging and full-field volumetric topography. IC chip inspection, especially held during or post IC packaging, has become an extremely critical procedure in IC fabrication to assure manufacturing quality and reduce production costs. To address this, in the article, microscopic infrared imaging using an electromagnetic light spectrum that ranges from 0.9 to 1.7 µm is developed to perform volumetric inspection of IC chips, in order to identify important defects such as silicon clipping, cracking or peeling. The main difficulty of infrared (IR) volumetric imaging lies in its poor image contrast, which makes it incapable of achieving reliable inspection, as infrared imaging is sensitive to temperature difference but insensitive to geometric variance of materials, resulting in difficulty detecting and quantifying defects precisely. To overcome this, 3D volumetric topography based on 3D infrared confocal measurement with active structured light, as well as light refractive matching principles, is developed to detect defects the size, shape and position of defects in ICs. The experimental results show that the algorithm is effective and suitable for in-situ defect detection of IC semiconductor packaging. The quality of defect detection, such as measurement repeatability and accuracy, is addressed. Confirmed by the experimental results, the depth measurement resolution can reach up to 0.3 µm, and the depth measurement uncertainty with one standard deviation was verified to be less than 1.0% of the full-scale depth-measuring range. (paper)

  13. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy

    OpenAIRE

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-01-01

    Abstract Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high?dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 2...

  14. Control and design of volumetric composition in pultruded hybrid fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Hashemi, Fariborz; Tahir, Paridah

    2016-01-01

    composition (i.e. volume fractions of fibres, matrix and porosity) in hybrid fibre composites. The model is based on a constant local fibre volume fraction criterion. Good agreement is found between model predictions and experimental data of pultruded hybrid kenaf/glass fibre composites with variable hybrid...... fibre weight mixing ratios. To demonstrate the suitability of the model, simulations are performed for four different cases of volumetric composition in hybrid kenaf/glass composites....

  15. Volumetric localization of somatosensory cortex in children using synthetic aperture magnetometry

    International Nuclear Information System (INIS)

    Xiang, Jing; Holowka, Stephanie; Chuang, Sylvester; Sharma, Rohit; Hunjan, Amrita; Otsubo, Hiroshi

    2003-01-01

    Magnetic signal from the human brain can be measured noninvasively by using magnetoencephalography (MEG). This study was designed to localize and reconstruct the neuromagnetic activity in the somatosensory cortex in children Twenty children were studied using a 151-channel MEG system with electrical stimulation applied to median nerves. Data were analyzed using synthetic aperture magnetometry (SAM). A clear deflection (M1) was clearly identified in 18 children (90%, 18/20). Two frequency bands, 30-60 Hz and 60-120 Hz, were found to be related to somatosensory cortex. Magnetic activity was localized in the posterior bank of the central sulcus in 16 children. The extent of the reconstructed neuromagnetic activity of the left hemisphere was significantly larger than that of the right hemisphere (P<0.01). Somatosensory cortex was accurately localized by using SAM. The extent of the reconstructed neuromagnetic activity suggested that the left hemisphere was the dominant side in the somatosensory system in children. We postulate that the volumetric characteristics of the reconstructed neuromagnetic activity are able to indicate the functionality of the brain. (orig.)

  16. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Science.gov (United States)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  17. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software

    OpenAIRE

    Waade, G; Highnam, R; Hauge, I; McEntee, M; Hofvind, S; Denton, E; Kelly, J; Sarwar, J; Hogg, P

    2016-01-01

    Purpose: Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation, however the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric de...

  18. SU-E-J-217: Accuracy Comparison Between Surface and Volumetric Registrations for Patient Setup of Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Kim, Y; Li, R; Na, Y; Jenkins, C; Xing, L; Lee, R

    2014-01-01

    Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatment CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)

  19. SU-E-J-217: Accuracy Comparison Between Surface and Volumetric Registrations for Patient Setup of Head and Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y [Stanford University School of Medicine, Stanford, CA (United States); Korea Institute of Science and Technology, Seoul (Korea, Republic of); Li, R; Na, Y; Jenkins, C; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Lee, R [Ewha Womans University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatment CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)

  20. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  1. Focus on CSIR research in water resources: Inter-SEDE: a new tool for interrogating transboundary basins

    CSIR Research Space (South Africa)

    Turton, A

    2007-08-01

    Full Text Available the potential for benefit-sharing (as opposed to the volumetric allocation of trans-boundary waters). Three case studies were included: the Jordan River; the Kagera River, extending to the Nile as a whole; and the Mekong River...

  2. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  3. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  4. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study

    International Nuclear Information System (INIS)

    Rojas, R; González, C A; Rubinsky, B

    2008-01-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma

  5. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project

    International Nuclear Information System (INIS)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Cendre, Romain; Hossu, Gabriela; Felblinger, Jacques; Blum, Alain; Braun, Marc

    2017-01-01

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p < 0.0225). The relation between test scores and the year of residency was logarithmic (R"2 = 0.974). Participants agreed that the test reflected their radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. (orig.)

  6. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI U947, Nancy (France); Cendre, Romain [INSERM, CIC-IT 1433, Nancy (France); Hossu, Gabriela; Felblinger, Jacques [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Braun, Marc [CHRU-Nancy Hopital Central, Service de Neuroradiologie, Nancy (France)

    2017-02-15

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p < 0.0225). The relation between test scores and the year of residency was logarithmic (R{sup 2} = 0.974). Participants agreed that the test reflected their radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. (orig.)

  7. Virtual water trade of agri-food products: Evidence from italian-chinese relations.

    Science.gov (United States)

    Lamastra, Lucrezia; Miglietta, Pier Paolo; Toma, Pierluigi; De Leo, Federica; Massari, Stefania

    2017-12-01

    At global scale, the majority of world water withdrawal is for the agricultural sector, with differences among countries depending on the relevance of agri-food sector in the economy. Virtual water and water footprint could be useful to express the impact on the water resources of each production process and good with the objective to lead to a sustainable use of water at a global level. International trade could be connected to the virtual water flows, in fact through commodities importation, water poor countries can save their own water resources. The present paper focuses on the bilateral virtual water flows connected to the top ten agri-food products traded between Italy and China. Comparing the virtual water flow related to the top 10 agri-food products, the virtual water flow from Italy to China is bigger than the water flow in the opposite direction. Moreover, the composition of virtual water flows is different; Italy imports significant amounts of grey water from China, depending on the different environmental strategies adopted by the two selected countries. This difference could be also related to the fact that traded commodities are very different; the 91% of virtual water imported by Italy is connected to crops products, while the 95% of virtual water imported by China is related to the animal products. Considering national water saving and global water saving, appears that Italy imports virtual water from China while China exerts pressure on its water resources to supply the exports to Italy. This result at global scale implies a global water loss of 129.29millionm3 because, in general, the agri-food products are traded from the area with lower water productivity to the area with the higher water productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  9. Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced Geometry

    OpenAIRE

    Carlos Jiménez de Parga; Sebastián Rubén Gómez Palomo

    2018-01-01

    This paper presents several new techniques for volumetric cloud rendering using efficient algorithms and data structures based on ray-tracing methods for cumulus generation, achieving an optimum balance between realism and performance. These techniques target applications such as flight simulations, computer games, and educational software, even with conventional graphics hardware. The contours of clouds are defined by implicit mathematical expressions or triangulated structures inside which ...

  10. Combined use of biochemical and volumetric biomarkers to assess the risk of conversion of mild cognitive impairment to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Marta Nesteruk

    2016-12-01

    Full Text Available Introduction : The aim of our study was to evaluate the usefulness of several biomarkers in predicting the conversion of mild cognitive impairment (MCI to Alzheimer’s disease (AD: β-amyloid and tau proteins in cerebrospinal fluid and the volumetric evaluation of brain structures including the hippocampus in magnetic resonance imaging (MRI. Material and methods : MRI of the brain with the volumetric assessment of hippocampus, entorhinal cortex, posterior cingulate gyrus, parahippocampal gyrus, superior, medial and inferior temporal gyri was performed in 40 patients diagnosed with mild cognitive impairment. Each patient had a lumbar puncture to evaluate β-amyloid and tau protein (total and phosphorylated levels in the cerebrospinal fluid. The observation period was 2 years. Results : Amongst 40 patients with MCI, 9 (22.5% converted to AD within 2 years of observation. Discriminant analysis was conducted and sensitivity for MCI conversion to AD on the basis of volumetric measurements was 88.9% and specificity 90.3%; on the basis of β-amyloid and total tau, sensitivity was 77.8% and specificity 83.9%. The combined use of the results of volumetric measurements with the results of proteins in the cerebrospinal fluid did not increase the sensitivity (88.9% but increased specificity to 96.8% and the percentage of correct classification to 95%.

  11. In vivo volumetric analysis of tumours by CT: What is the value of the calculation of tumour volumes for recurrent rectal cancer?

    International Nuclear Information System (INIS)

    Aydin, H.; Richter, E.; Feyerabend, T.; Bohndorf, W.

    1990-01-01

    The volumetric analysis of a tumour by CT is a reliable and clinically important method of examination which is rarely used. As for oncology, the importance of this method is based upon the determination of the stage of remission posttherapeutically, especially in those cases which respond to therapy without a roentgenologic change in comparison to pretherapeutic findings. This applies in particular for the evaluation of CT images. In this study 115 CT examinations of 38 patients with recurrent rectal cancer were evaluated and the tumour remission was measured by an exact determination of the tumour volume before and after radiotherapy. The results were compared with the CT findings without volumetric analysis. A change of the tumour size up to 20% of the pretherapeutic volume which eludes from the visual perception can be revealed by a subtle CT-assisted volumetric analysis. Formulas for calculation of the volume or the data concerning length, width and depth of a mass prove to be insufficient or incorrect. Therefore the correct evaluation of a tumour regression or progression shoud be done more often by CT-assisted volumetric analysis. (orig.) [de

  12. Spectrophotometric determination of iron (III) in tap water using 8 ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Beers law was obeyed in the range of 1 to 14 ug/ml Fe3+. The recovery was between 98.60 ... Federal and state regulations limit the iron content of drinking water to <1 ppm, though iron is easily .... weighed and dissolved in chloroform in a 100 ml volumetric flask and made up to the mark with chloroform.

  13. Improved Second-Generation 3-D Volumetric Display System. Revision 2

    Science.gov (United States)

    1998-10-01

    computer control, uses infrared lasers to address points within a rare-earth-infused solid glass cube. Already, simple animated computer-generated images...Volumetric Display System permits images to be displayed in a three- dimensional format that can be observed without the use of special glasses . Its...MM 120 nm 60 mm nI POLARIZING I $-"• -’’""BEAMSPLI’i-ER ) 4P40-MHz 50-MHz BW PLRZN i TeO2 MODULATORS TeO2 DEFLECTORS Figure 1-4. NEOS four-channel

  14. The pineal organ of bats: a comparative morphological and volumetric investigation.

    OpenAIRE

    Bhatnagar, K P; Frahm, H D; Stephan, H

    1986-01-01

    Bats are seasonal breeders and roost under a wide range of lighting conditions, from broad daylight to the total darkness of subterranean passageways and caves. Some are true hibernators. These characteristics and the paucity of information on their pineal organ prompted this investigation, which is based upon the pineals of 191 specimens of 88 species and 12 families of bats. Comparative morphological and volumetric observations have been made on serially sectioned brains of each species. Da...

  15. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H. [Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Li, Ruijiang [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  16. Volumetric dispenser for small particles from plural sources

    International Nuclear Information System (INIS)

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-01-01

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles

  17. Application of three-dimensional volumetric ultrasonography in patients with bladder cancer and its mimickers: A pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Sujin; Hong, Seong Sook; Hwang, Ji Young; Kim, Hyun Joo [Dept. of Radiology, Soonchunhyang University Seoul Hospital, Seoul (Korea, Republic of)

    2017-05-15

    Various diseases of the urinary bladder can be demonstrated as being polypoid, a nodular bladder mass or as focal bladder wall thickening. This includes malignant or benign neoplasms, urinary stones, or other inflammatory bladder conditions. In daily practice many of these bladder diseases are easily confused with bladder cancer. On the other hand, ultrasonography (US) is safe and can be easily applied as a screening modality or an initial evaluating tool for urinary bladder disease. Furthermore, additional three-dimensional (3D) volumetric techniques can support more delicate delineation of these lesions. This study presents a 3D volumetric US for bladder lesions, and demonstrates various pathological conditions of the urinary bladder ranging from bladder cancer to other benign lesions.

  18. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  19. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  20. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids: Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Marlijne E. Ikink

    2015-01-01

    Full Text Available Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU ablation with direct skin cooling (DISC during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were consecutively selected for clinical MR-HIFU ablation of uterine fibroids with the use of an additional DISC device to maintain a constant temperature (T≈20°C at the interface between the HIFU table top and the skin. Technical feasibility was verified by successful completion of MR-HIFU ablation. Contrast-enhanced T1-weighted MRI was used to measure the treatment effect (nonperfused volume (NPV ratio. Safety was evaluated by recording of adverse events (AEs within 30 days’ follow-up. Results. All MR-HIFU treatments were successfully completed in an outpatient setting. The median NPV ratio was 0.56 (IQR [0.27–0.72]. Immediately after treatment, two patients experienced coldness related discomfort which resolved at the same day. No serious (device-related AEs were reported. Specifically, no skin burns, cold injuries, or subcutaneous edema were observed. Conclusion. This study showed that it is safe and technically feasible to complete a volumetric MR-HIFU ablation with DISC. This technique may reduce the risk of thermal injury to the abdominal wall during MR-HIFU ablation of uterine fibroids. This trial is registered with NTR4189.

  1. Water relations and keeping-quality of cut Gerbera flowers

    OpenAIRE

    Meeteren, van, U.

    1980-01-01

    The aim of the present investigation is to study the internal water relations,of ageing Gerbera inflorescences and their consequence on keepingquality of cut inflorescences. As in all parts of this paper, the term "flower" will be used to describe an inflorescence with its supporting stem.A great problem during vase-life of cut Gerbera flowers is ',stem break", a sudden bending of the stem. As described in part 1, this phenomenon was caused by a water shortage in the flower. The water-stress ...

  2. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Rozario, T; Liu, A; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transit signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient

  3. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    International Nuclear Information System (INIS)

    Bassounas, Athanasios E.; Karantanas, Apostolos H.; Fotiadis, Dimitrios I.; Malizos, Konstantinos N.

    2007-01-01

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 ± 12% for the successful hips and 37 ± 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 ± 26%) and postero-supero-medial (54 ± 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts

  4. The establishment of the method of three dimension volumetric fusion of emission and transmission images for PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang

    2004-01-01

    Objective: To establish the method of three dimension volumetric fusion of emission and transmission images for PET imaging. Methods: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner were transferred to PC computer by local area network. The PET volume data were converted into 8 bit byte type, and scaled to the range of 0-255. The data coordinates of emission and transmission images were normalized by three-dimensional coordinate conversion in the same way. The images were fused with the mode of alpha-blending. The accuracy of image fusion was confirmed by its clinical application in 13 cases. Results: The three dimension volumetric fusion of emission and transmission images clearly displayed the silhouette and anatomic configuration in chest, including chest wall, lung, heart, mediastinum, et al. Forty-eight lesions in chest in 13 cases were accurately located by the image fusion. Conclusions: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner have the same data coordinate. The three dimension fusion software can conveniently used for the three dimension volumetric fusion of emission and transmission images, and also can correctly locate the lesions in chest

  5. Sizing the height of discontinuities, their characterisation in planar/ volumetric by phased array technique based on diffracted echoes

    International Nuclear Information System (INIS)

    Nardoni, G.; Certo, M.; Nardoni, P.; Feroldi, M.; Nardoni, D.; Possenti, L.; Filosi, A.; Quetti, S.

    2009-01-01

    This report demonstrate and discuss the result of experimental works carried out with the scope to study a procedure for improving the characterization (planar volumetric) and sizing the height of discontinuities detected by ultrasonic computerized systems like TOFD, PHASED ARRAY, C-B SCAN. To comply with code case 2235.9 the acceptance criteria illustrated in Tab 1,2,3 shall be applied. For TOFD the procedure for the calculation of the height is well determined and it is the most accurate with respect to any other ultrasonic technique. For PHASED ARRAY the procedures are on developing path. The aim of the present experimental test is to found criteria for the calculation of the height where Phased Array Technique is used. In addition the research has the scope to identify procedure for the characterization of discontinuities in planar and volumetric. The results of the experimental tests has been demonstrated two important achievements:1) The distance between the diffracted echoes is proportional to the height of the discontinuity;2) The ratio between the amplitude of the diffracted echoes could be considered a good criteria for the characterization of discontinuities in planar or volumetric. (author)

  6. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  7. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation.

    Science.gov (United States)

    Romero, P V; Lucangelo, U; Lopez Aguilar, J; Fernandez, R; Blanch, L

    1997-06-01

    Several indices of ventilatory heterogeneity can be identified from the expiratory CO2 partial pressure or CO2 elimination versus volume curves. The aims of this study were: 1) to analyse several computerizable indices of volumetric capnography in order to detect ventilatory disturbances; and 2) to establish the relationship between those indices and respiratory system mechanics in subjects with normal lungs and in patients with acute respiratory distress syndrome (ARDS), both receiving mechanical ventilation. We studied six normal subjects and five patients with early ARDS mechanically ventilated at three levels of tidal volume (VT). Respiratory system mechanics were assessed by end-expiratory and end-inspiratory occlusion methods, respectively. We determined Phase III slopes, Fletcher's efficiency index, Bohr's dead space (VD,Bohr/VT), and the ratio of alveolar ejection volume to tidal volume (VAE/VT) from expiratory capnograms, as a function of expired volume. Differences between normal subjects and ARDS patients were significant both for capnographic and mechanical parameters. Changes in VT significantly altered capnographic indices in normal subjects, but failed to change ventilatory mechanics and VAE/VT in ARDS patients. After adjusting for breathing pattern, VAE/VT exhibited the best correlation with the mechanical parameters. In conclusion, volumetric capnography, and, specifically, the ratio of alveolar ejection volume to tidal volume allows evaluation and monitoring of ventilatory disturbances in patients with adult respiratory distress syndrome.

  8. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  9. Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species

    Directory of Open Access Journals (Sweden)

    Shi-Bao eZhang

    2015-04-01

    Full Text Available Epiphytes that grow in the canopies of tropical and subtropical forests experience different water regimes when compared with terrestrial plants. However, the differences in adaptive strategies between epiphytic and terrestrial plants with respect to plant water relations remain poorly understood. To understand how water-related traits contrast between epiphytic and terrestrial growth forms within the Cymbidium (Orchidaceae, we assessed leaf anatomy, hydraulics, and physiology of seven terrestrial and 13 epiphytic species using a common garden experiment. Compared with terrestrial species, epiphytic species had higher values for leaf mass per unit area (LMA, leaf thickness (LT, epidermal thickness, saturated water content (SWC and the time required to dry saturated leaves to 70% relative water content (T70. However, vein density (Dvein, stomatal density (SD, and photosynthetic capacity (Amax did not differ significantly between the two forms. T70 was positively correlated with LT, LMA, and SWC, and negatively correlated with stomatal index (SI. Amax showed positive correlations with SD and SI, but not with Dvein. Vein density was marginally correlated with SD, and significantly correlated with SI. Overall, epiphytic orchids exhibited substantial ecophysiological differentiations from terrestrial species, with the former type showing trait values indicative of greater drought tolerance and increased water storage capacity. The ability to retain water in the leaves plays a key role in maintaining a water balance in those epiphytes. Therefore, the process of transpiration depends less upon the current substrate water supply and enables epiphytic Cymbidium species to adapt more easily to canopy habitats.

  10. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    Science.gov (United States)

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  11. Plant-water relations and productivity of date palm (Phoenix dactyliferaL.) Cultivars

    International Nuclear Information System (INIS)

    Al-Khalifah, N.S.; Khan, P.R.

    2006-01-01

    The present investigation deals with the plant-water relation and itseffect on chlorophyll content and productivity in six date palm cultivars.Growth and yield of date palm cultivars differed at the expense of same levelof relative water content. Maktoomi showed a significantly higher leafletarea coupled with a higher amount of chlorophyll pigments that led to higheryield per tree. Koweriah recorded a poor yield by having significantly lowerchlorophyll content and leaflet area. Relative Water Content (RWC) had noeffect on the fruit quality. Correlation among the relative water content,chlorophyll content, leaf specific mass and yield was also analyzed. Most ofthe pairs of parameters exhibited a highly significant correlation for thesix cultivars. Apart from physiological parameters, the effect of malepollinator with suitable combination of female variety had a great effect onthe fruit set and yield of date palm. (author)

  12. Water Related Health Problems in Central Asia—A Review

    Directory of Open Access Journals (Sweden)

    Zakir Bekturganov

    2016-05-01

    Full Text Available The present paper provides an extensive literature review on water related health issues in Central Asia. Even though the per capita amount of available freshwater is substantial in all Central Asian states the uneven distribution in time and space creates problems for water availability. Due to this, the Central Asian economies are developing under increasing water deficiency. The degradation of water supply systems and sewage treatment plants is often severe leading to potentially high water loss rates and inadequate accessibility to safe water supply. In this context, rural areas are the most affected. Low tariffs in combination with absent metering and low collection rates for water fees mean that operation and maintenance costs for basic services of water supply and sanitation are not covered. Unsafe water supply contains both microbiological and non-microbiological contaminants. Helminthiasis and intestinal protozoa infections are of considerable public health importance in Central Asia. Agricultural and industrial pollution is especially affecting downstream areas of Amu Darya and Syr Darya rivers. In large areas copper, zinc, and chromium concentrations in water exceed maximum permissible concentration. Thus, there is an urgent need to strengthen the environmental monitoring system. Small-scale water supply and sanitation systems need to be developed in line with more efficient public spending on these.

  13. Volumetric Nephrogram Represents Renal Function and Complements Aortic Anatomic Severity Grade in Predicting EVAR Outcomes.

    Science.gov (United States)

    Balceniuk, Mark D; Trakimas, Lauren; Aghaie, Claudia; Mix, Doran; Rasheed, Khurram; Seaman, Matthew; Ellis, Jennifer; Glocker, Roan; Doyle, Adam; Stoner, Michael C

    2018-07-01

    Chronic kidney disease (CKD) is a predictor of poor outcomes for patients undergoing endovascular aortic aneurysm repair (EVAR). Anatomic severity grade (ASG) represents a quantitative mechanism for assessing anatomical suitability for endovascular aortic repair. Anatomic severity grade has been correlated with repair outcomes and resource utilization. The purpose of this study was to identify a novel renal perfusion metric as a way to assist ASG with predicting EVAR outcomes. Retrospective review of a prospectively maintained database identified elective infrarenal aortic aneurysm repair cases. Anatomic grading was undertaken by independent reviewers. Using volumetric software, kidney volume, and a novel measure of kidney functional volume, the volumetric nephrogram (VN) was recorded. Systematic evaluation of the relationship of kidney volume and VN to CKD and ASG was undertaken using linear regression and receiver-operator statistical tools. A total of 386 cases with patient and anatomic data were identified and graded. Mean age was 72.9 ± 0.4 years. Renal volume renal volume (AUC = .628; P ≤ .0001) and VN (AUC = .628; P ≤ .0001). Regression analysis demonstrated a strong, inverse relationship between ASG and VN ( R 2 = .95). These data demonstrate that VN is a strong predictor of CKD in a large database of patients undergoing elective aneurysm repair. We demonstrate an inverse relationship between renal function and ASG that has not been previously described in the literature. Additionally, we have shown that VN complements ASG as a model of overall cardiovascular health and atherosclerotic burden. Outcomes in patients with poor renal function may be related to anatomical issues in addition to well-described systemic ramifications.

  14. The National Shipbuilding Research Program. Development of Electromagnetic Acoustic Transducers (EMATS) for Surface/Volumetric Inspection of Welds

    National Research Council Canada - National Science Library

    Maclauchlan, D. T; Clark, S. P; Perry, M. B; Hancock, J. W

    2000-01-01

    ...) through General Dynamics - Electric Boat (EB) extended the EMAT technology by evaluating shear wave sensors for volumetric weld examination and included system evaluation in the shipyard, comparing the results...

  15. 78 FR 72109 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2013-12-02

    ... continues negotiations on an operations, maintenance and replacement transfer contract with the Navajo... Status Report of Water Service, Repayment, and Other Water-Related Contract Actions AGENCY: Bureau of... individual contract actions may be published in the Federal Register and in newspapers of general circulation...

  16. 78 FR 46365 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2013-07-31

    ..., Colorado, New Mexico, Texas, Utah, and Wyoming: Contracts for extraordinary maintenance and replacement... Status Report of Water Service, Repayment, and Other Water-Related Contract Actions AGENCY: Bureau of... individual contract actions may be published in the Federal Register and in newspapers of general circulation...

  17. 78 FR 72111 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Science.gov (United States)

    2013-12-02

    ...: Reclamation continues negotiations on an operations, maintenance and replacement transfer contract with the... Status Report of Water Service, Repayment, and Other Water-Related Contract Actions AGENCY: Bureau of... individual contract actions may be published in the Federal Register and in newspapers of general circulation...

  18. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  19. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study.

    Science.gov (United States)

    Marques, E A; Gudnason, V; Sigurdsson, G; Lang, T; Johannesdottir, F; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-05-01

    Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.

  20. Predicting clinical outcomes in chordoma patients receiving immunotherapy: a comparison between volumetric segmentation and RECIST

    International Nuclear Information System (INIS)

    Fenerty, Kathleen E.; Folio, Les R.; Patronas, Nicholas J.; Marté, Jennifer L.; Gulley, James L.; Heery, Christopher R.

    2016-01-01

    The Response Evaluation Criteria in Solid Tumors (RECIST) are the current standard for evaluating disease progression or therapy response in patients with solid tumors. RECIST 1.1 calls for axial, longest-diameter (or perpendicular short axis of lymph nodes) measurements of a maximum of five tumors, which limits clinicians’ ability to adequately measure disease burden, especially in patients with irregularly shaped tumors. This is especially problematic in chordoma, a disease for which RECIST does not always adequately capture disease burden because chordoma tumors are typically irregularly shaped and slow-growing. Furthermore, primary chordoma tumors tend to be adjacent to vital structures in the skull or sacrum that, when compressed, lead to significant clinical consequences. Volumetric segmentation is a newer technology that allows tumor burden to be measured in three dimensions on either MR or CT. Here, we compared the ability of RECIST measurements and tumor volumes to predict clinical outcomes in a cohort of 21 chordoma patients receiving immunotherapy. There was a significant difference in radiologic time to progression Kaplan-Meier curves between clinical outcome groups using volumetric segmentation (P = 0.012) but not RECIST (P = 0.38). In several cases, changes in volume were earlier and more sensitive reflections of clinical status. RECIST is a useful evaluation method when obvious changes are occurring in patients with chordoma. However, in many cases, RECIST does not detect small changes, and volumetric assessment was capable of detecting changes and predicting clinical outcome earlier than RECIST. Although this study was small and retrospective, we believe our results warrant further research in this area

  1. 19 CFR Appendix to Part 146 - Guidelines for Determining Producibility and Relative Values for Oil Refinery Zones

    Science.gov (United States)

    2010-04-01

    ... status crude oil is required, because the law requires the value used for computing the relative value to... Crude Consumed 518,451×$.105 = $54,437 Volumetric Gain 21,602 Avg. Value/Barrel Crude Consumed=$16,756,891÷518,451=$32.321 (8) This example shows volumetric gain of 21,602 mbbls. However, in that PF was...

  2. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...

  3. An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chunhua Dong

    2017-01-01

    Full Text Available Random walk (RW method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-based Bayes random walk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow band threshold (NBT method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p<0.001.

  4. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    Science.gov (United States)

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  5. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  6. Volumetric and viscometric studies of cefepime hydrochloride in water and normal saline from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Li, Yu; Li, Yan-hong; Wang, Fu-an; Ren, Bao-zeng

    2013-01-01

    Graphical abstract: The limiting partial molar volume V ϕ 0 of cefepime hydrochloride in water are positive and increase with increasing temperature. The positive values of V ϕ 0 indicate that the solute–solvent interaction decreases as temperature increases. Highlights: • Density and viscosity of cefepime hydrochloride in water and normal saline has been obtained. • The results show that the model agrees well with the experimental data. • The nature of solute–solute and solute–solvent interactions has been probed. -- Abstract: Density (ρ) and viscosity (η) measurements were carried out for cefepime hydrochloride in water and 0.9 mass % normal saline from (278.15 to 313.15) K. The dependence of density and viscosity on temperature and concentration has been correlated. Apparent molar volumes, standard partial molar volumes, and the viscosity B-coefficient of cefepime hydrochloride were calculated from the experimental measurements. The results are used to establish the nature of solute–solute. Solute–solvent interactions and structure breaking effect of cefepime hydrochloride have been discussed using the Helper equation and the Jones–Dole equation. The relationship between relative changes in viscosity and solute-mixed solvent interaction has been probed

  7. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation

    NARCIS (Netherlands)

    van 't Veer, M.; Adjedj, J.; Wijnbergen, I.; Tóth, G.G.; Rutten, M.C.M.; Barbato, E.; van Nunen, L.X.; Pijls, N.H.J.; de Bruyne, B.

    2016-01-01

    AIMS: The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. METHODS AND RESULTS: Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline

  8. Implications of Water Use and Water Scarcity Footprint for Sustainable Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Thapat Silalertruksa

    2017-12-01

    Full Text Available Rice cultivation is a vital economic sector of many countries in Asia, including Thailand, with the well-being of people relying significantly on selling rice commodities. Water-intensive rice cultivation is facing the challenge of water scarcity. The study assessed the volumetric freshwater use and water scarcity footprint of the major and second rice cultivation systems in the Chao Phraya, Tha Chin, Mun, and Chi watersheds of Thailand. The results revealed that a wide range of freshwater use, i.e., 0.9–3.0 m3/kg of major rice and 0.9–2.3 m3/kg of second rice, and a high water use of rice was found among the watersheds in the northeastern region, like the Mun and Chi watersheds. However, the water scarcity footprint results showed that the second rice cultivation in watersheds, like in Chao Phraya and Tha Chin in the central region, need to be focused for improving the irrigation water use efficiency. The alternate wetting and drying (AWD method was found to be a promising approach for substituting the pre-germinated seed broadcasting system to enhance the water use efficiency of second rice cultivation in the central region. Recommendations vis-à-vis the use of the water stress index as a tool for agricultural zoning policy were also discussed.

  9. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  10. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  11. Experimental data on heat flux distribution from a volumetrically heated pool with frozen boundaries

    International Nuclear Information System (INIS)

    Helle, Maria; Kymaelaeinen, Olli; Tuomisto, Harri

    1999-01-01

    The COPO II experiments are confirmatory experiments and a continuation project to the earlier COPO I experiments. As in COPO 1, a molten corium pool on the lower head of a RPV is simulated by a two - dimensional slice of it in linear scale 1:2. The corium is simulated by water-zinc sulfate solution with volumetric Joule heating. The heat flux distribution on the boundaries and the temperature distribution in the pool are measured. The major new feature in COPO II is the cooling arrangement which is based on circulation of liquid nitrogen on the outside of the pool boundaries. The use of liquid nitrogen leads to formation of ice on the inside of boundaries. Two geometrically different versions of the COPO II facility have been constructed: one with a tori-spherical bottom shape, simulating the RPV of a VVER-440 reactor as COPO I, and another one with semicircular bottom simulating a western PWR such as AP600. The modified Rayleigh number in the COPO II experiments corresponds to the one in a prototypic corium pool (∼ 10 15 ). This paper reports results from the COPO II-Lo and COPO II-AP experiments with homogenous pool. Results indicate that the upward heat fluxes are in agreement with the results of the COPO I experiments. Also, as expected, the time averaged upward heat flux profile was relatively flat. On the other hand, the heat fluxes at the side and bottom boundaries of the pool were slightly higher in COPO II-Lo than in COPO I. In COPO II-AP, the average heat transfer coefficients to the curved boundary were higher than predicted by Jahn's and Mayinger's correlation, but slightly lower than in BALI experiments. (authors)

  12. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  13. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  14. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater,

  15. Minimum pricing of alcohol versus volumetric taxation: which policy will reduce heavy consumption without adversely affecting light and moderate consumers?

    Science.gov (United States)

    Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce

    2014-01-01

    We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010-22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20-1.41] compared to $2.21 [95% CI 2.10-2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86-16.69]) and beer (1.85 LALs [95% CI 1.64-2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10-10.01] and 0.49 LALs [95% CI 0.46-0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19-413.00]) and beer ($108.26 [95% CI 94.76-121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55-574.36] and $163.92 [95% CI 152.79-175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers.

  16. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    Science.gov (United States)

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  17. Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Larsson, William; Jalbert, Jocelyn; Gilbert, Roland; Cedergren, Anders

    2003-03-15

    The efficiency of azeotropic distillation and oven evaporation techniques for trace determination of water in oils has recently been questioned by the National Institute of Standards and Technology (NIST), on the basis of measurements of the residual water found after the extraction step. The results were obtained by volumetric Karl Fischer (KF) titration in a medium containing a large excess of chloroform (> or = 65%), a proposed prerequisite to ensure complete release of water from the oil matrix. In this work, the extent of this residual water was studied by means of a direct zero-current potentiometric technique using a KF medium containing more than 80% chloroform, which is well above the concentration recommended by NIST. A procedure is described that makes it possible to correct the results for dilution errors as well as for chemical interference effects caused by the oil matrix. The corrected values were found to be in the range of 0.6-1.5 ppm, which should be compared with the 12-34 ppm (uncorrected values) reported by NIST for the same oils. From this, it is concluded that the volumetric KF method used by NIST gives results that are much too high.

  18. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  19. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  20. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow.

    Science.gov (United States)

    Volani, Chiara; Caprioli, Giulia; Calderisi, Giovanni; Sigurdsson, Baldur B; Rainer, Johannes; Gentilini, Ivo; Hicks, Andrew A; Pramstaller, Peter P; Weiss, Guenter; Smarason, Sigurdur V; Paglia, Giuseppe

    2017-10-01

    Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that