WorldWideScience

Sample records for related pulegone metabolites

  1. Quantitative estimation of pulegone in Mentha longifolia growing in Saudi Arabia. Is it safe to use?

    Science.gov (United States)

    Alam, Prawez; Saleh, Mahmoud Fayez; Abdel-Kader, Maged Saad

    2016-03-01

    Our TLC study of the volatile oil isolated from Mentha longifolia showed a major UV active spot with higher Rf value than menthol. Based on the fact that the components of the oil from same plant differ quantitatively due to environmental conditions, the major spot was isolated using different chromatographic techniques and identified by spectroscopic means as pulegone. The presence of pulegone in M. longifolia, a plant widely used in Saudi Arabia, raised a hot debate due to its known toxicity. The Scientific Committee on Food, Health & Consumer Protection Directorate General, European Commission set a limit for the presence of pulegone in foodstuffs and beverages. In this paper we attempted to determine the exact amount of pulegone in different extracts, volatile oil as well as tea flavoured with M. longifolia (Habak) by densitometric HPTLC validated methods using normal phase (Method I) and reverse phase (Method II) TLC plates. The study indicated that the style of use of Habak in Saudi Arabia resulted in much less amount of pulegone than the allowed limit.

  2. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection.

    Science.gov (United States)

    Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena

    2018-04-01

    One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Lack of histological cerebellar changes in Wistar rats given pulegone for 28 days. Comparison of immersion and perfusion tissue fixation

    DEFF Research Database (Denmark)

    Mølck, Anne-Marie; Poulsen, Morten; Lauridsen, Søren Tindgard

    1998-01-01

    Pulegone was given orally by gavage to groups of 28 SPF Wistar rats at dosage levels of 0 or 160 mg/kg body weight per day for 28 days. Clinically treated animals showed slackness, depression, decreased food consumption, and body weight. The loss of body weight was accompanied by a marked decrease...

  4. Quantitative variations in the essential oil of Minthostachys mollis (Kunth.) Griseb. in response to insects with different feeding habits.

    Science.gov (United States)

    Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R

    2005-08-24

    Plants display a diverse array of inducible changes in secondary metabolites following insect herbivory. Herbivores differ in their feeding behavior, physiology, and mode of attachment to the leaf surface, and such variations might be reflected in the induced responses of damaged plants. Induced changes were analyzed for Minthostachys mollis, a Lamiaceae with medicinal and aromatic uses, and four species of folivore insects with different feeding habits (chewing, scraping, sap-sucking, and puncturing). In M. mollis leaves experimentally exposed to the insects, levels of the two dominant monoterpenes pulegone and menthone were assessed 24 and 48 h after wounding. Menthone content generally decreased in the essential oil of damaged leaves, whereas pulegone concentration increased in all treatments. These changes occurred also in the adjacent undamaged leaves, suggesting a systemic response. The relatively uniform response to different kinds of damage could be attributable to the presence of such a strongly active compound as pulegone in the essential oil of M. mollis. The effects of wounding on essential oil concentration may be significant from a commercial point of view.

  5. Synthesis of Linezolid Metabolites PNU-142300 and PNU-142586 toward the Exploration of Metabolite-Related Events.

    Science.gov (United States)

    Hanaya, Kengo; Matsumoto, Kazuaki; Yokoyama, Yuta; Kizu, Junko; Shoji, Mitsuru; Sugai, Takeshi

    2017-01-01

    Linezolid (1) is an oxazolidinone antibiotic that is partially metabolized in vivo via ring cleavage of its morpholine moiety to mainly form two metabolites, PNU-142300 (2) and PNU-142586 (3). It is supposed that accumulation of 2 and 3 in patients with renal insufficiency may cause thrombocytopenia, one of the adverse effects of linezolid. However, the poor availability of 2 and 3 has hindered further investigation of the clinical significance of the accumulation of these metabolites. In this paper, we synthesized metabolites 2 and 3 via a common synthetic intermediate, 4; this will encourage further exploration of events related to these metabolites and lead to improved clinical use of linezolid.

  6. Calamintha nepeta (L.) Savi and its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry.

    Science.gov (United States)

    Božović, Mijat; Ragno, Rino

    2017-02-14

    Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L.) Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L.) Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L.) Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  7. Calamintha nepeta (L. Savi and its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry

    Directory of Open Access Journals (Sweden)

    Mijat Božović

    2017-02-01

    Full Text Available Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L. Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L. Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L. Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested

  8. Identifying diseases-related metabolites using random walk.

    Science.gov (United States)

    Hu, Yang; Zhao, Tianyi; Zhang, Ningyi; Zang, Tianyi; Zhang, Jun; Cheng, Liang

    2018-04-11

    Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work. The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk. Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies. In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.

  9. Bioactivity of Turmeric-Derived Curcuminoids and Related Metabolites in Breast Cancer

    Science.gov (United States)

    Wright, Laura E.; Frye, Jen B.; Gorti, Bhavana; Timmermann, Barbara N.; Funk, Janet L.

    2013-01-01

    While the chemotherapeutic effect of curcumin, one of three major curcuminoids derived from turmeric, has been reported, largely unexplored are the effects of complex turmeric extracts more analogous to traditional medicinal preparations, as well as the relative importance of the three curcuminoids and their metabolites as anti-cancer agents. These studies document the pharmacodynamic effects of chemically-complex turmeric extracts relative to curcuminoids on human breast cancer cell growth and tumor cell secretion of parathyroid hormone-related protein (PTHrP), an important driver of cancer bone metastasis. Finally, relative effects of structurally-related metabolites of curcuminoids were assessed on the same endpoints. We report that 3 curcuminoid-containing turmeric extracts differing with respect to the inclusion of additional naturally occurring chemicals (essential oils and/or polar compounds) were equipotent in inhibiting human breast cancer MDA-MB-231 cell growth (IC50=10–16μg/mL) and secretion of osteolytic PTHrP (IC50=2–3μg/mL) when concentrations were normalized to curcuminoid content. Moreover, these effects were curcuminoid-specific, as botanically-related gingerol containing extracts had no effect. While curcumin and bis-demethoxycurcumin were equipotent to each other and to the naturally occurring curcuminoid mixture (IC50=58 μM), demethoxycurcumin was without effect on cell growth. However, each of the individual curcuminoids inhibited PTHrP secretion (IC50=22–31μM) to the same degree as the curcuminoid mixture (IC50=16 μM). Degradative curcuminoid metabolites (vanillin and ferulic acid) did not inhibit cell growth or PTHrP, while reduced metabolites (tetrahydrocurcuminoids) had inhibitory effects on cell growth and PTHrP secretion but only at concentrations ≥10-fold higher than the curcuminoids. These studies emphasize the structural and biological importance of curcuminoids in the anti-breast cancer effects of turmeric and contradict

  10. Volatile terpenoids as potential drug leads in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Wojtunik-Kulesza Karolina A.

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is by far the most prevalent of all known forms of dementia. Despite wide-spread research, the main causes of emergence and development of AD have not been fully recognized. Natural, low-molecular, lipophilic terpenoids constitute an interesting group of secondary plant metabolites, that exert biological activities of possible use in the prevention and treatment of AD. In order to identify secondary metabolites possessing both antioxidant activity and the potential to increase the level of acetylcholine, selected terpenoids have been screened for possible acetylcholinesterase inhibitory activity by use of two methods, namely Marston (chromatographic assay and Ellman (spectrophotometric assay. In order to describe the interaction between terpenes and AChE active gorge, molecular docking simulations were performed. Additionally, all analyzed terpenes were also evaluated for their cytotoxic properties against two normal cell lines using MTT assay. The obtained results show that: carvone (6, pulegone (8 and γ-terpinene (7 possess desirable AChE inhibitory activity. MTT assay revealed low or lack of cytotoxicity of these metabolites. Thus, among the investigated terpenes, carvone (6, pulegone (8 and y-terpinene (7 can be recognized as compounds with most promising activities in the development of multi-target directed ligands.

  11. Phthalate metabolites related to infertile biomarkers and infertility in Chinese men.

    Science.gov (United States)

    Liu, Liangpo; Wang, Heng; Tian, Meiping; Zhang, Jie; Panuwet, Parinya; D'Souza, Priya Esilda; Barr, Dana Boyd; Huang, Qingyu; Xia, Yankai; Shen, Heqing

    2017-12-01

    Although in vitro and in vivo laboratory studies have demonstrated androgen and anti-androgen effects on male reproduction from phthalate exposures, human studies still remain inconsistent. Therefore, a case-control study (n = 289) was conducted to evaluate the associations between phthalate exposures, male infertility risks, and changes in metabolomic biomarkers. Regional participants consisted of fertile (n = 150) and infertile (n = 139) males were recruited from Nanjing Medical University' affiliated hospitals. Seven urinary phthalate metabolites were measured using HPLC-MS/MS. Associations between levels of phthalate metabolites, infertility risks, and infertility-related biomarkers were statistically evaluated. MEHHP, one of the most abundant DEHP oxidative metabolites was significantly lower in cases than in controls (p = 0.039). When using the 1st quartile range as a reference, although statistically insignificant for odds ratios (ORs) of the 2nd, 3rd, and 4th quartiles (OR (95% CI) = 1.50 (0.34-6.48), 0.70 (0.14-3.52) and 0.42 (0.09-2.00), respectively), the MEHHP dose-dependent trend of infertility risk expressed as OR decreased significantly (p = 0.034). More interestingly, most of the phthalate metabolites, including MEHHP, were either positively associated with fertile prevention metabolic biomarkers or negatively associated with fertile hazard ones. Phthalate metabolism, along with their activated infertility-related biomarkers, may contribute to a decreased risk of male infertility at the subjects' ongoing exposure levels. Our results may be illustrated by the low-dose related androgen effect of phthalates and can improve our understanding of the controversial epidemiological results on this issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nutritionally-related blood metabolites and faecal egg counts in ...

    African Journals Online (AJOL)

    Nutritionally-related blood metabolites and faecal egg counts in indigenous Nguni goats of South Africa. ... It, therefore, is imperative to put measures in place to counteract the drop in any of these parameters, with season, if productivity of the indigenous goats is to be maintained. Further studies are required to determine the ...

  13. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  14. Prediction of Relative In Vivo Metabolite Exposure from In Vitro Data Using Two Model Drugs: Dextromethorphan and Omeprazole

    Science.gov (United States)

    Lutz, Justin D.

    2012-01-01

    Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUCm/AUCp) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUCm/AUCp ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data. PMID:22010218

  15. The vapor pressure and vaporization enthalpy of R-(+)-menthofuran, a hepatotoxin metabolically derived from the abortifacient terpene, (R)-(+)-pulegone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Gobble, Chase; Chickos, James S.

    2016-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of R-(+) menthofuran is evaluated. • The normal boiling temperature is predicted and compared to experimental and predicted values. • A vapor pressure equation as a function of temperature for menthofuran is evaluated. - Abstract: The vapor pressure as a function of temperature and its vaporization enthalpy at T = 298.15 K of R-(+)-menthofuran, a substance metabolically derived from R-(+)-pulegone that is both a flavoring agent at low concentrations and a hepatotoxin at larger ones, is evaluated by correlation-gas chromatography. A vapor pressure p/Pa = (36 ± 12) has been evaluated at T = 298.15 K, and a normal boiling temperature of T_b/K = 482.4 K is predicted. A boiling temperature of T_b/K = 374.3 compares with the literature value of T_b/K = 371.2 at reduced pressure, p/kPa = 2.93. The vaporization enthalpy of (56.5 ± 3.0) kJ·mol"−"1 compares to an estimated value of (57.8 ± 2.9) kJ·mol"−"1.

  16. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    Science.gov (United States)

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  17. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    Directory of Open Access Journals (Sweden)

    Jeremy R. Everett

    2015-01-01

    Full Text Available A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE and metabolite identification carbon efficiency (MICE, both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  18. Analysis of flavor-related compounds from tabacco using SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.B.; Lee, S.G. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2001-04-01

    The flavor-related compounds contained in tobacco were analyzed by selected ion monitoring (SIM) method using headspace SPME gas chromatography-mass spectrometry (GC-MS). Flavor-related compounds were estragole, pulegone, trans-anethole, safrole, piperonal, eugenol, methyleugenol, coumarin, trans-isoeugenol, trans-methyleugenol and myristicin More than one of the flavor-related compounds were detected in the range of 0.001-1.3 {mu}g/g from all brands of tobacco studied. The recovery was ranged from 89.1 to 102.9% and relative standard deviation was ranged from 2.6 to 25.2%. (author). 19 refs., 4 tabs., 2 figs.

  19. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects.

    Science.gov (United States)

    Hernández-Alonso, Pablo; Cañueto, Daniel; Giardina, Simona; Salas-Salvadó, Jordi; Cañellas, Nicolau; Correig, Xavier; Bulló, Mònica

    2017-07-01

    The specific nutritional composition of nuts could affect different metabolic pathways involved in a broad range of metabolic diseases. We therefore investigated whether chronic consumption of pistachio nuts modifies the urine metabolome in prediabetic subjects. We designed a randomized crossover clinical trial in 39 prediabetic subjects. They consumed a pistachio-supplemented diet (PD, 50% carbohydrates, 33% fat, including 57 g/d of pistachios daily) and a control diet (CD, 55% carbohydrates, 30% fat) for 4 months each, separated by a 2-week wash-out. Nuclear magnetic resonance (NRM) was performed to determine changes in 24-h urine metabolites. Significant changes in urine metabolites according to the different intervention periods were found in uni- and multivariate analysis. Score plot of the first two components of the multilevel partial least squares discriminant analysis (ML-PLS-DA) showed a clear separation of the intervention periods. Three metabolites related with gut microbiota metabolism (i.e., hippurate, p-cresol sulfate and dimethylamine) were found decreased in PD compared with CD (Ppistachio consumption may modulate some urinary metabolites related to gut microbiota metabolism and the TCA cycle; all associated with metabolic derangements associated with insulin resistance and Type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Urinary phthalate metabolite concentrations in relation to history of infertility and use of assisted reproductive technology.

    Science.gov (United States)

    Alur, Snigdha; Wang, Hongyue; Hoeger, Kathy; Swan, Shanna H; Sathyanarayana, Sheela; Redmon, Bruce J; Nguyen, Ruby; Barrett, Emily S

    2015-11-01

    To examine urinary phthalate metabolite concentrations in pregnant women with planned pregnancies in relation to history of infertility and use of assisted reproductive technology (ART). Phthalate metabolite concentrations were measured in first-trimester urine samples collected from women participating in a prospective pregnancy cohort study. Prenatal clinics. A total of 750 women, of whom 86 had a history of infertility. Forty-one women used ART to conceive. None. Primary outcomes were concentrations of four metabolites of diethylhexyl phthalate (DEHP) and their molar sum (∑DEHP). Multivariable analyses compared phthalate metabolite levels in [1] women reporting a history of infertility vs. those who did not (comparison group); and [2] those who used ART to conceive the index pregnancy vs. women with a history of infertility who did not use ART. Among women with a history of infertility, ∑DEHP was significantly lower in women who conceived after ART compared with those who did not (geometric mean ratio: 0.83; 95% confidence interval 0.71-0.98). Similar significant associations were observed for all of the individual DEHP metabolites. There were no differences in DEHP metabolite concentrations between women with a history of infertility and the comparison group. Women who used ART to conceive had lower first-trimester phthalate metabolite concentrations than women with a history of infertility who did not use ART. Further research is needed to explore whether those pursuing fertility treatments take precautions to avoid exposure to environmental toxins, to improve treatment outcomes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Prioritizing Candidate Disease Metabolites Based on Global Functional Relationships between Metabolites in the Context of Metabolic Pathways

    Science.gov (United States)

    Yang, Haixiu; Xu, Yanjun; Han, Junwei; Li, Jing; Su, Fei; Zhang, Yunpeng; Zhang, Chunlong; Li, Dongguo; Li, Xia

    2014-01-01

    Identification of key metabolites for complex diseases is a challenging task in today's medicine and biology. A special disease is usually caused by the alteration of a series of functional related metabolites having a global influence on the metabolic network. Moreover, the metabolites in the same metabolic pathway are often associated with the same or similar disease. Based on these functional relationships between metabolites in the context of metabolic pathways, we here presented a pathway-based random walk method called PROFANCY for prioritization of candidate disease metabolites. Our strategy not only takes advantage of the global functional relationships between metabolites but also sufficiently exploits the functionally modular nature of metabolic networks. Our approach proved successful in prioritizing known metabolites for 71 diseases with an AUC value of 0.895. We also assessed the performance of PROFANCY on 16 disease classes and found that 4 classes achieved an AUC value over 0.95. To investigate the robustness of the PROFANCY, we repeated all the analyses in two metabolic networks and obtained similar results. Then we applied our approach to Alzheimer's disease (AD) and found that a top ranked candidate was potentially related to AD but had not been reported previously. Furthermore, our method was applicable to prioritize the metabolites from metabolomic profiles of prostate cancer. The PROFANCY could identify prostate cancer related-metabolites that are supported by literatures but not considered to be significantly differential by traditional differential analysis. We also developed a freely accessible web-based and R-based tool at http://bioinfo.hrbmu.edu.cn/PROFANCY. PMID:25153931

  2. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    NARCIS (Netherlands)

    Bennekom, van E.O.; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F.

    2002-01-01

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding - and -zearalenol metabolites which possess similar estrogenic properties.

  4. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults.

    Science.gov (United States)

    Lustgarten, Michael S; Fielding, Roger A

    2017-12-15

    Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and qMetabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle

  5. Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers

    Directory of Open Access Journals (Sweden)

    Hussein H. Mwanga

    2016-09-01

    Full Text Available The objective of this study was to investigate the relationship between exposure to organophosphate (OP and pyrethroid (PYR pesticides with serum cytokine patterns and asthma-related outcomes among rural women workers. A cross-sectional study was conducted among rural women (n = 211, including those working and living on farms and nearby town dwellers. Pesticide exposure was assessed using urinary metabolite concentrations of OP and PYR pesticides. Health outcome assessment was ascertained through the European Community Respiratory Health Survey (ECRHS questionnaire, fractional exhaled nitric oxide (FeNO, and serum cytokines associated with asthma. The prevalence of doctor-diagnosed asthma was 11%, adult-onset asthma 9%, and current asthma 6%. In this population, the proportion of T helper type 2 (Th2 cytokines (interleukin (IL-4, IL-5, and IL-13 detectable in subjects was between 18% and 40%, while the proportion of non-Th2 cytokines (IL-6, IL-8, IL-10, IL-17, and interferon gamma was between 35% and 71%. Most Th2 and non-Th2 cytokines were positively associated with either OP or PYR metabolites. Non-Th2 cytokines showed much stronger associations with OP metabolites (Dimethyl phosphate OR = 4.23; 95% CI: 1.54–11.65 than Th2 cytokines (Dimethyl phosphate OR = 1.69; 95% CI: 0.83–3.46. This study suggests that exposure to most OP and some PYR pesticides may be associated with asthma-related cytokines, with non-Th2 cytokines demonstrating consistently stronger relationships.

  6. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Science.gov (United States)

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  7. Ozone effects on radish (Raphanus sativus L. cv. Cherry Belle): foliar sensitivity as related to metabolite levels and cell architecture

    Energy Technology Data Exchange (ETDEWEB)

    Athanassious, R.

    1980-01-01

    The development of the first four leaves of radish (Raphanus sativus L. cv. Cherry Belle) was followed to determine the relationship between foliar sensitivity to ozone as related to selected soluble metabolites and leaf-cell arrangement. Although relatively high metabolite (protein, sugars, phenols) levels and compact cell arrangement may be advanced as factors contributing to the resistance of young leaves (L/sub 3,4/ of 21-day old plants) these same parameters do not explain the resistance of old leaves (L/sub 1,2/ of 30-day old plants). 16 references, 4 figures, 1 table.

  8. Metabolite coupling in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  9. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    Science.gov (United States)

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  10. Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs.

    Science.gov (United States)

    Baumann, Michael H; Bukhari, Mohammad O; Lehner, Kurt R; Anizan, Sebastien; Rice, Kenner C; Concheiro, Marta; Huestis, Marilyn A

    2017-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a psychoactive component of so-called bath salts products that has caused serious medical consequences in humans. In this chapter, we review the neuropharmacology of MDPV and related analogs, and supplement the discussion with new results from our preclinical experiments. MDPV acts as a potent uptake inhibitor at plasma membrane transporters for dopamine (DAT) and norepinephrine (NET) in nervous tissue. The MDPV formulation in bath salts is a racemic mixture, and the S isomer is much more potent than the R isomer at blocking DAT and producing abuse-related effects. Elevations in brain extracellular dopamine produced by MDPV are likely to underlie its locomotor stimulant and addictive properties. MDPV displays rapid pharmacokinetics when injected into rats (0.5-2.0 mg/kg), with peak plasma concentrations achieved by 10-20 min and declining quickly thereafter. MDPV is metabolized to 3,4-dihydroxypyrovalerone (3,4-catechol-PV) and 4-hydroxy-3-methoxypyrovalerone (4-OH-3-MeO-PV) in vivo, but motor activation produced by the drug is positively correlated with plasma concentrations of parent drug and not its metabolites. 3,4-Catechol-PV is a potent uptake blocker at DAT in vitro but has little activity after administration in vivo. 4-OH-3-MeO-PV is the main MDPV metabolite but is weak at DAT and NET. MDPV analogs, such as α-pyrrolidinovalerophenone (α-PVP), display similar ability to inhibit DAT and increase extracellular dopamine concentrations. Taken together, these findings demonstrate that MDPV and its analogs represent a unique class of transporter inhibitors with a high propensity for abuse and addiction.

  11. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    Science.gov (United States)

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  12. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation.

    Science.gov (United States)

    Tan, Jian K; McKenzie, Craig; Mariño, Eliana; Macia, Laurence; Mackay, Charles R

    2017-04-26

    Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.

  13. Metabolites of cannabidiol identified in human urine.

    Science.gov (United States)

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  14. Impact of secondary metabolites and related enzymes in flax ...

    African Journals Online (AJOL)

    Changes in various physiological defenses including secondary metabolites, proline, total soluble protein and antioxidant enzymes were investigated in leaves and stems of 18 flax lines either resistant or susceptible to powdery mildew. The results showed that the total alkaloids content in flax stems was significantly ...

  15. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  16. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A 1H-MRS study

    International Nuclear Information System (INIS)

    Reyngoudt, Harmen; Claeys, Tom; Vlerick, Leslie; Verleden, Stijn; Acou, Marjan; Deblaere, Karel; De Deene, Yves; Audenaert, Kurt; Goethals, Ingeborg; Achten, Eric

    2012-01-01

    Objective: To study age-related metabolic changes in N-acetylaspartate (NAA), total creatine (tCr), choline (Cho) and myo-inositol (Ins). Materials and methods: Proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the posterior cingulate cortex (PCC) and the left hippocampus (HC) of 90 healthy subjects (42 women and 48 men aged 18–76 years, mean ± SD, 48.4 ± 16.8 years). Both metabolite ratios and absolute metabolite concentrations were evaluated. Analysis of covariance (ANCOVA) and linear regression were used for statistical analysis. Results: Metabolite ratios Ins/tCr and Ins/H 2 O were found significantly increased with age in the PCC (P 2 O was only observed in the PCC (P 1 H-MRS results in these specific brain regions can be important to differentiate normal ageing from age-related pathologies such as mild cognitive impairment (MCI) and Alzheimer's disease.

  17. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    DEFF Research Database (Denmark)

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has...... of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although...

  18. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    Science.gov (United States)

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Utilizing relative potency factors (RPF) and threshold of toxicological concern (TTC) concepts to assess hazard and human risk assessment profiles of environmental metabolites: a case study.

    Science.gov (United States)

    Terry, C; Rasoulpour, R J; Knowles, S; Billington, R

    2015-03-01

    There is currently no standard paradigm for hazard and human risk assessment of environmental metabolites for agrochemicals. Using an actual case study, solutions to challenges faced are described and used to propose a generic concept to address risk posed by metabolites to human safety. A novel approach - built on the foundation of predicted human exposures to metabolites in various compartments (such as food and water), the threshold of toxicological concern (TTC) and the concept of comparative toxicity - was developed for environmental metabolites of a new chemical, sulfoxaflor (X11422208). The ultimate aim was to address the human safety of the metabolites with the minimum number of in vivo studies, while at the same time, ensuring that human safety would be considered addressed on a global regulatory scale. The third component, comparative toxicity, was primarily designed to determine whether the metabolites had the same or similar toxicity profiles to their parent molecule, and also to one another. The ultimate goal was to establish whether the metabolites had the potential to cause key effects - such as cancer and developmental toxicity, based on mode-of-action (MoA) studies - and to develop a relative potency factor (RPF) compared to the parent molecule. Collectively, the work presented here describes the toxicology programme developed for sulfoxaflor and its metabolites, and how it might be used to address similar future challenges aimed at determining the relevance of the metabolites from a human hazard and risk perspective. Sulfoxaflor produced eight environmental metabolites at varying concentrations in various compartments - soil, water, crops and livestock. The MoA for the primary effects of the parent molecule were elucidated in detail and a series of in silico, in vitro, and/or in vivo experiments were conducted on the environmental metabolites to assess relative potency of their toxicity profiles when compared to the parent. The primary metabolite

  20. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    Science.gov (United States)

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for

  1. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  2. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  3. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen

    Directory of Open Access Journals (Sweden)

    Tomáš Zárybnický

    2018-06-01

    Full Text Available Monoterpenes R-pulegone (PUL and R-menthofuran (MF, abundant in the Lamiaceae family, are frequently used in herb and food products. Although their hepatotoxicity was shown in rodent species, information about their effects in human liver has been limited. The aim of our study was to test the effects of PUL, MF and acetaminophen (APAP, as a reference compound on cell viability and microRNA (miRNA expression in human precision-cut liver slices. Slices from five patients were used to follow up on the inter-individual variability. PUL was toxic in all liver samples (the half-maximal effective concentration was 4.0 µg/mg of tissue, while MF and surprisingly APAP only in two and three liver samples, respectively. PUL also changed miRNA expression more significantly than MF and APAP. The most pronounced effect was a marked decrease of miR-155-5p expression caused by PUL even in non-toxic concentrations in all five liver samples. Our results showed that PUL is much more toxic than MF and APAP in human liver and that miR-155-5p could be a good marker of PUL early hepatotoxicity. Marked inter-individual variabilities in all our results demonstrate the high probability of significant differences in the hepatotoxicity of tested compounds among people.

  4. Di-(2-ethylhexyl phthalate metabolites in urine show age-related changes and associations with adiposity and parameters of insulin sensitivity in childhood.

    Directory of Open Access Journals (Sweden)

    Arianna Smerieri

    Full Text Available Phthalates might be implicated with obesity and insulin sensitivity. We evaluated the levels of primary and secondary metabolites of Di-(2-ethylhexyl phthalate (DEHP in urine in obese and normal-weight subjects both before and during puberty, and investigated their relationships with auxological parameters and indexes of insulin sensitivity.DEHP metabolites (MEHP, 6-OH-MEHP, 5-oxo-MEHP, 5-OH-MEHP, and 5-CX-MEHP, were measured in urine by RP-HPLC-ESI-MS. Traditional statistical analysis and a data mining analysis using the Auto-CM analysis were able to offer an insight into the complex biological connections between the studied variables.The data showed changes in DEHP metabolites in urine related with obesity, puberty, and presence of insulin resistance. Changes in urine metabolites were related with age, height and weight, waist circumference and waist to height ratio, thus to fat distribution. In addition, clear relationships in both obese and normal-weight subjects were detected among MEHP, its products of oxidation and measurements of insulin sensitivity.It remains to be elucidated whether exposure to phthalates per se is actually the risk factor or if the ability of the body to metabolize phthalates is actually the key point. Further studies that span from conception to elderly subjects besides further understanding of DEHP metabolism are warranted to clarify these aspects.

  5. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum.

    Science.gov (United States)

    Khachik, F; Spangler, C J; Smith, J C; Canfield, L M; Steck, A; Pfander, H

    1997-05-15

    Thirty-four carotenoids, including 13 geometrical isomers and eight metabolites, in breast milk and serum of three lactating mothers have been separated, identified, quantified, and compared by high-performance liquid chromatography (HPLC)-photodiode array (PDA) detection-mass spectrometry (MS). Among the metabolites were two oxidation products of lycopene and four of lutein/ zeaxanthin. In addition, two metabolites of lutein, formed as a result of dehydration of this dihydroxycarotenoid under acidic conditions similar to those of the stomach, have also been identified in plasma and breast milk. The oxidative metabolites of lycopene with a novel five-membered-ring end group have been identified as epimeric 2,6-cyclolycopene-1,5-diols by comparison of their HPLC-UV/visible-MS profiles with those of fully characterized (1H- and 13C-NMR spectroscopy) synthetic compounds. The HPLC procedures employed also detected vitamin A, two forms of vitamin E (gamma- and alpha-tocopherol), and two non-carotenoid food components, i.e., piperine and caffeine, in serum and breast milk.

  6. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  7. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders.

    Science.gov (United States)

    Kang, Dae-Wook; Ilhan, Zehra Esra; Isern, Nancy G; Hoyt, David W; Howsmon, Daniel P; Shaffer, Michael; Lozupone, Catherine A; Hahn, Juergen; Adams, James B; Krajmalnik-Brown, Rosa

    2018-02-01

    Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Using 1 H-NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further

  8. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women

    Directory of Open Access Journals (Sweden)

    Lind P Monica

    2012-04-01

    Full Text Available Abstract Background Phthalates, commonly used to soften plastic goods, are known PPAR-agonists affecting lipid metabolism and adipocytes in the experimental setting. We evaluated if circulating concentrations of phthalates were related to different indices of obesity using data from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS study. Data from both dual-energy X-ray absorptiometry (DXA and abdominal magnetic resonance imaging (MRI were used. Methods 1,016 subjects aged 70 years were investigated in the PIVUS study. Four phthalate metabolites were detected in the serum of almost all subjects (> 96% by an API 4000 liquid chromatograph/tandem mass spectrometer. Abdominal MRI was performed in a representative subsample of 287 subjects (28%, and a dual-energy X-ray absorptiometry (DXA-scan was obtained in 890 (88% of the subjects two year following the phthalate measurements. Results In women, circulating concentrations of mono-isobutyl phthalate (MiBP were positively related to waist circumference, total fat mass and trunk fat mass by DXA, as well as to subcutaneous adipose tissue by MRI following adjustment for serum cholesterol and triglycerides, education, smoking and exercise habits (all p Conclusions The present evaluation shows that especially the phthalate metabolite MiBP was related to increased fat amount in the subcutaneous abdominal region in women measured by DXA and MRI two years later.

  9. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...... supplementation. The other pyrazine metabolites, all related pyrazines with either one, two or three alkyl substituents, were identified by means of their mass spectral data and/or co-elution with authentic standards....

  10. Mu receptor binding of some commonly used opioids and their metabolites

    International Nuclear Information System (INIS)

    Chen, Zhaorong; Irvine, R.J.; Somogyi, A.A.; Bochner, F.

    1991-01-01

    The binding affinity to the μ receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with 3 H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K i values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites

  11. Mu receptor binding of some commonly used opioids and their metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaorong; Irvine, R.J. (Univ. of Adelaide (Australia)); Somogyi, A.A.; Bochner, F. (Univ. of Adelaide (Australia) Royal Adelaide Hospital (Australia))

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  12. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    International Nuclear Information System (INIS)

    Prueksaritanont, Thomayant; Lin, Jiunn H.; Baillie, Thomas A.

    2006-01-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models

  13. 1D-¹H-nuclear magnetic resonance metabolomics reveals age-related changes in metabolites associated with experimental venous thrombosis.

    Science.gov (United States)

    Obi, Andrea T; Stringer, Kathleen A; Diaz, Jose A; Finkel, Michael A; Farris, Diana M; Yeomans, Larisa; Wakefield, Thomas; Myers, Daniel D

    2016-04-01

    Age is a significant risk factor for the development of venous thrombosis (VT), but the mechanism(s) that underlie this risk remain(s) undefined and poorly understood. Aging is known to adversely influence inflammation and affect metabolism. Untargeted metabolomics permits an agnostic assessment of the physiological landscape and lends insight into the mechanistic underpinnings of clinical phenotypes. The objective of this exploratory study was to test the feasibility of a metabolomics approach for identifying potential metabolic mechanisms of age-related VT. We subjected whole blood samples collected from young and old nonthrombosed controls and VT mice 2 days after thrombus induction using the electrolytic inferior vena cava, to a methanol:chloroform extraction and assayed the resulting aqueous fractions using 1D-(1)H- nuclear magnetic resonance. Normalized mouse metabolite data were compared across groups using analysis of variance (ANOVA) with Holm-Sidak post-testing. In addition, associations between metabolite concentrations and parameters of thrombosis such as thrombus and vein wall weights, and markers of inflammation, vein wall P- and E-selectin levels, were assessed using linear regression. The relatedness of the found significant metabolites was visually assessed using a bioinformatics tool, Metscape, which generates compound-reaction-enzyme-gene networks to aid in the interpretation of metabolomics data. Old mice with VT had a greater mean vein wall weight compared with young mice with VT (P metabolomics as a new approach to furthering knowledge about the mechanisms of age-related VT. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature.

    Science.gov (United States)

    Aidoo, Moses Kwame; Sherman, Tal; Lazarovitch, Naftali; Fait, Aaron; Rachmilevitch, Shimon

    2017-10-01

    Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism. © 2017 Scandinavian Plant Physiology Society.

  15. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae-Wook; Ilhan, Zehra Esra; Isern, Nancy G.; Hoyt, David W.; Howsmon, Daniel P.; Shaffer, Michael; Lozupone, Catherine A.; Hahn, Juergen; Adams, James B.; Krajmalnik-Brown, Rosa

    2018-02-01

    Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Using NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites- caprate, nicotinate, glutamine, thymine, and aspartate- may potentially function as a biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.

  16. MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links.

    Science.gov (United States)

    Wathieu, Henri; Issa, Naiem T; Mohandoss, Manisha; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2017-01-01

    Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies. Copyright© Bentham Science Publishers; For any

  17. Mutagenic azide metabolite is azidoalanine

    International Nuclear Information System (INIS)

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  18. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  19. Immune regulation by microbiome metabolites.

    Science.gov (United States)

    Kim, Chang H

    2018-03-22

    Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X 7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article. © 2018 John Wiley & Sons Ltd.

  20. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    Science.gov (United States)

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  1. Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies.

    Science.gov (United States)

    van der Lee, Sven J; Teunissen, Charlotte E; Pool, René; Shipley, Martin J; Teumer, Alexander; Chouraki, Vincent; Melo van Lent, Debora; Tynkkynen, Juho; Fischer, Krista; Hernesniemi, Jussi; Haller, Toomas; Singh-Manoux, Archana; Verhoeven, Aswin; Willemsen, Gonneke; de Leeuw, Francisca A; Wagner, Holger; van Dongen, Jenny; Hertel, Johannes; Budde, Kathrin; Willems van Dijk, Ko; Weinhold, Leonie; Ikram, M Arfan; Pietzner, Maik; Perola, Markus; Wagner, Michael; Friedrich, Nele; Slagboom, P Eline; Scheltens, Philip; Yang, Qiong; Gertzen, Robert E; Egert, Sarah; Li, Shuo; Hankemeier, Thomas; van Beijsterveldt, Catharina E M; Vasan, Ramachandran S; Maier, Wolfgang; Peeters, Carel F W; Jörgen Grabe, Hans; Ramirez, Alfredo; Seshadri, Sudha; Metspalu, Andres; Kivimäki, Mika; Salomaa, Veikko; Demirkan, Ayşe; Boomsma, Dorret I; van der Flier, Wiesje M; Amin, Najaf; van Duijn, Cornelia M

    2018-01-06

    Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  2. Co-evolution of secondary metabolite gene clusters and their host

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian

    Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of speci....... We investigate the dynamic evolutionary relationship between the cluster and the host by examining the genes within the cluster and the number of homologous genes found within the host and in closely related species.......Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of species...

  3. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Environ: E00083 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00083 Schizonepeta spike (JP17) Crude drug l-Pulegone [CPD:C09893], d-Menthone [C...PD:C11390], l-Isomenthone [CPD:C17125], d-Limonene [CPD:C06099], Isopulegone [CPD:C11951], alpha-Pinene [CPD...peretin [CPD:C01709], Luteolin [CPD:C01514], (-)-Pulegone [CPD:C17623], Schizonepetoside A [CPD:C17634], Sch

  5. Methodological considerations for measuring glucocorticoid metabolites in feathers

    Science.gov (United States)

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  6. Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health

    DEFF Research Database (Denmark)

    Scurachio, R. S.; Mattiucci, F.; Santos, W. G.

    2016-01-01

    . Caffeine metabolites rather than caffeine seem accordingly important for the observed protective effect against cutaneous melanoma identified for drinkers of regular but not of decaffeinated coffee. The caffeine metabolites, but not caffeine, were by time resolved single photon counting found to quench...... singlet excited riboflavin through exothermic formation of ground-state precursor complexes indicating importance of hydrogen bounding through keto-enol tautomer's for protection of oxidizable substrates and sensitive structures against riboflavin photosensitization....

  7. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  8. Fetal exposure to PCBs and their hydroxylated metabolites in a Dutch cohort

    NARCIS (Netherlands)

    Soechitram, S.D.; Athanasiadou, M.; Hovander, L.; Bergman, A.; Sauer, P. J. J.

    2004-01-01

    Polychlorinated biphenyls (PCBs) are still the most abundant pollutants in wildlife and humans. Hydroxylated PCB metabolites (OH-PCBs) are known to be formed in humans and wildlife. Studies in animals show that these metabolites cause endocrine-related toxicity. The health effects in humans have not

  9. [Regulation of terpene metabolism]. Progress report

    International Nuclear Information System (INIS)

    Croteau, R.

    1986-01-01

    Studies on the regulation of monoterpene metabolism in M. piperita were conducted. All of the steps from the acyclic precursor geranyl pyrophosphate to the various menthol isomers have been demonstrated. The first intermediate to accumulate in vivo is d-pulegone. The emphasis has been on the demonstration, partial purification and characterization of the relevant enzymes in the pathway. The studies on the isopiperitenol dehydrogenase and isopiperitenone isomerase have been completed. We are not studying the endocyclic double-bond reductase (NADPH-dependent) and, based on substrate specificity studies and the previously demonstrated isomerization of cis- isopulegone to pulegone, are now virtually convinced that the major pathway to menthol(s) in peppermint involves reduction of isopiperitenone to isopulegone and isomerication of isopulegone to pulegone. 16 refs., 1 fig

  10. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  11. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  12. Urinary Metabolomics in Pediatric Obesity and NAFLD Identifies Metabolic Pathways/Metabolites Related to Dietary Habits and Gut-Liver Axis Perturbations

    Directory of Open Access Journals (Sweden)

    Jacopo Troisi

    2017-05-01

    Full Text Available To get insight into still elusive pathomechanisms of pediatric obesity and non-alcoholic fatty liver disease (NAFLD we explored the interplay among GC-MS studied urinary metabolomic signature, gut liver axis (GLA abnormalities, and food preferences (Kid-Med. Intestinal permeability (IP, small intestinal bacterial overgrowth (SIBO, and homeostatic model assessment-insulin resistance were investigated in forty children (mean age 9.8 years categorized as normal weight (NW or obese (body mass index <85th or >95th percentile, respectively ± ultrasonographic bright liver and hypertransaminasemia (NAFLD. SIBO was increased in all obese children (p = 0.0022, IP preferentially in those with NAFLD (p = 0.0002. The partial least-square discriminant analysis of urinary metabolome correctly allocated children based on their obesity, NAFLD, visceral fat, pathological IP and SIBO. Compared to NW, obese children had (1 higher levels of glucose/1-methylhistidine, the latter more markedly in NAFLD patients; and (2 lower levels of xylitol, phenyl acetic acid and hydroquinone, the latter especially in children without NAFLD. The metabolic pathways of BCAA and/or their metabolites correlated with excess of visceral fat centimeters (leucine/oxo-valerate, and more deranged IP and SIBO (valine metabolites. Urinary metabolome analysis contributes to define a metabolic fingerprint of pediatric obesity and related NAFLD, by identifying metabolic pathways/metabolites reflecting typical obesity dietary habits and GLA perturbations.

  13. High-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the analysis of xenobiotic metabolites in rat urine: application to the metabolites of 4-bromoaniline.

    Science.gov (United States)

    Nicholson, J K; Lindon, J C; Scarfe, G; Wilson, I D; Abou-Shakra, F; Castro-Perez, J; Eaton, A; Preece, S

    2000-02-01

    The use of HPLC-ICP-MS for the profiling and quantification of the metabolites of 4-bromoaniline following reversed-phase gradient chromatography is demonstrated. In the 0-8 h post dose sample, which contained the highest concentrations of compound-related material, it was possible to detect at least 16 metabolites of the compound. The methodology described offers the possibility of obtaining metabolite profiles and quantification for drugs and other xenobiotics in biological fluids and excreta without the requirement for radiolabelled tracers.

  14. [Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory].

    Science.gov (United States)

    Yang, Yang; Zhao, Ji-lan; Hou, Tian-shu; Han, Xiao-xia; Zhao, Zheng-yu; Peng, Xiao-hua; Wu, Qiao-Feng

    2014-10-01

    To study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM). The UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR). EA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P theory.

  15. An integrated scheme for the simultaneous determination of biogenic amines, precursor amino acids, and related metabolites by liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Oka, K; Kojima, K; Togari, A; Nagatsu, T; Kiss, B

    1984-06-08

    A new method using high-performance liquid chromatography with electrochemical detection (HPLC-ED) for the simultaneous determination of monoamines, their precursor amino acids, and related major metabolites in small samples of brain tissue weighing from 0.5 to 50 mg is described. The method is based on the preliminary isolation of monoamines (dopamine, norepinephrine, epinephrine, and serotonin), their precursor amino acids (tyrosine, 3,4-dihydroxyphenylalanine, tryptophan and 5-hydroxytryptophan), and their major metabolites (3-methoxytyramine, normetanephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, vanillylmandelic acid, 3-methoxy-4-hydroxyphenylethyleneglycol, and 5-hydroxyindoleacetic acid) by chromatography on small columns of Amberlite CG-50 and Dowex 50W, and by ethyl acetate extraction. All the compounds in the four isolated fractions were measured by HPLC-ED on a reversed-phase column under four different conditions. The sensitivity was from 0.1 to 40 pmol, depending on the substances analysed. This newly established method was applied to the study of the effects of an aromatic L-amino acid decarboxylase inhibitor (NSD-1015) and a monoamine oxidase inhibitor (pargyline) on the levels of monoamines, their precursor amino acids and their major metabolites in brain regions of mice.

  16. Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces.

    Science.gov (United States)

    Zeng, Huawei; Grapov, Dmitry; Jackson, Matthew I; Fahrmann, Johannes; Fiehn, Oliver; Combs, Gerald F

    2015-09-11

    The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

  17. Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces

    Directory of Open Access Journals (Sweden)

    Huawei Zeng

    2015-09-01

    Full Text Available The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF. Of that number, 251 (93% were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

  18. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    Science.gov (United States)

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  19. Transportable hyperpolarized metabolites

    Science.gov (United States)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  20. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  1. Effect of competition on the production and activity of secondary metabolites in Aspergillus species

    DEFF Research Database (Denmark)

    Losada, L.; Ajayi, O.; Frisvad, Jens Christian

    2009-01-01

    and in the presence of other fungal species. However, it is not known whether secreted secondary metabolites provide a competitive advantage over other fungal species, or whether competition has any effect on the production of those metabolites. Here, we have performed co-cultivation competition assays among......Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Also, these metabolites are clinically relevant because of their importance in fungal pathogenesis. Aspergillus species secrete secondary metabolites when grown individually...... different species of Aspergillus to determine relative species fitness in culture, and to analyze the presence of possible antifungal activity of secondary metabolites in extracts. The results show that, for the most part, at 30C only one species is able to survive direct competition with a second species...

  2. Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network

    Science.gov (United States)

    Yao, Qianlan; Xu, Yanjun; Yang, Haixiu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Sun, Zeguo; Shi, Xinrui; Feng, Li; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2015-01-01

    The identification of disease-related metabolites is important for a better understanding of metabolite pathological processes in order to improve human medicine. Metabolites, which are the terminal products of cellular regulatory process, can be affected by multi-omic processes. In this work, we propose a powerful method, MetPriCNet, to predict and prioritize disease candidate metabolites based on integrated multi-omics information. MetPriCNet prioritized candidate metabolites based on their global distance similarity with seed nodes in a composite network, which integrated multi-omics information from the genome, phenome, metabolome and interactome. After performing cross-validation on 87 phenotypes with a total of 602 metabolites, MetPriCNet achieved a high AUC value of up to 0.918. We also assessed the performance of MetPriCNet on 18 disease classes and found that 4 disease classes achieved an AUC value over 0.95. Notably, MetPriCNet can also predict disease metabolites without known disease metabolite knowledge. Some new high-risk metabolites of breast cancer were predicted, although there is a lack of known disease metabolite information. A predicted disease metabolic landscape was constructed and analyzed based on the results of MetPriCNet for 87 phenotypes to help us understand the genetic and metabolic mechanism of disease from a global view. PMID:26598063

  3. Circulating Metabolites Associated with Alcohol Intake in the European Prospective Investigation into Cancer and Nutrition Cohort

    Directory of Open Access Journals (Sweden)

    Eline H. van Roekel

    2018-05-01

    Full Text Available Identifying the metabolites associated with alcohol consumption may provide insights into the metabolic pathways through which alcohol may affect human health. We studied associations of alcohol consumption with circulating concentrations of 123 metabolites among 2974 healthy participants from the European Prospective Investigation into Cancer and Nutrition (EPIC study. Alcohol consumption at recruitment was self-reported through dietary questionnaires. Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQTM p180 kit. Data were randomly divided into discovery (2/3 and replication (1/3 sets. Multivariable linear regression models were used to evaluate confounder-adjusted associations of alcohol consumption with metabolite concentrations. Metabolites significantly related to alcohol intake in the discovery set (FDR q-value < 0.05 were further tested in the replication set (Bonferroni-corrected p-value < 0.05. Of the 72 metabolites significantly related to alcohol intake in the discovery set, 34 were also significant in the replication analysis, including three acylcarnitines, the amino acid citrulline, four lysophosphatidylcholines, 13 diacylphosphatidylcholines, seven acyl-alkylphosphatidylcholines, and six sphingomyelins. Our results confirmed earlier findings that alcohol consumption was associated with several lipid metabolites, and possibly also with specific acylcarnitines and amino acids. This provides further leads for future research studies aiming at elucidating the mechanisms underlying the effects of alcohol in relation to morbid conditions.

  4. Detection of Volatile Metabolites of Garlic in Human Breast Milk

    Science.gov (United States)

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  5. Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2008-11-01

    Full Text Available Abstract Background Organophosphates are broad class of chemicals widely used as pesticides throughout the world. We performed a cross-sectional study of associations between dialkylphosphate metabolites of organophosphates and semen quality among pesticide applicators in Majes (Arequipa, Peru. Methods Thirty-one men exposed to organophosphate (OP pesticides and 31 non-exposed were recruited (age, 20–60 years. In exposed subjects, semen and a blood sample were obtained one day after the last pesticide application. Subjects were grouped according to levels of OP metabolites in urine. Semen samples were analyzed for sperm concentration, percentage of sperm motility, percentage of normal morphology, semen leucocytes and concentrations of fructose and zinc. Exposure to OP was assessed by measuring six urinary OP metabolites (dimethyl and diethyl phosphates and thiophosphates by gas chromatography using a single flame photometric detector. Results Diethyldithiophosphate (p = 0.04 and diethylthiophosphate (p = 0.02 better reflected occupational pesticide exposure than other OP metabolites. Semen analysis revealed a significant reduction of semen volume and an increase in semen pH in men with OP metabolites. Multiple regression analysis showed that both occupational exposure to pesticides and the time of exposure to pesticides were more closely related to alterations in semen quality parameters than the single measurement of OP metabolites in urine. Conclusion The study demonstrated that occupational exposure to OP pesticides was more closely related to alterations in semen quality than a single measurement of urine OP metabolites. Current measurement of OP metabolites in urine may not reflect the full risk.

  6. DISTRIBUTION OF MONOAMINES AND THEIR METABOLITES IN BOTH SIDES OF THE RAT BRAIN AND ITS RELATION WITH FUNCTIONAL MOTOR ASYMMETRY

    OpenAIRE

    E.D. Morenkov; V.S. Kudrin

    2013-01-01

    The purpose of this neurochemical study was to quantitatively determine the regional distribution of monoamines (DA, 5HT, and NE) and their metabolites (DOPAC, HVA, and 5HIAA) in paired brain structures (the frontomedial cortex, hypothalamus, amygdala, hippocampus, striatum, and brainstem tegmentum) of the rat by performing HPLC/ED assays. Further, we aimed to relate these distributions to neuronal mechanisms of lateralized motor behavior. We found differences in monoamine levels and their...

  7. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  8. Maternal phenylketonuria: Embryotoxicity in vitro of PKU-related metabolites and of human PKU-sera

    NARCIS (Netherlands)

    Piersma AH; Verhoef A; Hamers AM; van den Ham WA; Jansen EHJM

    1993-01-01

    Mothers with untreated phenylketonuria (PKU) have an increased risk of bearing children with congenital malformations. PKU causes accumulation of phenylalanine (PHE) and its metabolites in urine and blood, and this condition may contribute to the developmental problems. In the present study we

  9. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  10. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  11. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review.

    Science.gov (United States)

    Steenackers, Bart; De Cooman, Luc; De Vos, Dirk

    2015-04-01

    The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon

    Science.gov (United States)

    Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.

    2016-01-01

    The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854

  13. The radioimmunological determination of glibenclamide and its metabolites in serum

    International Nuclear Information System (INIS)

    Glogner, P.; Heni, N.; Nissen, L.

    1977-01-01

    This report describes a sensitive and specific radio-immunological method for determining serum levels of the 1-(p-[2- (5-chloro-2-methoxybenzamido) -ethyl]-benzenesulfonyl) -3-cyclohexylurea (clibenclamide) and its metabolites. The antigen was prepared by coupling a metabolite to bovine serum albumin. Antibodies could be demonstrated in serum after immunisation of rabbits. The separation of free and antibody-bound glibenclamide was achieved by a dextran-charcoal suspension. Presence of serum did not influence the binding characteristics. The limit of detection was 20 ng/ml. The affinity of the metabolites differed only slightly from that of glibenclamide. The presence of related drugs from the sulfonylurea series such as tolbutamide, glibornuride and the sulfonamide sulfamethoxazol did not affect the determination. Only closely related substances showed a variable degree of affinity towards antibodies. As an example of the possible application of this method, the serum concentration of glibenclamide was determined over a period of 8 h after single i.v. injection to a volunteer. The data are in close accordance with the results of authors using radioactive glibenclamide. (orig.) [de

  14. Study on the radiation-induced biological responses based on the analysis of metabolites

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-01

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation

  15. Study on the radiation-induced biological responses based on the analysis of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-15

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation.

  16. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  17. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    International Nuclear Information System (INIS)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F.

    2002-01-01

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding α- and β-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CCα and CCβ values of 0.02-0.30 and -1 , respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well

  18. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing

    NARCIS (Netherlands)

    Jacobs, P.L.; Ridder, L.; Ruijken, M.; Rosing, H.; Jager, N.G.L.; Beijnen, J.H.; Bas, R.R.; Dongen, W.D. van

    2013-01-01

    Background: Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction,

  19. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW, which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.

  20. Functional metabolite assemblies—a review

    Science.gov (United States)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  1. Essential Oil Extraction, Chemical Analysis and Anti-Candida Activity of Calamintha nepeta (L. Savi subsp. glandulosa (Req. Ball—New Approaches

    Directory of Open Access Journals (Sweden)

    Mijat Božović

    2017-01-01

    Full Text Available A comprehensive study on essential oils extracted from different Calamintha nepeta (L. Savi subsp. glandulosa (Req. Ball samples from Tarquinia (Italy is reported. In this study, the 24-h steam distillation procedure for essential oil preparation, in terms of different harvesting and extraction times, was applied. The Gas chromatography–mass spectrometry (GC/MS analysis showed that C. nepeta (L. Savi subsp. glandulosa (Req. Ball essential oils from Tarquinia belong to the pulegone-rich chemotype. The analysis of 44 samples revealed that along with pulegone, some other chemicals may participate in exerting the related antifungal activity. The results indicated that for higher activity, the essential oils should be produced with at least a 6-h steam distillation process. Even though it is not so dependent on the period of harvesting, it could be recommended not to harvest the plant in the fruiting stage, since no significant antifungal effect was shown. The maximum essential oil yield was obtained in August, with the highest pulegone percentage. To obtain the oil with a higher content of menthone, September and October should be considered as the optimal periods. Regarding the extraction duration, vegetative stage material gives the oil in the first 3 h, while material from the reproductive phase should be extracted at least at 6 or even 12 h.

  2. Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency

    Directory of Open Access Journals (Sweden)

    Keitaro Tawaraya

    2014-07-01

    Full Text Available Root exudates improve the nutrient acquisition of plants and affect rhizosphere microbial communities. The plant nutrient status affects the composition of root exudates. The purpose of this study was to examine common bean (Phaseolus vulgaris L. root exudates under phosphorus (P deficiency using a metabolite profiling technique. Common bean plants were grown in a culture solution at P concentrations of 0 (P0, 1 (P1 and 8 (P8 mg P L−1 for 1, 10 and 20 days after transplanting (DAT. Root exudates were collected, and their metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS. The shoot P concentration and dry weight of common bean plants grown at P0 were lower than those grown at P8. One hundred and fifty-nine, 203 and 212 metabolites were identified in the root exudates, and 16% (26/159, 13% (26/203 and 9% (20/212 of metabolites showed a P0/P8 ratio higher than 2.0 at 1, 10 and 20 DAT, respectively. The relative peak areas of several metabolites, including organic acids and amino acids, in root exudates were higher at P0 than at P8. These results suggest that more than 10% of primary and secondary metabolites are induced to exude from roots of common bean by P deficiency.

  3. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites

    Directory of Open Access Journals (Sweden)

    Lucie Raisová Stuchlíková

    2018-04-01

    Full Text Available Haemonchus contortus (family Trichostrongylidae, Nematoda, a hematophagous gastrointestinal parasite found in small ruminants, has a great ability to develop resistance to anthelmintic drugs. We studied the biotransformation of the three benzimidazole anthelmintics: albendazole (ABZ, ricobendazole (albendazole S-oxide; RCB and flubendazole (FLU in females and males of H. contortus in both a susceptible ISE strain and resistant IRE strain. The ex vivo cultivation of living nematodes in culture medium with or without the anthelmintics was used. Ultrasensitive UHPLC/MS/MS analysis revealed 9, 7 and 12 metabolites of ABZ, RCB and FLU, respectively, with most of these metabolites now described in the present study for the first time in H. contortus. The structure of certain metabolites shows the presence of biotransformation reactions not previously reported in nematodes. There were significant qualitative and semi-quantitative differences in the metabolites formed by male and female worms. In most cases, females metabolized drugs more extensively than males. Adults of the IRE strain were able to form many more metabolites of all the drugs than adults of the ISE strain. Some metabolites were even found only in adults of the IRE strain. These findings suggest that increased drug metabolism may play a role in resistance to benzimidazole drugs in H. contortus. Keywords: Drug resistance, Drug metabolism, Anthelmintics, Benzimidazole, Nematode

  4. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  5. Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MSn

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2016-09-01

    Full Text Available Taxifolin is a ubiquitous bioactive constituent of foods and herbs. To thoroughly explore its metabolism in vivo, an HPLC-ESI-IT-TOF-MSn method combined with specific metabolite detection strategy was used to detect and identify the metabolites of taxifolin in rats. Of the 191 metabolites tentatively identified, 154 were new metabolites, 69 were new compounds and 32 were dimers. This is the first report of the in vivo biotransformation of a single compound into more than 100 metabolites. Furthermore, acetylamination and pyroglutamic acid conjugation were identified as new metabolic reactions. Seventeen metabolites were found to have various taxifolin-related bioactivities. The potential targets of taxifolin and 63 metabolites were predicted using PharmMapper, with results showing that more than 60 metabolites have the same five targets. Metabolites with the same fragment pattern may have the same pharmacophore. Thus these metabolites may exert the same pharmacological effects as taxifolin through an additive effect on the same drug targets. This observation indicates that taxifolin is bioactive not only in the parent form, but also through its metabolites. These findings enhance understanding of the metabolism and effective forms of taxifolin and may provide further insight of the beneficial effects of taxifolin and its derivatives.

  6. Tracer kinetic modelling of receptor data with mathematical metabolite correction

    International Nuclear Information System (INIS)

    Burger, C.; Buck, A.

    1996-01-01

    Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)

  7. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-05-01

    Full Text Available Sulforaphane (SFN exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane-N-acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H2O2 challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2-antioxidant response element (ARE pathway and the induction of intracellular glutathione (GSH played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.

  8. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of [4-14C]testosterone

    International Nuclear Information System (INIS)

    Deslypere, J.P.; Sayed, A.; Vermeulen, A.; Wiers, P.W.

    1981-01-01

    The influence of age on the metabolic pattern of [4- 14 C]testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of [4- 14 C]testosterone metabolites: together with their suephoconjugates as well as with 5α- and 5β-androstane-3α, 17β-diol they represent even more than 75% of total urinary metabolites. The 5α/5β ratio of metabolites of [4- 14 C]testosterone was significantly (P 14 C]testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both [4- 14 C]testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5α/5β ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5α-reductase activity seems the most likely explanation. (author)

  9. Measurement of hydroxylated PCB metabolites for Slovakia maternal blood serums

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.S.; Athanasiadou, M; Bergman, A. [Stockholm Univ., Stockholm (Sweden); Charles, J.; Zhao, G.; Hertz-Picciotto, I. [California Univ., Sacramento, CA (United States); Petrik, J.; Kocan, A; Trnovec, T. [Bratislava Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    2005-07-01

    Although it is known that polychlorinated biphenyls (PCBs) have adverse impacts on human health, it is not clear if human health impacts are caused by the PCBs or their related hydroxylated (OH) PCB metabolite compounds. This study measured OH-PCB metabolites in the maternal blood serum specimens from the Svidnik and Michalovce areas in eastern Slovakia where PCBs were intensively produced and inadequately disposed. The aim of the study was to characterize and quantify levels of specific OH-PCB metabolites in Slovakian maternal serums exposed to high environmental PCB levels. All specimens were analyzed for PCBs, and a subset of the samples was analyzed for OH-PCB metabolites. The Wallenburg blood extraction method was adopted to separate the OH-PCBs from the blood serums. Final eluates and calibration standards were spiked with PCB209 as an injection standard before gas chromatography (GC) analysis. OH-PCBs in the samples range from 75{+-}9 per cent to 101{+-}11 per cent. Median concentrations of OH-PCB metabolites of Michalovce samples were approximately twice as high as for the Svidnik samples. Concentrations of OH-PCBs of Michalovce blood samples were comparable to samples obtained from northern Canadian female Inuit and Faroe Island females, and were considered to be among the highest OH-PCB concentrations obtained in human blood. It was concluded that further research is needed to understand the placental transfer of OH-PCBs to the fetus, as well as epidemiological approaches to determine the relationship between the exposure of OH-PCB metabolites and child development. 12 refs., 2 figs.

  10. Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder.

    Science.gov (United States)

    Dickler, Maya; Lenglos, Christophe; Renauld, Emmanuelle; Ferland, Francine; Edden, Richard A; Leblond, Jean; Fecteau, Shirley

    2018-03-15

    Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Secondary metabolites in fungus-plant interactions

    Science.gov (United States)

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  12. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    Science.gov (United States)

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  13. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  14. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  15. Trophic transfer of pyrene metabolites between aquatic invertebrates

    International Nuclear Information System (INIS)

    Carrasco Navarro, V.; Leppänen, M.T.; Kukkonen, J.V.K.; Godoy Olmos, S.

    2013-01-01

    The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments. - Highlights: ► The trophic transfer of pyrene metabolites between invertebrates was evaluated. ► Biotransformation of pyrene by L. variegatus and C. riparius is different. ► Metabolites produced by L. variegatus and C. riparius are transferred to G. setosus. ► Specifically, two metabolites produced by C. riparius were transferred. - Some of the pyrene metabolites produced by the model invertebrates L. variegatus and C. riparius are transferred to G. setosus through the diet, proving their trophic transfer.

  16. Correlative analysis of metabolite profiling of Danggui Buxue Tang in rat biological fluids by rapid resolution LC-TOF/MS.

    Science.gov (United States)

    Li, Chang-Yin; Qi, Lian-Wen; Li, Ping

    2011-04-28

    In this work, the metabolite profiles of Danggui Buxue Tang (DBT) in rat bile and plasma were qualitatively described, and the possible metabolic pathways of DBT were subsequently proposed. Emphasis was put on correlative analysis of metabolite profiling in different biological fluids. After oral administration of DBT, bile and plasma samples were collected and pretreated by solid phase extraction. Rapid resolution liquid chromatography coupled to time-of-flight mass spectrometry (RRLC-TOFMS) was used for characterization of DBT-related compounds (parent compounds and metabolites) in biological matrices. A total of 142 metabolites were detected and tentatively identified from the drug-containing bile and plasma samples. Metabolite profiling shows that rat bile contained relatively more glutathione-derived conjugates, more saponins compounds and more diverse forms of metabolites than urine. The metabolite profile in plasma revealed that glucuronide conjugates of isoflavonoids, dimmers, acetylcysteine conjugates and parent form of phthalides, as well as saponin aglycones were the major circulating forms of DBT. Collectively, the metabolite profile analysis of DBT in different biological matrices provided a comprehensive understanding of the in vivo metabolic fates of constituents in DBT. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Race and sex differences in small-molecule metabolites and metabolic hormones in overweight and obese adults.

    Science.gov (United States)

    Patel, Mahesh J; Batch, Bryan C; Svetkey, Laura P; Bain, James R; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J; Stevens, Robert D; Newgard, Christopher B; Shah, Svati H

    2013-12-01

    In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, phormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones.

  18. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.

    Science.gov (United States)

    Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D

    2014-01-01

    Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.

  19. Urinary estrogen metabolites and breast cancer

    DEFF Research Database (Denmark)

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  20. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Antioxidant status, immune system, blood metabolites and carcass ...

    African Journals Online (AJOL)

    This experiment was conducted to evaluate the effects of dietary turmeric rhizome powder (TP) on performance, blood metabolite, immune system, antioxidant status, and relative weight of organs in pre and post heat stressed broilers. Two hundred and sixty-four (264) day-old male Arian broiler chicks were randomly ...

  2. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F

    2002-11-25

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding {alpha}- and {beta}-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CC{alpha} and CC{beta} values of 0.02-0.30 and <1.0 ng ml{sup -1}, respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well.

  3. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis.

    Science.gov (United States)

    Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R

    2005-04-01

    Plant tissues may show chemical changes following damage. This possibility was analyzed for Minthostachys mollis, a Lamiaceae native to Central Argentina with medicinal and aromatic uses in the region. Effects of mechanical damage on its two dominant monoterpenes, pulegone and menthone, were analyzed by perforating M. mollis leaves and then assessing essential oil composition at 24, 48, and 120 hr; emission of volatiles was also measured 24 and 48 hr after wounding. Mechanical damage resulted in an increase of pulegone and menthone concentration in M. mollis essential oil during the first 24 hr. These changes did not occur in the adjacent undamaged leaves, suggesting a lack of systemic response. Postwounding changes in the volatiles released from M. mollis damaged leaves were also detected, most noticeably showing an increase in the emission of pulegone. Inducible chemical changes in aromatic plants might be common and widespread, affecting the specific compounds on which commercial exploitation is based.

  5. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    Science.gov (United States)

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Autophagy-Related Direct Membrane Import from ER/Cytoplasm into the Vacuole or Apoplast: A Hidden Gateway also for Secondary Metabolites and Phytohormones?

    Directory of Open Access Journals (Sweden)

    Ivan Kulich

    2014-04-01

    Full Text Available Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER to vacuole (and also, apoplast transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast, exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA and salicylic acid (SA degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.

  7. Comparative Pharmacokinetics of Chlorpyrifos versus its Major Metabolites Following Oral Administration in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Busby-Hjerpe, Andrea L.; Campbell, James A.; Smith, Jordan N.; Lee, Sookwang; Poet, Torka S.; Barr, Dana; Timchalk, Charles

    2010-01-31

    Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of in vivo metabolism and environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. Hence, urinary biomonitoring of TCPy, DEP and DETP may be reflective of an individual’s contact with both the parent pesticide and exposure to these metabolites. In the current study, simultaneous dosing of 13C- or 2H- isotopically labeled CPF (13Clabeled CPF, 5 13C on the TCPy ring; or 2H-labeled CPF, diethyl-D10 (deuterium labeled) on the side chain) were exploited to directly compare the pharmacokinetics and metabolism of CPF with TCPy, and DETP. Individual metabolites were co-administered (oral gavage) with the parent compound at equal molar doses (14 μmol/kg; ~5mg/kg CPF). The key objective in the current study was to quantitatively evaluate the pharmacokinetics of the individual metabolites relative to their formation following a dose of CPF. Major differences in the pharmacokinetics between CPF and metabolites doses were observed within the first 3 h of exposure, due to the required metabolism of CPF to initially form TCPy and DETP. Nonetheless, once a substantial amount of CPF has been metabolized (≥ 3 h post-dosing) pharmacokinetics for both treatment groups and metabolites were very comparable. Urinary excretion rates for orally administered TCPy and DETP relative to 13C-CPF or 2H-CPF derived 13C-TCPy and 2H-DETP were consistent with blood pharmacokinetics, and the urinary clearance of metabolite dosed groups were comparable with the results for the 13C- and 2H-CPF groups. Since the pharmacokinetics of the individual metabolites were not modified by co-exposure to 3 CPF; it suggests that environmental exposure to low dose mixtures of pesticides and metabolites will not impact the pharmacokinetics of either.

  8. Identification of metabolites of the tryptase inhibitor CRA-9249: observation of a metabolite derived from an unexpected hydroxylation pathway.

    Science.gov (United States)

    Yu, Walter; Dener, Jeffrey M; Dickman, Daniel A; Grothaus, Paul; Ling, Yun; Liu, Liang; Havel, Chris; Malesky, Kimberly; Mahajan, Tania; O'Brian, Colin; Shelton, Emma J; Sperandio, David; Tong, Zhiwei; Yee, Robert; Mordenti, Joyce J

    2006-08-01

    The metabolites of the tryptase inhibitor CRA-9249 were identified after exposure to liver microsomes. CRA-9249 was found to be degraded rapidly in liver microsomes from rabbit, dog, cynomolgus monkey, and human, and less rapidly in microsomes from rat. The key metabolites included cleavage of an aryl ether, in addition to an unexpected hydroxylation of the amide side chain adjacent to the amide nitrogen. The chemical structures of both metabolites were confirmed by synthesis and comparison to material isolated from the liver microsomes. Several suspected hydroxylated metabolites were also synthesized and analyzed as part of the structure identification process.

  9. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  10. New metabolites of hongdenafil, homosildenafil and hydroxyhomosildenafil.

    Science.gov (United States)

    Yeo, Miseon; Park, Yujin; Lee, Heesang; Choe, Sanggil; Baek, Seung-Hoon; Kim, Hye Kyung; Pyo, Jae Sung

    2018-02-05

    Recently, illegal sildenafil analogues have emerged, causing serious social issues. In spite of the importance of sildenafil analogues, their metabolic profiles or clinical effects have not been reported yet. In this study, new metabolites of illegal sildenafil analogues such as hongdenafil, homosildenafil, and hydroxyhomosildenafil were determined using liquid chromatography quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) and tandem mass spectrometry (LC-Q-TOF-MS/MS). To prepare metabolic samples, in vitro and in vivo studies were performed. For in vivo metabolites analysis, urine and feces samples of rats treated with sildenafil analogues were analyzed. For in vitro metabolites analysis, human liver microsomes incubated with sildenafil analogues were extracted and analyzed. All metabolites were characterized by LC-Q-TOF-MS and LC-Q-TOF-MS/MS. As a result, five, six, and seven metabolites were determined in hongdenafil, homosildenafil, and hydroxyhomosildenafil treated samples, respectively. These results could be applied to forensic science and other analytical fields. Moreover, these newly identified metabolites could be used as fundamental data to determine the side effect and toxicity of illegal sildenafil analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  12. Familial Resemblance for Serum Metabolite Concentrations

    NARCIS (Netherlands)

    Draisma, H.H.M.; Beekman, M.; Pool, R.; van Ommen, G.J.B; Vaarhorst, A.A.M.; de Craen, A.J.; Willemsen, G.; Slagboom, P.E.; Boomsma, D.I.

    2013-01-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of

  13. Metabolite Depletion Affects Flux Profiling of Cell Lines

    DEFF Research Database (Denmark)

    Nilsson, A.; Haanstra, J. R.; Teusink, B.

    2018-01-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation.......Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation....

  14. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.

    Science.gov (United States)

    Dieter, Hermann H

    2010-03-01

    "Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological

  15. Metabolite profiling of Alzheimer's disease cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Christian Czech

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22 with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.

  16. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women

    Science.gov (United States)

    Meeker, John D.; Calafat, Antonia M.; Hauser, Russ

    2012-01-01

    Most epidemiology studies investigating potential adverse health effects in relation to phthalates measure the urinary concentration of the free plus glucuronidated species of phthalate metabolites (i.e., total concentration) to estimate exposure. However, the free species may represent the biologically relevant dose. In this study, we collected 943 urine samples from 112 men and 157 women and assessed the between- and within-person variability and predictors of a) the free and total urinary concentrations of phthalate metabolites, and b) the percentage of free phthalate metabolites (a potential phenotypic indicator of individual susceptibility). We also explored the proportion of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolites contributed to by the bioactive mono-2-ethylhexyl phthalate (MEHP), considered a possible indicator of susceptibility to phthalate exposure. The percentage of phthalate metabolites present in the free form were less stable over time than the total metabolite concentration, and, therefore, it is not likely a useful indicator of metabolic susceptibility. Thus, the added costs and effort involved in the measurement of free in addition to total metabolite concentrations in large-scale studies may not be justified. Conversely, the proportion of DEHP metabolites contributed to by MEHP was more stable within individuals over time and may be a promising indicator of susceptibility if time of day of sample collection is carefully considered. PMID:22354176

  17. Relation between the level of self-mutilation and theconcentration of fecal metabolites of glucocorticoids incaptive chimpanzees (Pan troglodytes

    Directory of Open Access Journals (Sweden)

    Cristiane S. Pizzutto

    2015-01-01

    Full Text Available The influence of stress in an environment, according with the behavioral and endocrine variables of primates, are increasingly being studied by a diversity of authors, and have shown that abnormal behaviors associated with increased glucocorticoids may be directly related with the impairment of their well-being. In this work were used 22 adult chimpanzees (Pan troglodytes, 11 males and 11 females, kept in captivity in three different institutions. All animals had their behavior registered by focal session using a 30 seconds sample interval, during six months, totaling 4,800 registries per each animal. During this period, fecal samples were collected 3 times a week for the extraction and measurement of the concentration of fecal metabolites of glucocorticoid by radioimmunoassay. Of the total observed, stereotypical behaviors represented 13,45±2.76%, and among them, self-mutilation represented 38.28±3.98 %. The animals were classified into three different scores, according with the percentage of body surface with alopecia due to self-mutilation. It was found a positive correlation of high intensity between the scores of alopecia due to the observed mutilation and the average concentrations of fecal metabolites of glucocorticoids. This result strongly suggests that this measurement of self-mutilation in a chimpanzee can be used as an important auxiliary tool to evaluate de conditions of adaptation of an animal in captivity, functioning as a direct indicator of the presence of chronic stress.

  18. Simvastatin (SV) metabolites in mouse tissues

    International Nuclear Information System (INIS)

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  19. A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer.

    Science.gov (United States)

    Wang, QuanQiu; Li, Li; Xu, Rong

    2018-04-18

    Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.

  20. Importance of microbial pest control agents and their metabolites In relation to the natural microbiota on strawberry

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Jensen, Dan Funck

    control. A series of laboratory, growth chamber, semi-field and field experiments using strawberry as a model plant focusing on commercial microbial pest control products (MPCPs) or laboratory MPCAs expected to be on the market within 10 years served as our experimental platform. Initially the background...... level of indigenous microbial communities and their mycotoxins/metabolites on strawberries was examined in a field survey with 4 conventional and 4 organic growers with different production practise and geographic distribution. Culturable bacteria, yeasts and filamentous fungi were isolated...... and identified using both chemotaxonomy (fatty acids and metabolite profiling) and morphological characteristics. Microbial communities on strawberries were complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. Bacteria were the most...

  1. Cassava brown streak disease effects on leaf metabolites and ...

    African Journals Online (AJOL)

    Cassava brown streak disease effects on leaf metabolites and pigment accumulation. ... Total reducing sugar and starch content also dropped significantly (-30 and -60%, respectively), much as NASE 14 maintained a relatively higher amount of carbohydrates. Leaf protein levels were significantly reduced at a rate of 0.07 ...

  2. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    OpenAIRE

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help ...

  3. Urinary Estrogen Metabolites, Active and Sedentary Behaviors, and Breast Cancer Risk

    Science.gov (United States)

    A cross-sectional study of approximately 600 postmenopausal controls in the Breast Cancer Case-Control Study in Poland to assess urinary estrogen metabolites in relation to accelerometer-based measures of active and sedentary behaviors

  4. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine.

    Science.gov (United States)

    Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N

    2017-03-01

    Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA

  5. Estudio comparativo del aceite esencial de Minthostachys mollis (Kunth) Griseb "Muña" de tres regiones peruanas por cromatografía de gases y espectrometría de masas

    OpenAIRE

    Fuertes Ruitón, César M.; Munguía Chipana, Yolanda

    2014-01-01

    A Study of the chemical composition of the essential oil of Minthostachys mollis (Kunth) Griseb, has been done by means of chromatographic and spectronic methods, in order to determine the composition according to the place of selling. We found the following: in the essential oil from Tarma (Junín, región A. A. Cáceres): l-tetradecene (23,14%), 2S-transmenthona (23,00%) and pulegone (13,21%), in the essential oil from Huaraz (Ancash. Región Chavín): 2S-trans-menthona (41,48%), pulegone (16,02...

  6. Essential oils of Mentha pulegium and Mentha rotundifolia from Uruguay

    Directory of Open Access Journals (Sweden)

    Lorenzo Daniel

    2002-01-01

    Full Text Available Essential oils obtained by hydrodistillation from leaves of Mentha pulegium L. and Mentha rotundifolia (L. Huds. from Uruguay were analysed by GC-FID and GC-MS. Oxygen-containing monoterpenes were the main group of constituents in both oils. Pulegone, isomenthone and menthone were the major components in the oil of M. pulegium, whereas piperitenone oxide and (Z-sabinene hydrate were the major ones in M. rotundifolia. Enantiomerically pure (--menthone, (+-isomenthone, (+-isomenthol, (--menthol and (+-pulegone were detected by multidimensional gas chromatography in the case of M. pulegium oil.

  7. Secondary metabolites from the endophytic fungus Talaromyces pinophilus.

    Science.gov (United States)

    Vinale, F; Nicoletti, R; Lacatena, F; Marra, R; Sacco, A; Lombardi, N; d'Errico, G; Digilio, M C; Lorito, M; Woo, S L

    2017-08-01

    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.

  8. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  9. Sulfate metabolites as alternative markers for the detection of 4-chlorometandienone misuse in doping control.

    Science.gov (United States)

    Balcells, Georgina; Gómez, Cristina; Garrostas, Lorena; Pozo, Óscar J; Ventura, Rosa

    2017-07-01

    Sulfate metabolites have been described as long-term metabolites for some anabolic androgenic steroids (AAS). 4-chlorometandienone (4Cl-MTD) is one of the most frequently detected AAS in sports drug testing and it is commonly detected by monitoring metabolites excreted free or conjugated with glucuronic acid. Sulfation reactions of 4Cl-MTD have not been studied. The aim of this work was to evaluate the sulfate fraction of 4Cl-MTD metabolism by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to establish potential long-term metabolites valuable for doping control purposes. 4Cl-MTD was administered to two healthy male volunteers and urine samples were collected up to 8 days after administration. A theoretical selected reaction monitoring (SRM) method working in negative mode was developed. Ion transitions were based on ionization and fragmentation behaviour of sulfate metabolites as well as specific neutral losses (NL of 15 Da and NL of 36 Da) of compounds with related chemical structure. Six sulfate metabolites were detected after the analysis of excretion study samples. Three of the identified metabolites were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Results showed that five out of the six identified sulfate metabolites were detected in urine up to the last collected samples from both excretion studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei.

    Science.gov (United States)

    Boottanun, Patcharaporn; Potisap, Chotima; Hurdle, Julian G; Sermswan, Rasana W

    2017-12-01

    Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bacterium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipitated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log 10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomallei in the environment or for development as new drugs for problematic pathogenic bacteria.

  11. R-Limonene metabolism in humans and metabolite kinetics after oral administration.

    Science.gov (United States)

    Schmidt, Lukas; Göen, Thomas

    2017-03-01

    We studied the R-limonene (LMN) metabolism and elimination kinetics in a human in vivo study. Four volunteers were orally exposed to a single LMN dose of 100-130 µg kg -1 bw. In each case, one pre-exposure and subsequently all 24 h post-exposure urine samples were collected. From two subjects, blood samples were drawn up to 5 h after exposure. The parent compound was analysed in blood using headspace GC-MS. The metabolites cis- and trans-carveol (cCAR), perillyl alcohol (POH), perillic acid (PA), limonene-1,2-diol (LMN-1,2-OH), and limonene-8,9-diol (LMN-8,9-OH) were quantified in both blood and urine using GC-PCI-MS/MS. Moreover, GC-PCI-MS full-scan experiments were applied for identification of unknown metabolites in urine. In both matrices, metabolites reached maximum concentrations 1-2 h post-exposure followed by rapid elimination with half-lives of 0.7-2.5 h. In relation to the other metabolites, LMN-1,2-OH was eliminated slowest. Nonetheless, overall renal metabolite elimination was completed within the 24-h observation period. The metabolite amounts excreted via urine corresponded to 0.2 % (cCAR), 0.2 % (tCAR), <0.1 % (POH), 2.0 % (PA), 4.3 % (LMN-1,2-OH), and 32 % (LMN-8,9-OH) of the orally administered dose. GC-PCI-MS full-scan analyses revealed dihydroperillic acid (DHPA) as an additional LMN metabolite. DHPA was estimated to account for 5 % of the orally administered dose. The study revealed that human LMN metabolism proceeds fast and is characterised by oxidation mainly of the exo-cyclic double bond but also of the endo-cyclic double bond and of the methyl side chain. The study results may support the prediction of the metabolism of other terpenes or comparable chemical structures.

  12. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance.

    Science.gov (United States)

    Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott

    2018-06-01

    Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. GPCR-Mediated Signaling of Metabolites

    DEFF Research Database (Denmark)

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  14. Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; Langelaar-Makkinje, Miriam; Horvatovich, Peter; Groothuis, Geny M. M.

    The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the

  15. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    Science.gov (United States)

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.

  16. Gene expression and metabolite changes during Tuber magnatum fruiting body storage.

    Science.gov (United States)

    Zampieri, Elisa; Guzzo, Flavia; Commisso, Mauro; Mello, Antonietta; Bonfante, Paola; Balestrini, Raffaella

    2014-11-01

    The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.

  17. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.

    Science.gov (United States)

    Quell, Jan D; Römisch-Margl, Werner; Colombo, Marco; Krumsiek, Jan; Evans, Anne M; Mohney, Robert; Salomaa, Veikko; de Faire, Ulf; Groop, Leif C; Agakov, Felix; Looker, Helen C; McKeigue, Paul; Colhoun, Helen M; Kastenmüller, Gabi

    2017-12-15

    Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9

  18. A Rough Guide to Metabolite Identification Using High Resolution Liquid Chromatography Mass Spectrometry in Metabolomic Profiling in Metazoans

    Directory of Open Access Journals (Sweden)

    David G Watson

    2013-01-01

    Full Text Available Compound identification in mass spectrometry based metabolomics can be a problem but sometimes the problem seems to be presented in an over complicated way. The current review focuses on metazoans where the range of metabolites is more restricted than for example in plants. The focus is on liquid chromatography with high resolution mass spectrometry where it is proposed that most of the problems in compound identification relate to structural isomers rather than to isobaric compounds. Thus many of the problems faced relate to separation of isomers, which is usually required even if fragmentation is used to support structural identification. Many papers report the use of MS/MS or MS2 as an adjunct to the identification of known metabolites but there a few examples in metabolomics studies of metazoans of complete structure elucidation of novel metabolites or metabolites where no authentic standards are available for comparison.

  19. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    Directory of Open Access Journals (Sweden)

    Kumar Akhil

    2012-01-01

    Full Text Available Abstract Background Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models, stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity. Description MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones. Conclusions The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries. MetRxn is hosted on a web-based platform that uses relational database models (MySQL.

  20. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    Directory of Open Access Journals (Sweden)

    Joel Krauser

    Full Text Available Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14C or (3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  1. A Unique Automation Platform for Measuring Low Level Radioactivity in Metabolite Identification Studies

    Science.gov (United States)

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932

  2. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  3. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  4. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  5. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of (4-/sup 14/C)testosterone. Influence of age

    Energy Technology Data Exchange (ETDEWEB)

    Deslypere, J P; Sayed, A; Vermeulen, A [Department of Internal Medicine, Section of Endocrinology, State University Academic Hospital, De Pintelaan, 135, Ghent, Belgium; Wiers, P W [Department of Internal Medicine, Section of Pneumology, State University Academic Hospital, The Netherlands

    1981-01-01

    The influence of age on the metabolic pattern of (4-/sup 14/C)testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of (4-/sup 14/C)testosterone metabolites: together with their suephoconjugates as well as with 5..cap alpha..- and 5..beta..-androstane-3..cap alpha.., 17..beta..-diol they represent even more than 75% of total urinary metabolites. The 5..cap alpha../5..beta.. ratio of metabolites of (4-/sup 14/C)testosterone was significantly (P<0.01) correlated with the 5..cap alpha../5..beta.. ratio of the metabolites of the endogenous androgens, mainly dehydroepiandrosterone and androstenedione. The 5..cap alpha../5..beta.. ratio of (4-/sup 14/C)testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both (4-/sup 14/C)testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5..cap alpha../5..beta.. ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5..cap alpha..-reductase activity seems the most likely explanation.

  6. Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky

    Directory of Open Access Journals (Sweden)

    J.M Herrera

    2014-06-01

    Full Text Available Essential oils (EOs and individual compounds act as fumigants against insects found in stored products. In fumigant assays, Sitophilus zeamais Motschulsky adults were treated with essential oils derived from Aphyllocladus decussatus Hieron, Aloysia polystachya Griseb, Minthostachys verticillata Griseb Epling and Tagetes minuta L , which are rich in ketones and their major components: a- thujone, R-carvone, S-carvone, (- menthone, R (+ pulegone and E-Z- ocimenone. M. verticillata oil was the most toxic ( LC50: 116.6 µl /L air characterized by a high percentage of menthone (40.1% and pulegone (43.7%. All ketones showed insecticidal activity against S. zeamais. However, pulegone (LC50: 11.8 µl/L air, R- carvone (LC50: 17.5 µl/L air, S-carvone (LC50: 28.1 µl/L air and E-Z-ocimenone (LC50: 42.3 µl/L air were the most toxic. These ketones are a,b-unsaturated carbonyl. This feature could play a fundamental role in the increase of insecticidal activity against S. zeamais.

  7. Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes

    Science.gov (United States)

    Li, Tongtong; Long, Meng; Li, Huan; Gatesoupe, François-Joël; Zhang, Xujie; Zhang, Qianqian; Feng, Dongyue; Li, Aihua

    2017-01-01

    Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles. PMID:28367147

  8. Urinary Concentrations of Phthalate Metabolites and Pregnancy Loss Among Women Conceiving with Medically Assisted Reproduction.

    Science.gov (United States)

    Messerlian, Carmen; Wylie, Blair J; Mínguez-Alarcón, Lidia; Williams, Paige L; Ford, Jennifer B; Souter, Irene C; Calafat, Antonia M; Hauser, Russ

    2016-11-01

    Animal studies demonstrate that several phthalates are embryofetotoxic and are associated with increased pregnancy loss and malformations. Results from human studies on phthalates and pregnancy loss are inconsistent. We examined pregnancy loss prospectively in relation to urinary phthalate metabolite concentrations among women undergoing medically assisted reproduction. We used data from 256 women conceiving 303 pregnancies recruited between 2004 and 2012 from the Massachusetts General Hospital Fertility Center. We quantified 11 phthalate metabolite concentrations and calculated the molar sum of four di(2-ethylhexyl) phthalate (DEHP) metabolites (ΣDEHP). We estimated risk ratios (RRs) and 95% confidence intervals for biochemical loss and total pregnancy loss (assisted reproduction.

  9. SECONDARY METABOLITES FROM MARINE PENICILLIUM BREVICOMPACTUM

    OpenAIRE

    ROVIROSA, JUANA; DIAZ-MARRERO, ANA; DARIAS, JOSE; PAINEMAL, KARIN; SAN MARTIN, AURELIO

    2006-01-01

    In a screening of Basidiomycete cultures isolated from marine invertebrates collected along the Chilean coastline for the production of antibiotics we identified a Penicillium brevicompactum strain as a producer of metabolites inhibiting the growth of bacteria and fungi. Bioactivity guided purification resulted in the isolation of four known metabolites. Their structures were elucidated by spectroscopic methods.

  10. Plant metabolites and nutritional quality of vegetables.

    Science.gov (United States)

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  11. β-Orcinol Metabolites from the Lichen Hypotrachyna revoluta

    Directory of Open Access Journals (Sweden)

    Panagiota Papadopoulou

    2007-05-01

    Full Text Available Four new β-orcinol metabolites, hypotrachynic acid (1, deoxystictic acid (2, cryptostictinolide (3 and 8 ́-methylconstictic acid (4 along with the metabolites 8 ́-methylstictic acid (5, 8 ́-methylmenegazziaic acid (6, stictic acid (7, 8 ́-ethylstictic acid (8 and atranorin (9, that have been previously described, were isolated for the first time from the tissue extracts of the lichen Hypotrachyna revoluta (Flörke Hale. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analyses. Radical scavenging activity (RSA of the metabolites isolated in adequate amounts, was evaluated using luminol chemiluminescence and comparison with Trolox®.

  12. Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites.

    Directory of Open Access Journals (Sweden)

    Jian Ye

    Full Text Available Exposure to polycyclic aromatic hydrocarbons (PAHs is associated with reduced heart rate variability (HRV, a strong predictor of cardiovascular diseases, but the mechanism is not well understood.We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function.HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6 and heat shock protein 70 (Hsp70 were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs were measured by gas chromatography-mass spectrometry.We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05; and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP and low frequency (LF (Ptrend = 0.014 and 0.006, respectively. In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05, but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN, TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05. We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV.In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.

  13. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  14. Evaluation of Antioxidant, Cholinesterase Inhibitory and Antimicrobial Properties of Mentha longifolia subsp. noeana and Its Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2015-01-01

    Full Text Available The aim of the present study was to determine the chemical structures of the isolated compounds, the essential oil and fatty acid compositions of Mentha longifolia subsp. noeana with their biological activities. Ursolic acid (1, u vaol (2, stigmast-5-ene-3 b -yl formate (3, stigmast-5-en-3-one (4, b -sitosterol (5, bis(2-ethylhexyl benzene-1,2-dicarboxylate (6,hexacosyl (E-ferulate (7 and 5-hydroxy-6,7,3',4'-tetramethoxy flavone (8 were obtained from the aerial parts. The compounds (2-4, 6, 7 were isolated for the first time from a Mentha species. Palmitic acid (40.8% was the major component of the non-polar fraction obtained from the petroleum ether extract. Pulegone (32.3% was the main constituent of the essential oil which exhibited strong butyrylcholinesterase inhibitory activity (77.36 ± 0.29%, moderate antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The methanol extract showed 80% inhibition of lipid peroxidation, and the acetone extract possessed moderate DPPH free radical scavenging activity (60% inhibition at 100 m g/mL.

  15. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  16. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    Science.gov (United States)

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  17. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    Science.gov (United States)

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  18. Physical activity, sedentary behavior, and vitamin D metabolites.

    Science.gov (United States)

    Hibler, Elizabeth A; Sardo Molmenti, Christine L; Dai, Qi; Kohler, Lindsay N; Warren Anderson, Shaneda; Jurutka, Peter W; Jacobs, Elizabeth T

    2016-02-01

    Physical activity is associated with circulating 25-hydroxyvitamin D (25(OH)D). However, the influence of activity and/or sedentary behavior on the biologically active, seco-steroid hormone 1α,25-dihydroxyvitamin D (1,25(OH)2D) is unknown. We conducted a cross-sectional analysis among ursodeoxycholic acid (UDCA) randomized trial participants (n=876) to evaluate associations between physical activity, sedentary behavior, and circulating vitamin D metabolite concentrations. Continuous vitamin D metabolite measurements and clinical thresholds were evaluated using multiple linear and logistic regression models, mutually adjusted for either 1,25(OH)2D or 25(OH)D and additional confounding factors. A statistically significant linear association between 1,25(OH)2D and moderate-vigorous physical activity per week was strongest among women (β (95% CI): 3.10 (1.51-6.35)) versus men (β (95% CI): 1.35 (0.79-2.29)) in the highest tertile of activity compared to the lowest (p-interaction=0.003). Furthermore, 25(OH)D was 1.54ng/ml (95% CI 1.09-1.98) higher per hour increase in moderate-vigorous activity (p=0.001) and odds of sufficient 25(OH)D status was higher among physically active participants (p=0.001). Sedentary behavior was not significantly associated with either metabolite in linear regression models, nor was a statistically significant interaction by sex identified. The current study identified novel associations between physical activity and serum 1,25(OH)2D levels, adjusted for 25(OH)D concentrations. These results identify the biologically active form of vitamin D as a potential physiologic mechanism related to observed population-level associations between moderate-vigorous physical activity with bone health and chronic disease risk. However, future longitudinal studies are needed to further evaluate the role of physical activity and vitamin D metabolites in chronic disease prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Pharmacologically active plant metabolites as survival strategy products.

    Science.gov (United States)

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  20. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    Science.gov (United States)

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  1. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot...

  2. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and... degradation of less than 10 percent in a 30-day period. (b) Contaminants and impurities. The presence in any...

  3. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  4. Investigation of metabolites for estimating blood deposition time.

    Science.gov (United States)

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  5. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda.

    Science.gov (United States)

    Ayil-Gutiérrez, Benjamin A; Villegas-Mendoza, Jesús M; Santes-Hernndez, Zuridai; Paz-González, Alma D; Mireles-Martínez, Maribel; Rosas-García, Ninfa M; Rivera, Gildardo

    2015-11-01

    The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2- undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 µmoles mg(-1) DW), psoralen (3.6 µmoles mg(-1) DW) and rutin (0.001 pmoles mg(-1) DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.

  6. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Science.gov (United States)

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  7. [11C]Flumazenil metabolite measurement in plasma is not necessary for accurate brain benzodiazepine receptor quantification

    International Nuclear Information System (INIS)

    Sanabria-Bohorquez, S.M.; Veraart, C.; Labar, D.; Bol, A.; Volder, A.G. de; Michel, C.; Leveque, P.

    2000-01-01

    In this work, a mathematical correction for metabolites has been validated which estimates the relative amount of [ 11 C]flumazenil ([ 11 C]FMZ) in the total plasma curve from the tissue kinetic data without the need for direct metabolite measurement in blood plasma samples. Kinetic data were obtained using a 90-min three-injection protocol on five normal volunteers. First, the relative amount of [ 11 C]FMZ in plasma was modelled by a two-parameter exponential function. The parameters were estimated either directly by fitting this model to the blood plasma metabolite measurements, or indirectly from the simultaneous fitting of tissue time activity curves from several brain regions with a non-linear FMZ kinetic model. Second, the direct and indirect metabolite corrections were fixed and the FMZ compartmental parameters were determined on a regional basis in the brain. The validation was performed by comparing the regional values of benzodiazepine receptor density B max and equilibrium dissociation constant K d obtained with the direct metabolite correction with those values obtained with the indirect correction. For B max , the correlation coefficient r 2 was above 0.97 for all subjects and the slope values of the linear regression were within the interval [0.97, 1.2]. For K d , r 2 was above 0.96, and the slope values of the linear regression were within the interval [0.99, 1.1]. Simulation studies were performed in order to evaluate whether this metabolite correction method could be used in a clinical protocol where only a single [ 11 C]FMZ injection and a linear compartmental model are used. The resulting [ 11 C]FMZ distribution volume estimates were found to be linearly correlated with the true values, with r 2 =1.0 and a slope value of 1.1. The mathematical metabolite correction proved to be a feasible and reliable method to estimate the relative amount of [ 11 C]FMZ in plasma and the compartmental model parameters for three-injection protocols. Although

  8. Prospective study of blood metabolites associated with colorectal cancer risk.

    Science.gov (United States)

    Shu, Xiang; Xiang, Yong-Bing; Rothman, Nathaniel; Yu, Danxia; Li, Hong-Lan; Yang, Gong; Cai, Hui; Ma, Xiao; Lan, Qing; Gao, Yu-Tang; Jia, Wei; Shu, Xiao-Ou; Zheng, Wei

    2018-02-26

    Few prospective studies, and none in Asians, have systematically evaluated the relationship between blood metabolites and colorectal cancer risk. We conducted a nested case-control study to search for risk-associated metabolite biomarkers for colorectal cancer in an Asian population using blood samples collected prior to cancer diagnosis. Conditional logistic regression was performed to assess associations of metabolites with cancer risk. In this study, we included 250 incident cases with colorectal cancer and individually matched controls nested within two prospective Shanghai cohorts. We found 35 metabolites associated with risk of colorectal cancer after adjusting for multiple comparisons. Among them, 12 metabolites were glycerophospholipids including nine associated with reduced risk of colorectal cancer and three with increased risk [odds ratios per standard deviation increase of transformed metabolites: 0.31-1.98; p values: 0.002-1.25 × 10 -10 ]. The other 23 metabolites associated with colorectal cancer risk included nine lipids other than glycerophospholipid, seven aromatic compounds, five organic acids and four other organic compounds. After mutual adjustment, nine metabolites remained statistically significant for colorectal cancer. Together, these independently associated metabolites can separate cancer cases from controls with an area under the curve of 0.76 for colorectal cancer. We have identified that dysregulation of glycerophospholipids may contribute to risk of colorectal cancer. © 2018 UICC.

  9. Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS

    Energy Technology Data Exchange (ETDEWEB)

    Senyuva, Hamide Z. [Ankara Test and Analysis Laboratory, Scientific and Technological Research Council of Turkey, Ankara 06330 (Turkey)], E-mail: hamide.senyuva@tubitak.gov.tr; Gilbert, John [Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom); Oztuerkoglu, Sebnem [Ankara Test and Analysis Laboratory, Scientific and Technological Research Council of Turkey, Ankara 06330 (Turkey)

    2008-06-09

    A liquid chromatography-time-of-flight mass spectrometry (LC/TOF-MS) method has been developed for profiling fungal metabolites. The performance of the procedure in terms of mass accuracy, selectivity (specificity) and repeatability was established by spiking aflatoxins, ochratoxins, trichothecenes and other metabolites into blank growth media. After extracting, and carrying out LC/TOF-MS analysis, the standards were correctly identified by searching a specially constructed database of 465 secondary metabolites. To demonstrate the viability of this approach 11 toxigenic and four non-toxigenic fungi from reference collections were grown on various media, for 7-14 days. The method was also applied to two toxigenic fungi, A. flavus (200-138) and A. parasiticus (2999-465) grown on gamma radiation sterilised dried figs, for 7-14 days. The fungal hyphae plus a portion of growth media or portions of dried figs were solvent extracted and analysed by LC/TOF-MS using a rapid resolution microbore LC column. Data processing based on cluster analysis, showed that electrospray ionization (ESI)-TOF-MS could be used to unequivocally identify metabolites in crude extracts. Using the elemental metabolite database, it was demonstrated that from culture collection isolates, anticipated metabolites. The speed and simplicity of the method has meant that levels of these metabolites could be monitored daily in sterilised figs. Over a 14-day period, levels of aflatoxins and kojic acid maximised at 5-6 days, whilst levels of 5-methoxysterigmatocystin remained relatively constant. In addition to the known metabolites expected to be produced by these fungi, roquefortine A, fumagillin, fumigaclavine B, malformins (peptides), aspergillic acid, nigragillin, terrein, terrestric acid and penicillic acid were also identified.

  10. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.

    Science.gov (United States)

    Slack, Gregory J; Puniani, Eva; Frisvad, Jens C; Samson, Robert A; Miller, J David

    2009-04-01

    As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.

  11. MARSI: metabolite analogues for rational strain improvement

    DEFF Research Database (Denmark)

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  12. Prognostic value of proton magnetic resonance spectroscopy findings in near drowning patients: reversibility of the early metabolite abnormalities relates with a good outcome

    International Nuclear Information System (INIS)

    Aragao, Maria de Fatima Vasco; Law, Meng; Prola Netto, Joao; Naidich, Thomas; Valenca, Marcelo Moraes

    2009-01-01

    In two children with near drowning hypoxic encephalopathy and normal-appearing structural MRI, acute proton magnetic resonance spectroscopy ( 1 H MRS) showed biochemical alterations that correctly indicated prognosis and helped to guide management decisions. Elevation of the lipid-lactate and glutamine-glutamate peaks, on the early (72 hour) 1 H MRS, predicts a poor prognosis. Absence of lipid-lactate and glutamine-glutamate peaks on the early 1 H MRS and reversibility of early mild metabolite abnormalities on follow up examination relates with good outcome. (author)

  13. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans.

    Science.gov (United States)

    Grill, Alex E; Schmitt, Thaddeus; Gates, Leah A; Lu, Ding; Bandyopadhyay, Dipankar; Yuan, Jian-Min; Murphy, Sharon E; Peterson, Lisa A

    2015-07-20

    Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.

  14. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae.

    Science.gov (United States)

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-08-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease.

  15. Metabolite identification through multiple kernel learning on fragmentation trees.

    Science.gov (United States)

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  16. Pyometra in Bitches Induces Elevated Plasma Endotoxin and Prostaglandin F2α Metabolite Levels

    Directory of Open Access Journals (Sweden)

    Hagman R

    2006-03-01

    Full Text Available Endotoxemia in bitches with pyometra can cause severe systemic effects directly or via the release of inflammatory mediators. Plasma endotoxin concentrations were measured in ten bitches suffering from pyometra with moderately to severely deteriorated general condition, and in nine bitches admitted to surgery for non-infectious reasons. Endotoxin samples were taken on five occasions before, during and after surgery. In addition, urine and uterine bacteriology was performed and hematological, blood biochemical parameters, prostaglandin F2α metabolite 15-ketodihydro-PGF2α (PG-metabolite, progesterone and oestradiol (E2-17β levels were analysed. The results confirm significantly increased plasma levels of endotoxin in bitches with pyometra and support previous reports of endotoxin involvement in the pathogenesis of the disease. Plasma concentrations of PG-metabolite were elevated in pyometra bitches and provide a good indicator of endotoxin release since the concentrations were significantly correlated to the endotoxin levels and many other hematological and chemistry parameters. The γ-globulin serum protein electrophoresis fraction and analysis of PG-metabolite can be valuable in the diagnosis of endotoxin involvement if a reliable, rapid and cost-effective test for PG-metabolite analysis becomes readily available in the future. Treatment inhibiting prostaglandin biosynthesis and related compounds could be beneficial for bitches suffering from pyometra.

  17. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.

    Science.gov (United States)

    Derkach, Andriy; Sampson, Joshua; Joseph, Justin; Playdon, Mary C; Stolzenberg-Solomon, Rachael Z

    2017-10-01

    Background: High sodium intake is known to increase blood pressure and is difficult to measure in epidemiologic studies. Objective: We examined the effect of sodium intake on metabolites within the DASH (Dietary Approaches to Stop Hypertension Trial)-Sodium Trial to further our understanding of the biological effects of sodium intake beyond blood pressure. Design: The DASH-Sodium Trial randomly assigned individuals to either the DASH diet (low in fat and high in protein, low-fat dairy, and fruits and vegetables) or a control diet for 12 wk. Participants within each diet arm received, in random order, diets containing high (150 nmol or 3450 mg), medium (100 nmol or 2300 mg), and low (50 nmol or 1150 mg) amounts of sodium for 30 d (crossover design). Fasting blood samples were collected at the end of each sodium intervention. We measured 531 identified plasma metabolites in 73 participants at the end of their high- and low-sodium interventions and in 46 participants at the end of their high- and medium-sodium interventions ( N = 119). We used linear mixed-effects regression to model the relation between each log-transformed metabolite and sodium intake. We also combined the resulting P values with Fisher's method to estimate the association between sodium intake and 38 metabolic pathways or groups. Results: Six pathways were associated with sodium intake at a Bonferroni-corrected threshold of 0.0013 (e.g., fatty acid, food component or plant, benzoate, γ-glutamyl amino acid, methionine, and tryptophan). Although 82 metabolites were associated with sodium intake at a false discovery rate ≤0.10, only 4-ethylphenylsufate, a xenobiotic related to benzoate metabolism, was significant at a Bonferroni-corrected threshold ( P Sodium intake is associated with changes in circulating metabolites, including gut microbial, tryptophan, plant component, and γ-glutamyl amino acid-related metabolites. This trial was registered at clinicaltrials.gov as NCT00000608. © 2017

  18. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  19. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

    Science.gov (United States)

    Dankel, Scott J; Mattocks, Kevin T; Jessee, Matthew B; Buckner, Samuel L; Mouser, J Grant; Loenneke, Jeremy P

    2017-11-01

    Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.

  20. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    Science.gov (United States)

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families.

    Science.gov (United States)

    Son, Su Young; Kim, Na Kyung; Lee, Sunmin; Singh, Digar; Kim, Ga Ryun; Lee, Jong Seok; Yang, Hee-Sun; Yeo, Joohong; Lee, Sarah; Lee, Choong Hwan

    2016-09-01

    A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.

  2. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    International Nuclear Information System (INIS)

    Routti, Heli; Bavel, Bert van; Letcher, Robert J.; Arukwe, Augustine; Chu Shaogang; Gabrielsen, Geir W.

    2009-01-01

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  3. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Routti, Heli, E-mail: heli.routti@npolar.n [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway); Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, 20014 Turku (Finland); Bavel, Bert van [MTM Research Centre, Orebro University, 70182 Orebro (Sweden); Letcher, Robert J. [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Chu Shaogang [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Gabrielsen, Geir W. [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway)

    2009-08-15

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  4. Metabolite Profiles in Leaves and Spikes of Wheat under Constrasting Field-growing Environments Are Derived from Hyperspectral Readings

    Science.gov (United States)

    Vergara-Diaz, O.; Obata, T., Sr.; Kefauver, S. C.; Fernie, A., Sr.; Araus, J. L.

    2017-12-01

    The advance on metabolomics has led to a better understanding of plant-environment interactions and how the levels of specific metabolites may be used as indicators of plant performance. In cereals, the accumulation of certain metabolites -such as proline and sugars- has been related with water stress and drought tolerance/susceptibility, even revealing significant relationships with yield. On the other hand, recent studies relating plant biochemicals with spectral reflectance open the door to a deep assessment of plant status which would have implications on plant breeding and ecosystem studies. In this study, we investigated in durum wheat the relationship between the reflectance in the visible and near infrared regions (400-2500 µm wavelength) of the spectrum of the flag leaf, the ears and canopy levels with their respective metabolite profiles as well as its relationship with yield. To this aim, five durum wheat genotypes grown in four environments in the field were examined. PLS regression models indicated a strong determination of yield by using the spectrum of either leaves, ears and canopy. Additionally, grain yield was strongly predicted by the metabolite content of leaves and ears with multivariate regression analysis. Further preliminary results showed a promising performance of hyperspectral remote-proximal sensing for the calibration of plant metabolite content.

  5. Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities

    Directory of Open Access Journals (Sweden)

    Sarah Lee

    2015-11-01

    Full Text Available Chemotaxonomic metabolite profiling of 62 indigenous Korean plant species was performed by ultrahigh performance liquid chromatography (UHPLC-linear trap quadrupole-ion trap (LTQ-IT mass spectrometry/mass spectrometry (MS/MS combined with multivariate statistical analysis. In partial least squares discriminant analysis (PLS-DA, the 62 species clustered depending on their phylogenetic family, in particular, Aceraceae, Betulaceae, and Fagaceae were distinguished from Rosaceae, Fabaceae, and Asteraceae. Quinic acid, gallic acid, quercetin, quercetin derivatives, kaempferol, and kaempferol derivatives were identified as family-specific metabolites, and were found in relatively high concentrations in Aceraceae, Betulaceae, and Fagaceae. Fagaceae and Asteraceae were selected based on results of PLS-DA and bioactivities to determine the correlation between metabolic differences among plant families and bioactivities. Quinic acid, quercetin, kaempferol, quercetin derivatives, and kaempferol derivatives were found in higher concentrations in Fagaceae than in Asteraceae, and were positively correlated with antioxidant and tyrosinase inhibition activities. These results suggest that metabolite profiling was a useful tool for finding the different metabolic states of each plant family and understanding the correlation between metabolites and bioactivities in accordance with plant family.

  6. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  7. Analytical method for urinary metabolites of the fluorine-containing pyrethroids metofluthrin, profluthrin and transfluthrin by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshida, Toshiaki

    2013-01-15

    An analytical method was developed for measurement of the major urinary metabolites in rats administered fluorine-containing pyrethroids (metofluthrin, profluthrin and transfluthrin) which are widely used recently as mosquito repellents or mothproof repellents. Eight metabolites, 2,3,5,6-tetrafluorobenzoic acid, 4-methyl-2,3,5,6-tetrafluorobenzoic acid, 2,2-dimethyl-3-(1-propenyl)-cyclopropanecarboxylic acid, 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (carboxylic metabolites), 2,3,5,6-tetrafluorobenzyl alcohol, 4-methyl-2,3,5,6-tetrafluorobenzyl alcohol, 4-methoxymethyl-2,3,5,6-tetrafluorobenzyl alcohol and 4-hydroxymethyl-2,3,5,6-tetrafluorobenzyl alcohol (alcoholic metabolites), were extracted from enzymatic hydrolyzed urine using toluene and then concentrated. After transformation to their tert-butyldimethylsilyl derivatives for carboxylic metabolites or their trimethylsilyl derivatives for alcoholic metabolites, analysis was conducted by gas chromatography/mass spectrometry in the electron impact ionization mode. The calibration curves for each metabolite were linear over the concentration range of 0-20μg/ml in urine, and the quantification limits were between 0.009 and 0.03μg/ml. The relative errors and the relative standard deviations on replicate assays were less than 6% and 5%, respectively, for all concentrations studied. The measurements were accurate and precise. The collected urine samples could be stored for up to 1 month at -20°C in a freezer. The proposed method was applied to the analysis of several urine samples collected from rats treated with these pyrethroids. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Metabolites in vertebrate Hedgehog signaling.

    Science.gov (United States)

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. TARGETED, LCMS-BASED METABOLOMICS FOR QUANTITATIVE MEASUREMENT OF NAD+ METABOLITES

    Directory of Open Access Journals (Sweden)

    Samuel AJ Trammell

    2013-01-01

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a coenzyme for hydride transfer reactions and a substrate for sirtuins and other NAD+-consuming enzymes. The abundance of NAD+, NAD+ biosynthetic intermediates, and related nucleotides reflects the metabolic state of cells and tissues. High performance liquid chromatography (HPLC followed by ultraviolet-visible (UV-Vis spectroscopic analysis of NAD+ metabolites does not offer the specificity and sensitivity necessary for robust quantification of complex samples. Thus, we developed a targeted, quantitative assay of the NAD+ metabolome with the use of HPLC coupled to mass spectrometry. Here we discuss NAD+ metabolism as well as the technical challenges required for reliable quantification of the NAD+ metabolites. The new method incorporates new separations and improves upon a previously published method that suffered from the problem of ionization suppression for particular compounds.

  11. Prototype of an intertwined secondary-metabolite supercluster

    Science.gov (United States)

    Phillipp Wiemann; Chun-Jun. Guo; Jonathan M. Palmer; Relebohile Sekonyela; Clay C.C. Wang; Nancy P. Keller

    2013-01-01

    The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the...

  12. Prognostic value of proton magnetic resonance spectroscopy findings in near drowning patients: reversibility of the early metabolite abnormalities relates with a good outcome

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, Maria de Fatima Vasco; Law, Meng; Prola Netto, Joao; Naidich, Thomas [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Radiology], e-mail: aragao@truenet.com; Valenca, Marcelo Moraes [Federal University of Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Neuropsychiatry and Behavioral Studies

    2009-03-15

    In two children with near drowning hypoxic encephalopathy and normal-appearing structural MRI, acute proton magnetic resonance spectroscopy ({sup 1}H MRS) showed biochemical alterations that correctly indicated prognosis and helped to guide management decisions. Elevation of the lipid-lactate and glutamine-glutamate peaks, on the early (72 hour) {sup 1}H MRS, predicts a poor prognosis. Absence of lipid-lactate and glutamine-glutamate peaks on the early {sup 1}H MRS and reversibility of early mild metabolite abnormalities on follow up examination relates with good outcome. (author)

  13. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids.

    Science.gov (United States)

    Kailasa, Suresh Kumar; Wu, Hui-Fen

    2013-07-01

    Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.

  14. [Identification of saponins from Panax notoginseng in metabolites of rats].

    Science.gov (United States)

    Shen, Wen-Wen; Zhang, Yin; Qiu, Shou-Bei; Zhu, Fen-Xia; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-10-01

    UPLC-QTOF-MS/MS was used to identify metabolites in rat blood, urine and feces after the administration of n-butanol extract derived from steamed notoginseng. The metabolic process of saponins came from steamed notoginseng was analyzed. The metabolites were processed by PeakView software, and identified according to the structural characteristics of prototype compounds and the accurate qualitative and quantitative changes of common metabolic pathways. Four saponins metabolites were identified based on MS/MS information of metabolites, namely ginsenoside Rh₄, Rk₃, Rk₁, Rg₅,and their 15 metabolites were verified. The metabolic pathways of the four ginsenosides in n-butanol extract included glucuronidation, desugar, sulfation, dehydromethylation, and branch loss. The metabolites of main active saponin components derived from steamed Panax notoginseng were analyzed from the perspective of qualitative analysis. And the material basis for the efficacy of steamed notoginseng was further clarified. Copyright© by the Chinese Pharmaceutical Association.

  15. Benzene: a case study in parent chemical and metabolite interactions.

    Science.gov (United States)

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  16. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  17. Secondary metabolites from Eremostachys laciniata

    DEFF Research Database (Denmark)

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2008-01-01

    ), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis....

  18. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    OpenAIRE

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniq...

  19. An update on organohalogen metabolites produced by basidiomycetes

    NARCIS (Netherlands)

    Field, J.A.; Wijnberg, J.B.P.A.

    2003-01-01

    Basidiomycetes are an ecologically important group of higher fungi known for their widespread capacity to produce organohalogen metabolites. To date, 100 different organohalogen metabolites (mostly chlorinated) have been identified from strains in 70 genera of Basidiomycetes. This manuscript

  20. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  1. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  2. Steroid receptor profiling of vinclozolin and its primary metabolites

    International Nuclear Information System (INIS)

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick

    2006-01-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERα and ERβ). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERβ. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process

  3. Steroid receptor profiling of vinclozolin and its primary metabolites.

    Science.gov (United States)

    Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  4. Preliminary study of the antimicrobial activity of Mentha x villosa Hudson essential oil, rotundifolone and its analogues

    Directory of Open Access Journals (Sweden)

    Thúlio. A. Arruda

    Full Text Available Essential oils present antimicrobial activity against a variety of bacteria and yeasts, including species resistant to antibiotics and antifungicals. In this context, this work aims at the evaluation of the antimicrobial activity of the essential oil of Mentha x villosa Hudson ("hortelã da folha miúda", its major component (rotundifolone and four similar analogues of rotundifolone (limonene oxide, pulegone oxide, carvone epoxide and (+-pulegone against strain standards of Staphylococcus aureus ATCC 25923, E. coli ATCC 25922, Pseudomona aeruginosa ATCC 27853, Candida albicans ATCC 76645 and one strain of meticilin - resistant Staphylococcus aureus - MRSA (171c from human clinic. The method of the diffusion in plates with solid medium was used. The results showed that the oil of Mentha x villosa, rotundifolone, limonene oxide and (+-pulegone, are similar regarding the antimicrobial activity against the tested strains of S. aureus and C. albicans. All of the products present antimocrobial potential with antibacterial activity for S. aureus ATCC 25923 and antifungal activity for C. albicans ATCC 76645. None of the products presented antimicrobial activity for the strains of E. coli ATCC 25922 and P. aeruginosa ATCC 27853, representatives of the Gram negative bacteria.

  5. New secondary metabolites of phenylbutyrate in humans and rats.

    Science.gov (United States)

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  6. Novel urinary metabolite of d-delta-tocopherol in rats

    International Nuclear Information System (INIS)

    Chiku, S.; Hamamura, K.; Nakamura, T.

    1984-01-01

    A novel metabolite of d-delta-tocopherol was isolated from the urine of rats given d-3,4-[ 3 H 2 ]-delta-tocopherol intravenously. The metabolite was collected from the urine of rats given d-delta-tocopherol in the same manner as that of the labeled compound. It was found that the metabolites consisted of sulfate conjugates. The portion of the major metabolite released with sulfatase was determined to be 2,8-dimethyl-2-(2'-carboxyethyl)-6-chromanol by infrared spectra, nuclear magnetic resonance spectra, and mass spectra. The proposed structure was confirmed by comparing the analytical results with those of a synthetically derived compound. As a result of the structural elucidation of this novel metabolite, a pathway for the biological transformation of delta-tocopherol is proposed which is different from that of alpha-tocopherol. A characteristic feature of the pathway is the absence of any opening of the chroman ring throughout the sequence

  7. Circulating prostacyclin metabolites in the dog

    International Nuclear Information System (INIS)

    Taylor, B.M.; Shebuski, R.J.; Sun, F.F.

    1983-01-01

    The present study was designed to determine the concentration of prostacyclin (PGI2) metabolites in the blood of the dog. After a bolus i.v. dose of [11 beta- 3 H]PGI2 (5 micrograms/kg) into each of five dogs, blood samples were withdrawn at 0.33, 0.67, 1, 3, 5, 20, 30, 60 and 120 min postdrug administration. Plasma samples were extracted and the radioactive components were analyzed by two-dimensional thin-layer chromatography with autoradiofluorography and radio-high-performance liquid chromatography. The compounds were identified by comparing their mobility with synthetic standards; only parallel responses observed in both tests constituted positive identification. Seven metabolites were identified by these two techniques: 6-keto-prostaglandin (PG)F1 alpha; 6-keto-PGE1; 2,3-dinor-6-keto-PGF 1 alpha; 2,3-dinor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha; and 2,3,18,19-tetranor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha. Several additional compounds, both polar and nonpolar in nature, which did not co-chromatograph with any of our standards were also detected. Early samples consisted predominantly of 6-keto-PGF 1 alpha and other 20-carbon metabolites. By 30 min, the predominant metabolites were the 16- and 18-carbon dicarboxylic acids. By 60 min, 85% of the radioactivity was associated with two unidentified polar compounds. The evidence suggests that 6-keto-PGF 1 alpha probably reflects only the transient levels of freshly entering PGI2 in the circulation, whereas levels of the most polar metabolites (e.g., dihydro-diketo-carboxyl tetranor-PGF 2 alpha) may be a better measure of the overall PGI2 presence due to its longer half-life in circulation

  8. Growth regulator induced mobilization of 14C-metabolites into sunflower heads

    International Nuclear Information System (INIS)

    Prasad, T.G.; Udaykumar, M.; Rama Rao, S.; Krishna Sastry, K.S.

    1977-01-01

    Effect of exogenous application of mixtures of NAA, Ga and BA to the head in sunflower, after pollination and fertilization, on the mobilization of 14 C-metabolites was studied. Application of such mixtures increased mobilization and altered the pattern of translocation. TIBA applied to the head when the ray florets only had commenced opening also caused an increase in mobilization of 14 C-metabolites. Percent activity in relation to the activity fixed by the leaf increased from 36.8 in control to 63 in TIBA treated head. Field experiments conducted for 2 seasons also confirmed effectiveness of TIBA application in increasing percent seed filling and also 1000 grain weight. In sunflower it was possible to increase the sink capacity by application of growth regulators. (author)

  9. Identification of differential metabolites in liquid diet fermented with Bacillus subtilis using gas chromatography time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yuyong He

    2016-12-01

    Full Text Available Growth and health responses of pigs fed fermented liquid diet are not always consistent and causes for this issue are still not very clear. Metabolites produced at different fermentation time points should be one of the most important contributors. However, currently no literatures about differential metabolites of fermented liquid diet are reported. The aim of this experiment was to explore the difference of metabolites in a fermented liquid diet between different fermentation time intervals. A total of eighteen samples that collected from Bacillus subtilis fermented liquid diet on days 7, 21 and 35 respectively were used for the identification of metabolites by gas chromatography time of flight mass spectrometry (GC-TOF-MS. Fifteen differential metabolites including melibiose, sortitol, ribose, cellobiose, maltotriose, sorbose, isomaltose, maltose, fructose, d-glycerol-1-phosphate, 4-aminobutyric acid, beta-alanine, tyrosine, pyruvic acid and pantothenic acid were identified between 7-d samples and 21-d samples. The relative level of melibiose, ribose, maltotriose, d-glycerol-1-phosphate, tyrosine and pyruvic acid in samples collected on day 21 was significantly higher than that in samples collected on day 7 (P < 0.01, respectively. Eight differential metabolites including ribose, sorbose, galactinol, cellobiose, pyruvic acid, galactonic acid, pantothenic acid and guanosine were found between 21-d samples and 35-d samples. Samples collected on day 35 had a higher relative level of ribose than that in samples collected on day 21 (P < 0.01. In conclusion, many differential metabolites which have important effects on the growth and health of pigs are identified and findings contribute to explain the difference in feeding response of fermented liquid diet.

  10. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  11. Pharmacokinetics of ifosfamide and some metabolites in children

    NARCIS (Netherlands)

    Kaijser, G. P.; de Kraker, J.; Bult, A.; Underberg, W. J.; Beijnen, J. H.

    1998-01-01

    The pharmacokinetics of ifosfamide and some metabolites in children was investigated. The patients received various doses of ifosfamide, mostly by continuous infusion, over several days. The penetration of ifosfamide and its metabolites into the cerebrospinal fluid was also studied in four cases.

  12. Concentrations of phthalates and DINCH metabolites in pooled urine from Queensland, Australia.

    Science.gov (United States)

    Gomez Ramos, M J; Heffernan, A L; Toms, L M L; Calafat, A M; Ye, X; Hobson, P; Broomhall, S; Mueller, J F

    2016-03-01

    Dialkyl phthalate esters (phthalates) are ubiquitous chemicals used extensively as plasticizers, solvents and adhesives in a range of industrial and consumer products. 1,2-Cyclohexane dicarboxylic acid, diisononyl ester (DINCH) is a phthalate alternative introduced due to a more favourable toxicological profile, but exposure is largely uncharacterised. The aim of this study was to provide the first assessment of exposure to phthalates and DINCH in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n=24 pools of 100). Concentrations of free and total species were measured using online solid phase extraction isotope dilution high performance liquid chromatography tandem mass spectrometry. Concentrations ranged from 2.4 to 71.9ng/mL for metabolites of di(2-ethylhexyl)phthalate, and from <0.5 to 775ng/mL for all other metabolites. Our data suggest that phthalate metabolites concentrations in Australia were at least two times higher than in the United States and Germany; and may be related to legislative differences among countries. DINCH metabolite concentrations were comparatively low and consistent with the limited data available. Ongoing biomonitoring among the general Australian population may help assess temporal trends in exposure and assess the effectiveness of actions aimed at reducing exposures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Association between plasma metabolites and gene expression profiles in five porcine endocrine tissues

    Directory of Open Access Journals (Sweden)

    Bassols Anna

    2011-07-01

    Full Text Available Abstract Background Endocrine tissues play a fundamental role in maintaining homeostasis of plasma metabolites such as non-esterified fatty acids and glucose, the levels of which reflect the energy balance or the health status of animals. However, the relationship between the transcriptome of endocrine tissues and plasma metabolites has been poorly studied. Methods We determined the blood levels of 12 plasma metabolites in 27 pigs belonging to five breeds, each breed consisting of both females and males. The transcriptome of five endocrine tissues i.e. hypothalamus, adenohypophysis, thyroid gland, gonads and backfat tissues from 16 out of the 27 pigs was also determined. Sex and breed effects on the 12 plasma metabolites were investigated and associations between genes expressed in the five endocrine tissues and the 12 plasma metabolites measured were analyzed. A probeset was defined as a quantitative trait transcript (QTT when its association with a particular metabolic trait achieved a nominal P value Results A larger than expected number of QTT was found for non-esterified fatty acids and alanine aminotransferase in at least two tissues. The associations were highly tissue-specific. The QTT within the tissues were divided into co-expression network modules enriched for genes in Kyoto Encyclopedia of Genes and Genomes or gene ontology categories that are related to the physiological functions of the corresponding tissues. We also explored a multi-tissue co-expression network using QTT for non-esterified fatty acids from the five tissues and found that a module, enriched in hypothalamus QTT, was positioned at the centre of the entire multi-tissue network. Conclusions These results emphasize the relationships between endocrine tissues and plasma metabolites in terms of gene expression. Highly tissue-specific association patterns suggest that candidate genes or gene pathways should be investigated in the context of specific tissues.

  14. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2,5-diisoprop......A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...

  15. Assessing the associations of blood metabolites with osteoporosis: a Mendelian randomization study.

    Science.gov (United States)

    Liu, Li; Wen, Yan; Zhang, Lei; Xu, Peng; Liang, Xiao; Du, Yanan; Li, Ping; He, Awen; Fan, QianRui; Hao, Jingcan; Wang, Wenyu; Guo, Xiong; Shen, Hui; Tian, Qing; Zhang, Feng; Deng, Hong-Wen

    2018-03-01

    Osteoporosis is a metabolic bone disease. The impact of blood metabolites on the development of osteoporosis remains elusive now. To explore the relationship between blood metabolites and osteoporosis. We used 2,286 unrelated Caucasian subjects as discovery samples and 3,143 unrelated Caucasian subjects from the Framingham heart study (FHS) as replication samples. Bone mineral density (BMD) were measured using dual-energy X-ray absorptiometry. Genome-wide SNP genotyping was performed using Affymetrix Human SNP Array 6.0 (for discovery samples) and Affymetrix SNP 500K and 50K array (for FHS replication samples). The SNP sets significantly associated with blood metabolites were obtained from a published whole-genome sequencing study. For each subject, the genetic risk score (GRS) of metabolite was calculated from the genotype data of metabolite associated SNP sets. Pearson correlation analysis was conducted to evaluate the potential impact of blood metabolites on the variations bone phenotypes. 10,000 permutations were conducted to calculate the empirical P value and false discovery rate (FDR). 481 blood metabolites were analyzed in this study. We identified multiple blood metabolites associated with hip BMD, such as 1,5-anhydroglucitol(1,5-AG) (Pdiscovery metabolites on the variations of BMD, and identified several candidate blood metabolites for osteoporosis.

  16. Metabolites of alectinib in human: their identification and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Mika Sato-Nakai

    2017-07-01

    Full Text Available Two metabolites (M4 and M1b in plasma and four metabolites (M4, M6, M1a and M1b in faeces were detected through the human ADME study following a single oral administration of [14C]alectinib, a small-molecule anaplastic lymphoma kinase inhibitor, to healthy subjects. In the present study, M1a and M1b, which chemical structures had not been identified prior to the human ADME study, were identified as isomers of a carboxylate metabolite oxidatively cleaved at the morpholine ring. In faeces, M4 and M1b were the main metabolites, which shows that the biotransformation to M4 and M1b represents two main metabolic pathways for alectinib. In plasma, M4 was a major metabolite and M1b was a minor metabolite. The contribution to in vivo pharmacological activity of these circulating metabolites was assessed from their in vitro pharmacological activity and plasma protein binding. M4 had a similar cancer cell growth inhibitory activity and plasma protein binding to that of alectinib, suggesting its contribution to the antitumor activity of alectinib, whereas the pharmacological activity of M1b was insignificant.

  17. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  18. Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.

    Science.gov (United States)

    Hung, Wei-Lun; Wang, Yu

    2018-04-18

    Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.

  19. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism.

    Science.gov (United States)

    Xie, Zhengzhi; Ma, Xiaoqiang; Gang, David R

    2009-01-01

    Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules-groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants.

  20. Direct coupling of electromembrane extraction to mass spectrometry - Advancing the probe functionality toward measurements of zwitterionic drug metabolites.

    Science.gov (United States)

    Rye, Torstein Kige; Fuchs, David; Pedersen-Bjergaard, Stig; Petersen, Nickolaj Jacob

    2017-08-29

    A triple-flow electromembrane extraction (EME) probe was developed and coupled directly to electrospray-ionization mass spectrometry (ESI-MS). Metabolic reaction mixtures (pH 7.4) containing drug substances and related metabolites were continuously drawn (20 μL/min) into the EME probe in one flow channel, and mixed inside the probe with 7.5 μL min -1 of 1 M formic acid as make-up flow from a second flow channel. Following this acidification, the drug substances and their related metabolites were continuously extracted by EME at 400 V, across a supported liquid membrane (SLM) comprising 2-nitrophenyl octyl ether (and for some experiments containing 30% triphenyl phosphate (TPP)), and into 20 μL min -1 of formic acid as acceptor phase, which was introduced through a third flow channel. The acceptor phase was pumped directly to the MS system, and the ion intensity of extracted analytes was followed continuously as function of time. The triple-flow EME probe was used for co-extraction of positively charged parent drugs and their zwitterionic drug metabolites (hydroxyzine and its carboxylic acid metabolite cetirizine; and vortioxetine and its carboxylic acid metabolite Lu AA34443). While the zwitterionic metabolites could not be extracted at pH 7.4, it was shown that by acidifying the sample solution the zwitterionic metabolites could be extracted effectively. Various extraction parameters like make-up flow, extraction voltage and SLM composition were optimized for simultaneous extraction of parent drugs and metabolites. It was found that TPP added to the SLM improved extraction efficiencies of certain drug metabolites. Finally the optimized and characterized triple-flow EME probe was used for online studying the in-vitro metabolism of hydroxyzine and vortioxetine by rat liver microsomes. Due to the automated pre-extraction acidification of the rat liver microsomal solutions, it was possible to continuously monitor formation of the zwitterionic drug

  1. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  2. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  3. Aspergillus flavus secondary metabolites: more than just aflatoxins

    Science.gov (United States)

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  4. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    Science.gov (United States)

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Tissue distribution of berberine and its metabolites after oral administration in rats.

    Directory of Open Access Journals (Sweden)

    Xiang-Shan Tan

    Full Text Available Berberine (BBR has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR's plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n-IT-TOF as well as liquid chromatography that coupled with tandem mass spectrometry (LC-MS/MS was used for the study of tissue distribution and pharmacokinetics of BBR in rats after oral administration (200 mg/kg. The results indicated that BBR was quickly distributed in the liver, kidneys, muscle, lungs, brain, heart, pancreas and fat in a descending order of its amount. The pharmacokinetic profile indicated that BBR's level in most of studied tissues was higher (or much higher than that in plasma 4 h after administration. BBR remained relatively stable in the tissues like liver, heart, brain, muscle, pancreas etc. Organ distribution of BBR's metabolites was also investigated paralleled with that of BBR. Thalifendine (M1, berberrubine (M2 and jatrorrhizine (M4, which the metabolites with moderate bioactivity, were easily detected in organs like the liver and kidney. For instance, M1, M2 and M4 were the major metabolites in the liver, among which the percentage of M2 was up to 65.1%; the level of AUC (0-t (area under the concentration-time curve for BBR or the metabolites in the liver was 10-fold or 30-fold higher than that in plasma, respectively. In summary, the organ concentration of BBR (as well as its bioactive metabolites was higher than its concentration in the blood after oral administration. It might explain BBR's pharmacological effects on human diseases in clinic.

  6. Changes of Enzymes Activity and Production of Secondary Metabolites of Artemisia aucheri in Different Altitudes and Its Relation to Adaptation

    Directory of Open Access Journals (Sweden)

    Hassan Zare-maivan

    2014-08-01

    Full Text Available Artemisia plants are the most abundant plants species in Iran which contain strong antioxidant properties and as such, have medicinal and economic value. Despite wide distribution of Artemisisa species, ecophysiology of its adaptation to changes in altitude and soil property had not been investigated. In this study, the relationships between ecophysiological and adaptation capabilities of A. aucheri to altitude changes through measuring changes in the activity of its antioxidant enzymes and secondary metabolites in situ was investigated based on a completely randomized experiment. The enzyme activities of superoxide dismutase, catalase, peroxidase, and the amount of total phenolics, flavonoids, anthocyanins, malondialdehyde and chlorophylls A and B were measured in A. aucheri plants growing in three different altitudes at and above the 36° latitude on the southern slopes of Eastern Alborz Mountain ranges in triplicate 10*10 m quadrates. Statistical analysis of data showed that soil type was loamy significantly becoming more sandy- loam with lowering in altitude and the soil contained greater amounts of oxides of silicone, aluminum, magnesium, sodium, potassium and phosphorus in upper altitude except calcium which was present in greater quantity in lower altitude. With increasing altitude, activity of superoxide dismutase and quantities of chlorophylls and total phenols in leaves increased. Some biochemical factors in A. aucheri showed significant positive correlation(P ≤ 0.05 between them. Adaptation of A. aucheri to changes in altitude occurred through changing its antioxidant enzymes activity and production of secondary metabolites in response to factors related to the altitude including soil type and texture, moisture level, temperature and most importantly radiation

  7. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    Science.gov (United States)

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  8. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Metabolite characterization in serum samples from normal healthy ...

    African Journals Online (AJOL)

    Metabolite characterization in serum samples from normal healthy human subjects by 1H and 13C NMR spectroscopy. D Misra, U Bajpai. Abstract. One and two dimensional NMR spectroscopy has been employed to characterize the various metabolites of serum control healthy samples. Two dimensional heteronuclear ...

  10. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  11. Effect of metabolites produced by Trichoderma species against ...

    African Journals Online (AJOL)

    Metabolites released from Trichoderma viride, T. polysporum, T. hamatum and T. aureoviride were tested in culture medium against Ceratocystis paradoxa, which causes black seed rot in oil palm sprouted seeds. The Trichoderma metabolites had similar fungistatic effects on the growth of C. paradoxa except those from T.

  12. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabrizio [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Lainez, Guillermo [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Limones-Herrero, Daniel [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Coloma, M. Dolores; Escobar, Javier [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Jiménez, M. Consuelo [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Miranda, Miguel A., E-mail: mmiranda@qim.upv.es [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); and others

    2016-12-15

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  13. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    International Nuclear Information System (INIS)

    Palumbo, Fabrizio; Garcia-Lainez, Guillermo; Limones-Herrero, Daniel; Coloma, M. Dolores; Escobar, Javier; Jiménez, M. Consuelo; Miranda, Miguel A.

    2016-01-01

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  14. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    Science.gov (United States)

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  15. Quantification of homocysteine-related metabolites and the role of betaine-homocysteine S-methyltransferase in HepG2 cells

    Czech Academy of Sciences Publication Activity Database

    Kořínek, M.; Šístek, V.; Mládková, Jana; Mikeš, P.; Jiráček, Jiří; Selicharová, Irena

    2013-01-01

    Roč. 27, č. 1 (2013), s. 111-121 ISSN 0269-3879 R&D Projects: GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : homocysteine * BHMT * LC-MS/MS * HepG2 * metabolites Subject RIV: CE - Biochemistry Impact factor: 1.662, year: 2013

  16. Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Lauren A. Du Fall

    2011-12-01

    Full Text Available Cereal crops such as wheat, rice and barley underpin the staple diet for human consumption globally. A multitude of threats to stable and secure yields of these crops exist including from losses caused by pathogens, particularly fungal. Plants have evolved complex mechanisms to resist pathogens including programmed cell death responses, the release of pathogenicity-related proteins and oxidative bursts. Another such mechanism is the synthesis and release of secondary metabolites toxic to potential pathogens. Several classes of these compounds have been identified and their anti-fungal properties demonstrated. However the lack of suitable analytical techniques has hampered the progress of identifying and exploiting more of these novel metabolites. In this review, we summarise the role of the secondary metabolites in cereal crop diseases and briefly touch on the analytical techniques that hold the key to unlocking their potential in reducing yield losses.

  17. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  18. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    Science.gov (United States)

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  19. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    Science.gov (United States)

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  20. Plasma metabolite score correlates with Hypoxia time in a newly born piglet model for asphyxia

    Directory of Open Access Journals (Sweden)

    Julia Kuligowski

    2017-08-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE secondary to perinatal asphyxia is a leading cause of mortality and acquired long-term neurologic co-morbidities in the neonate. The most successful intervention for the treatment of moderate to severe HIE is moderate whole body hypothermia initiated within 6 h from birth. The objective and prompt identification of infants who are at risk of developing moderate to severe HIE in the critical first hours still remains a challenge. This work proposes a metabolite score calculated based on the relative intensities of three metabolites (choline, 6,8-dihydroxypurine and hypoxanthine that showed maximum correlation with hypoxia time in a consolidated piglet model for neonatal hypoxia-ischemia. The metabolite score's performance as a biomarker for perinatal hypoxia and its usefulness for clinical grading and decision making have been assessed and compared to the performance of lactate which is currently considered the gold standard. For plasma samples withdrawn before and directly after a hypoxic insult, the metabolite score performed similar to lactate. However, it provided an enhanced predictive capacity at 2 h after resuscitation. The present study evidences the usefulness of the metabolite score for improving the early assessment of the severity of the hypoxic insult based on serial determinations in a minimally invasive biofluid. The applicability of the metabolite score for clinical diagnosis and patient stratification for hypothermia treatment has to be confirmed in multicenter trials involving newborns suffering from HIE. Keywords: Hypoxia, Perinatal asphyxia, Newborn, Metabolic biomarker, Neonatal piglet model, Liquid Chromatography – Time-of-Flight Mass Spectrometry (LC-TOF-MS

  1. Metabolite production by species of Stemphylium

    DEFF Research Database (Denmark)

    Olsen, Kresten Jon Kromphardt; Rossman, Amy; Andersen, Birgitte

    2018-01-01

    metabolites were found to be important for distinguishing species, while some unknown metabolites were also found to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus.......Morphology and phylogeny has been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while...

  2. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    Science.gov (United States)

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  4. Dietary Energy Source in Dairy Cows in Early Lactation: Metabolites and Metabolic Hormones

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Graat, E.A.M.; Dijkstra, J.; Jorritsma, R.; Decuypere, M.P.; Tamminga, S.; Kemp, B.

    2007-01-01

    Negative energy balance-related metabolic disorders suggest that the balance between available lipogenic and glucogenic nutrients is important. The objectives of this study were to compare the effects of a glucogenic or a lipogenic diet on liver triacylglycerides (TAG), metabolites, and metabolic

  5. Analysis of arsenical metabolites in biological samples.

    Science.gov (United States)

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  6. In vivo metabolite-specific imaging in tumor

    International Nuclear Information System (INIS)

    Hurd, R.E.; Freeman, D.M.

    1988-01-01

    The authors have developed a practical method using proton MR imaging to map the level and distribution of metabolites in vivo. Of particular interest to the biochemist and the clinician is the presence of excess lactic acid in tissues, indicating hypoxia such as is found in certain solid tumors, or in ischemia that would occur during cardiac infarct or stroke. A two-dimensional double quantum coherence technique has been optimized to greatly reduce signal intensity from biologic water and to provide unambiguous editing of the lactic acid resonance from interfering lipid resonances. The method was tested using a General Electric 2.0-T CSI instrument fitted with actively shielded gradients. Two-dimensional double quantum coherence lactic acid edited images were obtained from an implanted RIF-1 tumor in C3H mice, showing heterogeneous distribution of lactic acid within the tumor. Very little lipid signal with respect to the lactic acid methyl resonance was observed. The lactic acid concentration of the tumor was determined to be 10 μmol/g wet by enzymatic assay. Metabolite-specific imaging using double quantum coherence transfer promises to yield noninvasive information about lactic acid levels and distribution in vivo at low field, relatively quickly, with low radio frequency power disposition and without the need for complex presaturation pulses

  7. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  8. Identification of Volatile Secondary Metabolites from an Endophytic Microfungus Aspergillus Nomius KUB105

    International Nuclear Information System (INIS)

    Lateef Adebola Azeez; Lateef Adebola Azeez; Sepiah Muid; Bolhassan Mohamad Hasnul

    2016-01-01

    Microfungi are a highly diverse group of micro-organisms and important components of the ecosystem with great potential for diverse metabolite production. During a survey of microfungi on leaves in a National Park in Sarawak, an uncommon endophytic microfungus Aspergillus nomius was encountered. The metabolite production of this microfungus was investigated by growing it in a liquid basal medium for 2 weeks. Gas Chromatography - Mass Spectrometry (GC-MS) and Fourier Transform Infrared (FTIR) profiling of the secondary metabolites produced by this microfungus in the liquid medium revealed the presence of 46 different secondary metabolites. The metabolites include saturated hydrocarbons, alkyl halides, alcohols and an unsaturated hydrocarbon. Majority of the metabolites produced were saturated hydrocarbons. Tetracosane, Icosane and 10-Methylicosane were the most abundant metabolites identified while heptadecane and 2,4-dimethylundecane were the least abundant respectively. This study is the first GC-MS and FTIR report of secondary metabolites from A. nomius. The results from this study confirm the ability of microfungi to produce diverse metabolites, including saturated hydrocarbons. (author)

  9. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  10. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils

    Science.gov (United States)

    Webb, Richard M.; Sandstrom, Mark W.; Jason L. Krutz,; Dale L. Shaner,

    2011-01-01

    In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented.

  11. Leach and mold resistance of essential oil metabolites

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Purified primary metabolites from essential oils were previously shown to be bioactive inhibitors of mold fungi on unleached Southern pine sapwood, either alone or in synergy with a second metabolite. This study evaluated the leachability of these compounds in Southern pine that was either dip- or vacuum-treated. Following laboratory leach tests, specimens were...

  12. Possible endocrine disrupting effects of parabens and their metabolites

    DEFF Research Database (Denmark)

    Boberg, Julie; Taxvig, Camilla; Christiansen, Sofie

    2010-01-01

    Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers...... and provides an overview of studies on toxicokinetics. After dermal uptake, parabens are hydrolyzed and conjugated and excreted in urine. Despite high total dermal uptake of paraben and metabolites,little intact paraben can be recovered in blood and urine. Paraben metabolites may play a role in the endocrine...... disruption seen in experimental animals and studies are needed to determine human levels of parabens and metabolites. Overall, the estrogenic burden of parabens and their metabolites in blood may exceed the action of endogenous estradiol in childhood and the safety margin for propylparaben is very low when...

  13. Urinary metabolites of tetrahydronorharman in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of /sup 14/C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram.

  14. Urinary metabolites of tetrahydronorharman in the rat

    International Nuclear Information System (INIS)

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of 14 C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram

  15. Correlations of Maternal Buprenorphine Dose, Buprenorphine, and Metabolite Concentrations in Meconium with Neonatal Outcomes

    Science.gov (United States)

    Kacinko, SL; Jones, HE; Johnson, RE; Choo, RE; Huestis, MA

    2009-01-01

    For the first time, relationships among maternal buprenorphine dose, meconium buprenorphine and metabolite concentrations, and neonatal outcomes are reported. Free and total buprenorphine and norbuprenorphine, nicotine, opiates, cocaine, benzodiazepines, and metabolites were quantified in meconium from 10 infants born to women who had received buprenorphine during pregnancy. Neither cumulative nor total third-trimester maternal buprenorphine dose predicted meconium concentrations or neonatal outcomes. Total buprenorphine meconium concentrations and buprenorphine/norbuprenorphine ratios were significantly related to neonatal abstinence syndrome (NAS ) scores >4. As free buprenorphine concentration and percentage free buprenorphine increased, head circumference decreased. Thrice-weekly urine tests for opiates, cocaine, and benzodiazepines and self-reported smoking data from the mother were compared with data from analysis of the meconium to estimate in utero exposure. Time of last drug use and frequency of use during the third trimester were important factors associated with drug-positive meconium specimens. The results suggest that buprenorphine and metabolite concentrations in the meconium may predict the onset and frequency of NAS. PMID:18701886

  16. Relationships of Cerebrospinal Fluid Monoamine Metabolite Levels With Clinical Variables in Major Depressive Disorder.

    Science.gov (United States)

    Yoon, Hyung Shin; Hattori, Kotaro; Ogawa, Shintaro; Sasayama, Daimei; Ota, Miho; Teraishi, Toshiya; Kunugi, Hiroshi

    Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample. Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity. There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P 12) were significantly lower than those in controls (P .1), were related to depression severity. CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting. © Copyright 2017 Physicians Postgraduate Press, Inc.

  17. Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green.

    Science.gov (United States)

    Cho, Bongsup P; Yang, Tianle; Blankenship, Lonnie R; Moody, Joanna D; Churchwell, Mona; Beland, Frederick A; Culp, Sandra J

    2003-03-01

    Malachite green (MG), a triphenylmethane dye used to treat fungal and protozoan infections in fish, undergoes sequential oxidation to produce various N-demethylated derivatives (monodes-, dides(sym)-, dides(unsym)-, trides-, and tetrades-) both before and after reduction to leucomalachite green (LMG). The close structure resemblance of the metabolites with aromatic amine carcinogens implicates a potential genotoxicity from exposure to MG. The availability of the synthetic standards is important for metabolic and DNA adduct studies of MG. This paper describes a simple and versatile method for the synthesis of MG, LMG, and their N-demethylated metabolites. The synthesis involves a coupling of 4-(dimethylamino)benzophenone or 4-nitrobenzophenone with the aryllithium reagents derived from appropriately substituted 4-bromoaniline derivatives, followed by treatment with HCl in methanol. The resulting cationic MG and their leuco analogues showed systematic UV/vis spectral and tandem mass fragmentation patterns consistent with sequential N-demethylation. The extensive (1)H and (13)C spectral assignments of the metabolites were aided by the availability of (13)C(7)-labeled MG and LMG. The results indicate the existence of a resonance structure with the cationic charge located in the central methane carbon (C(7)). The synthetic procedure is general in scope so that it can be extended to the preparation of N-demethylated metabolites of other structurally related N-methylated triphenylmethane dyes.

  18. A latex metabolite benefits plant fitness under root herbivore attack

    OpenAIRE

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  19. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    Science.gov (United States)

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  20. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  1. Are serotonin metabolite levels related to bone mineral density in patients with neuroendocrine tumours?

    Science.gov (United States)

    Sen Gupta, Piya; Grozinsky-Glasberg, Simona; Drake, William M; Akker, Scott A; Perry, Les; Grossman, Ashley B; Druce, Maralyn R

    2014-02-01

    Bone mineral density (BMD) is influenced by multiple factors. Recent studies have highlighted a possible relationship between serotonin and BMD. Patients with neuroendocrine tumours (NETs) frequently have elevated urinary 5-hydroxy-indoleacetic acid (5-HIAA) levels, a serotonin metabolite. Evaluation of the relationship between 5-HIAA and BMD in patients with NETs may provide insights into the relationship between serotonin and BMD. One-year audit of consecutive patients with NETs within two institutions. Relationships between urinary 5-HIAA and dual X-ray absorptiometry (DEXA)-scan-measured BMD were investigated by group comparisons, correlation and regression. Of 65 patients with NETs, 19 did not participate or were excluded. Of 46 subjects evaluated (48·9% males, 63·8 ± 10·5 years, BMI 26·6 ± 4·4 kg/m(2) ) with 32 gastrointestinal, 9 pancreatic, 3 pulmonary and 2 ovarian NETs, 72·3% had the carcinoid syndrome. Median interval from diagnosis was 4·0 years (IQR 2·0-6·0); 41·3% had osteoporosis and 32·6% osteopaenia (WHO definition). The group with a higher urinary 5-HIAA had a lower hip BMD (total T-score and Z-score), confirmed on individual analysis (Spearman's rank correlation -0·41, P = 0·004; -0·44, P = 0·002, respectively); urinary 5-HIAA was not found to be an independent predictor for BMD on multiple linear regression analysis. These data of patients with NETs with higher serotonin metabolites having a lower BMD at the hip in group and individual comparisons, warrants further evaluation. Urinary 5-HIAA measurement alone cannot be used to predict future BMD. A larger cohort with prospective design including fractures as a clinical outcome will aid these data in determining whether patients with NETs should be subject to targeted osteoporosis prevention. © 2013 John Wiley & Sons Ltd.

  2. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    Science.gov (United States)

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  3. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  4. Reverse isotope dilution method for determining benzene and metabolites in tissues

    International Nuclear Information System (INIS)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-01-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of the radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue

  5. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit

    Directory of Open Access Journals (Sweden)

    Bhekumthetho Ncube

    2015-07-01

    Full Text Available The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.

  6. Differences in metabolite profiles caused by pre-analytical blood processing procedures.

    Science.gov (United States)

    Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru

    2018-05-01

    Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a... testing of specimens to determine whether they are negative for the indicated drugs and drug metabolites...

  8. Reactions of the melatonin metabolite N(1)-acetyl-5-methoxykynuramine with carbamoyl phosphate and related compounds.

    Science.gov (United States)

    Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia

    2010-01-01

    N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.

  9. Metabolite variability in Caribbean sponges of the genus Aplysina

    Directory of Open Access Journals (Sweden)

    Monica Puyana

    Full Text Available Abstract Sponges of the genus Aplysina are among the most common benthic animals on reefs of the Caribbean, and display a wide diversity of morphologies and colors. Tissues of these sponges lack mineralized skeletal elements, but contain a dense spongin skeleton and an elaborate series of tyrosine-derived brominated alkaloid metabolites that function as chemical defenses against predatory fishes, but do not deter some molluscs. Among the earliest marine natural products to be isolated and identified, these metabolites remain the subject of intense interest for commercial applications because of their activities in various bioassays. In this study, crude organic extracts from 253 sponges from ten morphotypes among the species Aplysina archeri,Aplysina bathyphila,Aplysina cauliformis,Aplysina fistularis,Aplysina fulva,A. insularis, and Aplysina lacunosa were analyzed by liquid chromatography–mass spectrometry (LC–MS to characterize the pattern of intra- and interspecific variabilities of the twelve major secondary metabolites present therein. Patterns across Aplysina species ranged from the presence of mostly a single compound, fistularin-3, in A. cauliformis, to a mixture of metabolites present in the other species. These patterns did not support the biotransformation hypothesis for conversion of large molecular weight molecules to smaller ones for the purpose of enhanced defense. Discriminant analyses of the metabolite data revealed strong taxonomic patterns that support a close relationship between A. fistularis,A. fulva and A. insularis, while two morphotypes of A. cauliformis (lilac creeping vs. brown erect were very distinct. Two morphotypes of A. lacunosa, one with hard tissue consistency, the other soft and thought to belong to a separate genus (Suberea, had very similar chemical profiles. Of the twelve metabolites found among samples, variation in fistularin-3, dideoxyfistularin-3 and hydroxyaerothionin provided the most predictive

  10. Flavonoid metabolites reduce tumor necrosis factor‐α secretion to a greater extent than their precursor compounds in human THP‐1 monocytes

    Science.gov (United States)

    di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.

    2015-01-01

    1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720

  11. A combined genetic and multi medium approach revels new secondary metabolites in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Klejnstrup, Marie Louise; Nielsen, Morten Thrane; Frisvad, Jens Christian

    Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites that are not obse......Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites...... that are not observed under standard laboratory conditions. Genetic approaches have proven a fruitfull strategy towards the production and identification of these unknown metabolites. Examples include deletion of the cclA1 and laeA2 genes in A. nidulans which affects the expression of secondary metabolites including...... monodictyphenone and terrequinone A respectively. We have deleted the cclA gene in A. nidulans and grown the mutants on several complex media to provoke the production of secondary metabolites. This resulted in the production of several metabolites not previously reported from A. nidulans. Some of these have been...

  12. Antibacterial Secondary Metabolites from the Cave Sponge Xestospongia sp.

    Directory of Open Access Journals (Sweden)

    Sridevi Ankisetty

    2012-05-01

    Full Text Available Chemical investigation of the cave sponge Xestospongia sp. resulted in the isolation of three new polyacetylenic long chain compounds along with two known metabolites. The structures of the new metabolites were established by NMR and MS analyses. The antibacterial activity of the new metabolites was also evaluated.

  13. Metabolomic method: UPLC-q-ToF polar and non-polar metabolites in the healthy rat cerebellum using an in-vial dual extraction.

    Directory of Open Access Journals (Sweden)

    Amera A Ebshiana

    Full Text Available Unbiased metabolomic analysis of biological samples is a powerful and increasingly commonly utilised tool, especially for the analysis of bio-fluids to identify candidate biomarkers. To date however only a small number of metabolomic studies have been applied to studying the metabolite composition of tissue samples, this is due, in part to a number of technical challenges including scarcity of material and difficulty in extracting metabolites. The aim of this study was to develop a method for maximising the biological information obtained from small tissue samples by optimising sample preparation, LC-MS analysis and metabolite identification. Here we describe an in-vial dual extraction (IVDE method, with reversed phase and hydrophilic liquid interaction chromatography (HILIC which reproducibly measured over 4,000 metabolite features from as little as 3mg of brain tissue. The aqueous phase was analysed in positive and negative modes following HILIC separation in which 2,838 metabolite features were consistently measured including amino acids, sugars and purine bases. The non-aqueous phase was also analysed in positive and negative modes following reversed phase separation gradients respectively from which 1,183 metabolite features were consistently measured representing metabolites such as phosphatidylcholines, sphingolipids and triacylglycerides. The described metabolomics method includes a database for 200 metabolites, retention time, mass and relative intensity, and presents the basal metabolite composition for brain tissue in the healthy rat cerebellum.

  14. SHORT-TERM TOXICITY STUDY IN RATS DOSED WITH PULEGONE AND MENTHOL

    DEFF Research Database (Denmark)

    Thorup, I.; Würtzen, G.; Carstensen, J.

    1983-01-01

    creatinine content, lowered terminal body weight and caused histopathological changes in the liver and in the white matter of cerebellum. For menthol at all dose levels a significant increase in absolute and relative liver weights and vacuolisation of hepatocytes was found. No sign of encephalopathy...

  15. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    Science.gov (United States)

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  16. Potential of small-molecule fungal metabolites in antiviral chemotherapy.

    Science.gov (United States)

    Roy, Biswajit G

    2017-08-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.

  17. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...

  18. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Johnsen, Anders R.; Christensen, Jan H.

    2015-01-01

    and either hydroxylated or oxidized to carboxylic acids at the methyl group. The metabolism of the sulfur-containing heterocyclic PAC resulted in sulfate conjugates. The sorption of the PAC metabolites to three soils was determined using a batch equilibrium method, and partition coefficients (Kd's) were......-methylphenanthrene, 1-methylpyrene), and one sulfur-containing heterocyclic PAC (dibenzothiophene). Fifty-eight metabolites were tentatively identified; metabolites from the un-substituted PACs were hydroxylated and sulfate conjugated, whereas metabolites from alkyl-substituted PACs were sulfate conjugated...... calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching...

  19. Biodegradation of clofibric acid and identification of its metabolites

    International Nuclear Information System (INIS)

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  20. Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards.

    Science.gov (United States)

    Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip

    2009-04-01

    A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.

  1. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: Roux-en-Y gastric bypass (RYGB surgery is associated with weight loss, improved insulin sensitivity and glucose homeostasis, and a reduction in co-morbidities such as diabetes and coronary heart disease. To generate further insight into the numerous metabolic adaptations associated with RYGB surgery, we profiled serum metabolites before and after gastric bypass surgery and integrated metabolite changes with clinical data. METHODOLOGY AND PRINCIPAL FINDINGS: Serum metabolites were detected by gas and liquid chromatography-coupled mass spectrometry before, and 3 and 6 months after RYGB in morbidly obese female subjects (n = 14; BMI = 46.2+/-1.7. Subjects showed decreases in weight-related parameters and improvements in insulin sensitivity post surgery. The abundance of 48% (83 of 172 of the measured metabolites changed significantly within the first 3 months post RYGB (p<0.05, including sphingosines, unsaturated fatty acids, and branched chain amino acids. Dividing subjects into obese (n = 9 and obese/diabetic (n = 5 groups identified 8 metabolites that differed consistently at all time points and whose serum levels changed following RYGB: asparagine, lysophosphatidylcholine (C18:2, nervonic (C24:1 acid, p-Cresol sulfate, lactate, lycopene, glucose, and mannose. Changes in the aforementioned metabolites were integrated with clinical data for body mass index (BMI and estimates for insulin resistance (HOMA-IR. Of these, nervonic acid was significantly and negatively correlated with HOMA-IR (p = 0.001, R = -0.55. CONCLUSIONS: Global metabolite profiling in morbidly obese subjects after RYGB has provided new information regarding the considerable metabolic alterations associated with this surgical procedure. Integrating clinical measurements with metabolomics data is capable of identifying markers that reflect the metabolic adaptations following RYGB.

  2. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Stable isotope N-phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Zhang, Shanshan; Shi, Jinwen; Shan, Changkai; Huang, Chengting; Wu, Yile; Ding, Rong; Xue, Yuhua; Liu, Wen; Zhou, Qiang; Zhao, Yufen; Xu, Pengxiang; Gao, Xiang

    2017-07-25

    -containing metabolites have been manually identified with high relative abundance (signal-to-noise ratios greater than 10). Finally, a standard peptide could be relatively quantified by using SIPAL strategy in combination with MALDI-TOF MS, suggesting the potential application of this strategy for quantitative proteomics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Metabolites: messengers between the microbiota and the immune system.

    Science.gov (United States)

    Levy, Maayan; Thaiss, Christoph A; Elinav, Eran

    2016-07-15

    The mammalian intestine harbors one of the largest microbial densities on Earth, necessitating the implementation of control mechanisms by which the host evaluates the state of microbial colonization and reacts to deviations from homeostasis. While microbial recognition by the innate immune system has been firmly established as an efficient means by which the host evaluates microbial presence, recent work has uncovered a central role for bacterial metabolites in the orchestration of the host immune response. In this review, we highlight examples of how microbiota-modulated metabolites control the development, differentiation, and activity of the immune system and classify them into functional categories that illustrate the spectrum of ways by which microbial metabolites influence host physiology. A comprehensive understanding of how microbiota-derived metabolites shape the human immune system is critical for the rational design of therapies for microbiota-driven diseases. © 2016 Levy et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Filling and mining the reactive metabolite target protein database.

    Science.gov (United States)

    Hanzlik, Robert P; Fang, Jianwen; Koen, Yakov M

    2009-04-15

    The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis. The Reactive Metabolite Target Protein Database (TPDB) is a searchable, freely web-accessible (http://tpdb.medchem.ku.edu:8080/protein_database/) resource that attempts to provide a comprehensive, up-to-date listing of known reactive metabolite target proteins. In this report we characterize the TPDB by reviewing briefly how the information it contains came to be known. We also compare its information to that provided by other types of "-omics" studies relevant to toxicology, and we illustrate how bioinformatic analysis of target proteins may help to elucidate mechanisms of cytotoxic responses to reactive metabolites.

  6. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  7. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    Science.gov (United States)

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2017-05-01

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  8. Natural metabolites for parasitic weed management.

    Science.gov (United States)

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  9. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Extraction and Identification of Secondary Metabolites Produced by Trichoderma atroviridae (6022 and Evaluating of their Antifungal Effects

    Directory of Open Access Journals (Sweden)

    M. Shahiri Tabarestani

    2017-08-01

    Full Text Available Introduction: Fungi release wide spectrum of secondary metabolites that belong to several chemical groups with different biochemical origins. These materials produce as intermediate and end products of diverse metabolic pathways. The profile of the secondary metabolites for a known species or strain will vary depending on the substrate, the duration of incubation, the type of nutrients, temperature and other environmental parameters. Trichoderma spp. are well-known producers of secondary metabolites with different biological activities. The secondary metabolites with antibiotic activity can be classified into two main types. Low molecular weight and volatile metabolites which are involved in complex Trichoderma plant-pathogen interactions. They belong to various structure classes such as alcohols, ketones, alkanes, furans, simple aromatic compounds, isocyanate compounds, volatile terpenes, some polyketides, butenolides, and pyrones. All of them are relatively nonpolar compounds with a significant vapor pressure. These volatile organic compounds (VOCs in the soil environment could be traveled over distance and affect the physiology of the pathogens. They also enhance growth and systemic resistance in plants. These VOCs have been evaluated for T. atroviride, T. harzianum, T. viride, T. longibrachiatum, T. pseudokoningii and T. aureoviride. High molecular weight metabolites (like peptaibols are polar metabolites which act directly by contact between Trichoderma species and competitor organisms. Due to potent separation and highly sensitive detection, gas chromatography-mass spectrometry (GC-MS is the main method for detection of the fungal VOCs. Mass spectrometric detection offers the possibility to identify individual volatiles from complex mixtures. Structure characterization and confirmation of identity are usually achieved by comparison of mass spectra with library spectra and the determination of chromatographic retention indices. Due to the

  11. Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R. [and others

    1995-12-01

    Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolites are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.

  12. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    Science.gov (United States)

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  13. The environmental occurrence and effect of alkylphenol polyethoxylates and their metabolites in Taiwan

    Science.gov (United States)

    Ding, W.

    2009-12-01

    Alkylphenol polyethoxylates (APEOs) are widely used nonionic surfactants in domestic, agricultural and household applications, which have been commonly found in wastewater discharges and in sewage treatment plant effluents. Degradation of APEOs in wastewater or in the environment generates more persistent pollutants, including alkylphenols (APs, such as 4-nonylphenol isomers (4-NPs) and 4-t-octylphenol (4-t-OP)) and shortened ethoxy chain APEO residues (such as AP1~3EO). These metabolites of APEOs are of interest in the field of environmental monitoring because of the volume of these substances used and their activity as either endocrine disruptors or as persistent pollutants. APEOs are mass-produced and used widely in Taiwan. Large quantities of these metabolites in wastewater are discharged into the rivers directly because Taiwan’s municipal and industrial wastewater treatment facilities are deficient. However, the occurrence and fate of these metabolites are unclear and can potentially affect the aquatic environment and public health in Taiwan. Determination of APEOs and their metabolites have been performed for household detergents, various surface water, soil, sediments, biota, foodstuffs and even in breast milk. APEOs and their metabolites were detected in all media analyzed and in all environmental samples. The relatively high concentrations detected in oysters and snails provide evidence for bioaccumulation of APs. The presence of APs in breast milk implies that APs enter the food chain in local biota after long chain APEOs were biodegraded. There are also some indications that the plastic wrappings and containers for foodstuffs sold in Taiwan may contain NP or tris(nonylphenol) phosphate (TNPP) used as plasticizers or antioxidants. In addition, possible sources of APs may come from the extensive use of pesticides containing APEO as emulsifiers in agriculture.

  14. Metabolite ratios as potential biomarkers for type 2 diabetes : a DIRECT study

    NARCIS (Netherlands)

    Molnos, Sophie; Wahl, Simone; Haid, Mark; Eekhoff, E Marelise W; Pool, René; Floegel, Anna; Deelen, Joris; Much, Daniela; Prehn, Cornelia; Breier, Michaela; Draisma, Harmen H; van Leeuwen, Nienke; Simonis-Bik, Annemarie M C; Jonsson, Anna; Willemsen, Gonneke; Bernigau, Wolfgang; Wang-Sattler, Rui; Suhre, Karsten; Peters, Annette; Thorand, Barbara; Herder, Christian; Rathmann, Wolfgang; Roden, Michael; Gieger, Christian; Kramer, Mark H H; van Heemst, Diana; Pedersen, Helle K; Gudmundsdottir, Valborg; Schulze, Matthias B; Pischon, Tobias; de Geus, Eco J C; Boeing, Heiner; Boomsma, Dorret I; Ziegler, Anette G; Slagboom, P. Eline; Hummel, Sandra; Beekman, Marian; Grallert, Harald; Brunak, Søren; McCarthy, Mark I; Gupta, Ramneek; Pearson, Ewan R; Adamski, Jerzy; 't Hart, Leen M

    2018-01-01

    AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and

  15. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Directory of Open Access Journals (Sweden)

    Nagesh A. Kuravadi

    2015-08-01

    Full Text Available Neem (Azadirachta indica A. Juss is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC. Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

  16. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Science.gov (United States)

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  17. Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China.

    Science.gov (United States)

    Liao, Chenxi; Liu, Wei; Zhang, Jialing; Shi, Wenming; Wang, Xueying; Cai, Jiao; Zou, Zhijun; Lu, Rongchun; Sun, Chanjuan; Wang, Heng; Huang, Chen; Zhao, Zhuohui

    2018-03-01

    Exposure to household phthalates has been reported to have adverse effects on children's health. In this paper, we used phthalate metabolites in the first morning urine as indicators of household phthalate exposures and examined their associations with residential characteristics, lifestyles and dietary habits among young children. During 2013-2014, we collected morning urines from children aged 5-10years in Shanghai, China and obtained the related information about analyzed factors in this study by questionnaires. Urinary phthalate metabolites were analyzed by isotope dilution-high performance liquid chromatography (HPLC)-heated electrospray ionization source (HESI) coupled with a triple quadrupole mass spectrometry. ANOVA, the Mann-Whitney or Kruskai-Wallis rank tests, and multivariate linear regression analyses were used to examine the target associations. Ten metabolites of seven phthalates in 434 urine samples were analyzed. The detection rates of eight metabolites (MiBP, MnBP, MEHP, MECPP, MEHHP, MEOHP, MEP, and MMP) were >90%, except for MBzP (51.2%), and MCHP with usage household air cleaners (MEP and MEHP), changing the child's pillowcase less than one time a week (DEHP metabolites), dusting furniture in the child's bedroom less than three times a week (MMP and MnBP), using more plastic toys (DEHP metabolites and MEP), often having soft drinks (DEHP metabolites) and candies (MiBP). Our results indicated that phthalate exposures were common among Shanghai children and residential characteristics had less significant associations with urinary phthalate metabolites compared with lifestyles and dietary habits. Using less plastic toys, having less candies and soft drinks, using household air cleaner, as well as frequently changing the child's pillowcase and dusting furniture in the child's bedroom could reduce phthalate exposures among children. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phthalate metabolites in the European eel (Anguilla anguilla) from Mediterranean coastal lagoons.

    Science.gov (United States)

    Fourgous, C; Chevreuil, M; Alliot, F; Amilhat, E; Faliex, E; Paris-Palacios, S; Teil, M J; Goutte, A

    2016-11-01

    The levels and fate of phthalate metabolites have been poorly evaluated in fish, despite their potential ecotoxicological impacts. The present study aims to characterize the levels of phthalate metabolites in muscle tissue of yellow eels (Anguilla anguilla) from two coastal Mediterranean lagoons, during three sampling periods. Nine phthalate metabolites were detected in >70% of the samples. Slightly higher levels of phthalate metabolites were detected in March and June compared to October, suggesting possible seasonal variations in environmental release and/or phthalate metabolization process by eels. The large sample size (N=117) made it possible to explore correlations between phthalate metabolites' levels and individual parameters, such as body length, age, body condition and hepatic histo-pathologies. Body length and estimated age poorly correlated with phthalate metabolites, suggesting that eels did not accumulate phthalates during growth, contrary to persistent compounds. Eels presented different grades of hepatic fibrosis and lipidosis. A negative correlation was found between the severity of these pathologies in the liver and the sum of phthalate metabolites levels, supporting the hypothesis that eels with damaged liver are less able to metabolize xenobiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Parabens and Their Metabolites in Pet Food and Urine from New York State, United States.

    Science.gov (United States)

    Karthikraj, Rajendiran; Borkar, Sonali; Lee, Sunmi; Kannan, Kurunthachalam

    2018-03-20

    The exposure of pets, such as dogs and cats, to a wide range of chemicals present in the indoor environment and the concomitant increase in noninfectious diseases in these companion animals are a concern. Nevertheless, little is known about the sources and pathways of exposure to chemicals in pets. In this study, we determined the concentrations of parabens in commercially available cat and dog foods as well as in urine samples from these pets collected from the Albany area of the state of New York in the United States. Parabens, especially methyl paraben (MeP), and their metabolites were found in all pet food and urine samples. The mean concentrations of total parabens (i.e., sum of parabens and their metabolites) in dog ( n = 23) and cat ( n = 35) food were 1350 and 1550 ng/g fresh wt, respectively. Dry food contained higher concentrations of parabens and their metabolites than did wet food, and cat food contained higher concentrations of target chemicals than did dog food. The mean concentrations of total parabens found in dog ( n = 30) and cat ( n = 30) urine were 7230 and 1040 ng/mL, respectively. In both pet food and urine, MeP (among parabens) and 4-hydroxy benzoic acid (4-HB) (among metabolites) were the dominant compounds. The metabolites of parabens accounted for ∼99% (∼99.1% in food and ∼98.9% in urine) of the total concentrations in both food and urine. The profiles of parabens and their metabolites in the urine of dogs and cats varied. In addition to diet, other sources of paraben exposures were found for dogs, whereas, for cats, the majority of exposures was identified as related to diet.

  20. Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    Science.gov (United States)

    Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

  1. Emerging technologies, recent developments, and novel applications for drug metabolite identification.

    Science.gov (United States)

    Lu, Wenjie; Xu, Youzhi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Drug metabolite identification and metabolic characteristics analysis play a crucial role in new drug research and development, because they can lead to varied efficacy, severe adverse reactions, and even toxicity. Classical methodologies for metabolite identification have mainly been based on mass spectrometry (MS) coupled with gas chromatography (GC) or liquid chromatography (LC), and some other techniques are used as complementary approaches, such as nuclear magnetic resonance (NMR). Over the past decade, more and more newly emerging techniques or technologies have been applied to metabolite identification, and are making the procedure easier and more robust, such as LC-NMR-MS, ion mobility MS, ambient ionization techniques, and imaging MS. A novel application of drug metabolite identification based on "omics" known as pharmacometabonomics is discussed, which is an interdisciplinary field that combines pre-dose metabolite profiling and chemometrics methods for data analysis and modeling, aiming to predict the responses of individuals to drugs.

  2. In vivo MRS metabolite quantification using genetic optimization

    Science.gov (United States)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    The in vivo quantification of metabolites' concentrations, revealed in magnetic resonance spectroscopy (MRS) spectra, constitutes the main subject under investigation in this work. Significant contributions based on artificial intelligence tools, such as neural networks (NNs), with good results have been presented lately but have shown several drawbacks, regarding their quantification accuracy under difficult conditions. A general framework that encounters the quantification procedure as an optimization problem, which is solved using a genetic algorithm (GA), is proposed in this paper. Two different lineshape models are examined, while two GA configurations are applied on artificial data. Moreover, the introduced quantification technique deals with metabolite peaks' overlapping, a considerably difficult situation occurring under real conditions. Appropriate experiments have proved the efficiency of the introduced methodology, in artificial MRS data, by establishing it as a generic metabolite quantification procedure.

  3. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  4. In vivo MRS metabolite quantification using genetic optimization

    International Nuclear Information System (INIS)

    Papakostas, G A; Mertzios, B G; Karras, D A; Van Ormondt, D; Graveron-Demilly, D

    2011-01-01

    The in vivo quantification of metabolites' concentrations, revealed in magnetic resonance spectroscopy (MRS) spectra, constitutes the main subject under investigation in this work. Significant contributions based on artificial intelligence tools, such as neural networks (NNs), with good results have been presented lately but have shown several drawbacks, regarding their quantification accuracy under difficult conditions. A general framework that encounters the quantification procedure as an optimization problem, which is solved using a genetic algorithm (GA), is proposed in this paper. Two different lineshape models are examined, while two GA configurations are applied on artificial data. Moreover, the introduced quantification technique deals with metabolite peaks' overlapping, a considerably difficult situation occurring under real conditions. Appropriate experiments have proved the efficiency of the introduced methodology, in artificial MRS data, by establishing it as a generic metabolite quantification procedure

  5. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.

    Science.gov (United States)

    di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A

    2015-06-01

    Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    Science.gov (United States)

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    Science.gov (United States)

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  8. Natural occurrence of fungi and fungal metabolites in moldy tomatoes

    DEFF Research Database (Denmark)

    Andersen, B.; Frisvad, Jens Christian

    2004-01-01

    Fresh tomatoes, homegrown and from supermarkets, with developing fungal lesions were collected. Each lesion was sampled, and the resulting fungal cultures were identified morphologically, and extracted for analyzes of secondary metabolites. The tomatoes were incubated at 25 degreesC for a week....... extracted, and analyzed for fungal metabolites. Extracts from pure cultures were compared with extracts from the moldy tomatoes and fungal metabolite standards in two HPLC systems with DAD and FLD detection. The results showed that Penicillium tularense, Stemphylium eturmiunum. and S. cf. lycopersici were...

  9. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  10. Pre-diagnostic metabolite concentrations and prostate cancer risk in 1077 cases and 1077 matched controls in the European Prospective Investigation into Cancer and Nutrition.

    NARCIS (Netherlands)

    Schmidt, Julie A; Fensom, Georgina K; Rinaldi, Sabina; Scalbert, Augustin; Appleby, Paul N; Achaintre, David; Gicquiau, Audrey; Gunter, Marc J; Ferrari, Pietro; Kaaks, Rudolf; Kühn, Tilman; Floegel, Anna; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Anifantis, Eleutherios; Agnoli, Claudia; Palli, Domenico; Trevisan, Morena; Tumino, Rosario; Bueno-de-Mesquita, H Bas; Agudo, Antonio; Larrañaga, Nerea; Redondo-Sánchez, Daniel; Barricarte, Aurelio; Huerta, José Maria; Quirós, J Ramón; Wareham, Nick; Khaw, Kay-Tee; Perez-Cornago, Aurora; Johansson, Mattias; Cross, Amanda J; Tsilidis, Konstantinos K; Riboli, Elio; Key, Timothy J; Travis, Ruth C

    2017-01-01

    Little is known about how pre-diagnostic metabolites in blood relate to risk of prostate cancer. We aimed to investigate the prospective association between plasma metabolite concentrations and risk of prostate cancer overall, and by time to diagnosis and tumour characteristics, and risk of death

  11. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.

    Science.gov (United States)

    Floegel, Anna; Stefan, Norbert; Yu, Zhonghao; Mühlenbruch, Kristin; Drogan, Dagmar; Joost, Hans-Georg; Fritsche, Andreas; Häring, Hans-Ulrich; Hrabě de Angelis, Martin; Peters, Annette; Roden, Michael; Prehn, Cornelia; Wang-Sattler, Rui; Illig, Thomas; Schulze, Matthias B; Adamski, Jerzy; Boeing, Heiner; Pischon, Tobias

    2013-02-01

    Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21-0.44], factor 2 3.82 [2.64-5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.

  12. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    International Nuclear Information System (INIS)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-01-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: ► Coagulation removed cyanobacteria without an additional exertion on coagulant demand. ► During a stagnation period in direct filtration intracellular metabolites were released. ► Cyanobacterial cells were not damaged

  13. Metabolite profiles and the risk of developing diabetes

    OpenAIRE

    2011-01-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines, and other polar metabolites were profiled in baseline specimens using liquid chromatography-tandem mass spectrometry. Cases and controls were matched for age, body mass index and fasting g...

  14. Analyses of associations between reactive oxygen metabolites and antioxidant capacity and related factors among healthy adolescents.

    Science.gov (United States)

    Tamae, Kazuyoshi; Eto, Toshiharu; Aoki, Kazuhiro; Nakamaru, Shingo; Koshikawa, Kazunori; Sakuma, Kazuhiko; Hirano, Takeshi

    2013-12-01

    Evidence based on epidemiologic investigations using biochemical parameter is meaningful for health promotion and administration among adolescents. We conducted Reactive Oxygen Metabolites (ROM) and Biological Antioxidant Potentials (BAP) tests, along with a questionnaire survey, for a sample of 74 high school students (16.51±0.11 years of aged mean±SE), to investigate the associations between ROM, BAP, and related factors, including BMI and blood biochemical data. Venous blood samples (approximately 7cc) were collected. At the same time, each individual's information was obtained from the questionnaire. The mental health status was investigated using the Center for Epidemiologic Study Depression scale (CES-D) included in the same questionnaire. The mean values and standard errors of all variables were calculated. In addition, the relationships between ROM and BAP with these factors were analyzed. The results revealed the preferred levels of ROM (261.95 ± 9.52 U.CARR) and, BAP (2429.89±53.39 µmol/L) and blood biochemical data. Few significant relationships between two markers and related factors were found. So, we detected a cluster with an imbalance between ROM and BAP, which means low antioxidant ability, whereas the other clusters had conditions with moderate balance or good balance between them. Moreover, we determined the Oxidative stress-Antioxidant capacity ratio (OAR), using the ROM and BAP values, in order to clarify the characteristic of the detected clusters.However, comparative analyses across the three clusters did not yield significant differences in all related factors. No correlations between ROM, BAP and related factors were indicated, although significant association between ROM and BAP was observed (R2=0.1156, R=0.340, P=0.013). The reason for these results can be explained by the influences of good health and young age. On the other hand, present study suggests that some latent problems among adolescents may be related to unhealthy

  15. Synthesis of an Albendazole Metabolite: Characterization and HPLC Determination

    Science.gov (United States)

    Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Nunez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo

    2008-01-01

    In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H[subscript 2]O[subscript 2] in acetic acid. The reaction is environmental friendly,…

  16. Quantitative quenching evaluation and direct intracellular metabolite analysis in Penicillium chrysogenum.

    Science.gov (United States)

    Meinert, Sabine; Rapp, Sina; Schmitz, Katja; Noack, Stephan; Kornfeld, Georg; Hardiman, Timo

    2013-07-01

    Sustained progress in metabolic engineering methodologies has stimulated new efforts toward optimizing fungal production strains such as through metabolite analysis of Penicillium chrysogenum industrial-scale processes. Accurate intracellular metabolite quantification requires sampling procedures that rapidly stop metabolism (quenching) and avoid metabolite loss via the cell membrane (leakage). When sampling protocols are validated, the quenching efficiency is generally not quantitatively assessed. For fungal metabolomics, quantitative biomass separation using centrifugation is a further challenge. In this study, P. chrysogenum intracellular metabolites were quantified directly from biomass extracts using automated sampling and fast filtration. A master/slave bioreactor concept was applied to provide industrial production conditions. Metabolic activity during sampling was monitored by 13C tracing. Enzyme activities were efficiently stopped and metabolite leakage was absent. This work provides a reliable method for P. chrysogenum metabolomics and will be an essential base for metabolic engineering of industrial processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    Richard Sicher

    2012-01-01

    Full Text Available Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient and 72 (elevated Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100 Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment.

  18. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Science.gov (United States)

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    Energy Technology Data Exchange (ETDEWEB)

    Ferramosca, Alessandra, E-mail: alessandra.ferramosca@unisalento.it [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Conte, Annalea; Guerra, Flora; Felline, Serena [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Rimoli, Maria Grazia [Dipartimento di Farmacia, Università di Napoli Federico II, Napoli (Italy); Mollo, Ernesto [Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (Italy); Zara, Vincenzo [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Terlizzi, Antonio [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Stazione Zoologica Anton Dohrn, Napoli (Italy)

    2016-05-13

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  20. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    International Nuclear Information System (INIS)

    Ferramosca, Alessandra; Conte, Annalea; Guerra, Flora; Felline, Serena; Rimoli, Maria Grazia; Mollo, Ernesto; Zara, Vincenzo; Terlizzi, Antonio

    2016-01-01

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  1. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.

    Science.gov (United States)

    Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N

    2018-02-01

    Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    NARCIS (Netherlands)

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under

  3. The reactive metabolite target protein database (TPDB)--a web-accessible resource.

    Science.gov (United States)

    Hanzlik, Robert P; Koen, Yakov M; Theertham, Bhargav; Dong, Yinghua; Fang, Jianwen

    2007-03-16

    The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available at http://tpdb.medchem.ku.edu/tpdb.html.

  4. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    Science.gov (United States)

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  5. Free and total urinary phthalate metabolite concentrations among pregnant women from the Healthy Baby Cohort (HBC), China.

    Science.gov (United States)

    Zhu, Yingshuang; Wan, Yanjian; Li, Yuanyuan; Zhang, Bin; Zhou, Aifen; Cai, Zongwei; Qian, Zhengmin; Zhang, Chuncao; Huo, Wenqian; Huang, Kai; Hu, Jie; Cheng, Lu; Chang, Huailong; Huang, Zheng; Xu, Bing; Xia, Wei; Xu, Shunqing

    2016-03-01

    Total urinary phthalate metabolites (the free plus glucuronidated forms) have been frequently measured in the general population. However, data are limited on the free forms which may be more bioactive, especially for sensitive population such as pregnant women. Here the data gap was addressed by measuring concentrations of free and total forms of six phthalate metabolites in 293 urine samples from pregnant women at delivery, who were randomly selected from the prospective Healthy Baby Cohort (HBC), China. We observed detectable concentrations of the total amount of phthalate metabolites in all urine samples. The geometric mean (GM) urinary concentrations of free and total mono-butyl phthalate (MBP) (5.20, 54.49ng/mL) were the highest, followed by mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (4.52, 7.27ng/mL). For most of phthalate metabolites, urinary concentrations were significantly higher in women who were nulliparous. Significantly higher concentrations of mono-ethyl phthalate (MEP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) were found in women who had higher educational level. To our knowledge, this is the first study to report the free and total forms of phthalate metabolites among pregnant women in China. The results suggest that exposure characteristics may be related to parity and education. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women.

    Science.gov (United States)

    Park, Heyjun; Wood, Madeleine R; Malysheva, Olga V; Jones, Sara; Mehta, Saurabh; Brannon, Patsy M; Caudill, Marie A

    2017-12-01

    Background: Little is known about placental vitamin D metabolism and its impact on maternal circulating vitamin D concentrations in humans. Objective: This study sought to advance the current understanding of placental vitamin D metabolism and its role in modulating maternal circulating vitamin D metabolites during pregnancy. Design: Nested within a feeding study, 24 healthy pregnant women (26-29 wk of gestation) consumed a single amount of vitamin D (511 IU/d from diet and a cholecalciferol supplement) for 10 wk. Concentrations of placental and blood vitamin D metabolites and placental messenger RNA (mRNA) abundance of vitamin D metabolic pathway components were quantified. In addition, cultured human trophoblasts were incubated with 13 C-cholecalciferol to examine the intracellular generation and secretion of vitamin D metabolites along with the regulation of target genes. Results: In placental tissue, 25-hydroxyvitamin D 3 [25(OH)D 3 ] was strongly correlated ( r = 0.83, P D 3 Moreover, these placental metabolites were strongly correlated ( r ≤ 0.85, P ≤ 0.04) with their respective metabolites in maternal circulation. Positive associations ( P ≤ 0.045) were also observed between placental mRNA abundance of vitamin D metabolic components and circulating vitamin D metabolites [i.e., LDL-related protein 2 ( LRP2 , also known as megalin) with 25(OH)D 3 and the C3 epimer of 25(OH)D 3 [3-epi-25(OH)D 3 ]; cubilin ( CUBN ) with 25(OH)D 3 ; 25-hydroxylase ( CYP2R1 ) with 3-epi-25(OH)D 3 ; 24-hydroxylase ( CYP24A1 ) with 25(OH)D 3 , 3-epi-25(OH)D 3 , and 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ]; and 1α-hydroxylase [( CYP27B1 ) with 3-epi-25(OH)D 3 and 1,25(OH) 2 D 3 ]. Notably, in vitro experiments with trophoblasts showed increased production and secretion of 25(OH)D 3 and higher CYP24A1 gene transcript abundance in response to cholecalciferol treatment. Conclusions: The numerous associations of many of the placental biomarkers of vitamin D metabolism with

  7. Significance of metabolites in the environmental risk assessment of pharmaceuticals consumed by human.

    Science.gov (United States)

    Han, Eun Jeong; Lee, Dong Soo

    2017-08-15

    The purpose of this study is to demonstrate the significance of metabolites to the ERA of human pharmaceuticals. The predicted exposure concentrations (PECs) in surface water were estimated for a total of 24 selected active pharmaceutical ingredients (APIs) and their metabolites using a life cycle based emission estimation model combined with a multimedia fate model with Monte-Carlo calculations. With the eco-toxicity data, the hazard quotients (HQs) of the metabolites were compared with those of individual parents alone. The results showed that PEC or toxicity or both of the metabolites was predicted to be higher than that of their parent APIs, which resulted in a total of 18 metabolites (from 12 parents) that have greater HQs than their parents. This result clearly demonstrated that some metabolites may potentially pose greater risk than their parent APIs in the water environment. Therefore, significance of metabolites should be carefully evaluated for monitoring strategy, priority setting, and scoping of the environmental risk assessment of APIs. The method used in the present work may serve as a pragmatic approach for the purpose of preliminary screening or priority setting of environmental risk posed by both APIs and their metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Bustamante, Heriberto; Duker, Phil [Sydney Water, PO Box 399, Parramatta, NSW 2124 (Australia); Meli, Tass [TRILITY Pty Ltd, PO Box 86, Appin, NSW 2560 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: Black-Right-Pointing-Pointer Coagulation removed cyanobacteria without an additional exertion on coagulant demand. Black-Right-Pointing-Pointer During a stagnation period in direct filtration intracellular metabolites were

  9. Metabolite variation in hybrid corn grain from a large-scale multisite study

    Directory of Open Access Journals (Sweden)

    Mingjie Chen

    2016-06-01

    Full Text Available Metabolite composition is strongly affected by genotype, environment, and interactions between genotype and environment, although the extent of variation caused by these factors may depend upon the type of metabolite. To characterize the complexity of genotype, environment, and their interaction in hybrid seeds, 50 genetically diverse non-genetically modified (GM maize hybrids were grown in six geographically diverse locations in North America. Polar metabolites from 553 harvested corn grain samples were isolated and analyzed by gas chromatography–mass spectrometry and 45 metabolites detected in all samples were used to generate a data matrix for statistical analysis. There was moderate variation among biological replicates and across genotypes and test sites. The genotype effects were detected by univariate and Hierarchical clustering analyses (HCA when environmental effects were excluded. Overall, environment exerted larger effects than genotype, and polar metabolite accumulation showed a geographic effect. We conclude that it is possible to increase seed polar metabolite content in hybrid corn by selection of appropriate inbred lines and growing regions.

  10. Thyroid Hormone and Blood Metabolites Concentration of Gilts Superovulated Prior to Mating

    Directory of Open Access Journals (Sweden)

    RA Mege

    2009-05-01

    Full Text Available An experiment was conducted to study injection of pregnant mare serum gonadotrophin (PMSG and human chorionic gonadotrophin (hCG as superovulation agent in gilts to improve thyroid hormone and blood metabolites concentraton. In this experiment, 48 gilts were assigned into four groups of twelve gilts injected with PMSG dan hCG dose levels of 0, 600, 1200 and 1800 IU/gilt. Injections were conducted three days before estrus. During gestation, gilts were placed in colony pigpen. On days 15, 35, and 70 of gestation blood collected to determine triiodothyronine, tetraiodothyronine, tryglicerides, glucose, protein and bood nitrogen urea concentration. The resuts showed that superovulation dose levels of 600 to 1200 IU/gilt increased concentration of thyroid hormone (triiodothyronine and tetraiodothyronine/thyroxin and blood metabolite (triglycerides, glucose, and protein, but decreased blood urea nitrogen in gestation ages 15, 35, and 70 days. It is concluded that superovulation with dose of 600 to 1200 IU can improve of gilts metabolite hormone and blood metabolites. (Animal Production 11(2: 88-95 (2009Key Words: gilts, superovulation, metabolite hormone, blood metabolites

  11. METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters.

    Science.gov (United States)

    Geffers, Lars; Tetzlaff, Benjamin; Cui, Xiao; Yan, Jun; Eichele, Gregor

    2013-01-01

    METscout (http://metscout.mpg.de) brings together metabolism and gene expression landscapes. It is a MySQL relational database linking biochemical pathway information with 3D patterns of gene expression determined by robotic in situ hybridization in the E14.5 mouse embryo. The sites of expression of ∼1500 metabolic enzymes and of ∼350 solute carriers (SLCs) were included and are accessible as single cell resolution images and in the form of semi-quantitative image abstractions. METscout provides several graphical web-interfaces allowing navigation through complex anatomical and metabolic information. Specifically, the database shows where in the organism each of the many metabolic reactions take place and where SLCs transport metabolites. To link enzymatic reactions and transport, the KEGG metabolic reaction network was extended to include metabolite transport. This network in conjunction with spatial expression pattern of the network genes allows for a tracing of metabolic reactions and transport processes across the entire body of the embryo.

  12. Accumulation and turnover of metabolites of toluene and xylene in nasal mucosa and olfactory bulb in the mouse

    International Nuclear Information System (INIS)

    Ghantous, H.; Dencker, L.; Danielsson, B.R.G; Gabrielsson, J.; Bergman, K.

    1990-01-01

    Autoradiography of male mice following inhalation of the radioactively labelled solvents, toluene, xylene, and styrene, revealed an accumulation of non-volatile metabolites in the nasal mucosa and olfactory bulb of the brain. Since no accumulation occurred after benzene inhalation, it was assumed that the activity represented aromatic acids, which are known metabolites of these solvents. This was supported by the finding that also radioactive benzoic acid (main metabolite of toluene) and salicylic acid accumulated in the olfactory bulb. High-performance liquid chromatography revealed that after toluene inhalation (for 1 hr), nasal mucosa and olfactory bulb contained mainly benzoic acid, with a strong accumulation in relation to blood plasma, and considerably less of its blycine conjugate, hippuric acid. After xylene inhalation, on the other hand, methyl hippuric acid dominated over the non-conjugated metabolite, toluic acid. The results indicate a specific, possibly axonal flow-mediated transport of aromatic acids from the nasal mucosa to the olfactory lobe of the brain. The toxicological significance of these results remains to be studied. (author)

  13. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  14. In vivo formation of beta-oxidized metabolites of leukotriene E4 in the rat

    International Nuclear Information System (INIS)

    Perrin, P.; Zirrolli, J.; Stene, D.O.; Lellouche, J.P.; Beaucourt, J.P.; Murphy, R.C.

    1989-01-01

    Intraperitoneal administration of [ 3 H]-leukotriene E4 in the rat resulted in the appearance of radiolabel in urine and feces. Separation of polar urinary metabolites and chromatographic comparison of synthetic metabolites indicated the in vivo formation of omega-oxidized metabolites of LTE4 with sequential beta-oxidation. Furthermore, the metabolite identified as 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-N-acetyl-LTE4 substantiates the biochemical pathway of beta-oxidation in vivo involving the 2,4-dienoyl CoA reductase as an integral step. These results substantiate beta-oxidation of sulfidopeptide leukotrienes in vivo and these metabolites account for some of the major urinary metabolites of this class of lipid mediator

  15. Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating N and C metabolism in Zea mays

    Directory of Open Access Journals (Sweden)

    David Toubiana

    2016-07-01

    Full Text Available To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H2 tests revealed galactinol (1 and asparagine (0.91 as the highest scorers among metabolites and nitrate reductase (0.73, NAD-glutamate dehydrogenase (0.52, and phosphoglucomutase (0.51 among enzymes. The overall low H2 scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2’ is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25 of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase.

  16. Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites

    Science.gov (United States)

    Rombouts, Caroline; Hemeryck, Lieselot Y.; Van Hecke, Thomas; De Smet, Stefaan; De Vos, Winnok H.; Vanhaecke, Lynn

    2017-01-01

    Epidemiological research has demonstrated that the consumption of red meat is an important risk factor for the development of colorectal cancer (CRC), diabetes mellitus and cardiovascular diseases. However, there is no holistic insight in the (by-) products of meat digestion that may contribute to disease development. To address this hiatus, an untargeted mass spectrometry (MS)-based metabolomics approach was used to create red versus white meat associated metabolic fingerprints following in vitro colonic digestion using the fecal inocula of ten healthy volunteers. Twenty-two metabolites were unequivocally associated with simulated colonic digestion of red meat. Several of these metabolites could mechanistically be linked to red meat-associated pathways including N’-formylkynurenine, kynurenine and kynurenic acid (all involved in tryptophan metabolism), the oxidative stress marker dityrosine, and 3-dehydroxycarnitine. In conclusion, the used MS-based metabolomics platform proved to be a powerful platform for detection of specific metabolites that improve the understanding of the causal relationship between red meat consumption and associated diseases. PMID:28195169

  17. Primary expectations of secondary metabolites

    Science.gov (United States)

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  18. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2016-01-01

    Full Text Available A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC and gas chromatography time-of-flight mass spectrometry (GC-TOFMS-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g, phenolics (0.0664 ± 0.0033 mg/g and flavonoids (0.0096 ± 0.0004 mg/g. Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA, hierarchical clustering analysis (HCA, Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87% at 1000 μg/mL, and DPPH activity (20.78%, followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might

  19. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study

    DEFF Research Database (Denmark)

    Molnos, Sophie; Wahl, Simone; Haid, Mark

    2018-01-01

    ) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. Methods: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families......Aims/hypothesis: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1...... (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277...

  20. The first insight into the metabolite profiling of grapes from three Vitis vinifera L. cultivars of two controlled appellation (DOC) regions.

    Science.gov (United States)

    Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni

    2014-03-10

    The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  1. The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC Regions

    Directory of Open Access Journals (Sweden)

    António Teixeira

    2014-03-01

    Full Text Available The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC regions (Vinho Verde and Lisboa was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  2. Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.

    Science.gov (United States)

    Warren, Charles R; Aranda, Ismael; Cano, F Javier

    2011-10-01

    Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.

  3. Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system.

    Science.gov (United States)

    Wang, Chen; Yin, Ying-Hao; Wei, Ying-Jie; Shi, Zi-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-09-15

    Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Racial and ethnic variations in phthalate metabolite concentration changes across full-term pregnancies.

    Science.gov (United States)

    James-Todd, Tamarra M; Meeker, John D; Huang, Tianyi; Hauser, Russ; Seely, Ellen W; Ferguson, Kelly K; Rich-Edwards, Janet W; McElrath, Thomas F

    2017-03-01

    Higher concentrations of certain phthalate metabolites are associated with adverse reproductive and pregnancy outcomes, as well as poor infant/child health outcomes. In non-pregnant populations, phthalate metabolite concentrations vary by race/ethnicity. Few studies have documented racial/ethnic differences between phthalate metabolite concentrations at multiple time points across the full-course of pregnancy. The objective of the study was to characterize the change in phthalate metabolite concentrations by race/ethnicity across multiple pregnancy time points. Women were participants in a prospectively collected pregnancy cohort who delivered at term (≥37 weeks) and had available urinary phthalate metabolite concentrations for ≥3 time points across full-term pregnancies (n=350 women). We assessed urinary concentrations of eight phthalate metabolites that were log-transformed and specific gravity-adjusted. We evaluated the potential racial/ethnic differences in phthalate metabolite concentrations at baseline (median 10 weeks gestation) using ANOVA and across pregnancy using linear mixed models to calculate the percent change and 95% confidence intervals adjusted for sociodemographic and lifestyle factors. Almost 30% of the population were non-Hispanic black or Hispanic. With the exception of mono-(3-carboxypropyl) (MCPP) and di-ethylhexyl phthalate (DEHP) metabolites, baseline levels of phthalate metabolites were significantly higher in non-whites (Pethnicity, mono-ethyl phthalate (MEP) and MCPP had significant percent changes across pregnancy. MEP was higher in Hispanics at baseline and decreased in mid-pregnancy but increased in late pregnancy for non-Hispanic blacks. MCPP was substantially higher in non-Hispanic blacks at baseline but decreased later in pregnancy. Across pregnancy, non-Hispanic black and Hispanic women had higher concentrations of certain phthalate metabolites. These differences may have implications for racial/ethnic differences in adverse

  5. Radioimmunoassay for abscisic acid: properties of cross-reacting polar metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Le Page-Degivry, M.; Bulard, C. (Faculte des Sciences et des Techniques, 06 - Nice (France))

    When the radioimmunoassay developed for abscisic acid (ABA) estimation was applied to a plant extract, results appeared overestimated. Purification by thin-layer chromatography established that ABA in its free and alkali-hydrolysable forms constituted only a small part of the immunoreactive material. The major source of the cross-reactivity was a group of polar metabolites, poorly soluble in ether and well recovered by ethyl acetate and butanol. These immunoreactive metabolites were compared with polar metabolites already described in experiments where (/sup 14/C)ABA was fed to plant tissue, particularly with recently identified glucosides of ABA and dihydrophaseic acid.

  6. Novel 125I radioimmunoassay for the analysis of Δ9-tetrahydrocannabinol and its metabolites in human body fluids

    International Nuclear Information System (INIS)

    Law, B.; Mason, P.A.; Moffat, A.C.; King, L.J.

    1984-01-01

    A cannabinoid radioimmunoassay (RIA) that detects some of the major Δ 9 -THC metabolites is developed and evaluated for use in forensic science. It incorporates a novel 125 I radiotracer, is sensitive, reliable, relatively quick, and simple to use. The RIA uses a commercially available antiserum and detects a number of cannabinoid metabolites, including Δ 9 -THC-11-oic acid and its glucuronide conjugate in biological fluids. The method was successfully applied to the analysis of blood and urine samples submitted for forensic analysis

  7. Some Metabolites Act as Second Messengers in Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-03-01

    Full Text Available The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH, glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

  8. A modular modulation method for achieving increases in metabolite production.

    Science.gov (United States)

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  9. Fungal and bacterial metabolites in commercial poultry feed from Nigeria.

    Science.gov (United States)

    Ezekiel, C N; Bandyopadhyay, R; Sulyok, M; Warth, B; Krska, R

    2012-08-01

    Metabolites of toxigenic fungi and bacteria occur as natural contaminants (e.g. mycotoxins) in feedstuffs making them unsafe to animals. The multi-toxin profiles in 58 commercial poultry feed samples collected from 19 districts in 17 states of Nigeria were determined by LC/ESI-MS/MS with a single extraction step and no clean-up. Sixty-three (56 fungal and seven bacterial) metabolites were detected with concentrations ranging up to 10,200 µg kg⁻¹ in the case of aurofusarin. Fusarium toxins were the most prevalent group of fungal metabolites, whereas valinomycin occurred in more than 50% of the samples. Twelve non-regulatory fungal and seven bacterial metabolites detected and quantified in this study have never been reported previously in naturally contaminated stored grains or finished feed. Among the regulatory toxins in poultry feed, aflatoxin concentrations in 62% of samples were above 20 µg kg⁻¹, demonstrating high prevalence of unsafe levels of aflatoxins in Nigeria. Deoxynivalenol concentrations exceeded 1000 µg kg⁻¹ in 10.3% of samples. Actions are required to reduce the consequences from regulatory mycotoxins and understand the risks of the single or co-occurrence of non-regulatory metabolites for the benefit of the poultry industry.

  10. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Directory of Open Access Journals (Sweden)

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  11. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  12. Synthesis and Bioactivity of Secondary Metabolites from Marine Sponges Containing Dibrominated Indolic Systems

    Directory of Open Access Journals (Sweden)

    Azzurra Stefanucci

    2012-05-01

    Full Text Available Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum. produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine, 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.

  13. MetaboSearch: tool for mass-based metabolite identification using multiple databases.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available Searching metabolites against databases according to their masses is often the first step in metabolite identification for a mass spectrometry-based untargeted metabolomics study. Major metabolite databases include Human Metabolome DataBase (HMDB, Madison Metabolomics Consortium Database (MMCD, Metlin, and LIPID MAPS. Since each one of these databases covers only a fraction of the metabolome, integration of the search results from these databases is expected to yield a more comprehensive coverage. However, the manual combination of multiple search results is generally difficult when identification of hundreds of metabolites is desired. We have implemented a web-based software tool that enables simultaneous mass-based search against the four major databases, and the integration of the results. In addition, more complete chemical identifier information for the metabolites is retrieved by cross-referencing multiple databases. The search results are merged based on IUPAC International Chemical Identifier (InChI keys. Besides a simple list of m/z values, the software can accept the ion annotation information as input for enhanced metabolite identification. The performance of the software is demonstrated on mass spectrometry data acquired in both positive and negative ionization modes. Compared with search results from individual databases, MetaboSearch provides better coverage of the metabolome and more complete chemical identifier information.The software tool is available at http://omics.georgetown.edu/MetaboSearch.html.

  14. Biotransformation of cannabidiol in mice. Identification of new acid metabolites.

    Science.gov (United States)

    Martin, B R; Harvey, D J; Paton, W D

    1977-01-01

    The in vivo metabolism of cannabidiol (CBD) was investigated in mice. Following the ip administration of CBD to mice, livers were removed and metabolites were extracted with ethyl acetate prior to partial purification on Sephadex LH-20 columns. Fractions from the columns were converted into trimethylsilyl, d9-trimethylsilyl, and methylester-trimethylsilyl derivatives for analysis by gas-liquid chromatography-mass spectrometry. In addition, metabolites containing carboxylic acid and ketone functional groups were reduced to alcohols with lithium aluminum deuteride before trimethylsilation. A total of 22 metabolites were characterized, 14 of which had not been reported previously. The metabolites could be categorized as follows: monohydroxylated (N=2), dihydroxylated (N=3), CBD-7-oic acid, side chain hydroxy-GBD-7-oic acids (N=3), side-chain acids (N=3), 7-hydroxy-side-chain acids (N=4), 6-oxo-side-chain acids (N=3) and glucuronide conjugates (N=3). The most significant biotransformations were glucuronide conjugation and, to a lesser extent, formation of CBD-7-oic acid.

  15. Power of isotopic fine structure for unambiguous determination of metabolite elemental compositions: In silico evaluation and metabolomic application

    International Nuclear Information System (INIS)

    Nagao, Tatsuhiko; Yukihira, Daichi; Fujimura, Yoshinori; Saito, Kazunori; Takahashi, Katsutoshi; Miura, Daisuke; Wariishi, Hiroyuki

    2014-01-01

    Graphical abstract: - Highlights: • We developed a method to determine elemental composition of metabolites. • The method was based on mass spectral data and empirical constraints. • In the validation study, the method succeeded for 70% of detected peaks. - Abstract: In mass spectrometry (MS)-based metabolomics studies, reference-free identification of metabolites is still a challenging issue. Previously, we demonstrated that the elemental composition (EC) of metabolites could be unambiguously determined using isotopic fine structure, observed by ultrahigh resolution MS, which provided the relative isotopic abundance (RIA) of 13 C, 15 N, 18 O, and 34 S. Herein, we evaluated the efficacy of the RIA for determining ECs based on the MS peaks of 20,258 known metabolites. The metabolites were simulated with a ≤25% error in the isotopic peak area to investigate how the error size effect affected the rate of unambiguous determination of the ECs. The simulation indicated that, in combination with reported constraint rules, the RIA led to unambiguous determination of the ECs for more than 90% of the tested metabolites. It was noteworthy that, in positive ion mode, the process could distinguish alkali metal-adduct ions ([M + Na] + and [M + K] + ). However, a significant degradation of the EC determination performance was observed when the method was applied to real metabolomic data (mouse liver extracts analyzed by infusion ESI), because of the influence of noise and bias on the RIA. To achieve ideal performance, as indicated in the simulation, we developed an additional method to compensate for bias on the measured ion intensities. The method improved the performance of the calculation, permitting determination of ECs for 72% of the observed peaks. The proposed method is considered a useful starting point for high-throughput identification of metabolites in metabolomic research

  16. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MSn Technique

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2017-05-01

    Full Text Available The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action.

  17. Susceptibility of bacteria isolated from pigs to tiamulin and enrofloxacin metabolites

    DEFF Research Database (Denmark)

    Lykkeberg, Anne Kruse; Halling-Sørensen, Bent; Jensen, Lars Bogø

    2007-01-01

    :Susceptibilities to metabolites of tiamulin (TIA) and enrofloxacin (ENR) were tested using selected bacteria with previously defined minimal inhibitory concentrations,(,MIC). The TIA metabolites tested were: N-deethyl-tiamulin (I)TIA), 2 beta-hydroxy-tiamulin (2 beta-HTIA),and Sammhydroxy......-tiamulin (8 alpha-HTIA), and the ENR metabolites were: ciprofloxacin (CIP) and enrofloxacin N-oxide (ENR-N). Bacteria, all of porcine origin, we're selected as representatives of bacterial infections (Stap4ylococcus hyicus and Actinobacillus pleuropneumoniae), zoonotic bacteria (Campylobacter coli...

  18. Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective

    Directory of Open Access Journals (Sweden)

    Amit Kishore Singh

    2018-06-01

    Full Text Available Ulcer is one of the most common diseases affecting throughout the world population. The allopathic treatment of ulcer adversely affects the health by causing harmful side effects. Currently, many herbal plants and secondary metabolites have been used for the ulcer treatment. In the present review, many herbal plants and their parts (root, rhizome, bark, leaves and fruits have been listed in the table are currently being used for ulcer treatment. These metabolites are responsible for ulcer-neutralization or anti-inflammatory properties. In silico study, plant metabolites showed interaction between protodioscin (secondary metabolites of Asparagus racemosus and interferon-γ (virulent factor of gastric ulcer during molecular docking. All the residues of interferon-γ exhibited hydrophobic interactions with plant metabolites. These interactions helps in understanding the plant secondary metabolites vis a vis will open a new door in the research field of new drug discovery and designing for the ulcer treatment.

  19. Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Andreas Buness

    Full Text Available Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI using transcriptomics, metabolite profiling (metabolomics and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine, classical clinical chemistry markers like AST (aspartate aminotransferase, ALT (alanine aminotransferase, and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1 and Egr1 (early growth response protein 1. The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.

  20. Prediction of metabolites of epoxidation reaction in MetaTox.

    Science.gov (United States)

    Rudik, A V; Dmitriev, A V; Bezhentsev, V M; Lagunin, A A; Filimonov, D A; Poroikov, V V

    2017-10-01

    Biotransformation is a process of the chemical modifications which may lead to the reactive metabolites, in particular the epoxides. Epoxide reactive metabolites may cause the toxic effects. The prediction of such metabolites is important for drug development and ecotoxicology studies. Epoxides are formed by some oxidation reactions, usually catalysed by cytochromes P450, and represent a large class of three-membered cyclic ethers. Identification of molecules, which may be epoxidized, and indication of the specific location of epoxide functional group (which is called SOE - site of epoxidation) are important for prediction of epoxide metabolites. Datasets from 355 molecules and 615 reactions were created for training and validation. The prediction of SOE is based on a combination of LMNA (Labelled Multilevel Neighbourhood of Atom) descriptors and Bayesian-like algorithm implemented in PASS software and MetaTox web-service. The average invariant accuracy of prediction (AUC) calculated in leave-one-out and 20-fold cross-validation procedures is 0.9. Prediction of epoxide formation based on the created SAR model is included as the component of MetaTox web-service ( http://www.way2drug.com/mg ).

  1. Assessing the accuracy of software predictions of mammalian and microbial metabolites

    Science.gov (United States)

    New chemical development and hazard assessments benefit from accurate predictions of mammalian and microbial metabolites. Fourteen biotransformation libraries encoded in eight software packages that predict metabolite structures were assessed for their sensitivity (proportion of ...

  2. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    Science.gov (United States)

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite.

    Science.gov (United States)

    Muñoz, José L P; López Patiño, Marcos A; Hermosilla, Consuelo; Conde-Sieira, Marta; Soengas, José L; Rocha, Francisco; Míguez, Jesús M

    2011-08-01

    Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light-dark cycle information for adjustment of rhythmic physiological events in cephalopods.

  4. Urinary Phthalate Metabolites Are Associated with Body Mass Index and Waist Circumference in Chinese School Children

    Science.gov (United States)

    Wang, Hexing; Zhou, Ying; Tang, Chuanxi; He, Yanhong; Wu, Jingui; Chen, Yue; Jiang, Qingwu

    2013-01-01

    Background Lab studies have suggested that ubiquitous phthalate exposures are related to obesity, but relevant epidemiological studies are scarce, especially for children. Objective To investigate the association of phthalate exposures with body mass index (BMI) and waist circumference (WC) in Chinese school children. Methods A cross-sectional study was conducted in three primary and three middle schools randomly selected from Changning District of Shanghai City of China in 2011–2012. According to the physical examination data in October, 2011, 124 normal weight, 53 overweight, and 82 obese students 8–15 years of age were randomly chosen from these schools on the basis of BMI-based age- and sex-specific criterion. First morning urine was collected in January, 2012, and fourteen urine phthalate metabolites (free plus conjugated) were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Multiple linear regression was used to explore the associations between naturally log-transformed urine phthalate metabolites and BMI or WC. Results The urine specific gravity-corrected concentrations of nine urine phthalate metabolites and five molar sums were positively associated with BMI or WC in Chinese school children after adjustment for age and sex. However, when other urine phthalate metabolites were included in the models together with age and sex as covariables, most of these significant associations disappeared except for mono (2-ethylhexyl) phthalate (MEHP) and monoethyl phthalate (MEP). Additionally, some associations showed sex- or age-specific differences. Conclusions Some phthalate exposures were associated with BMI or WC in Chinese school children. Given the cross-sectional nature of this study and lack of some important obesity-related covariables, further studies are needed to confirm the associations. PMID:23437242

  5. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  6. PAH Metabolites in Bile of European Eel (Anguilla anguilla) from Morocco.

    Science.gov (United States)

    Wariaghli, Fatima; Kammann, Ulrike; Hanel, Reinhold; Yahyaoui, Ahmed

    2015-12-01

    Environmental pollution of fish with organic contaminants is a topic of rising attention in Morocco. Polycyclic aromatic hydrocarbons (PAH) are prominent organic contaminants which are rapidly metabolized in fish. Their metabolites are accumulated in the bile fluid and can be used to assess PAH exposure. The two PAH metabolites 1-hydroxypyrene and 1-hydroxyphenanthrene were quantified in European eels (Anguilla anguilla) from two Moroccan river systems by high-performance liquid chromatography with fluorescence detection. Mean values ranged from 52 to 210 ng/mL 1-hydroxypyrene and from 61 to 73 ng/mL 1-hydroxyphenanthrene. The overall concentrations of PAH metabolites in eel from Morocco appeared moderate compared to eel from European rivers and coastal sites. The present study provides first information on concentrations of PAH metabolites in fish from Morocco.

  7. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    DEFF Research Database (Denmark)

    Gracia-Lor, Emma; Rousis, Nikolaos I.; Zuccato, Ettore

    2017-01-01

    with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion......Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared...... of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further...

  8. Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Vikingsson, Svante; Josefsson, Martin; Gréen, Henrik

    2015-01-01

    The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 35 urine samples from authentic cases were analyzed with liquid chromatography quadrupole tandem time of flight mass spectrometry. Using HLMs 41 metabolites of AKB-48 and 37 metabolites of 5F-AKB-48 were identified, principally represented by hydroxylation but also ketone formation and dealkylation. Monohydroxylated metabolites were replaced by di- and trihydroxylated metabolites within 30 min. The metabolites from the HLM incubations accounted for on average 84% (range, 67-100) and 91% (range, 71-100) of the combined area in the case samples for AKB-48 and 5F-AKB-48, respectively. While defluorinated metabolites accounted for on average 74% of the combined area after a 5F-AKB-48 intake only a few identified metabolites were shared between AKB-48 and 5F-AKB-48, illustrating the need for a systematic approach to identify unique metabolites. HLMs in combination with case samples seem suitable for this purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-01-01

    that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing environmental impact.

  10. The cerebral metabolism of amino acids and related metabolites as studied by 13C and 14C labelling

    International Nuclear Information System (INIS)

    Hassel, B.

    1995-11-01

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by 13 C-and 14 C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [ 13 C[acetate, it was shown that glial cells export ∼60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [ 13 C[glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of 13 CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs

  11. Characterization of the radiolabeled metabolite of tau PET tracer 18F-THK5351

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Tashiro, Manabu; Katsutoshi, Furukawa; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka; Okamura, Nobuyuki

    2016-01-01

    18 F-THK5351 is a novel radiotracer developed for in vivo imaging of tau pathology in the brain. For the quantitative assessment of tau deposits in the brain, it is important that the radioactive metabolite does not enter the brain and that it does not bind to tau fibrils. The purpose of the study was to identify a radiolabeled metabolite of 18 F-THK5351 in blood samples from human subjects and to characterize its pharmacological properties. Venous blood samples were collected from three human subjects after injection of 18 F-THK5351 and the plasma metabolite was measured by high performance thin layer chromatography. In addition, mass spectrometry analysis and enzymatic assays were used to identify this metabolite. Mice were used to investigate the blood-brain barrier permeability of the radioactive metabolite. Furthermore, the binding ability of the metabolite to tau aggregates was evaluated using autoradiography and binding assays using human brain samples. About 13 % of the unmetabolized radiotracer was detectable in human plasma at 60 min following the injection of 18 F-THK5351. The isolated radiometabolite of 18 F-THK5351 was the sulphoconjugate of THK5351. This metabolite could be produced in vitro by incubating THK5351 with liver but not brain homogenates. The metabolite did not penetrate the blood-brain barrier in mice, and exhibited little binding to tau protein aggregates in post-mortem human brain samples. These results suggest that the sole metabolite detectable in plasma seems to be generated outside the brain and does not cross into the brain, which does not affect quantitative analysis of PET images. (orig.)

  12. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: A review

    International Nuclear Information System (INIS)

    Teunissen, S.F.; Rosing, H.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H.

    2010-01-01

    The selective estrogen receptor modulator tamoxifen is used in the treatment of early and advanced breast cancer and in selected cases for breast cancer prevention in high-risk subjects. The cytochrome P450 enzyme system and flavin-containing monooxygenase are responsible for the extensive metabolism of tamoxifen into several phase I metabolites that vary in toxicity and potencies towards estrogen receptor (ER) alpha and ER beta. An extensive overview of publications on the determination of tamoxifen and its phase I metabolites in biological samples is presented. In these publications techniques were used such as capillary electrophoresis, liquid, gas and thin layer chromatography coupled with various detection techniques (mass spectrometry, ultraviolet or fluorescence detection, liquid scintillation counting and nuclear magnetic resonance spectroscopy). A trend is seen towards the use of liquid chromatography coupled to mass spectrometry (LC-MS). State-of-the-art LC-MS equipment allowed for identification of unknown metabolites and quantification of known metabolites reaching lower limit of quantification levels in the sub pg mL -1 range. Although tamoxifen is also metabolized into phase II metabolites, the number of publications reporting on phase II metabolism of tamoxifen is scarce. Therefore the focus of this review is on phase I metabolites of tamoxifen. We conclude that in the past decades tamoxifen metabolism has been studied extensively and numerous metabolites have been identified. Assays have been developed for both the identification and quantification of tamoxifen and its metabolites in an array of biological samples. This review can be used as a resource for method transfer and development of analytical methods used to support pharmacokinetic and pharmacodynamic studies of tamoxifen and its phase I metabolites.

  13. Variability of Urinary Phthalate Metabolite and Bisphenol A Concentrations before and during Pregnancy

    Science.gov (United States)

    Braun, Joe M.; Smith, Kristen W.; Williams, Paige L.; Calafat, Antonia M.; Berry, Katharine; Ehrlich, Shelley

    2012-01-01

    Background: Gestational phthalate and bisphenol A (BPA) exposure may increase the risk of adverse maternal/child health outcomes, but there are few data on the variability of urinary biomarkers before and during pregnancy. Objective: We characterized the variability of urinary phthalate metabolite and BPA concentrations before and during pregnancy and the ability of a single spot urine sample to classify average gestational exposure. Methods: We collected 1,001 urine samples before and during pregnancy from 137 women who were partners in couples attending a Boston fertility clinic and who had a live birth. Women provided spot urine samples before (n ≥ 2) and during (n ≥ 2) pregnancy. We measured urinary concentrations of monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-iso-butyl phthalate, monobenzyl phthalate (MBzP), four metabolites of di-(2-ethylhexyl) phthalate (DEHP), and BPA. After adjusting for specific gravity, we characterized biomarker variability using intraclass correlation coefficients (ICCs) and conducted several surrogate category analyses to determine whether a single spot urine sample could adequately classify average gestational exposure. Results: Absolute concentrations of phthalate metabolites and BPA were similar before and during pregnancy. Variability was higher during pregnancy than before pregnancy for BPA and MBzP, but similar during and before pregnancy for MBP, MEP, and ΣDEHP. During pregnancy, MEP (ICC = 0.50) and MBP (ICC = 0.45) were less variable than BPA (ICC = 0.12), MBzP (ICC = 0.25), and ΣDEHP metabolites (ICC = 0.08). Surrogate analyses suggested that a single spot urine sample may reasonably classify MEP and MBP concentrations during pregnancy, but more than one sample may be necessary for MBzP, DEHP, and BPA. Conclusions: Urinary phthalate metabolites and BPA concentrations were variable before and during pregnancy, but the magnitude of variability was biomarker specific. A single spot urine sample

  14. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways.

    Science.gov (United States)

    Antunes-Fernandes, E C; van Gastelen, S; Dijkstra, J; Hettinga, K A; Vervoort, J

    2016-08-01

    Methane (CH4) emission of dairy cows contributes significantly to the carbon footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently needed. The present study explored the milk metabolome by gas chromatography-mass spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk nonvolatile metabolites) to better understand the biological pathways involved in CH4 emission in dairy cattle. Data were used from a randomized block design experiment with 32 multiparous Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (dry matter basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per unit of fat- and protein-corrected milk; FPCM). No volatile or nonvolatile metabolite was positively related to CH4 yield, and acetone (measured as a volatile and as a nonvolatile metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of the volatile metabolites was negatively related to CH4 intensity. The nonvolatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively related to CH4 intensity. Several volatile and nonvolatile metabolites that were correlated with CH4 intensity also were correlated with FPCM and not significantly related to CH4 intensity anymore when FPCM was included as covariate. This suggests that changes in these milk metabolites may be related to changes in milk yield or metabolic processes involved in milk synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both metabolites were

  15. Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data.

    Science.gov (United States)

    Zhang, Qibo; Ford, Lisa A; Evans, Anne M; Toal, Douglas R

    2017-01-01

    A major bottleneck in metabolomic studies is metabolite identification from accurate mass spectrometric data. Metabolite x17299 was identified in plasma as an unknown in a metabolomic study using a compound-centric approach where the associated ion features of the compound were used to determine the true molecular mass. The aim of this work is to elucidate the chemical structure of x17299, a new compound by de novo interpretation of mass spectrometric data. An Orbitrap Elite mass spectrometer was used for acquisition of mass spectra up to MS 4 at high resolution. Synthetic standards of N,N,N -trimethyl-l-alanyl-l-proline betaine (l,l-TMAP), a diastereomer, and an enantiomer were chemically prepared. The planar structure of x17299 was successfully proposed by de novo mechanistic interpretation of mass spectrometric data without any laborious purification and nuclear magnetic resonance spectroscopic analysis. The proposed structure was verified by deuterium exchanged mass spectrometric analysis and confirmed by comparison to a synthetic standard. Relative configuration of x17299 was determined by direct chromatographic comparison to a pair of synthetic diastereomers. Absolute configuration was assigned after derivatization of x17299 with a chiral auxiliary group followed by its chromatographic comparison to a pair of synthetic standards. The chemical structure of metabolite x17299 was determined to be l,l-TMAP.

  16. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    Science.gov (United States)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Emerging New Strategies for Successful Metabolite Identification in Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Ahmet K.; Bruschweiler-Li, Lei; Li, Dawei; Zhang, Bo; Xie, Mouzhe; Bruschweiler, Rafael

    2016-02-26

    NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in complex mixtures as encountered in metabolomics. Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful web servers with databases are available for semi-automated analysis. For the identification of unknown compounds, new combinations of NMR with MS have been developed recently that make synergistic use of the mutual strengths of the two techniques. The use of chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged silica nanoparticles, permit the identification of metabolites with specific physical chemical properties. In the following sections, we give an overview of some of the recent advances in metabolite identification and discuss remaining challenges.

  19. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  20. Microsomal metabolism of trenbolone acetate metabolites: Transformation product formation and bioactivity.

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbo...

  1. [Comparison on agronomy and quality characters of selective strain of Schizonepeta tenuifolia].

    Science.gov (United States)

    Cao, Liang; Jin, Yue; Wei, Jianhe; Chu, Qinglong; Zhao, Runhuai; Wang, Weiquan

    2009-05-01

    With the purpose of selecting adequate quality and high production of Schizonepeta tenuifolia, the comparative experiments were carried out on different strain of S. tenuifolia in 2007. The test fields were divided into blocks randomly, and the agronomy characters were investigated in harvest time; the content of volatile oil was measured by steam distillation and the pulegone were determined by HPLC. The yield of S4 was 18.63% and 29.99% higher than that of CK1 and CK2, respectively. The contents of volatile oil and pulegone were also higher than those of CK and other strains in this test. S4 shows the advantages of high production, strong disease resistance and high active components. S4 would be extended as the good breed in production.

  2. METABOLITE CHARACTERIZATION IN SERUM SAMPLES FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Metabonomics offers a distinct advantage over other tests as it can be ... Metabolic profiling in heart disease has also been successfully ... resonances of the small metabolites showing fingerprints of serum metabolomic profile (Figure. 3).

  3. Production of Metabolites

    DEFF Research Database (Denmark)

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  4. Encapsulates for Food Bioconversions and Metabolite Production

    Science.gov (United States)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  5. Determination of flutamide and two major metabolites using HPLC-DAD and HPTLC methods.

    Science.gov (United States)

    Abdelwahab, Nada S; Elshemy, Heba A H; Farid, Nehal F

    2018-01-25

    Flutamide is a potential antineoplastic drug classified as an anti-androgen. It is a therapy for men with advanced prostate cancer, administered orally after which it undergoes extensively first pass metabolism in the liver with the production of several metabolites. These metabolites are predominantly excreted in urine. One of the important metabolites in plasma is 4-nitro-3-(trifluoromethyl)phenylamine (Flu-1), while the main metabolite in urine is 2-amino-5-nitro-4-(trifluoromethyl)phenol (Flu-3). In this work the two metabolites, Flu-1 and Flu-3, have been synthesized, and then structural confirmation has been carried out by HNMR analysis. Efforts were exerted to develop chromatographic methods for resolving Flutamide and its metabolites with the use of acceptable solvents without affecting the efficiency of the methods. The drug along with its metabolites were quantitatively analyzed in pure form, human urine, and plasma samples using two chromatographic methods, HPTLC and HPLC-DAD methods. FDA guidelines for bio-analytical method validation were followed and USP recommendations were used for analytical method validation. Interference from excipients has been tested by application of the methods to pharmaceutical tablets. No significant difference was found between the proposed methods and the official one when they were statistically compared at p value of 0.05%.

  6. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  7. Tissue distribution of 14C-diazepam and its metabolites in rats

    International Nuclear Information System (INIS)

    Igari, Y.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1982-01-01

    We have kinetically investigated the tissue distribution of 14 C-diazepam and described the appearance and disappearance of its metabolites (3-hydroxydiazepam, desmethyldiazepam, and oxazepam) following a single iv injection of 14 C-diazepam into rats. Significant amounts of oxazepam were detected in plasma and various tissues in the rat, contrary to previous reports. Concentration-time profiles of diazepam in the main disposing organs (liver, kidney, and lung) and the other organs (brain, heart, and small intestine) indicated that diazepam was distributed rapidly to these organs. Concentration-time profiles of diazepam in the main tissues for drug distribution (skin and adipose) indicated that diazepam was slowly distributed to these tissues, whereas that in muscle, which is also responsible for drug distribution, indicated that diazepam was less rapidly distributed to this tissue. Metabolites appeared in plasma and various tissues or organs immediately after iv injection of diazepam. Metabolites levels in plasma and various tissues or organs were significantly lower than that of diazepam except for liver and small intestine, where metabolites levels were higher compared to that of diazepam and metabolites exhibited a considerable persistence

  8. Flow rate of transport network controls uniform metabolite supply to tissue.

    Science.gov (United States)

    Meigel, Felix J; Alim, Karen

    2018-05-01

    Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate. © 2018 The Authors.

  9. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis

    Directory of Open Access Journals (Sweden)

    Maria Wallert

    2014-01-01

    Full Text Available Vitamin E is likely the most important antioxidant in the human diet and α-tocopherol is the most active isomer. α-Tocopherol exhibits anti-oxidative capacity in vitro, and inhibits oxidation of LDL. Beside this, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in uptake, transport and degradation of tocopherols, as well as the uptake, storage and export of lipids such as cholesterol. Despite promising anti-atherogenic features in vitro, vitamin E failed to be atheroprotective in clinical trials in humans. Recent studies highlight the importance of long-chain metabolites of α-tocopherol, which are formed as catabolic intermediate products in the liver and occur in human plasma. These metabolites modulate inflammatory processes and macrophage foam cell formation via mechanisms different than that of their metabolic precursor α-tocopherol and at lower concentrations. Here we summarize the controversial role of vitamin E as a preventive agent against atherosclerosis and point the attention to recent findings that highlight a role of these long-chain metabolites of vitamin E as a proposed new class of regulatory metabolites. We speculate that the metabolites contribute to physiological as well as pathophysiological processes.

  10. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tang, G.H. [Xian Medical Univ. (China); Shen, Y.; Shen, H.M. [National Univ. of Singapore (Singapore)] [and others

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  12. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  13. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    Science.gov (United States)

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-06-01

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers. © 2017 British Society for Immunology.

  14. Robust volcano plot: identification of differential metabolites in the presence of outliers.

    Science.gov (United States)

    Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro

    2018-04-11

    The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .

  15. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Science.gov (United States)

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  16. Accurate determination of brain metabolite concentrations using ERETIC as external reference.

    Science.gov (United States)

    Zoelch, Niklaus; Hock, Andreas; Heinzer-Schweizer, Susanne; Avdievitch, Nikolai; Henning, Anke

    2017-08-01

    Magnetic Resonance Spectroscopy (MRS) can provide in vivo metabolite concentrations in standard concentration units if a reliable reference signal is available. For 1 H MRS in the human brain, typically the signal from the tissue water is used as the (internal) reference signal. However, a concentration determination based on the tissue water signal most often requires a reliable estimate of the water concentration present in the investigated tissue. Especially in clinically interesting cases, this estimation might be difficult. To avoid assumptions about the water in the investigated tissue, the Electric REference To access In vivo Concentrations (ERETIC) method has been proposed. In this approach, the metabolite signal is compared with a reference signal acquired in a phantom and potential coil-loading differences are corrected using a synthetic reference signal. The aim of this study, conducted with a transceiver quadrature head coil, was to increase the accuracy of the ERETIC method by correcting the influence of spatial B 1 inhomogeneities and to simplify the quantification with ERETIC by incorporating an automatic phase correction for the ERETIC signal. Transmit field ( B1+) differences are minimized with a volume-selective power optimization, whereas reception sensitivity changes are corrected using contrast-minimized images of the brain and by adapting the voxel location in the phantom measurement closely to the position measured in vivo. By applying the proposed B 1 correction scheme, the mean metabolite concentrations determined with ERETIC in 21 healthy subjects at three different positions agree with concentrations derived with the tissue water signal as reference. In addition, brain water concentrations determined with ERETIC were in agreement with estimations derived using tissue segmentation and literature values for relative water densities. Based on the results, the ERETIC method presented here is a valid tool to derive in vivo metabolite

  17. Effects of progesterone and its metabolites on human granulosa cells.

    Science.gov (United States)

    Pietrowski, D; Gong, Y; Mairhofer, M; Gessele, R; Sator, M

    2014-02-01

    The corpus luteum (CL) is under control of gonadotrophic hormones and produces progesterone, which is necessary for endometrial receptivity. Recent studies have shown that progesterone and its metabolites are involved in cell proliferation and apoptosis of cancer cells. Here weanalyzed the role of progesterone and its meta-bolites on luteinized granulosa cells (LGC) by FACS analysis and quantitative Real-Time PCR. We detected the mRNA of the progesterone metabolizing genes SRD5A1, AKR1C1, and AKR1C2 in LGC. The stimulation of LGC with progesterone or progesterone metabolites did not show any effect on the mRNA expression of these genes. However, a downregulation of Fas expression was found to be accomplished by progesterone and human chorionic gonadotropin. Our findings do not support the concept of an effect of progesterone metabolites on LGCs. However, it suggests an antiapoptotic effect of hCG and progesterone during corpus luteum development by downregulation of Fas. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Science.gov (United States)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  19. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes.

    Science.gov (United States)

    Mikov, Momir; Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Goločorbin-Kon, Svetlana; Stankov, Karmen; Al-Salami, Hani

    2017-12-01

    Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug-drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.

  20. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  1. Quantitative Isotope-Dilution High-Resolution-Mass-Spectrometry Analysis of Multiple Intracellular Metabolites in Clostridium autoethanogenum with Uniformly 13C-Labeled Standards Derived from Spirulina.

    Science.gov (United States)

    Schatschneider, Sarah; Abdelrazig, Salah; Safo, Laudina; Henstra, Anne M; Millat, Thomas; Kim, Dong-Hyun; Winzer, Klaus; Minton, Nigel P; Barrett, David A

    2018-04-03

    We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with 13 C, as a readily accessible source of multiple 13 C-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)- 13 C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 μM with excellent linearity for all of the calibration curves ( R 2 ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U- 13 C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.

  2. Analysis of I-125 IMP and its metabolites using a high performance liquid chromatography

    International Nuclear Information System (INIS)

    Satoh, Motohiro; Ishikawa, Nobuyoshi; Takeda, Tohoru; Jin, Wu; Kuramoto, Kenmei; Itai, Yuji; Yoshizawa, Takashi; Nakajima, Kotaro.

    1991-01-01

    The biodistribution of N-isopropyl-p-[I-123]iodoamphetamine (IMP) and its metabolites was examined in rabbits and Mongolian gerbils. Arterial sampling was performed at one, 5, 15, and 30 min, and one, 3, and 6 hr after bolus iv injection of IMP for the hemodynamic investigation. Similarly, the cerebral hemisphere, lung, liver, and blood samples were collected at 15 min and 3 hr for analyzing IMP metabolites. Activity count in blood was gradually increased from 15 min to 3 hr after iv injection, and thereafter decreased. Relative fraction of IMP in plasma was gradually increased to a plateau value of 80% at one hr. Octanol extraction ratio was decreased to 24.3% at 3 hr, although it was 100% immediately after iv injection. Early (15 min) and delayed (3 hr) analysis using high performance liquid chromatography (HPLC) revealed p-iodoamphetamine (PIA) and p-iodobenzoic acid (PIB) as major metabolites of IMP. Although IMP accounted for the majority on both early and delayed HPLC, the quantity of PIA in the normal hemisphere and lung was significantly increased on delayed HPLC, compared to early HPLC. For the liver, the quantities of both PIA and PIB were larger than IMP on both early and delayed HPLC. The proportion of metabolites also became greater in whole blood than IMP on delayed HPLC. Early HPLC reveald no significant difference in composition of IMP, PIA, and PIB between the normal and ischemic hemispheres. Delayed HPLC revealed a greater proportion of PIA in the ischemic than the normal hemisphere, but this was not statistically significant. (N.K.)

  3. Neurochemical metabolites in prefrontal cortex in patients with mild/moderate levels in first-episode depression

    Directory of Open Access Journals (Sweden)

    Sozeri-Varma G

    2013-08-01

    Full Text Available Gülfizar Sözeri-Varma,1 Nalan Kalkan-Oğuzhanoglu,1 Muharrem Efe,1 Yilmaz Kiroglu,2 Taçlan Duman11Department of Psychiatry, 2Department of Radiology, Faculty of Medicine, Pamukkale University, Denizli, TurkeyBackground: Previous studies have determined the neurochemical metabolite abnormalities in major depressive disorder (MDD. The results of studies are inconsistent. Severity of depression may relate to neurochemical metabolic changes. The aim of this study is to investigate neurochemical metabolite levels in the prefrontal cortex (PFC of patients with mild/moderate MDD.Methods: Twenty-one patients with mild MDD, 18 patients with moderate MDD, and 16 matched control subjects participated in the study. Patients had had their first episode. They had not taken treatment. The severity of depression was assessed by the Hamilton Rating Scale for Depression (HAM-D. Levels of N-acetyl aspartate (NAA, choline-containing compounds (Cho, and creatine-containing compounds (Cr were measured using proton magnetic resonance spectroscopy (1H-MRS at 1.5 T, with an 8-cm3 single voxel placed in the right PFC.Results: The moderate MDD patients had lower NAA/Cr levels than the control group. No differences were found in neurochemical metabolite levels between the mild MDD and control groups. No correlation was found between the patients’ neurochemical metabolite levels and HAM-D scores.Conclusion: Our findings suggest that NAA/Cr levels are low in moderate-level MDD in the PFC. Neurochemical metabolite levels did not change in mild depressive disorder. Our results suggest that the severity of depression may affect neuronal function and viability. Studies are needed to confirm this finding, including studies on severely depressive patients.Keywords: major depressive disorder, magnetic resonance spectroscopy, N-acetyl aspartate, creatine, choline

  4. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  5. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce.

    Science.gov (United States)

    Jacxsens, L; Devlieghere, F; Ragaert, P; Vanneste, E; Debevere, J

    2003-06-25

    The quality of four types of fresh-cut produce, packaged in consumer-sized packages under an equilibrium modified atmosphere and stored at 7 degrees C, was assessed by establishing the relation between the microbial outgrowth and the corresponding production of nonvolatile compounds and related sensory disorders. In vitro experiments, performed on a lettuce-juice-agar, demonstrated the production of nonvolatile compounds by spoilage causing lactic acid bacteria and Enterobacteriaceae. Pseudomonas fluorescens and yeasts, however, were not able to produce detectable amounts of nonvolatile metabolites. The type of spoilage and quality deterioration in vivo depended on the type of vegetable. Mixed lettuce and chicory endives, leafy tissues, containing naturally low concentrations of sugars, showed a spoilage dominated by Gram-negative microorganisms, which are not producing nonvolatile compounds. Sensory problems were associated with visual properties and the metabolic activity of the plant tissue. Mixed bell peppers and grated celeriac, on the other hand, demonstrated a fast and intense growth of spoilage microorganisms, dominated by lactic acid bacteria and yeasts. This proliferation resulted in detectable levels of organic acids and the rejection by the trained sensory panel was based on the negative perception of the organoleptical properties (off-flavour, odour and taste). The applied microbiological criteria corresponded well with detectable changes in sensory properties and measurable concentrations of nonvolatile compounds, surely in the cases where lactic acid bacteria and yeasts were provoking spoilage. Consequently, the freshness of minimally processed vegetables, sensitive for outgrowth of lactic acid bacteria and yeasts (e.g., carrots, celeriac, bell peppers, mixtures with non-leafy vegetables) can be evaluated via analysis of the produced nonvolatile compounds.

  6. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  7. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    NARCIS (Netherlands)

    Gracia-Lor, E.; Rousis, N.I.; Zuccato, E.; Bade, R.; Baz-Lomba, J.A.; Castrignanò, E.; Causanilles Llanes, A.; Hernández, F.; Kasprzyk-Hordern, B.; Kinyua, J.; McCall, A.-K.; van Nuijs, A.L.N.; Plósz, B.G.; Ramin, P.; Ryu, Y.; Santos, M.M.; Thomas, K.; de Voogt, P.; Yang, Z.; Castiglioni, S.

    2017-01-01

    Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the

  8. Antipyrine metabolite formation and excretion in patients with chronic renal failure

    NARCIS (Netherlands)

    Teunissen, M W; Kampf, D; Roots, I; Vermeulen, N P; Breimer, D D

    1985-01-01

    In the present study the influence of chronic renal insufficiency on antipyrine clearance, metabolite formation and excretion was investigated in 8 patients. After oral administration of antipyrine, the parent compound, its metabolites and their conjugates were assayed in plasma and urine. Besides

  9. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts.

    Science.gov (United States)

    Floegel, Anna; Kühn, Tilman; Sookthai, Disorn; Johnson, Theron; Prehn, Cornelia; Rolle-Kampczyk, Ulrike; Otto, Wolfgang; Weikert, Cornelia; Illig, Thomas; von Bergen, Martin; Adamski, Jerzy; Boeing, Heiner; Kaaks, Rudolf; Pischon, Tobias

    2018-01-01

    Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105 serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction (MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21-1.40 per one standard deviation increase in metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from 0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI. When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from 0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was consistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly metabolites of the arachidonic acid pathway are independently associated with risk of MI in

  10. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    Science.gov (United States)

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila.

  11. Peripheral metabolism of [18F]FDDNP and cerebral uptake of its labelled metabolites

    International Nuclear Information System (INIS)

    Luurtsema, Gert; Schuit, Robert C.; Takkenkamp, Kevin; Lubberink, Mark; Hendrikse, N. Harry; Windhorst, Albert D.; Molthoff, Carla F.M.; Tolboom, Nelleke; Berckel, Bart N.M. van; Lammertsma, Adriaan A.

    2008-01-01

    [ 18 F]FDDNP is a positron emission tomography (PET) tracer for determining amyloid plaques and neurofibrillary tangles in the brain in vivo. In order to quantify binding of this tracer properly, a metabolite-corrected plasma input function is required. The purpose of the present study was to develop a sensitive method for measuring [ 18 F]FDDNP and its radiolabelled metabolites in plasma. The second aim was to assess whether these radiolabelled metabolites enter the brain. In humans, there was extensive metabolism of [ 18 F]FDDNP. After 10 min, more than 80% of plasma radioactivity was identified as polar 18 F-labelled fragments, probably formed from N-dealkylation of [ 18 F]FDDNP. These labelled metabolites were reproduced in vitro using human hepatocytes. PET studies in rats showed that these polar metabolites can penetrate the blood-brain barrier and result in uniform brain uptake

  12. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.

    Science.gov (United States)

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W H; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts.

  13. Urinary concentrations of di(2-ethylhexyl) phthalate metabolites and serum reproductive hormones

    DEFF Research Database (Denmark)

    Mendiola, Jaime; Meeker, John D; Jørgensen, Niels

    2012-01-01

    Urinary concentrations of metabolites of the anti-androgenic xenobiotic di-(2-ethylhexyl) phthalate (DEHP) were previously shown to be weakly associated with serum levels of several hormones in 2 disparate US populations: partners of pregnant women participating in the Study for Future Families...... and partners in infertile couples from Massachusetts General Hospital infertility clinic. The observed associations between phthalate metabolites and reproductive hormones were robust and insensitive to the characteristics of the subpopulation or the laboratory in which the hormones were measured, despite...... the fact that these 2 populations span a range of fertility, urinary phthalate metabolites, and reproductive hormone levels. We therefore examined associations between urinary metabolites of DEHP and reproductive hormones-follicle-stimulating hormone, luteinizing hormone, testosterone (T), inhibin B...

  14. In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography–Quadrupole/Time-of-Flight Hybrid Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography–quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens. PMID:25156794

  15. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Fetal Serum Metabolites Are Independently Associated with Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yong-Ping Lu

    2018-01-01

    Full Text Available Background/Aims: Gestational diabetes (GDM might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32: 1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM.

  17. Gut Microbiota-Regulated Pharmacokinetics of Berberine and Active Metabolites in Beagle Dogs After Oral Administration.

    Science.gov (United States)

    Feng, Ru; Zhao, Zhen-Xiong; Ma, Shu-Rong; Guo, Fang; Wang, Yan; Jiang, Jian-Dong

    2018-01-01

    Berberine (BBR) is considered a multi-target drug that has significant advantages. In contrast to its significant pharmacological effects in clinic, the plasma level of BBR is very low. Our previous work revealed that dihydroberberine (dhBBR) could be an absorbable form of BBR in the intestine, and butyrate is an active metabolite that is generated by gut bacteria in rats. In this study, for the first time we describe gut microbiota-regulated pharmacokinetics in beagle dogs after oral administration of BBR by single (50 mg/kg) or multiple doses (50 mg/kg/d) for 7 days. GC-MS, GC, LC-MS/MS, and LC/MS n -IT-TOF were used to detect dhBBR, butyrate and BBR as well as its Phase I and II metabolites, respectively. The results showed that dhBBR was not detected in dog plasma but was excreted in small amounts in the feces of dogs examined on days 3 and 7. Butyrate was generated by gut bacteria and increased by 1.3- and 1.2-fold in plasma or feces, respectively, after 7 days of BBR treatment compared to the levels before treatment. Changes of intestinal bacterial composition were analyzed by 16S rRNA genes analysis. The results presented that dogs treated with BBR for 7 days increased both the abundance of the butyrate- and the nitroreductases- producing bacteria. We also identified chemical structures of the Phase I and II metabolites and analyzed their contents in beagle dogs. Eleven metabolites were detected in plasma and feces after BBR oral administration (50 mg/kg) to dogs, including 8 metabolites of Phase I and III metabolites of Phase II. The pharmacokinetic profile indicated that the concentration of BBR in plasma was low, with a C max value of 36.88 ± 23.45 ng/mL. The relative content of glucuronic acid conjugates (M11) was higher than those of other metabolites (M1, M2, M12, and M14) in plasma. BBR was detected in feces, with high excreted amounts on day 3 (2625.04 ± 1726.94 μg/g) and day 7 (2793.43 ± 488.10 μg/g). In summary, this is the first study to

  18. Vitamin D metabolites in human milk

    International Nuclear Information System (INIS)

    Weisman, Y.; Bawnik, J.C.; Eisenberg, Z.; Spirer, Z.

    1982-01-01

    The concentrations of unconjugated 25-OHD, 24, 25(OH)2D, and 1,25(OH)2D were measured in human milk by competitive protein-binding radioassays following successive preparative Sephadex LH-20 chromatography and HPLC. The mean (+/- SE) concentration of 25-OHD was 0.37 +/- 0.03 ng/ml, of 24,25(OH)2D was 24.8 +/- 1.9 pg/ml, and of 1,25(OH)2D was 2.2 +/-0.1 pg/ml. The concentration of 25-OHD3 in milk as determined by HPLC and UV detection at 254 nm was 0.27 +/- 0.08 ng/ml. The milk concentrations of vitamin D metabolites did not correlate with the maternal serum 25-OHD levels. The total amounts of unconjugated vitamin D metabolites correspond to the known low bioassayable vitamin D antirachitic activity in human milk

  19. The neurotoxicity of pyridinium metabolites of haloperidol

    Directory of Open Access Journals (Sweden)

    Agnieszka Górska

    2015-10-01

    Full Text Available Haloperydol is a butyrophenone, typical neuroleptic agent characterized as a high antipsychotics effects in the treatment of schizophrenia and in palliative care to alleviation many syndromes, such as naursea, vomiting and delirium. Clinical problems occurs during and after administration of the drug are side effects, particularly extrapyrramidal symptoms (EPS. The neurotoxicity of haloperydol may be initiated by the cationic metabolites of haloperydol, HPP+, RHPP+, formed by oxidation and reduction pathways. These metabolites are transported by human organic cation transporters (hOCT to several brain structures for exapmle, in substantia nigra, striatum, caudate nucleus, hippocampus. After reaching the dopaminergic neurons inhibits mitochondrial complex I, evidence for free radical involvement, thus leading to neurodegeneration.

  20. Determination of urine metabolites containing radioactivatable elements by molecular neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1986-01-01

    As urine is a final stage for the metabolic pathways of essential trace elements or chemical toxins, it is becoming increasingly important to not only report levels of trace elements but to determine the molecular or ionic identity of these trace elements. For a biological system such as urine, a molecular neutron activation analysis (MONAA) approach must involve a deproteinization step, where necessary, to ensure that metabolites such as amino acids, bases, r nucleosides are not protein bound prior to chemical separation. This can involve the simple application of ammonia or acid hydrolysis. All separations for the metabolites containing the radioactivatable element must be performed prior to neutron irradiation and subsequent radioassay for the metabolite. Separation procedures can include high-pressure liquid chromotography (HPLC), ion-exchange chromatography, size exclusion chromatography, solvent extraction, and/or gas chromatography. After separation, the separated metabolite is neutron irradiated and and radioassayed for the radioactivity in the metabolite. A review of previous work involving the determination of hormonal iodine, iodoamino acids, chlorinated pesticides, trimethyl-selenonium, and selenoamino acids in urine is discussed

  1. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Science.gov (United States)

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  2. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10.

    Science.gov (United States)

    Gerc, Amy J; Stanley-Wall, Nicola R; Coulthurst, Sarah J

    2014-08-01

    Phosphopantetheinyltransferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilize bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in Ser. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterized siderophore, which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of Ser. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites. © 2014 The Authors.

  3. Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions.

    Science.gov (United States)

    Harb, Jamil; Alseekh, Saleh; Tohge, Takayuki; Fernie, Alisdair R

    2015-09-01

    Cultivation of grapes in West Bank - Palestine is very old and a large number of grape varieties exist as a result of continuous domestication over thousands of years. This rich biodiversity has highly influenced the consumer behavior of local people, who consume both grape berries and leaves. However, studies that address the contents of health-promoting metabolites in leaves are scarce. Accordingly the aim of this study is to assess metabolite levels in leaves of two grape varieties that were collected from semiarid and temperate regions. Metabolic profiling was conducted using GC-MS and LC-MS. The obtained results show that abiotic stresses in the semiarid region led to clear changes in primary metabolites, in particular in amino acids, which exist at very high levels. By contrast, qualitative and genotype-dependent differences in secondary metabolites were observed, whereas abiotic stresses appear to have negligible effect on the content of these metabolites. The qualitative difference in the flavonol profiles between the two genotypes is most probably related to differential expression of specific genes, in particular flavonol 3-O-rhamnosyltransferase, flavonol-3-O-glycoside pentosyltransferases and flavonol-3-O-d-glucosidel-rhamnosyltransferase by 'Beituni' grape leaves, which led to much higher levels of flavonols with rutinoside, pentoside, and rhamnoside moieties with this genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A radioimmunoassay for abscisic acid: properties of cross-reacting polar metabolites

    International Nuclear Information System (INIS)

    Le Page-Degivry, M.; Bulard, C.

    1984-01-01

    When the radioimmunoassay developed for abscisic acid (ABA) estimation was applied to a plant extract, results appeared overestimated. Purification by thin-layer chromatography established that ABA in its free and alkali-hydrolysable forms constituted only a small part of the immunoreactive material. The major source of the cross-reactivity was a group of polar metabolites, poorly soluble in ether and well recovered by ethyl acetate and butanol. These immunoreactive metabolites were compared with polar metabolites already described in experiments wher e [ 14 C]ABA was fed to plant tissue, particularly with recently identified glucosides of ABA and dihydrophaseic acid

  5. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  6. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.

    Science.gov (United States)

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2018-03-08

    The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.

  7. Metabolite profiles of common Stemphylium species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Solfrizzo, Michelle; Visconti, Angelo

    1995-01-01

    and identified by their chromatographic and spectroscopic data (Rf values, reflectance spectrum, retention index and ultraviolet spectrum). These metabolites have been used for the chemotaxonomical characterization of Stemphylium botryosum, S. herbarum, S. alfalfae, S. majusculum, S. sarciniforme, S. vesicarium...

  8. Secondary metabolites of cyanobacteria Nostoc sp.

    Science.gov (United States)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  9. Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Felício, Andréia Arantes; Freitas, Juliane Silberschmidt; Scarin, Jéssica Bolpeti; de Souza Ondei, Luciana; Teresa, Fabrício Barreto; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-03-01

    Diuron is one of the most used herbicide in the world, and its field application has been particularly increased in Brazil due to the expansion of sugarcane crops. Diuron has often been detected in freshwater ecosystems and it can be biodegraded into three main metabolites in the environment, the 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU). Negative effects under aquatic biota are still not well established for diuron, especially when considering its presence in mixture with its different metabolites. In this study, we evaluated the effects of diuron alone or in combination with its metabolites, DCPMU, DCPU and 3,4-DCA on biochemical stress responses and biotransformation activity of the fish Oreochromis niloticus. Results showed that diuron and its metabolites caused significant but dispersed alterations in oxidative stress markers and biotransformation enzymes, except for ethoxyresorufin-O-deethylase (EROD) activity, that presented a dose-dependent increase after exposure to either diuron or its metabolites. Glutathione S-transferase (GST) activity was significant lower in gills after exposure to diuron metabolites, but not diuron. Diuron, DCPMU and DCA also decreased the multixenobiotic resistance (MXR) activity. Lipid peroxidation levels were increased in gill after exposure to all compounds, indicating that the original compound and diuron metabolites can induce oxidative stress in fish. The integration of all biochemical responses by the Integrated Biomarker Response (IBR) model indicated that all compounds caused significant alterations in O. niloticus, but DCPMU caused the higher alterations in both liver and gill. Our findings imply that diuron and its metabolites may impair the physiological response related to biotransformation and antioxidant activity in fish at field concentrations. Such alterations could interfere with the ability of aquatic animals to adapt to environments contaminated by

  10. The reactive metabolite target protein database (TPDB – a web-accessible resource

    Directory of Open Access Journals (Sweden)

    Dong Yinghua

    2007-03-01

    Full Text Available Abstract Background The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. Description The Reactive Metabolite Target Protein Database (TPDB is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i string searches for author names and proteins names/synonyms, ii more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. Conclusion The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available at http://tpdb.medchem.ku.edu/tpdb.html

  11. Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room.

    Directory of Open Access Journals (Sweden)

    Anna M Kauppi

    Full Text Available A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69-0.99 and a specificity 0.84 (95% CI 0.58-0.94 with an AUC of 0.93 (95% CI 0.89-1.01. Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85-1.00 and specificity of 0.95 (95% CI 0.74-0.99, and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.

  12. Phthalate Metabolites, Consumer Habits and Health Effects

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2016-07-01

    Full Text Available Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP, mono-n-butyl phthalate (MnBP, mono-isobutyl phthalate (MiBP, monobenzyl phthalate (MBzP, mono-(2-ethylhexyl phthalate (MEHP, mono-(2-ethyl-5-hydroxyhexyl phthalate (5OH-MEHP, mono-(2-ethyl-5-oxohexyl phthalate (5oxo-MEHP, mono-(5-carboxy-2-ethylpentyl phthalate (5cx-MEPP, and 3-carboxy-mono-propyl phthalate (3cx-MPP could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET bottles and the diethyl phthalate (DEP metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  13. Phthalate Metabolites, Consumer Habits and Health Effects.

    Science.gov (United States)

    Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter

    2016-07-15

    Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  14. Polyphenol metabolite profile of artichoke is modulated by agronomical practices and cooking method.

    Science.gov (United States)

    Palermo, Mariantonella; Colla, Giuseppe; Barbieri, Giancarlo; Fogliano, Vincenzo

    2013-08-21

    In this paper artichoke phenolic pattern was characterized using an Orbitrap Exactive Mass Spectrometer at high mass accuracy and conventional HPLC MS/MS. Twenty four phenolic acids and 40 flavonoids were identified, many of them not previously reported in artichoke. Variations in phenolic compounds were investigated in relation to mycorrhization: results showed that inoculation with mycorrhizae greatly influences metabolite profile proving to be a good strategy to enhance the biosynthesis of secondary metabolites in this plant. This practice also caused a different distribution of the main phenolic compounds within head parts. Both steaming and microwaving cooking treatments caused an increase in antioxidant activity: the lower the initial concentration the higher the effect. A similar trend was observed looking at the phenolic compounds concentration: it increased because of cooking treatments the lower the initial content, the highest the increase. Steamed artichoke showed higher phenols content than microwaved ones.

  15. Fate of N-methylformamide in mice. Routes of elimination and characterization of metabolites

    International Nuclear Information System (INIS)

    Kestell, P.; Gescher, A.; Slack, J.A.

    1985-01-01

    The fate of N-methylformamide has been investigated in male CBA/CA mice following the administration of this compound labeled with 14 C either in the methyl or in the formyl group. The major route of elimination was found to be via the kidneys although a substantial quantity (39% of the dose) was eliminated via the lungs as CO 2 in the case of [ 14 C]formyl-labeled N-methylformamide. In addition to the unchanged compound three metabolites were found in the urine by TLC autoradiography. One of these metabolites was identified as methylamine after conversion to its 2,4-dinitrophenyl derivative. The derivative was isolated and shown to be N-methyl-2,4-dinitroaniline by mass spectrometry. Further evidence that methylamine was a metabolite of N-methylformamide was provided by ion pair HPLC analysis of urine from mice dosed with [ 14 C]methyl-labeled N-methylformamide. The second metabolite was tentatively identified as N-hydroxymethylformamide which was present in the urine of mice dosed with either [ 14 C]methyl- or [ 14 C]formyl-labeled N-methylformamide. Formate was not a urinary metabolite of N-methylformamide. The identity of the third urinary metabolite remains unknown

  16. Metabolites of the 1',2'-dimethylheptyl analogue of delta-8-tetrahydrocannabinol in the mouse and their identification by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Harvey, D J; Brown, N K

    1990-10-01

    Metabolism of the 1,2-dimethylheptyl analogue of delta-8-tetrahydrocannabinol (delta-8-DMHP) was studied in vitro using mouse hepatic microsomes and in vivo in mouse liver. Metabolites were extracted with ethyl acetate, concentrated by chromatography on Sephadex LH-20 and examined by low-resolution mass spectrometry as trimethylsilyl (TMS), (2H9)TMS and methyl ester/TMS derivatives. Reduction of metabolites with lithium aluminium deuteride also provided structural information. The electron-impact-induced mass spectrum of the TMS derivative of DMHP differed from that of its unbranched side-chain analogues in that prominent ions were produced by fragmentation of the side-chain at the expense of the retro-Diels-Alder fragmentation that was prominent in the spectra of the latter compounds. This, however, was found to reduce the relative abundance of ions diagnostic of side-chain hydroxy substitution in the spectra of the metabolites. In vitro, the only significant metabolite was 11-hydroxy-delta-8-DMHP. This is in contrast with metabolism of the corresponding delta-8-tetrahydrocannabinol (delta-8-THC, n-C5-side-chain) where a number of other monohydroxy metabolites are produced. Fifteen metabolites were found in vivo, of which nine were identified. Mass spectral information was not sufficient to determine the position of one of the hydroxy groups in the other six metabolites. The major site of hydroxylation was at C-11 and the resulting hydroxy metabolite was oxidized to delta-8-DMHP-11-oic acid. In this respect metabolism paralleled that of delta-8-THC. Dihydroxylation of the double bond also occurred, presumably via the epoxide.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Towards a new method for the quantification of metabolites in the biological sample

    International Nuclear Information System (INIS)

    Neugnot, B.

    2005-03-01

    The quantification of metabolites is a key step in drug development. The aim of this Ph.D. work was to study the feasibility of a new method for this quantification, in the biological sample, without the drawbacks (cost, time, ethics) of the classical quantification methods based on metabolites synthesis or administration to man of the radiolabelled drug. Our strategy consists in determining the response factor, in mass spectrometry, of the metabolites. This approach is based on tritium labelling of the metabolites, ex vivo, by isotopic exchange. The labelling step was studied with deuterium. Metabolites of a model drug, recovered from in vitro or urinary samples, were labelled by three ways (Crab tree's catalyst ID2, deuterated trifluoroacetic acid or rhodium chloride ID20). Then, the transposition to tritium labelling was studied and the first results are very promising for the ultimate validation of the method. (author)

  18. Circulating zearalenone and its metabolites differ in women due to body mass index and food intake.

    Science.gov (United States)

    Mauro, T; Hao, L; Pop, L C; Buckley, B; Schneider, S H; Bandera, E V; Shapses, S A

    2018-04-17

    The environmental estrogen, zearalenone (ZEA), is found in the food supply from Fusarium fungal contamination in grains and sometimes used as a growth promoter for beef cattle. Long-term exposure to ZEA and its metabolites may present health risk due to higher estrogenic activity. Serum ZEA metabolites were measured to determine the exposure and the association with food intake in 48 overweight/obese women (52 ± 9 years). The free and conjugated ZEA indicated the highest detection rate of all the metabolites. Conjugated ZEA and total ZEA metabolites were lower (p = 0.02) in overweight/obese than normal weight women, and free metabolites were either the same or showed a trend to be higher. In addition, those with highest (280-480 g/d) compared those with lowest (metabolite concentrations (p metabolites. These findings indicate that ZEA and its metabolites are detectable in nearly all women and concentrations are associated with greater meat intake, and influenced by body mass index. Determining how the food supply influences human concentrations of ZEA metabolites is warranted, as well as determining vulnerable populations. Copyright © 2018. Published by Elsevier Ltd.

  19. Differentiation of clobenzorex use from amphetamine abuse using the metabolite 4-hydroxyclobenzorex.

    Science.gov (United States)

    Valtier, S; Cody, J T

    2000-10-01

    Clobenzorex (Asenlix) is an anorectic drug metabolized by the body to amphetamine, thus causing difficulty in the interpretation of amphetamine-positive drug tests. Previous studies have shown the parent drug and several metabolites are excreted in urine. Clobenzorex itself has been detected for as long as 29 h postdose using a detection limit of 1 ng/mL. Despite this fact, several amphetamine-positive samples (> or = 500 ng/mL) contained no detectable clobenzorex. Thus, the absence of clobenzorex in the urine does not exclude the possibility of its use. To more definitively assess the possibility of clobenzorex use, evaluation of another metabolite was considered. One study reported the presence of unidentified hydroxy metabolites of clobenzorex for as long as amphetamine was detected in some subjects. To assess the viability of using a hydroxy metabolite to confirm the use of clobenzorex in samples containing amphetamine, 4-hydroxyclobenzorex was synthesized for this study. This metabolite proved to be easily detected and was typically found at levels higher than amphetamine in amphetamine-positive urines, long after clobenzorex itself was no longer detected. Samples obtained from a controlled single-dose study involving the administration of clobenzorex (30 mg) were analyzed for the presence of the 4-hydroxy metabolite. The analytical procedure used acid hydrolysis followed by liquid-liquid extraction and analysis with gas chromatography-mass spectrometry by monitoring ions at m/z 125, 330, and 364. 4-Hydroxyclobenzorex and its 3-Cl regioisomer were used in the identification and quantitation of the metabolite. Peak concentrations of 4-hydroxyclobenzorex were found at approximately 1:30-5:00 h postdose and ranged from approximately 5705 to 88,410 ng/mL. Most importantly, however, all samples that contained amphetamine at > or = 500 ng/mL also contained detectable amounts of this hydroxy metabolite (LOD 10 ng/mL), making it a valuable tool in differentiating use

  20. Occipital Proton Magnetic Resonance Spectroscopy ((1)H-MRS) Reveals Normal Metabolite Concentrations in Retinal Visual Field Defects

    NARCIS (Netherlands)

    Boucard, Christine C.; Hoogduin, Johannes M.; van der Grond, Jeroen; Cornelissen, Frans W.

    2007-01-01

    Background. Progressive visual field defects, such as age-related macular degeneration and glaucoma, prevent normal stimulation of visual cortex. We investigated whether in the case of visual field defects, concentrations of metabolites such as N-acetylaspartate (NAA), a marker for degenerative

  1. Plutonium interactions with soil microbial metabolites: effect on plutonium sorption by soil

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Rogers, J.E.

    1987-01-01

    To develop an understanding of the mechanisms of plutonium (Pu) complexation and solubilization by soil microorganisms, a broad range of bacteria and fungi were isolated in pure cultures from soil on the basis of metal tolerance and carbon requirements. The organisms were then used in investigations to examine Pu cellular transport, Pu complexation by extracellular metabolites, and the effects of complexation on Pu valence state, chemical form, and solubility in soil. Of the 239 bacteria and 250 fungi isolated from soil, 19 bacteria and 60 fungi were selected for detailed study. Of these organisms, 15 bacteria and 18 fungi grew to form extracellular Pu complexes that increased the concentration of Pu in soil column eluates relative to controls. Elution through soil effectively removed positively charged Pu complexes. Increased Pu mobility in soil resulted from the formation of neutral and negatively charged Pu complexes, which differed with organism type. In the presence of known microbial metabolites and synthetic ligands (DTPA, EDTA, EDDHA), Pu(VI) was reduced to Pu(IV) before complexation, suggesting that Pu(IV) would be the dominant valence state associated with organic complexes in soils. Studies on selected organisms indicated that both active Pu transport and Pu sorption on the cell occurred, and these phenomena, as well as complexation by extracellular metabolites of Pu, were a function of the form of Pu supplied, the organism type and growth characteristics, and the ability of the organism to alter extracellular pH. 18 references, 6 figures, 7 tables

  2. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  3. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases.

    Science.gov (United States)

    Hashiguchi, Takuyu; Kurogi, Katsuhisa; Sakakibara, Yoichi; Yamasaki, Masao; Nishiyama, Kazuo; Yasuda, Shin; Liu, Ming-Cheh; Suiko, Masahito

    2011-01-01

    Tocopherols are essential micronutrients for mammals widely known as potent lipid-soluble antioxidants that are present in cell membranes. Recent studies have demonstrated that most of the carboxychromanol (CEHC), a tocopherol metabolite, in the plasma exists primarily in sulfate- and glucuronide-conjugated forms. To gain insight into the enzymatic sulfation of tocopherols and their metabolites, a systematic investigation was performed using all 14 known human cytosolic sulfotransferases (SULTs). The results showed that the members of the SULT1 family displayed stronger sulfating activities toward tocopherols and their metabolites. These enzymes showed a substrate preference for γ-tocopherol over α-tocopherol and for γ-CEHC over other CEHCs. Using A549 human lung epithelial cells in a metabolic labeling study, a similar trend in the sulfation of tocopherols and CEHCs was observed. Collectively, the results obtained indicate that SULT-mediated enzymatic sulfation of tocopherols and their metabolites is a significant pathway for regulation of the homeostasis and physiological functions of these important compounds.

  4. Characterization of the radiolabeled metabolite of tau PET tracer {sup 18}F-THK5351

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Tashiro, Manabu [Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Katsutoshi, Furukawa; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Yanai, Kazuhiko [Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Okamura, Nobuyuki [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku Medical and Pharmaceutical University, Division of Pharmacology, Faculty of Medicine, Sendai (Japan)

    2016-11-15

    {sup 18}F-THK5351 is a novel radiotracer developed for in vivo imaging of tau pathology in the brain. For the quantitative assessment of tau deposits in the brain, it is important that the radioactive metabolite does not enter the brain and that it does not bind to tau fibrils. The purpose of the study was to identify a radiolabeled metabolite of {sup 18}F-THK5351 in blood samples from human subjects and to characterize its pharmacological properties. Venous blood samples were collected from three human subjects after injection of {sup 18}F-THK5351 and the plasma metabolite was measured by high performance thin layer chromatography. In addition, mass spectrometry analysis and enzymatic assays were used to identify this metabolite. Mice were used to investigate the blood-brain barrier permeability of the radioactive metabolite. Furthermore, the binding ability of the metabolite to tau aggregates was evaluated using autoradiography and binding assays using human brain samples. About 13 % of the unmetabolized radiotracer was detectable in human plasma at 60 min following the injection of {sup 18}F-THK5351. The isolated radiometabolite of {sup 18}F-THK5351 was the sulphoconjugate of THK5351. This metabolite could be produced in vitro by incubating THK5351 with liver but not brain homogenates. The metabolite did not penetrate the blood-brain barrier in mice, and exhibited little binding to tau protein aggregates in post-mortem human brain samples. These results suggest that the sole metabolite detectable in plasma seems to be generated outside the brain and does not cross into the brain, which does not affect quantitative analysis of PET images. (orig.)

  5. Predicting Hepatotoxicity of Drug Metabolites Via an Ensemble Approach Based on Support Vector Machine

    Science.gov (United States)

    Lu, Yin; Liu, Lili; Lu, Dong; Cai, Yudong; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2017-11-20

    Drug-induced liver injury (DILI) is a major cause of drug withdrawal. The chemical properties of the drug, especially drug metabolites, play key roles in DILI. Our goal is to construct a QSAR model to predict drug hepatotoxicity based on drug metabolites. 64 hepatotoxic drug metabolites and 3,339 non-hepatotoxic drug metabolites were gathered from MDL Metabolite Database. Considering the imbalance of the dataset, we randomly split the negative samples and combined each portion with all the positive samples to construct individually balanced datasets for constructing independent classifiers. Then, we adopted an ensemble approach to make prediction based on the results of all individual classifiers and applied the minimum Redundancy Maximum Relevance (mRMR) feature selection method to select the molecular descriptors. Eventually, for the drugs in the external test set, a Bayesian inference method was used to predict the hepatotoxicity of a drug based on its metabolites. The model showed the average balanced accuracy=78.47%, sensitivity =74.17%, and specificity=82.77%. Five molecular descriptors characterizing molecular polarity, intramolecular bonding strength, and molecular frontier orbital energy were obtained. When predicting the hepatotoxicity of a drug based on all its metabolites, the sensitivity, specificity and balanced accuracy were 60.38%, 70.00%, and 65.19%, respectively, indicating that this method is useful for identifying the hepatotoxicity of drugs. We developed an in silico model to predict hepatotoxicity of drug metabolites. Moreover, Bayesian inference was applied to predict the hepatotoxicity of a drug based on its metabolites which brought out valuable high sensitivity and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Assessment of faecal glucocorticoid metabolite excretion in captive female fishing cats (Prionailurus viverinus) in Thailand.

    Science.gov (United States)

    Khonmee, Jaruwan; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Thitaram, Chatchote; Somgird, Chaleamchat; Punyapornwithaya, Veerasak; Brown, Janine L

    2016-01-01

    There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (∼60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1-2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P fishing cats, and we found that glucocorticoid metabolite production was influenced by seasonal factors, but not by age. We conclude that weather patterns should be taken into consideration in future studies of glucocorticoid activity in this endangered species, especially those studies aimed at improving captive management to create self-sustaining and healthy populations.

  7. The hepatic metabolism of two carcinogenic dimethylbenz[c]acridines in control and induced rats: the distribution and the mutagenicity of metabolites.

    Science.gov (United States)

    Ye, Y; Scharping, C E; Holder, G M

    1995-04-01

    The major and minor metabolites of the potent polycyclic aza-aromatic carcinogens 7,9-dimethylbenz[c]acridine and 7,10-dimethylbenz[c]acridine, and the stereochemistry of the dihydrodiol metabolites have been previously described. The metabolite distributions produced in incubations of the aza-aromatic compounds with liver microsomes from phenobarbital- and 3-methylcholanthrene-pretreated and untreated rats, and the mutagenicity in the Ames test are described in this paper. The major metabolites of each were the alcohols produced by oxidation of the methyl group on the 8,9,10,11-ring for control and phenobarbital-induced preparations, while with 3-methylcholanthrene-induced preparations both the 7- and 9- (or 10-) monoalcohols were formed. Total monofunctionalized dihydrodiol metabolites, the 5,6- and 3,4-isomers for 7,9-dimethylbenz[c]acridine, and the 3,4-, 5,6- and 8,9-isomers for 7,10-dimethylbenz[c]acridine, constituted approximately 10% of total metabolites. As well, the K-region arene oxide was formed in substantial amounts with both compounds, accompanied in the case of 7,10-dimethylbenz[c]acridine with some 8,9-oxide. When incubations were carried out in the presence of the epoxide hydrase inhibitor 3,3,3-trichloropropane-1,2-oxide, dihydrodiol formation was almost completely inhibited and relative amounts of both phenols and oxides increased. Secondary metabolites were also formed to approximately 10% of the total products. The mutagenicity of synthetic alcohols and isolated purified metabolites was determined in the Salmonella mammalian microsome plate assay (Ames test) with strain TA100. Limited amounts of metabolites isolated precluded extensive testing, but high mutagenicities were noted for all 3,4-dihydrodiol derivatives isolated. These exceeded those of the parent aza-aromatic hydrocarbons. Alcohols were also active but less so than the parent compounds. The activation of these two dimethylbenz[c]acridines to mutagens appears to be through bay

  8. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry.

    Science.gov (United States)

    Ebbel, Erika N; Leymarie, Nancy; Schiavo, Susan; Sharma, Swati; Gevorkian, Sona; Hersch, Steven; Matson, Wayne R; Costello, Catherine E

    2010-04-15

    Oral sodium phenylbutyrate (SPB) is currently under investigation as a histone deacetylation (HDAC) inhibitor in Huntington disease (HD). Ongoing studies indicate that symptoms related to HD genetic abnormalities decrease with SPB therapy. In a recently reported safety and tolerability study of SPB in HD, we analyzed overall chromatographic patterns from a method that employs gradient liquid chromatography with series electrochemical array, ultraviolet (UV), and fluorescence (LCECA/UV/F) for measuring SPB and its metabolite phenylacetate (PA). We found that plasma and urine from SPB-treated patients yielded individual-specific patterns of approximately 20 metabolites that may provide a means for the selection of subjects for extended trials of SPB. The structural identification of these metabolites is of critical importance because their characterization will facilitate understanding the mechanisms of drug action and possible side effects. We have now developed an iterative process with LCECA, parallel LCECA/LCMS, and high-performance tandem MS for metabolite characterization. Here we report the details of this method and its use for identification of 10 plasma and urinary metabolites in treated subjects, including indole species in urine that are not themselves metabolites of SPB. Thus, this approach contributes to understanding metabolic pathways that differ among HD patients being treated with SPB. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Spatial mapping of lichen specialized metabolites using LDI-MSI: chemical ecology issues for Ophioparma ventosa

    OpenAIRE

    Legouin, Béatrice; Geairon, Audrey; Rogniaux, Hélène; Lohezic-Le Devehat, Francoise; Obermayer, Walter

    2016-01-01

    Imaging mass spectrometry techniques have become a powerful strategy to assess the spatial distribution of metabolites in biological systems. Based on auto-ionisability of lichen metabolites using LDI-MS, we herein image the distribution of major secondary metabolites (specialized metabolites) from the lichen Ophioparma ventosa by LDI-MSI (Mass Spectrometry Imaging). Such technologies offer tremendous opportunities to discuss the role of natural products through spatial mapping, their distrib...

  10. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Science.gov (United States)

    Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G.L.

    2017-01-01

    The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions. PMID:28611815

  11. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Directory of Open Access Journals (Sweden)

    Xiaojie Liu

    2017-05-01

    Full Text Available The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs, and chlorogenic acid (CGA, on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

  12. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    Science.gov (United States)

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  13. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale

    Directory of Open Access Journals (Sweden)

    Ji Soo Han

    2015-09-01

    Full Text Available Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  14. Differential metabolite levels in response to spawning-induced inappetence in Atlantic salmon Salmo salar.

    Science.gov (United States)

    Cipriano, Rocco C; Smith, McKenzie L; Vermeersch, Kathleen A; Dove, Alistair D M; Styczynski, Mark P

    2015-03-01

    Atlantic salmon Salmo salar undergo months-long inappetence during spawning, but it is not known whether this inappetence is a pathological state or one for which the fish are adapted. Recent work has shown that inappetent whale sharks can exhibit circulating metabolite profiles similar to ketosis known to occur in humans during starvation. In this work, metabolite profiling was used to explore differences in analyte profiles between a cohort of inappetent spawning run Atlantic salmon and captively reared animals that were fed up to and through the time of sampling. The two classes of animals were easily distinguished by their metabolite profiles. The sea-run fish had elevated ɷ-9 fatty acids relative to the domestic feeding animals, while other fatty acid concentrations were reduced. Sugar alcohols were generally elevated in inappetent animals, suggesting potentially novel metabolic responses or pathways in fish that feature these compounds. Compounds expected to indicate a pathological catabolic state were not more abundant in the sea-run fish, suggesting that the animals, while inappetent, were not stressed in an unnatural way. These findings demonstrate the power of discovery-based metabolomics for exploring biochemistry in poorly understood animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Lifetime Dependent Variation of Stress Hormone Metabolites in Feces of Two Laboratory Mouse Strains.

    Directory of Open Access Journals (Sweden)

    Thomas Kolbe

    Full Text Available Non-invasive measurement of stress hormone metabolites in feces has become routine practice for the evaluation of distress and pain in animal experiments. Since metabolism and excretion of glucocorticoids may be variable, awareness and adequate consideration of influencing factors are essential for accurate monitoring of adrenocortical activity. Reference values are usually provided by baselines compiled prior to the experiment and by age matched controls. The comparison of stress hormone levels between animals of different ages or between studies looking at hormone levels at the beginning and at the end of a long term study might be biased by age-related effects. In this study we analyzed fecal corticosterone metabolites (FCM during the lifetime of untreated female mice of the strains C57BL/6NCrl and Crl:CD1. For this purpose feces for each individual mouse were collected every two months over a period of 24 hours, at intervals of four hours, until the age of 26 months. Results of the study revealed that age of the animals had a significant impact on the level and circadian rhythm of stress hormone metabolites. Furthermore, long-term observation of mice revealed a strain specific excretion profile of FCM influenced by strong seasonal variability.

  16. Biomarker Research in Parkinson's Disease Using Metabolite Profiling

    DEFF Research Database (Denmark)

    Havelund, Jesper F; Heegaard, Niels H H; Færgeman, Nils J K

    2017-01-01

    Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifa......) and purine metabolism (uric acid) are also altered in most metabolite profiling studies in PD......., the potential as a biomarker and the significance of understanding the pathophysiology of PD. Many of the studies report alterations in alanine, branched-chain amino acids and fatty acid metabolism, all pointing to mitochondrial dysfunction in PD. Aromatic amino acids (phenylalanine, tyrosine, tryptophan...

  17. Diversity of secondary metabolites from Genus Artocarpus (Moraceae

    Directory of Open Access Journals (Sweden)

    ALIEFMAN HAKIM

    2010-11-01

    Full Text Available Hakim A. 2010. The diversity of secondary metabolites from Genus Artocarpus (Moraceae. Nusantara Bioscience 2:146-156. Several species of the Artocarpus genus (Moraceae have been investigated their natural product. The secondary metabolites successfully being isolatad from Artocarpus genus consist of terpenoid, flavonoids, stilbenoid, arylbenzofuran, neolignan, and adduct Diels-Alder. Flavonoid group represent the compound which is the most found from Artocarpus plant. The flavonoids compound which are successfully isolated from Artocarpus plant consist of the varied frameworks like chalcone, flavanone, flavan-3-ol, simple flavone, prenylflavone, oxepinoflavone, pyranoflavone, dihydrobenzoxanthone, furanodihydrobenzoxanthone, pyranodihydrobenzoxanthone, quinonoxanthone, cyclopentenoxanthone, xanthonolide, dihydroxanthone.

  18. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs.

    Science.gov (United States)

    Hrynchak, Ivanna; Sousa, Emília; Pinto, Madalena; Costa, Vera Marisa

    2017-05-01

    Anticancer drugs are presently guarantying more survivors as a result of more powerful drugs or combinations of drugs used in therapy. Thus, it has become more crucial to study and overcome the side effects of these therapies. Cardiotoxicity is one of the most relevant side effects on the long-term cancer survivors, because of its high social and economic impact. Drug metabolism can result in active metabolites or toxic metabolites that can lead to important side effects. The metabolites of anticancer drugs are possible culprits of cardiotoxicity; however, the cardiotoxicity of many of the metabolites in several drug classes was not yet suitably studied so far. On the other hand, the use of prodrugs that are bioactivated through metabolism can be a good alternative to obtain more cardio safe drugs. In this review, the methods to obtain and study metabolites are summarized and their application to the study of a group of anticancer drugs with acknowledged cardiotoxicity is highlighted. In this group of drugs, doxorubicin (DOX, 1), mitoxantrone (MTX, 2), cyclophosphamide (CTX, 3) and 5-fluorouracil (5-FU, 4) are included, as well as the tyrosine kinase inhibitors, such as imatinib (5), sunitinib (6) and sorafenib (7). Only with the synthesis and purification of considerable amounts of the metabolites can reliable studies be performed, either in vitro or in vivo that allow accurate conclusions regarding the cardiotoxicity of anticancer drug metabolites and then pharmacological prevention or treatment of the cardiac side effects can be done.

  19. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status

    Directory of Open Access Journals (Sweden)

    Bénédicte Allam-Ndoul

    2016-05-01

    Full Text Available Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW and overweight/obese (Ov/Ob individuals, with or without metabolic syndrome (MetS. Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  20. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  1. A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications

    Directory of Open Access Journals (Sweden)

    Francesco Vinale

    2014-07-01

    Full Text Available Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA, a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  2. A novel fungal metabolite with beneficial properties for agricultural applications.

    Science.gov (United States)

    Vinale, Francesco; Manganiello, Gelsomina; Nigro, Marco; Mazzei, Pierluigi; Piccolo, Alessandro; Pascale, Alberto; Ruocco, Michelina; Marra, Roberta; Lombardi, Nadia; Lanzuise, Stefania; Varlese, Rosaria; Cavallo, Pierpaolo; Lorito, Matteo; Woo, Sheridan L

    2014-07-08

    Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  3. Evaluation of three state-of-the-art metabolite prediction software packages (Meteor, MetaSite, and StarDrop) through independent and synergistic use.

    Science.gov (United States)

    T'jollyn, H; Boussery, K; Mortishire-Smith, R J; Coe, K; De Boeck, B; Van Bocxlaer, J F; Mannens, G

    2011-11-01

    The aim of this study was to evaluate three different metabolite prediction software packages (Meteor, MetaSite, and StarDrop) with respect to their ability to predict loci of metabolism and suggest relative proportions of metabolites. A chemically diverse test set of 22 compounds, for which in vivo human mass balance studies and metabolic schemes were available, was used as basis for the evaluation. Each software package was provided with structures of the parent compounds, and predicted metabolites were compared with experimentally determined human metabolites. The evaluation consisted of two parts. First, different settings within each software package were investigated and the software was evaluated using those settings determined to give the best prediction. Second, the three different packages were combined using the optimized settings to see whether a synergistic effect concerning the overall metabolism prediction could be established. The performance of the software was scored for both sensitivity and precision, taking into account the capabilities/limitations of the particular software. Varying results were obtained for the individual packages. Meteor showed a general tendency toward overprediction, and this led to a relatively low precision (∼35%) but high sensitivity (∼70%). MetaSite and StarDrop both exhibited a sensitivity and precision of ∼50%. By combining predictions obtained with the different packages, we found that increased precision can be obtained. We conclude that the state-of-the-art individual metabolite prediction software has many advantageous features but needs refinement to obtain acceptable prediction profiles. Synergistic use of different software packages could prove useful.

  4. Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene

    NARCIS (Netherlands)

    Bertea, C.M.; Schalk, M.; Karp, F.; Maffei, M.; Croteau, R.

    2001-01-01

    ( )-Menthofuran is an undesirable monoterpenoid component of peppermint (Mentha x piperita) essential oil that is derived from the ,-unsaturated ketone ( )-pulegone. Microsomal preparations, from the oil gland secretory cells of a high ( )-menthofuran-producing chemotype of Mentha pulegium,

  5. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    Science.gov (United States)

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Identification of phase-II metabolites of flavonoids by liquid chromatography-ion-mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Chalet, Clément; Hollebrands, Boudewijn; Janssen, Hans-Gerd; Augustijns, Patrick; Duchateau, Guus

    2018-01-01

    Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.

  7. An assessment of 25-hydroxyvitamin D measurements in comparability studies conducted by the Vitamin D Metabolites Quality Assurance Program.

    Science.gov (United States)

    Bedner, Mary; Lippa, Katrice A; Tai, Susan S-C

    2013-11-15

    The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health Office of Dietary Supplements, established the first accuracy-based program for improving the comparability of vitamin D metabolite measurements, the Vitamin D Metabolites Quality Assurance Program. The study samples were human serum or plasma Standard Reference Materials (SRMs) with 25-hydroxyvitamin D values that were determined at NIST. Participants evaluated the materials using immunoassay (IA), liquid chromatography (LC) with mass spectrometric detection, and LC with ultraviolet absorbance detection. NIST evaluated the results for concordance within the participant community as well as trueness relative to the NIST value. For the study materials that contain mostly 25-hydroxyvitamin D3 (25(OH)D3),the coefficient of variation (CV) for the participant results was consistently in the range from 7% to 19%, and the median values were biased high relative to the NIST values. However, for materials that contain significant concentrations of both 25-hydroxyvitamin D2 (25(OH)D2) and 25(OH)D3, the median IA results were biased lower than both the LC and the NIST values, and the CV was as high as 28%. The first interlaboratory comparison results for SRM 972a Vitamin D Metabolites in Human Serum are also reported. Relatively large within-lab and between-lab variability hinders conclusive assessments of bias and accuracy. © 2013.

  8. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    Science.gov (United States)

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  9. Investigation of tritium incorporation by means of excreted metabolites

    International Nuclear Information System (INIS)

    Biro, T.; Szilagyi, M.

    1978-01-01

    The commonly accepted urine analysis by liquid scintillation method was applied for whole body dose estimating. After the separation of metabolite fractions the organically bound tritium in urine could be measured. Urine samples from workers repeatedly exposed to tritium incorporation during the chemical processing of various labeled compounds have been collected and analyzed. The time dependence of tritium activity in certain metabolites was found to be characteristic, significantly differing from the 3 H concentration curve of the native or treated urine sample. (Auth.)

  10. Metabolite quantitation in breast cancer by in vivo MR spectroscopy

    International Nuclear Information System (INIS)

    Jagananthan, Naranamangalam R.

    2014-01-01

    A large number of biochemical and imaging investigations are available for the diagnosis of cancer but detection is still a challenging task. Various magnetic resonance imaging (MRI) methods are used for the detection of tumors that gives morphological and functional details. On the other hand, magnetic resonance spectroscopy (MRS) provides metabolites or biochemicals at the molecular level. With technological advancement in MR, it is possible to detect in vivo metabolites from normal and pathological tissues that are present in millimolar concentrations and there are several localization methods available for the same. The commonest cancer in women is the breast cancer and is a leading cause of death among the female population worldwide. The in vivo localized proton MR spectroscopy of normal breast tissues is dominated by a huge lipid with little contribution from water while malignant breast tissues contain high water content. By suppressing the water and fat contribution, it is possible to detect choline containing compounds (tCho) in malignant breast tissues. The parameters obtained from in vivo proton MRS of breast tissues are water-to-fat (W-F) ratio and detection of tCho. tCho has been documented by many workers as a potential marker of breast malignancy. Recently, quantitative assessment of tCho concentration has been reported. There are two methods that are used for quantification of tCho: (a) semi-quantitative method that calculates the signal-to-noise ratio (SNR) of the choline signal; and (b) determination of the absolute concentration of tCho using water as an internal and external reference. Both W-F ratio and tCho concentration have been evaluated as markers for assessment of tumor response to therapy. This talk would cover various MRS methods used for the diagnosis of breast cancer together with the details of the determination of the absolute and relative concentrations of metabolites. (author)

  11. The dopamine metabolite 3-methoxytyramine is a neuromodulator.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    2010-10-01

    Full Text Available Dopamine (3-hydroxytyramine is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT, can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1. Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

  12. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    Science.gov (United States)

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  13. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.

    Directory of Open Access Journals (Sweden)

    Yongge Yuan

    Full Text Available Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC, a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3 with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts.

  14. Mangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-03-01

    Full Text Available Objective: Mangiferin (MGF is a natural xanthone, with regulation effect on lipid metabolism. However, the molecular mechanism remains unclear. We purposed after oral administration, MGF is converted to its active metabolite(s, which contributes to the effects on lipid metabolism.Methods: KK-Ay mice were used to validate the effects of MGF on lipid metabolic disorders. Liver biochemical indices and gene expressions were determined. MGF metabolites were isolated from MGF administrated rat urine. Mechanism studies were carried out using HepG2 cells treated by MGF and its metabolite with or without inhibitors or small interfering RNA (siRNA. Western blot and immunoprecipitation methods were used to determine the lipid metabolism related gene expression. AMP/ATP ratios were measured by HPLC. AMP-activated protein kinase (AMPK activation were identified by homogeneous time resolved fluorescence (HTRF assays.Results: MGF significantly decreased liver triglyceride and free fatty acid levels, increased sirtuin-1 (SIRT-1 and AMPK phosphorylation in KK-Ay mice. HTRF studies indicated that MGF and its metabolites were not direct AMPK activators. Norathyriol, one of MGF’s metabolite, possess stronger regulating effect on hepatic lipid metabolism than MGF. The mechanism was mediated by activation of SIRT-1, liver kinase B1, and increasing the intracellular AMP level and AMP/ATP ratio, followed by AMPK phosphorylation, lead to increased phosphorylation level of sterol regulatory element-binding protein-1c.Conclusion: These results provided new insight into the molecular mechanisms of MGF in protecting against hepatic lipid metabolic disorders via regulating SIRT-1/AMPK pathway. Norathyriol showed potential therapeutic in treatment of non-alcoholic fatty liver disease.

  15. Diuron metabolites and urothelial cytotoxicity: In vivo, in vitro and molecular approaches

    International Nuclear Information System (INIS)

    Da Rocha, Mitscheli S.; Arnold, Lora L.; Dodmane, Puttappa R.; Pennington, Karen L.; Qiu, Fang; De Camargo, João Lauro V.; Cohen, Samuel M.

    2013-01-01

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500 ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation

  16. Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches.

    Science.gov (United States)

    Da Rocha, Mitscheli S; Arnold, Lora L; Dodmane, Puttappa R; Pennington, Karen L; Qiu, Fang; De Camargo, João Lauro V; Cohen, Samuel M

    2013-12-15

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments.

    Science.gov (United States)

    Dona, Anthony C; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC-MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.

  18. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    Directory of Open Access Journals (Sweden)

    Anthony C. Dona

    2016-01-01

    Full Text Available Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR spectroscopy and mass spectrometry (MS, the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC, in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.

  19. Study of Blood Metabolites Changes of Purebred Ghezel and Crossbred Arkhar Merinos × Ghezel Ewes during Late Pregnancy

    Directory of Open Access Journals (Sweden)

    Leila Ahmadzadeh

    2016-11-01

    analysis of metabolites. Measurement of blood metabolites, including total protein, calcium, glucose, cholesterol, blood urea nitrogen and albumin was done by spectrophotometer set. SAS software (2003 was used for statistical analysis. Mixed procedure of SAS software was used for statistical analysis and Tukey- Kramer test was applied for comparison of means. T-test was used for comparison of blood metabolites between ewes with single and twin lambs. Results and Discussion The results showed that the blood glucose, total protein, albumin and calcium on days 90, 120 and 140 of pregnancy were less than 15 days prior to mating but blood urea nitrogen and cholesterol levels were increased. These variations could originate from fetus metabolism since fetus requirements for tissue growth, muscles and bones increases during pregnancy, which should be supplied from maternal body reserves. The comparison of blood metabolites on the both crossbred and purebred pregnant ewes showed that in the late pregnancy, twin pregnant ewes had less glucose, total protein and calcium and more blood urea nitrogen and cholesterol compared with single pregnant ewes because there is a higher fetus requirement for twin fetuses during gestation. Our results also showed that glucose, total protein, albumin and blood urea nitrogen ‏levels of crossbred ewes were higher than purebred Ghezel ewes on 15 days prior to mating period. This may be due to different genetic potential of these breeds. During the gestation period, levels of mentioned metabolites except for blood urea nitrogen‏ were higher in both single and twin crossbred pregnant ewes than purebred Ghezel ewes significantly. It is seemed that these differences may be related to variation in the genetic potential of studying animals. Conclusion The results of present study showed that there were no signs of pregnancy toxemia in the two experimental groups; however some differences among blood metabolites of purebred and hybrid ewes were found

  20. Bioactive secondary metabolites from marine microbes for drug discovery.

    Science.gov (United States)

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.