WorldWideScience

Sample records for related fullerenes fullerites

  1. The third, molecular, form of carbon: fullerenes, carbon nanotubes and onions. Some physical properties of fullerites

    International Nuclear Information System (INIS)

    Zubov, V.I.

    2004-01-01

    A brief review is presented of the pre-history and discovery of fullerenes (and then carbon nanotubes) that make the third molecular form of carbon, and of various, predominantly physical, properties of fullerites, i.e. of crystals composed of fullerene molecules. Particular attention is being given to the intermolecular forces, especially at orientationally disordered phases. The Girifalco potential is presented for eight fullerenes from C 28 to C 96 and its generalization is made for the interactions between the different fullerene molecules, C m and C n . The thermodynamics properties of the high-temperature modifications of a family of the fullerites, from C 36 up to C 96 , calculated in equilibrium with their saturated vapors on the basis of the correlative method of the unsymmetrized self-consistent field that enables one to take into account the strong anharmonicity of the lattice vibrations, are discussed. The calculations were accomplished up to the temperature of loss of stability (spinodal point) T s . We compare our results with available experimental data. The behaviour of some characteristics is considered in their dependence on the number of atoms in the molecule. Using the Lindermann's melting criterion we estimate a possible melting curve for the C 60 fullerite. (orig.)

  2. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  3. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes

    International Nuclear Information System (INIS)

    Gun’ko, Vladimir M.; Turov, Vladimir V.; Schur, Dmitry V.; Zarko, Vladimir I.; Prykhod’ko, Gennady P.; Krupska, Tetyana V.; Golovan, Alina P.; Skubiszewska-Zięba, Jadwiga; Charmas, Barbara; Kartel, Mykola T.

    2015-01-01

    Highlights: • Interfacial behavior of polar and nonpolar adsorbates vs. structure of fullerite and MWCNT. • Confined space effects on the characteristics of water bound to carbons. • Broadening of "1H NMR spectra of water adsorbed to carbons toward strong downfield and upfield shifts. • Strongly and weakly associated and strongly and weakly bound waters. • Decreased activity of bound water as a solvent. - Abstract: Interactions of water, methane, HCl, C_6H_6, F_3CCOOD, and hyaluronic acid with fullerite C_6_0/C_7_0 and multi-walled carbon nanotubes (MWCNT) were studied in various media using "1H NMR spectroscopy. The materials were characterized using microscopy, differential scanning calorimetry, Raman spectroscopy, and quantum chemical methods. Water with weakly (WAW) and strongly (SAW) associated molecules bound to fullerite demonstrates unusual downfield shifts δ_H < 18 ppm. WAW in contrast to SAW cannot dissolve acids. Water bound to MWCNT demonstrates the downfield shift smaller than that observed for fullerite. Fullerite possesses low porosity due dense packing of fullerenes in molecular crystals. Therefore, noticeable adsorption is observed only for compounds, which are capable for intercalation (benzene, toluene, water), but nitrogen cannot be adsorbed by fullerite. For MWCNT with much looser structure than that of fullerite, pre-adsorbed water weakly affects methane adsorption. An increase in pre-adsorption of water results in decrease in adsorption of methane onto MWCNT.

  4. Fullerenes: prospects of using in medicine, biology and ecology

    OpenAIRE

    D. V. Schur; Z. Z. Matysina; S. Y. Zaginaichenko; N. P. Botsva; О. V. Elina

    2012-01-01

    Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydro...

  5. Physical properties of organic fullerene cocrystals

    Science.gov (United States)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  6. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  7. Is C60 fullerite harder than diamond?

    International Nuclear Information System (INIS)

    Blank, V.; Popov, M.; Buga, S.; Davydov, V.; Denisov, V.N.; Ivlev, A.N.; Mavrin, B.N.; Agafonov, V.; Ceolin, R.; Szwarc, H.; Rassat, A.

    1994-01-01

    Raman spectra of C 60 fullerite at pressures up to 37 GPa with shear deformation are studied. We have found two states at high pressures, that persist after pressure release and have various transparencies in the near IR region. The nontransparent state is formed at 6-18 GPa and has a Raman spectrum with broadened bands at frequencies close to those of the initial fullerite. The transparent state was obtained at pressures higher than 18 GPa, and the Raman bands are broadened and overlapping in comparison with those of the nontransparent state. We suppose that C 60 molecules persist in both states. The transparent state of fullerite shows a hardness higher than that of diamond. ((orig.))

  8. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  9. Magnetic susceptibility of molecular carbon: nanotubes and fullerite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A P; Haddon, R C; Zhou, O; Fleming, R M; Zhang, J; McClure, S M; Smalley, R E [AT T Bell Laboratories, Murray Hill, NJ (United States)

    1994-07-01

    Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C[sub 60] fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C[sub 60] fullerite. (1) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (2) High-resolution magnetic susceptibility data on C[sub 60] fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C[sub 60]. This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.

  10. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    Science.gov (United States)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  11. Modification of structure and properties of tin – fullerite films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2013-01-01

    By methods of raster electronic, atomic force and electronic force microscopy and X-ray diffraction the research of change of structure, phase composition and local electronic properties of the tin - fullerite films, subjected to implantation by B + ions (E = 80 keV, F = 5×10 17 ions/cm 2 ) are submitted. It is established, that as a result of boron ion implantation of two-layered tin - fullerite films, tin and fullerite interfusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with heterogeneous local electric properties. (authors)

  12. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  13. Electronic structure studies of fullerites and fullerides

    International Nuclear Information System (INIS)

    Merkel, M.; Sohmen, E.; Masaki, A.; Romberg, H.; Alexander, M.; Knupfer, M.; Golden, M.S.; Adelmann, P.; Renker, B.; Fink, J.

    1993-01-01

    The electronic structure of fullerites and fullerides has been investigated by high-resolution photoemission and by high-energy electron energy-loss spectroscopy in transmission. Information on the occupied Π and σ bands, on the unoccupied Π * and σ * bands, and on the joint density of states has been obtained. In particular, we report on the changes of the electronic structure of fullerides as a function of dopant concentration. (orig.)

  14. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  15. Van der Waals cohesion and plasmon excitations in C60 fullerite

    International Nuclear Information System (INIS)

    Lambin, P.; Lucas, A.A.

    1993-01-01

    The Van der Waals cohesive energy of C 60 fullerite is evaluated from the zero-point energy of multipole plasmons fluctuating on the highly-polarizable Bucky balls. These hollow molecules are treated as dielectric shells. The shell material is an isotropic continuum with a dielectric function designed to exhibit the plasmon resonances observed in other forms of solid carbon in the ultraviolet. (orig.)

  16. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  17. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries...

  18. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  19. Fullerenes and disk-fullerenes

    Science.gov (United States)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  20. Electronic properties of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmany, H [ed.; Vienna Univ. (Austria). Inst. fuer Festkoerperphysik; Fink, J [ed.; Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik; Mehring, M [ed.; Stuttgart Univ. (Germany). Physikalisches Teilinstitut 2; Roth, S [ed.; Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C[sub 60] itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  1. Electronic properties of fullerenes

    International Nuclear Information System (INIS)

    Kuzmany, H.

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C 60 itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  2. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L S.K.; Wilson, M A; Quezada, R A [CSIRO Petroleum, North Ryde (Australia); and others

    1996-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  3. Fullerenes, nanotubes, onions and related carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R.; Seshadri, Ram; Govindaraj, A; Sen, Rahul [Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Materials Research Centre, Indian Institute of Science, Bangalore (India)

    1995-12-01

    Fullerenes, containing five- and six-membered carbon rings, of which C{sub 6}0 and C{sub 7}0 are the prominent members, exhibit phase transitions associated with orientational ordering. When C{sub 6}0 is suitably doped with electrons, it shows novel superconducting and magnetic properties. We review these and other properties of fullerenes in bulk or in film form along with the preparative and structural aspects. Carbon nanotubes and onions (hyperfullerenes) are the other forms of carbon whose material properties have aroused considerable interest. Besides discussing these new forms of carbon, we briefly introduce other possible forms, such as those involving five-, six- and seven-membered rings and hybrids between diamond and graphite

  4. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  5. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    International Nuclear Information System (INIS)

    Carboni, Andrea; Emke, Erik; Parsons, John R.; Kalbitz, Karsten; Voogt, Pim de

    2014-01-01

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg −1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L −1 and 15–24 μg L −1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg −1 and 10 μg kg −1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices

  6. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.

    Directory of Open Access Journals (Sweden)

    Marine E Bozdaganyan

    Full Text Available Oxidative stress induced by excessive production of reactive oxygen species (ROS has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3 and D3-tris-malonyl-C60-fullerene (D3-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.

  7. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  8. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  9. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei; Amassian, Aram; Tajima, Keisuke

    2017-01-01

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene

  11. Fullerenes and fulleranes in circumstellar envelopes

    International Nuclear Information System (INIS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  12. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  13. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei

    2017-04-06

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene substrates and annealing the deposited mixed films. Methods can further include one or more of exposing the annealed mixed film to UV light, and washing the annealed mixed film with a solvent. Fullerene compounds can include one or more of PCBM, PCBNB, and PCBA.

  14. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  15. Supramolecular solubilization of fullerenes and radio-fullerenes in aqueous media

    International Nuclear Information System (INIS)

    Braun, T.

    1999-01-01

    In this paper we are dealing with the supramolecular complexation of fullerenes C 60 , C 70 , some functionalized fullerenes and of the dumbbell structured C 120 dimer, with two host molecules, namely γ-cyclo-dextrin (GCD), and sulfocalix[8]arene in order to make them soluble in water. Previous investigations by others have shown that the reactions of some mentioned fullerenes and cyclo-dextrins and calixarenes are very slow and tedious in liquid phase as a result of solvatation effects. That we have decided to pursue the supramolecular complexation as solid-solid reactions by using mechanochemical activation in a ball mill. A mechanochemical treatment was used to enhance chemical reactivity in solid-solid reactions in which GCD give a complex with the C 60 as 2:1 host-guest complex. The calix[8]arene complex with C 60 molecule has been prepared. The sulfonated form of the host is well soluble in water. Endohedral radio-fullerenes of the XandC60 type (where * X is a rare gas, e.g. Ar, Xe, Kr, radionuclide) were prepared by nuclear recoil after neutron irradiation, a method developed by the author The endohedrally labelled fullerenes were then mechanochemically complexed into a labelled supramolecular complex with cyclo-dextrin and calixarene hosts. (author)

  16. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  17. Photoinduced energy and electron transfer in fullerene- oligothiophene-fullerene triads

    NARCIS (Netherlands)

    Hal, Paul A. van; Knol, Joop; Langeveld-Voss, Bea M.W.; Meskers, Stefan C.J.; Hummelen, J.C.; Janssen, René A.J.

    2000-01-01

    A series of fullerene-oligothiophene-fullerene (C60-nT-C60) triads with n = 3, 6, or 9 thiophene units has been synthesized, and their photophysical properties have been studied using photoinduced absorption and fluorescence spectroscopy in solution and in the solid state as thin films. The results

  18. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  20. Fullerenes vs fulleroids. Understanding their relative energies

    Energy Technology Data Exchange (ETDEWEB)

    Warner, P.M. (Northeastern Univ., Boston, MA (United States))

    1994-11-30

    Both force-field (MMPI) and AMI (restricted and unrestricted HF) calculations are herein used to investigate the underlying reasons for the fullerene-fulleroid structural dichotomies observed in carbene, silylene, nitrene, and oxygen adducts of C[sub 60]. Via the investigation of a series of model systems, it is demonstrated that curvature actually favors the open, fulleroid structure; this effect of curvature on the norcaradiene-cycloheptatriene equilibrium is general. Strategies for the creation of 6,6-bridged fulleroids are suggested. 29 refs., 6 tabs.

  1. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar g....... In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  2. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  3. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  4. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  5. Glycofullerenes: Sweet fullerenes vanquish viruses

    Science.gov (United States)

    Vidal, Sébastien

    2016-01-01

    Fullerene-based dendritic structures coated with 120 sugars can be made in high yields in a relatively short sequence of reactions. The mannosylated compound is shown to inhibit Ebola infection in cells more efficiently than monofullerene-based glycoclusters.

  6. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  7. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  8. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  9. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  10. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  11. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  12. Fullerenic structures and such structures tethered to carbon materials

    Science.gov (United States)

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  13. Polyethene with pendant fullerene moieties

    NARCIS (Netherlands)

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  14. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  15. A plasma arc reactor for fullerene research

    Science.gov (United States)

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  16. Recent progresses in application of fullerenes in cosmetics.

    Science.gov (United States)

    Lens, Marko

    2011-08-01

    Cosmetic industry is a fast growing industry with the continuous development of new active ingredients for skin care products. Fullerene C(60) and its derivates have been subject of intensive research in the last few years. Fullerenes display a wide range of different biological activities. Strong antioxidant capacities and effective quenching radical oxygen species (ROS) made fullerenes suitable active compounds in the formulation of skin care products. Published evidence on biological activities of fullerenes relevant for their application in cosmetics use and examples of published patents are presented. Recent trends in the use of fullerenes in topical formulations and patents are reviewed. Future investigations covering application of fullerenes in skin care are discussed.

  17. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  18. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  19. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  20. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  1. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  2. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  3. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  4. Transmutation of fullerenes.

    Science.gov (United States)

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  5. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  6. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  7. Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase

    International Nuclear Information System (INIS)

    Hendrickson, Olga D.; Smirnova, Natalya I.; Zherdev, Anatoly V.; Dzantiev, Boris B.; Sveshnikov, Peter G.

    2016-01-01

    The article describes a highly sensitive single-step microplate enzyme immunoassay of the ELISA type for fullerene C 60 and its derivatives. Monoclonal anti-fullerene antibodies and a conjugate between fullerene and horseradish peroxidase were used as specific reagents. A direct competitive ELISA was carried out that was based on antibodies immobilized in the well of a microtiter plate, a peroxidase-labeled antigen, and detection via the dye formed from 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide. Both pristine fullerene C 60 and its water-soluble forms can be determined. The detection limits are 1.5 ng∙mL −1 for fullerene C 60 , and between 0.1 and 1.3 ng∙mL −1 for its derivatives. This ELISA format allows for almost two-fold reduction of the time needed for the assay in comparison to indirect scheme with labeled antibodies. (author)

  8. Photodiodes based on fullerene semiconductor

    International Nuclear Information System (INIS)

    Voz, C.; Puigdollers, J.; Cheylan, S.; Fonrodona, M.; Stella, M.; Andreu, J.; Alcubilla, R.

    2007-01-01

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum

  9. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  10. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  11. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  12. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  13. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    International Nuclear Information System (INIS)

    Adamopoulos, G.; Heiser, T.; Giovanella, U.; Ould-Saad, S.; Wetering, K.I. van de; Brochon, C.; Zorba, T.; Paraskevopoulos, K.M.; Hadziioannou, G.

    2006-01-01

    A series of polystyrene (PS) and fullerene (C 60 ) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient α, refractive index n, extinction coefficient k as well as in the dielectric constant ε ∝ within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10 -9 cm 2 /V s to 2 x 10 -7 cm 2 /V s

  14. Memory operation mechanism of fullerene-containing polymer memory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki [Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  15. Enthalpies of sublimation of fullerenes by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Herrera, Melchor; Campos, Myriam; Torres, Luis Alfonso; Rojas, Aarón, E-mail: arojas@cinvestav.mx

    2015-12-20

    Graphical abstract: - Highlights: • Enthalpies of sublimation of fullerenes were measured by thermogravimetry. • Results of enthalpies of sublimation are comparable with data reported in literature. • Not previously reported enthalpy of sublimation of C{sub 78} is supplied in this work. • Enthalpies of sublimation show a strong dependence with the number of carbon atoms in the cluster. • Enthalpies of sublimation are congruent with dispersion forces ruling cohesion of solid fullerene. - Abstract: The enthalpies of sublimation of fullerenes, as measured in the interval of 810–1170 K by thermogravimetry and applying the Langmuir equation, are reported. The detailed experimental procedure and its application to fullerenes C{sub 60}, C{sub 70}, C{sub 76}, C{sub 78} and C{sub 84} are supplied. The accuracy and uncertainty associated with the experimental results of the enthalpy of sublimation of these fullerenes show that the reliability of the measurements is comparable to that of other indirect high-temperature methods. The results also indicate that the enthalpy of sublimation increases proportionally to the number of carbon atoms in the cluster but there is also a strong correlation between the enthalpy of sublimation and the polarizability of each fullerene.

  16. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Science.gov (United States)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  17. Graphene macro-assembly-fullerene composite for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  18. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  19. Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells

    International Nuclear Information System (INIS)

    Ding, Ning; Kunugita, Naoki; Ichinose, Takamichi; Song, Yuan; Yokoyama, Mitsuru; Arashidani, Keiichi; Yoshida, Yasuhiro

    2011-01-01

    Highlights: → Fullerene administration triggered splenic responses. → Splenic responses occurred at different time-points than in the lung tissue. → CD11b + cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-α. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-κB and NFAT in splenocytes at 6 days post-administration. Finally, CD11b + cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  20. The first stable lower fullerene: C36

    International Nuclear Information System (INIS)

    Piskoti, C.; Zettl, A.

    1998-01-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C 60 . However, unlike other known fullerenes, any closed, fullerene-like C 36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C 36 in arced graphite soot. copyright 1998 American Institute of Physics

  1. Carboxylated Fullerene at the Oil/Water Interface.

    Science.gov (United States)

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  2. Specific features of fullerene-bearing thin film growth using ion beam vacuum sputtering of fullerene mixtures with B, Fe, Se, Gd and Na

    International Nuclear Information System (INIS)

    Semenov, A.P.; Semenova, I.A.; Bulina, N.V.; Lopatin, V.A.; Karmanov, N.S.; Churilov, G.N.

    2005-01-01

    A new approach to the growth of films containing fullerenes and doping elements is described. It is suggested that a cluster mechanism of the target sputtering by accelerated ions makes possible the deposition of fullerenes on a substrate with a certain probability for dopant atoms being introduced into the cavities of fullerene molecules and a higher probability of the doping element introduction between fullerene molecules. The proposed method has been experimentally implemented by using an Ar ion beam to sputter C 60 /C 70 fullerene mixtures, synthesized in a plasmachemical reactor at a pressure of 10 5 Pa and containing a doping element, i.e. Fe, Na, B, Gd or Se. Micron-thick films containing C 60 and C 70 fullerenes and the corresponding dopant element, i.e. Fe, Na, B, Gd or Se, were grown from dopant-containing fullerene mixtures by ion beam sputtering in a vacuum of ∼10 -2 Pa [ru

  3. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)]. E-mail: geo_adamo@yahoo.fr; Heiser, T. [Institut d' Electronique du Solide et des Systemes (IN.E.S.S.), CNRS/ULP, 23 Rue du Loess, BP 20, 67037 Strasbourg Cedex 02 (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Ould-Saad, S. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Wetering, K.I. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Zorba, T. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)

    2006-07-26

    A series of polystyrene (PS) and fullerene (C{sub 60}) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient {alpha}, refractive index n, extinction coefficient k as well as in the dielectric constant {epsilon} {sub {proportional_to}} within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10{sup -9} cm{sup 2}/V s to 2 x 10{sup -7} cm{sup 2}/V s.

  4. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Energy Technology Data Exchange (ETDEWEB)

    Hoffschulz, H [comp.

    1997-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  5. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simple method for determining fullerene negative ion formation★

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  7. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  8. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  9. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  10. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  11. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  12. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  13. Oscillations of spherical fullerenes interacting with graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  14. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  15. Fullerenes and endohedrals as “big atoms”

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya., E-mail: amusia@vms.huji.ac.il

    2013-03-12

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes.

  16. Fullerenes and endohedrals as “big atoms”

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2013-01-01

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes

  17. Accurate density-functional calculations on large systems: Fullerenes and magnetic clusters

    International Nuclear Information System (INIS)

    Dunlap, B.I.

    1996-01-01

    Efforts to accurately compute all-electron density-functional energies for large molecules and clusters using Gaussian basis sets will be reviewed. The foundation of this effort, variational fitting, will be described and followed by three applications of the method. The first application concerns fullerenes. When first discovered, C 60 is quite unstable relative to the higher fullerenes. In addition, to raising questions about the relative abundance of the various fullerenes, this work conflicted with the then state-of-the art density-funcitonal calculations on crystalline graphite. Now high accuracy molecular and band structure calculations are in fairly good agreement. Second, we have used these methods to design transition metal clusters having the highest magnetic moment by maximizing the symmetry-required degeneracy of the one-electron orbitals. Most recently, we have developed accurate, variational generalized-gradient approximation (GGA) forces for use in geometry optimization of clusters and in molecular-dynamics simulations of friction. The GGA optimized geometries of a number of large clusters will be given

  18. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  19. Generation, Characterization and Applications of Fullerenes

    Science.gov (United States)

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice

  20. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  1. Fullerene genesis by ion beams

    International Nuclear Information System (INIS)

    Gamaly, E.G.; Chadderton, L.T.; Commonwealth Scientific and Industrial Research Organization, Lindfield, NSW

    1995-01-01

    Clearly detectable quantities of molecular fullerene (C 60 ), the most recently discovered allotrope of carbon, have been observed in graphite following irradiation with heavy projectile ions at energies of about 1 GeV using high pressure chromatography. Similar experiments using lower ion energies gave no corresponding signal, indicating an absence of fullerene. This clear difference suggests that there exists an energy threshold for fullerene genesis. Beginning with a microscopic description of deposition and transfer of energy from the ion to the target, a theoretical model is developed for interpretation of these and similar experiments. An important consequence is a description of the formation of large carbon clusters in the hot dense 'primeval soup' of single carbon atoms by means of random 'sticky' collisions. The ion energy threshold is seen as arising, physically, from a balance in the competition between the rate of primary energy deposition and the rate of system cooling. Rate equations for the basic clustering process allow calculations of the time-dependent number densities for the different carbon clusters produced. An important consequence of the theory is that it is established that the region for the specific phase transition from graphite to fullerene lies in the same pressure regime on the phase diagram as does the corresponding transition for graphite to diamond. (author)

  2. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  3. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    International Nuclear Information System (INIS)

    Nitta, Norihisa; Seko, Ayumi; Sonoda, Akinaga; Ohta, Shinichi; Tanaka, Toyohiko; Takahashi, Masashi; Murata, Kiyoshi; Takemura, Shizuki; Sakamoto, Tsutomu; Tabata, Yasuhiko

    2008-01-01

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atherosclerotic light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery

  4. Redox potentials and binding enhancement of fullerene and fullerene-cyclodextrin systems in water and dimethylsulfoxide

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Filippone, S.; Yang, J.; Guan, Z.; Rassat, A.; Zhang, Y.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 153-162 ISSN 0008-6223 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk ME09114; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerene s * fullerene -cyclodextrin systems Subject RIV: CG - Electrochemistry Impact factor: 4.893, year: 2010

  5. The study of dielectric properties of the endohedral fullerenes

    Science.gov (United States)

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  6. Preparation and characterization of stable aqueous higher-order fullerenes

    International Nuclear Information System (INIS)

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  7. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    International Nuclear Information System (INIS)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C 60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C 60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C 60 fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C 60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  8. Detection of fullerenes (C60 and C70) in commercial cosmetics

    International Nuclear Information System (INIS)

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2011-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C 60 and C 70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C 60 . Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C 60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C 70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C 60 , demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. - Highlights: → Fullerenes were detected in cosmetics up to 1.1 μg/g. → Liquid-liquid extraction efficiently recovers fullerenes in cosmetic matrices. → Solid-phase extraction reduces LC-MS detection interferences for C60. → Cosmetics can increase human and environmental fullerene exposures. - Fullerenes were detected in cosmetics with liquid chromatography-mass spectrometry up to 1.1 μg/g, demonstrating a source for human/environmental exposure.

  9. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  10. Structural Consequences of Duplicitous Chemical Relation of Cobalt and Fullerene in Mixture

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.

    2012-01-01

    Roč. 20, 4-7 (2012), s. 328-335 ISSN 1536-383X R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR GAP107/11/1856 Institutional support: RVO:61389005 Keywords : fullerene * cobalt * chemical bonding * nanostructure * self- organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.764, year: 2012

  11. Broadband electroluminescence in fullerene crystals

    International Nuclear Information System (INIS)

    Werner, A.T.; Anders, J.; Byrne, H.J.; Maser, W.K.; Kaiser, M.; Mittelbach, A.; Roth, S.

    1993-01-01

    The observation of electroluminescence from crystalline fullerenes is described. A broad band emission spectrum, extending from 400nm to 1100nm is observed. The spectrum has a primary maximum at 920nm and a weaker feature centered on 420nm. The spectral characteristics are independent of the applied field and the longer wavelength region is identical to that measured in the high excitation density photoluminescence spectrum. In addition, the electroluminescence intensity increases with the cube of the injection current, strengthening the association to the nonlinear phenomena observed in the highly excited state of fullerenes. (orig.)

  12. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ability of Fullerene to Accumulate Hydrogen

    Directory of Open Access Journals (Sweden)

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available In the present paper, using a modification of the LJ-potential and the continuum approach, we define С60-H2 (He potentials, as well as interaction energy of two fullerene particles. The proposed approach allows to calculate interactions between carbon structures of any character (wavy graphenes, nanotubes, etc.. The obtained results allowed to localize global sorption zones both inside the particle and on the outer surface of the fullerene.

  14. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  15. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  17. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    Directory of Open Access Journals (Sweden)

    Taras Chutora

    2017-05-01

    Full Text Available We report on the formation of fullerene-derived nanostructures on Au(111 at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111, bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111 surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.

  18. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  19. Search for fullerenes in stone meteorites

    Science.gov (United States)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  20. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  1. Electronic structure of C and Si fullerenes and fullerides

    International Nuclear Information System (INIS)

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  2. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  3. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  4. In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

    Directory of Open Access Journals (Sweden)

    Mohammad Teimouri

    2015-08-01

    Full Text Available Fullerene C60 is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So fullerene application is hindered in medical field. In this study a literature search was performed and all derivatives were collected. The fullerene binding protein previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel estrogenic 17beta-hydroxysteroid dehydrogenase and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

  5. Topological edge properties of C60+12n fullerenes

    Directory of Open Access Journals (Sweden)

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  6. Conjugation-promoted reaction of open-cage fullerene: a density functional theory study.

    Science.gov (United States)

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M

    2012-02-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  8. Automatic production of fullerenes by a JxB arc jet discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu

    1995-01-01

    Effective production of many kinds of fullerenes including higher fullerenes and endohedral metallo-fullerenes are necessary to advance fullerene science and technology. Currently, the DC arc discharge method is the most effective method to produce fullerenes. However, carbon atoms evaporated from the anode tend to deposit on the cathode, which grow towards the anode, and obstruct the control of the arc discharge. Furthermore, deposited carbon should be removed to maintain continuous fullerene production. Here, to reduce the deposition of carbon on the cathode, a new discharge method is introduced and the experiment performed. When steady magnetic field is applied perpendicular to the DC current of the arc, ions and electrons are accelerated by JxB force as a plasma jet in the vertical direction. This plasma flow also accelerates helium convection due to the viscosity effect. Therefore, the carbon atoms and carbon neutrals are both blown up by the arc jet before arriving at the cathode. The arc flame in the experiment is actually observed to extend upwards, which dearly indicates the effect of the JxB force

  9. Electronic structure of single- and multiple-shell carbon fullerenes

    International Nuclear Information System (INIS)

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  10. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  11. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  12. The role of fullerene shell upon stuffed atom polarization potential

    OpenAIRE

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  13. Fullerene C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Koruga, D; Hameroff, S; Sundareshan, M [Univ. of Arizona, Tucson, AZ (United States); Withers, J; Loutfy, R [MER Corp., Tucson, AZ (United States)

    1993-01-01

    This book, one of the first to be published in the exciting field of fullerenes, includes a short history of scientific discovery, as well as one possible answer to the question: for what purposes can C[sub 60] be utilized. The book opens with a review of the life of Buckminster Fuller. Modern history of fivefold symmetry and the icosahedron began between 1984 and 1985, when Shechtman and his research team opened a new branch in crystallography (fivefold symmetry) and when the Kroto/Smalley research team discovered the C[sub 60] molecule (truncated icosahedron). Production of solid C[sub 60] by the Huffman/Kraeschner research team in 1990 provided a new stimulus for research by producing C[sub 60] in macroscopic amounts for use by the scientific and technological community. This achievement led to developments such as Koruga's August 1992 creation of the dimer C[sub 116] using scanning tunneling engineering and Loutfy's hydrogenation of C[sub 60] and construction of the first Ni/C[sub 60] rechargeable batteries in December 1992. New inventions based on C[sub 60] will continue to be forthcoming, particularly in the areas of superconductivity, quantum devices, and molecular electronic devices. Discovery of the C[sub 60] molecule (Kroto/Smalley), production of solid C[sub 60] (Huffman/Kraeschmer) and technological inventions such as C[sub 116] (Koruga) have been chance discoveries. A short history of these discoveries is detailed in the book along with the results of the authors' Fullerene research efforts, including atomic resolution images of Fullerene C[sub 60], Ni/C[sub 60] batteries, nanotechnology of C[sub 60], comparison of C[sub 60] with biological systems, and others. As Fullerene C[sub 60] will require control engineering, an overview of control systems, in particular, general and optimal control of the Schroedinger equation, is contained. Some experimental and theoretical work of other researchers are also presented. 140 figs., 4 tabs., 342 refs.

  14. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  15. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa; De Jonghe-Risse, Jelissa; Buchaca-Domingo, Ester; Causa’ , Martina; Fei, Zhuping; Heeney, Martin; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2015-01-01

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  16. Iron-fullerene mixture plasma

    International Nuclear Information System (INIS)

    Biri, S.; Fekete, E.

    2004-01-01

    Complete text of publication follows. In many laboratories new materials useful for nanotechnology and medical applications are searched and studied. In the ECR labo- ratory one of our future goals is to produce endohedral fullerene molecules (e.g Fe C 60 ) in large quantity. If this comes true, it will be possible to make building blocks for nanoparts, an ultra-contrast medium of MRI, and a magnetic nano-particle for treatment of cancer. For this experiment some modifications were carried out on the ATOMKI-ECRIS [1]. The waveguide of the 14.5 GHz microwave generator was divided in order to couple very low powers (1 watt or less) into the plasma. The C 60 component of the plasma was produced by using a simple oven. Among known methods (oven, sputtering, electron bombardment, compounds containing Fe), we have chosen the evaporation of ferrocene [Fe(C 5 H 5 ) 2 ] powder to introduce Fe atoms into the plasma. The ferrocene chamber was connected to one of the two gas feeding lines and the evaporation rate was controlled by needle valve. The extraction voltage had to be kept as low as 600V, because of the low mass-energy product of our bending magnet. First we developed independently the rough working conditions for single-charged dense iron and fullerene plasmas. Then a clean fullerene plasma was made. The temperature of the oven was about 450 deg C. The bending magnet was set to the C 60 peak (M=720) and about 50-100 nA intensity of single-charged fullerene peak was obtained. Then the magnet was set to the position of the searched Fe C 60 or FeC 60 peak (M=776) and the ferrocene valve was opened. A very difficult and long tuning followed. Finally we found a new large peak with higher mass than C 60 . In Figure 1 the centre of the new big peak on the right side is located at M=776 which corresponds to FeC 60 and/or Fe C 60 molecules. The peak is wide and shows some structure. We think it may contain impurities attached to the C 58 , C 59 , C 60 and FeC 60 molecules. We

  17. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  18. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  19. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  20. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    DEFF Research Database (Denmark)

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...... for by a single model structure defined in terms of the dimensions of an average cell and its chemical composition. This model ascribes a total thickness of about 29 angstrom to the molecular interface layer with the following internal structure. The fullerenes (with several alkyl chains attached) form a central...... stratum and the remainder alkyl tails are located close to both the air and the water interfaces. The alkyl moieties close to the aqueous substrate are hydrated. The reflection experiments and the isotherms suggest that on average 8 +/- 3 dodecylamine molecules are present per fullerene, consistent within...

  1. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  2. Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.

    Science.gov (United States)

    Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk

    2011-12-01

    A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.

  3. Self-organization processes in polysiloxane block copolymers, initiated by modifying fullerene additives

    Science.gov (United States)

    Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.

    2017-08-01

    Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.

  4. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    Science.gov (United States)

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  5. The quataron concept: a key to solve the problem of the nanostate

    Science.gov (United States)

    Askhabov, A. M.

    2003-04-01

    up of one-size spherical silica particles. A well-ordered material composed of carbon fullerenes is known as fullerite. The quataron concept will produce a profound effect on the mineralogical science, physics and chemistry of minerals. Already now we have obviously reached the point where we need to revise some of the fundamental genetic, structural and classificational issues. In particular, what was said above about the structure and formation of noncrystalline materials dictates the necessity of a broader understanding of the mineral. This would result in that a large number of materials now referred to as mineraloids will fall into the area of minerals and will be considered as new mineral species, which would mean that minerals are not only natural objects (chemical compounds) of crystalline structure but also X-ray amorphous solids of certain arrangement of elements (fullerites, quatarites, opals, etc.). The work was done with financial support from RFBI (grant N. 02-05-64688) and INTAS (grant N. 99-0247).

  6. Procedure of identification of fullerenes isolated from iron-carbon alloys

    International Nuclear Information System (INIS)

    Zakirnichnaya, M.M.

    2001-01-01

    A method of fullerenes isolation from the structure of iron-carbon alloys and their identification using physical methods which provide determination of the different parameters of nanoobjects is developed. Qualitative (mass-spectrometry of positive and negative ions, small angle X-ray scattering) and quantitative (IR-spectrometry, liquid chromatography) evaluation of fullerenes in the samples obtained from iron-carbon alloys and their visual observation using scanning tunnel microscopy are performed. It is found that the method provides isolation and identification of fullerenes present in the structure of steels and irons [ru

  7. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  8. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  9. Vibrational Spectra of Tetrahedral Fullerenes.

    Science.gov (United States)

    Cheng; Li; Tang

    1999-01-01

    From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.

  10. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  11. Photophysical properties of fullerenes prepared in an atmosphere of pyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. (Temple Univ., Philadelphia, PA (United States))

    1994-10-01

    Samples of C[sub 60] and C[sub 70] containing a variety of nitrogen-doped species were prepared by arc vaporization of graphite in the presence of pyrrole. Cage-doped fractions were isolated by column chromatography and characterized by mass spectroscopy, optical absorption, and fluorescence measurements. Mass spectra were consistent with the substitution of an even number of carbon atoms of the C[sub 60] and C[sub 70] cages by nitrogen atoms. Carbonaceous clusters including fragmented fullerenes containing hydrogen atoms were also formed. UV-visible spectral analysis indicated that there is an influence of the molecular weight on the fundamental [pi]-[pi]* electronic transition. Fluorescence spectra showed a broad band containing vibrational fine structure that is attributed to photoseparated charges in the fragmented fullerenes and a shoulder on the low-energy side that is related to intrinsic excitation in the nitrogen-doped species. Fluorescence results imply a bandgap of 2.36 eV for the N doped fullerenes and the existence of intermediate excitonic transitions below the optical bandgap. Although it has not yet been possible to isolate a pure cage-doped material, the photophysical studies add credence to their existence and the importance of further attempts at their isolation. 17 refs., 4 figs., 1 tab.

  12. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  13. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...

  14. Ultra-low friction and excellent elastic recovery of fullerene-like ...

    Indian Academy of Sciences (India)

    Multilayer fullerene-like hydrogenated carbon (FL-C:H) films were synthesized by using the chemical vapourdeposition technique with a different flow rate of methane. The typical fullerene-like structure of as-prepared films wasinvestigated by using transmission electron microscopy and Raman spectra. The prepared ...

  15. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  16. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.; Wang, Wenhu; Kollins, Kaitlin N; Altalebi, Hasanain; Schwingenschlö gl, Udo

    2018-01-01

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  17. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  18. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.

    2018-04-03

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  19. Simulating fullerene ball bearings of ultra-low friction

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Wei

    2007-01-01

    We report the direct molecular dynamics simulations for molecular ball bearings composed of fullerene molecules (C 60 and C 20 ) and multi-walled carbon nanotubes. The comparison of friction levels indicates that fullerene ball bearings have extremely low friction (with minimal frictional forces of 5.283 x 10 -7 and 6.768 x 10 -7 nN/atom for C 60 and C 20 bearings) and energy dissipation (lowest dissipation per cycle of 0.013 and 0.016 meV/atom for C 60 and C 20 bearings). A single fullerene inside the ball bearings exhibits various motion statuses of mixed translation and rotation. The influences of the shaft's distortion on the long-ranged potential energy and normal force are discussed. The phonic dissipation mechanism leads to a non-monotonic function between the friction and the load rate for the molecular bearings

  20. Experimental and computational studies of Si-doped fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boero, M.; Massobrio, C.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1999-12-01

    Silicon in-cage doped fullerenes result from laser-induced photofragmentation of mixed clusters of composition C{sub 60}Si{sub x}. These parent clusters are produced in a low pressure condensation cell, through the mixing of silicon vapor with a vapor containing the preformed C{sub 60} molecules. The geometric and the electronic structures of fullerenes substitutionally doped with one and two silicon atoms are studied by ab-initio calculations within density functional theory. (orig.)

  1. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  2. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  3. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  4. Nuclear reactions and radionuclides in the study of fullerenes

    International Nuclear Information System (INIS)

    Nakahara, H.; Sueki, K.; Sato, W.; Akiyama, K.

    2000-01-01

    Radiochemical techniques have been applied in various ways to the study of fullerenes and metallofullerenes for the past several years, and they have provided invaluable information pertaining to the stability, structures, and formation of the novel carbon material. This paper reviews those experimental results that have fully shown the usefullness and uniqueness of radionuclides demonstrated in the field of fullerene science. (author)

  5. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  6. Adverse effects of fullerenes (nC{sub 60}) spiked to sediments on Lumbriculus variegatus (Oligochaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, K., E-mail: kukka.tervonen@uef.fi [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Leppaenen, M.T.; Akkanen, J.; Kukkonen, J.V.K. [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland)

    2011-12-15

    Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes' disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants. - Highlights: > Effects of fullerene-spiked sediment on black worms were investigated. > Survival, growth, reproduction, and feeding rates were measured. > Exposure did not impact worm survival or reproduction. > Feeding rates and depuration efficiency were decreased. > Worms transferred fullerenes from the sediment to the sediment surface. - Exposure to fullerene-spiked sediment decreased black worms' feeding and depuration efficiency, but fullerenes did not appear to be absorbed into the microvilli.

  7. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  8. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  9. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    Science.gov (United States)

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  10. Geochemie fullerenů

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Jehlička, J.; Vítek, P.; Juha, Libor; Hamplová, Věra; Pokorná, Zdeňka

    2010-01-01

    Roč. 104, č. 8 (2010), s. 762-769 ISSN 0009-2770 R&D Projects: GA ČR GA205/07/0772; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : geochemistry * fullerene s * geological materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.620, year: 2010

  11. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  12. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Energy Technology Data Exchange (ETDEWEB)

    Sarmah, Amrit; Roy, Ram Kinkar, E-mail: rkroy2@rediffmail.com

    2016-06-15

    Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C{sub 32}) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C{sub 32}) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C{sub 32} fullerene and its site of covalent attachment to the SWCNT.

  13. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  14. Laser controlled magnetism in hydrogenated fullerene films

    International Nuclear Information System (INIS)

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  15. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  16. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  17. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    International Nuclear Information System (INIS)

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  18. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  19. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    Science.gov (United States)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  20. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    International Nuclear Information System (INIS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  1. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  2. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  3. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  4. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    Science.gov (United States)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  5. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  6. Properties of Natural Rubber-Based Composites Containing Fullerene

    Directory of Open Access Journals (Sweden)

    Omar A. Al-Hartomy

    2012-01-01

    Full Text Available In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM.

  7. Lateral translation of covalently bound fullerenes

    International Nuclear Information System (INIS)

    Humphry, M J; Beton, P H; Keeling, D L; Fawcett, R H J; Moriarty, P; Butcher, M J; Birkett, P R; Walton, D R M; Taylor, R; Kroto, H W

    2006-01-01

    Lateral manipulation of fullerenes on clean silicon surfaces may be induced by either an attractive or repulsive interaction between adsorbed molecules and the tip of a scanning probe microscope, and can result in a complex response arising from molecular rolling. The model for rolling is supported by new results which show that manipulation is suppressed for adsorbed functionalized fullerenes due to the presence of phenyl sidegroups. The influence of varying the dwell time of the tip during manipulation is also reported. By reducing this time to a value which is less than the response time of the feedback control loop it is possible to induce manipulation in a quasi-constant height mode which is accompanied by large increases/decreases in current

  8. APPLICATION FULLERENE FOR IDENTIFICATION OF MEAT PRODUCTS CONTAINING KLENBUTEROL

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available Summary. In modern conditions the majority of developing livestock complexes, various chemical additives, apply to cattle feeding. One of such preparations is clenbuterol. Clenbuterol is β-2-adrenostimulyator belonging to group β-agonist who stimulate growth of muscular weight and regulate a ratio of fatty and muscular tissue at cultivation of agricultural animals and birds. In Russia results of researches in which it is recommended to apply clenbuterol as a growth factor at cattle cultivation are published. Thus the risk of influences of the residual maintenance of a preparation in animal husbandry production on health of consumers wasn't estimated. We conducted researches in the field of studying of properties fullerene and clenbuterol and their opportunities interaction among themselves. For identification clenbuterol in meat raw materials the synthesis of Prato based on a functionalization fullerene by C60 and C70 consisting in its transformation in fullerene on reactions of a 1,3-dipolar cycloaddition of azomethine ylide on multiple communications of C=C of a fulleren kernel was moved. Reaction took place with allocation of a deposit of the dark color which analysis proved that is a product of interaction of substances investigated by us. This experiment gives the chance to identify clenbuterolfullerene.

  9. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  10. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  11. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  12. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  13. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  14. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  15. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh; Elroby, Shaaban Ali Kamel; Aziz, Saadullah G.; Risko, Chad; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2016-01-01

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous

  16. Stereodivergent-at-metal synthesis of [60]fullerene hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Martinez, Juan; Vidal, Sara; Fernandez, Israel; Filippone, Salvatore [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Martin, Nazario [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); IMDEA-Nanociencia, C/Faraday, Universidad Autonoma de Madrid (Spain)

    2017-02-13

    Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  18. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  19. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    International Nuclear Information System (INIS)

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  20. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  1. Transformation of methano[60]fullerenes in dihydrofullerofuranes induced by electron transfer

    International Nuclear Information System (INIS)

    Yanilkin, V.V.; Toropchina, A.V.; Morozov, V.I.; Nastapova, N.V.; Gubskaya, V.P.; Sibgatullina, F.G.; Azancheev, N.M.; Efremov, Yu.Ya.; Nuretdinov, I.A.

    2004-01-01

    The electrochemical reduction of methano[60]fullerenes (61-acetyl-61-(diethoxyphosphoryl)methano-60-fullerene 1, 61-acetyl-61-(diisopropoxyphosphoryl)methano-60-fullerene 2, 61-(2,2-diethoxyacetyl)-61-(diethoxy-phosphoryl)methano-60-fullerene 3, 61-phenyl-61-(1,2-dioxo-3,3-dimethyl-buthyl)methano-60-fullerene 4) in o-dichlorobenzene-DMF (3:1 v/v)/0.1 M Bu 4 NBF 4 on a glass-carbon electrode proceeds in a few steps. The reversible transfer of the first electron results in the formation of radical anions registered by ESR method. The subsequent reduction proceeds differently because of the various stability of anionic intermediates. The radical anions of the methanofullerenes 3 and 4 are less stable than the radical anions of compounds 1 and 2 and less stable than the radical anions of methanofullerenes, which contain an ester and/or a phosphonate group. The opening of a cyclopropane ring occurs during the stage of the formation of radical trianions of methanofullerenes 1, 2. The same process for compounds 3, 4 proceeds slowly in radical anions and fast in dianions. The opening of cyclopropane ring for all compounds is not accompanied by the elimination of methanogroup and results in the formation of dihydrofullerenofurane derivatives. The transformation of methanofullerene 3 induced by single electron transfer proceeds via a chain reaction mechanism

  2. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    OpenAIRE

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  3. Synthetic strategies for modifying dielectric properties and the electron mobility of fullerene derivatives

    NARCIS (Netherlands)

    Jahani Bahnamiri, Fatemeh

    2016-01-01

    The goal of this PhD research project was to develop fullerene derivatives with enhanced dielectric properties for photovoltaic applications. Organic solar cells suffer from relatively low power conversion efficiency mainly due to charge recombination, which stems from the low dielectric constant of

  4. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin

    International Nuclear Information System (INIS)

    Ito, Shinobu; Itoga, Kazuyoshi; Yamato, Masayuki; Akamatsu, Hirohiko; Okano, Teruo

    2010-01-01

    The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH 3 MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA·) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA· decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA· in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA· peak (AA·/H· > 4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA· inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.

  5. Percolation transition in carbon composite on the basis of fullerenes and exfoliated graphite

    Science.gov (United States)

    Berezkin, V. I.; Popov, V. V.

    2018-01-01

    The electrical conductivity of a carbon composite on the basis of C60 fullerenes and exfoliated graphite is investigated in the range of relative contents of components from 0 to 100%. The samples are obtained by the thermal treatment of the initial dispersed mixtures in vacuum in the diffusion-adsorption process and their further cold pressing. The resistivity of the samples gradually increases with an increase in the fraction of fullerenes, and a sharp transition from the conductive state to the dielectric one is observed after achieving certain concentrations of C60. The interpretation of the results within the percolation theory makes it possible to evaluate the percolation threshold (expressed as a relative content of graphite) as equal to 4.45 wt % and the critical conductivity index as equal to 1.85 (which is typical for three-dimensional twocomponent disordered media including those having pores).

  6. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  7. Optimizing Conditions for Ultrasound Extraction of Fullerenes from Coal Matrices

    Czech Academy of Sciences Publication Activity Database

    Vítek, P.; Jehlička, J.; Frank, Otakar; Hamplová, Věra; Pokorná, Zdeňka; Juha, Libor; Boháček, J.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 109-122 ISSN 1536-383X R&D Projects: GA ČR GA205/07/0772; GA ČR GA205/03/1468 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : fullerene C60 * Ultrasound -assisted extraction * Extraction yield * Fullerene decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.710, year: 2009

  8. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  9. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  10. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  11. Single or functionalized fullerenes interacting with heme group

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  12. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Nakamura, Shigeo [Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 (Japan); Ono, Toshiya; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511 (Japan); Yagi, Syota; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Watanabe, Hisami [Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan); Ohe, Tomoyuki; Mashino, Tadahiko [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  13. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya; Ui, Sadaharu; Yagi, Syota; Kagawa, Hiroki; Watanabe, Hisami; Ohe, Tomoyuki; Mashino, Tadahiko; Fujimuro, Masahiro

    2014-01-01

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  14. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    Science.gov (United States)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  15. Single-size thermometric measurements on a size distribution of neutral fullerenes.

    Science.gov (United States)

    Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F

    2013-05-10

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.

  16. Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction

    Science.gov (United States)

    Siadati, Seyyed Amir; Nami, Navabeh

    2016-10-01

    C20 fullerene, this novel species with all its pentagonal faces has displayed some unique operations in making fast pericyclic reactions. As an example, the high dienophile character of the C20 fullerene and the ability of this species in making an ultra-fast Diels-Alder reaction with 1,3-butadiene, has been recently reported. Moreover, new experimental reports claim that the C60 fullerene, one of the fullerene family, could make a Diels-Alder reaction with the central ring of anthracene and make the ring non-aromatic. These reports may encourage researchers to do more studies on the properties of this small carbon cage. To address this question, the present research has discussed all the reaction channels of the Diels-Alder cycloaddition of benzene molecule as a 1,3-diene with the C20 fullerene in order to answer this question: ;Is C20fullerene able to make a Diels-Alder reaction with this molecule?;.

  17. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  18. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  19. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Directory of Open Access Journals (Sweden)

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  20. Thiamakrocykly pro komplexaci fullerenů

    Czech Academy of Sciences Publication Activity Database

    Holý, Petr; Buchta, Michal; Rybáček, Jiří; Závada, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 186-187 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare] R&D Projects: GA AV ČR IAA400550704 Institutional research plan: CEZ:AV0Z40550506 Keywords : makrocycles * alkylation * fullerene s Subject RIV: CC - Organic Chemistry

  1. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  2. Fulereno[C60]: química e aplicações Fullerene C60: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Leandro José dos Santos

    2010-01-01

    Full Text Available Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.

  3. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses.

    Science.gov (United States)

    Schein, Stan; Gayed, James Maurice

    2014-02-25

    The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry--tetrahedral, octahedral, and icosahedral--are the 5 Platonic polyhedra, the 13 Archimedean polyhedra--including the truncated icosahedron or soccer ball--and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, "Goldberg polyhedra," which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler's rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry.

  4. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean; Vandewal, Koen; Cho, Eunkyung; Risko, Chad; Coropceanu, Veaceslav; Salleo, Alberto; Bredas, Jean-Luc; McGehee, Michael D.

    2016-01-01

    the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular

  5. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  6. Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Directory of Open Access Journals (Sweden)

    Hieu Nguyen

    2011-01-01

    Full Text Available Abstract The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8 nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.

  7. Electron transport in doped fullerene molecular junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  8. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...

  9. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  10. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  11. Stability Criteria of Fullerene-like Nanoparticles: Comparing V2O5 to Layered Metal Dichalcogenides and Dihalides

    Directory of Open Access Journals (Sweden)

    Yehiam Prior

    2010-08-01

    Full Text Available Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5 synthesized by pulsed laser ablation (PLA, is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted.

  12. Fullerene C{sub 70} decorated TiO{sub 2} nanowires for visible-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Er-Chieh [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Ciou, Jing-Hao [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Zheng, Jia-Huei; Pan, Job [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Hsiao, Yu-Sheng, E-mail: yshsiao@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Lee, Kuen-Chan, E-mail: kclee@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Huang, Jen-Hsien, E-mail: 295604@cpc.com.tw [Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 30010, Taiwan (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanowire decorated with C{sub 60} and C{sub 70} derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO{sub 2} has great biocompatibility. - Abstract: In this study, we have synthesized C{sub 60} and C{sub 70}-modified TiO{sub 2} nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C{sub 60} and C{sub 70} derivatives) can act as sinks for photogenerated electrons in TiO{sub 2}, while the fullerene/TiO{sub 2} is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO{sub 2} NWs, the modified TiO{sub 2} NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO{sub 2} which expand the utilization of solar light from UV to visible light. The results reveal that the C{sub 70}/TiO{sub 2} NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO{sub 2}, the electron only devices and photoelectrochemical cells based on fullerenes/TiO{sub 2} are also fabricated and evaluated.

  13. Fullerene-like CP x: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth

    International Nuclear Information System (INIS)

    Furlan, A.; Gueorguiev, G.K.; Hoegberg, H.; Stafstroem, S.; Hultman, L.

    2006-01-01

    Inherently nanostructured CP x compounds were studied by first-principles calculations. Geometry optimizations and cohesive energy comparisons show stability for C 3 P, C 2 P, C 3 P 2 , CP, and P 4 (P 2 ) species in isolated form as well as incorporated in graphene layers. The energy cost for structural defects, arising from the substitution of C for P and intercalation of P atoms in graphene, was also evaluated. We find a larger curvature of the graphene sheets and a higher density of cross-linkage sites in comparison to fullerene-like (FL) CN x , which is explained by differences in the bonding between P and N. Thus, the computational results extend the scope of fullerene-like thin film materials with FL-CP x and provide insights for its structural properties

  14. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    Astefanei, A.; Núñez, O.; Galceran, M.T.; Kok, W.Th.; Schoenmakers, P.J.

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid

  15. Growth and Potential Damage of Human Bone-Derived Cells on Fresh and Aged Fullerene C60 Films

    Directory of Open Access Journals (Sweden)

    Jiri Vacik

    2013-04-01

    Full Text Available Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS. We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  16. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    Science.gov (United States)

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  17. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  18. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Science.gov (United States)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  19. Boomerang-type substitution reaction: reactivity of fullerene epoxides and a halofullerenol.

    Science.gov (United States)

    Jia, Zhenshan; Zhang, Xiang; Zhang, Gaihong; Huang, Shaohua; Fang, Hao; Hu, Xiangqing; Li, Yuliang; Gan, Liangbing; Zhang, Shiwei; Zhu, Daoben

    2007-02-05

    The C(s)-symmetric fullerene chlorohydrin C60(Cl)(OH)(OOtBu)4 reacts with 4-dimethylaminopyridine (DMAP) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield two isomers with the formula C60(O)(OOtBu)4 in good yields. These isomers differ with respect to the location of the epoxy functionality. The one from DMAP is C(s) symmetric, whereas that from DABCO is C1 symmetric with the epoxy group on the central pentagon. Two different mechanisms are proposed to explain the chemoselectivity of these reactions. The reaction with DMAP involves single-electron transfer as the key step; DMAP acts as the electron donor. A combination of an oxygen-atom shift and S(N)2'' processes (boomerang substitution) are responsible for the formation of isomer with DACBO. Various related reactions support the proposed mechanisms. The structures of new fullerene derivatives were determined by spectroscopy, single-crystal X-ray analysis, and chemical correlation experiments.

  20. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    Science.gov (United States)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  1. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  2. Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor

    Science.gov (United States)

    KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali

    2018-05-01

    Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.

  3. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  4. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a

  5. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  6. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  7. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    International Nuclear Information System (INIS)

    Waissi, G.C.; Bold, S.; Pakarinen, K.; Akkanen, J.; Leppänen, M.T.; Petersen, E.J.; Kukkonen, J.V.K.

    2017-01-01

    Highlights: • FullerenesC_6_0 were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C_6_0) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C_6_0 in the sediment top layer ((0.025, 0.18 and 0.48) C_6_0 mg/cm"2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  8. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  9. THERMOOXIDATIVE STABILITY OF JET FUEL WITH FULLERENES AS AN ADDITIVE

    Directory of Open Access Journals (Sweden)

    С.В. Іванов

    2012-10-01

    Full Text Available  Heating of fuels in presence of oxygen reduces their thermal-oxidative stability, leads to a solid phase in the form of sludge and tar, which, sedimented at the details of the fuel system, change its characteristics and cause contamination of fuel filters and injectors, spool control sticking, reduce efficiency of heat exchangers. Nanomaterials, performance of which is considerably superior to the natural materials, are the basis for the movement of humanity's progress. Therefore, with a develpoment of technologies it has become necessary to carry out a research of modified additives – fullerens, to improve an oxidative stability of fuels. We have carried out an investigation of thermal-oxidative stability of fuel RT as a function of additive C60 concentration. The results has shown that even 0,043 g/l fullerene addition as an antioxidant, reduces the amount of sediment in the fuel almost by half. Usage of fullerenes for improvement of petroleum products performance properties is a promising area of research.

  10. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Directory of Open Access Journals (Sweden)

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  11. Diazo compounds in the chemistry of fullerenes

    International Nuclear Information System (INIS)

    Tuktarov, Airat R; Dzhemilev, Usein M

    2010-01-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  12. Diazo compounds in the chemistry of fullerenes

    Science.gov (United States)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  13. Diazo compounds in the chemistry of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Tuktarov, Airat R; Dzhemilev, Usein M [Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa (Russian Federation)

    2010-09-14

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  14. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    International Nuclear Information System (INIS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun’ichi

    2015-01-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C 60 ) and fullerene nanowhiskers (FNWs). C 60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C 60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C 60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C 60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C 60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C 60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C 60 . The theoretical simulations showed the bonding distance between C 60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C 60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C 60 . In our study Try and Tyr were hardly adsorbed by C 60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides. (paper)

  15. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  16. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  17. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  18. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  19. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    Energy Technology Data Exchange (ETDEWEB)

    Waissi, G.C., E-mail: greta.waissi@uef.fi [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Bold, S. [GEOMAR Helmholtz Centre of Ocean for Research Kiel (Germany); Pakarinen, K.; Akkanen, J. [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Leppänen, M.T. [Finnish Environment Institute, Jyväskylä (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Kukkonen, J.V.K. [University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä (Finland)

    2017-01-15

    Highlights: • FullerenesC{sub 60} were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C{sub 60}) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C{sub 60} in the sediment top layer ((0.025, 0.18 and 0.48) C{sub 60} mg/cm{sup 2}) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  20. Identifying the source of a strong fullerene envelope arising from laser desorption mass spectrometric analysis of meteoritic insoluble organic matter

    Science.gov (United States)

    Hammond, Matthew R.; Zare, Richard N.

    2008-11-01

    Insoluble organic matter (IOM) has been obtained from two carbonaceous chondrite meteorites and subjected to analysis by laser desorption mass spectrometry (LDMS) using standard operating conditions that were optimized for fullerene detection (3-6 μJ pulses at 337 nm focused to a spot size of approximately 100 μm in diameter). The preparation process yields no free C 60 in the IOM, and other experiments suggest that this material does not contain appreciable amounts of fullerenes. Nevertheless, a pronounced high-mass envelope is observed in LDMS, extending from 720 amu to about 4000 amu, with peaks spaced apart every 24 amu (corresponding to the gain or loss of C 2 units). We attribute this high-mass envelope to the existence of various fullerene molecules. The present work demonstrates that these fullerene molecules are created by the laser desorption laser ionization process under typical laser conditions used for studying free fullerenes in organic solvent extracts of natural samples (toluene and 1,2,4-trichlorobenzene). The implications of this false positive detection of fullerene molecules on the reports of fullerenes in other meteoritic samples have been investigated by introducing IOM into typical fullerene extraction procedures and examining the LDMS results. We found that IOM is capable of producing false positive signals in these experiments. The effect of ambient laboratory contamination producing fullerene signals is also described. It is found that extensive centrifugation of the meteoritic extracts is able to reduce the observed fullerene envelope, which points to an association of this envelope with IOM particulates that have passed through the filtering steps. We suggest the exercise of extreme caution in interpreting fullerene data from LDMS experiments.

  1. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C.; Lagadec, E. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States); Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Weis, A. P. [Department of Astronomy and Astrophysics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Matsuura, M. [Astrophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Duley, W. W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Bernard-Salas, J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Kemper, F. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China); Sahai, R., E-mail: sloan@isc.astro.cornell.edu [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-08-10

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  2. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Sloan, G. C.; Lagadec, E.; Zijlstra, A. A.; Kraemer, K. E.; Weis, A. P.; Matsuura, M.; Volk, K.; Peeters, E.; Cami, J.; Duley, W. W.; Bernard-Salas, J.; Kemper, F.; Sahai, R.

    2014-01-01

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  3. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Science.gov (United States)

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  4. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  5. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    International Nuclear Information System (INIS)

    Semenov, A P; Smirnyagina, N N; Tsyrenov, B O; Dasheev, D E; Khaltarov, Z M

    2017-01-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 10 5 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement. (paper)

  6. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  7. Theory of normal and superconducting properties of fullerene-based solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1992-10-01

    Recent experiments on the normal-state and superconducting properties of fullerene-based solids are used to constrain the proposal theories of the electronic nature of these materials. In general, models of superconductivity based on electron pairing induced by phonons are consistent with electronic band theory. The latter experiments also yield estimates of the parameters characterizing these type H superconductors. It is argued that, at this point, a ''standard model'' of phonons interacting with itinerant electrons may be a good first approximation for explaining the properties of the metallic fullerenes

  8. Effect of fullerene C(60 on ATPase activity and superprecipitation of skeletal muscle actomyosin

    Directory of Open Access Journals (Sweden)

    K. S. Andreichenko

    2013-04-01

    Full Text Available Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.

  9. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering

    International Nuclear Information System (INIS)

    Robles Hernández, F.C.; Calderon, H.A.

    2012-01-01

    Highlights: ► Fullerene mix (C 60 + C 70 + soot) is effective to manufacture nanostructured Al/Al 4 C 3 . ► Carbon in the fullerene mix is more reactive with Al that that present in graphite. ► A complete transformation of carbon into Al 4 C 3 is observed in the Al/fullerene. ► Milling and sintering conditions preserve the nanostructured nature of the composites. ► Hardness improvement: 375% Al/graphite and 582% for Al/fullerene composites. - Abstract: Nanostructured Al matrix composites with reinforcements of graphite or fullerene (C 60 + C 70 + soot) have been produced by mechanical milling and spark plasma sintering (SPS). X-ray diffraction and transmission electron microscopy show that C 60 + C 70 withstand longer mechanical milling/alloying times than graphite. Fullerene is a good control agent during mechanical alloying resulting in a denser Al/fullerene composite when compared to the Al/graphite one. A refinement mechanism that takes place during mechanical alloying of fullerene and graphite is experimentally found and correspondingly discussed. Such a mechanism plays a major role in the amorphization of graphite. The larger surface area of the fullerene mix after milling promotes a better interaction with Al and hence allows its complete transformation into Al 4 C 3 during the SPS process. The sintered products show an increase in hardness for the Al/fullerene composite of 6 times and only 4 times for the Al/graphite composite. The SPS technique shows to be an excellent method to transform the fullerene into Al 4 C 3 while preserving its nanostructured nature.

  10. Fullerene-based low-density superhard materials with tunable bandgaps

    Science.gov (United States)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  11. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    KAUST Repository

    Tummala, Naga Rajesh; Aziz, Saadullah; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe

  12. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  13. Spectra of elementary excitations of fullerenes C60 and electron irradiation effect

    International Nuclear Information System (INIS)

    Gordeev, Yu.S.; Mikushkin, V.M.; Shnitov, V.V.

    2000-01-01

    The electron-stimulated changes in the spectra of the fullerenes C 60 elementary excitations are determined. They are manifested in decreasing the π-plasmon energy, the forbidden zone width, the HOMO-LUMO transition energy and also in smoothing the corresponding peculiarities of the spectra. The observed red shifts are connected with collectivization of the part of the π-electrons, formation of chemically-bound neighbouring molecules (polymerization) and with the corresponding increase in the part of the sp 3 -hybridized electrons. The spectra of the characteristic energy losses of the fullerene electrons, unperturbed by the polymerization process, are measured. The multipole structure of the (σ + π) plasmon and the exciton peculiarity, which manifests high sensitivity to the electron impact and may be used for the fullerene initial structure characterization, is identified [ru

  14. Features of interaction of fullerenes with microwave radiation

    International Nuclear Information System (INIS)

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  15. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    Science.gov (United States)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  16. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar

    2016-10-24

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains and fullerenes is still lacking and could help in the design of more efficient photoactive layers. Here, using a combination of long-range corrected density functional theory calculations and molecular dynamic simulations, we report a thorough characterization of the nature of binding between fullerenes (C60 and PC61BM) and poly(benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) chains. We illustrate the variations in binding strength when the fullerenes dock on the electron-rich vs electron-poor units of the polymer as well as the importance of the role played by the polymer and fullerene side chains and the orientations of the PC61BM molecules with respect to the polymer backbones.

  17. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N. [Qatar Environment and Energy Research Institute (QEERI), Hamad Ben Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Harrabi, K. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Mehmood, U.; Hussein, I. A. [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261 Dharan (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Zhang, J. [Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ London (United Kingdom); McLachlan, M. A. [Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2AZ London (United Kingdom)

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.

  18. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  19. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  20. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  1. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  2. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    KAUST Repository

    Hoke, Eric T.

    2012-05-21

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend fi lms is found to consistently and dramatically increase with decreasing electron affi nity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affi nities photobleached at a faster rate than fi lms of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. © 2012 WILEY-VCH Verlag GmbH & Co.

  3. Investigation of fullerene ions in crossed-beams experiments

    International Nuclear Information System (INIS)

    Hathiramani, D.; Scheier, P.; Braeuning, H.; Trassl, R.; Salzborn, E.; Presnyakov, L.P.; Narits, A.A.; Uskov, D.B.

    2003-01-01

    Employing the crossed-beams technique, we have studied the interaction of fullerene ions both with electrons and He 2+ -ions. Electron-impact ionization cross sections for C 60 q+ (q=1,2,3) have been measured at electron energies up to 1000 eV. Unusual features in shape and charge state dependence have been found, which are not observed for atomic ions. The evaporative loss of neutral C 2 fragments in collisions with electrons indicates the presence of two different mechanisms. In a first-ever ion-ion crossed-beams experiment involving fullerene ions a cross section of (1.05 ± 0.06) x 10 -15 cm 2 for charge transfer in the collision C 60 + + He 2+ at 117.2 keV center-of-mass energy has been obtained

  4. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  5. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation

    KAUST Repository

    Tong, Jing

    2011-05-01

    Fullerene, the third allotrope of carbon, has been referred to as a "radical sponge" because of its powerful radical scavenging activities. However, the hydrophobicity and toxicity associated with fullerene limits its application as a therapeutic antioxidant. In the present study, we sought to overcome these limitations by generating water-soluble nanoformulations of fullerene (C(60)). Fullerene (C(60)) was formulated with poly(N-vinyl pyrrolidine) (PVP) or poly(2-alkyl-2-oxazoline)s (POx) homopolymer and random copolymer to form nano-complexes. These C(60)-polymer complexes were characterized by UV-vis spectroscopy, infrared spectroscopy (IR), dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Cellular uptake and intracellular distribution of the selected formulations in catecholaminergic (CATH.a) neurons were examined by UV-vis spectroscopy, immunofluorescence and immunogold labeling. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the ability of these C(60)-polymer complexes to scavenge superoxide. Their cytotoxicity was evaluated in three different cell lines. C(60)-POx and C(60)-PVP complexes exhibited similar physicochemical properties and antioxidant activities. C(60)-poly(2-ethyl-2-oxazoline) (PEtOx) complex, but not C(60)-PVP complex, were efficiently taken up by CATH.a neurons and attenuated the increase in intra-neuronal superoxide induced by angiotensin II (Ang II) stimulation. These results show that C(60)-POx complexes are non-toxic, neuronal cell permeable, superoxide scavenging antioxidants that might be promising candidates for the treatment of brain-related diseases associated with increased levels of superoxide.

  6. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  7. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  8. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo; Chan, Alice; Wong, Him-Cheng; Higgins, Julia S.; Cabral, João T.

    2010-01-01

    ) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature

  9. Study of the Si fullerene cage isomers

    NARCIS (Netherlands)

    Fthenakis, Z.G.; Havenith, R.W.A.; Menon, M.; Fowler, P.W.

    2005-01-01

    We present the results of a study on the structural and electronic properties of the Si38 fullerene isomers, which are constructed by making all possible permutations among their pentagons and hexagons. These structures were firstly fully optimized with a tight binding molecular dynamics method and

  10. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  11. An Experimental study of Fullerene (C60) Nano-fluids on Pool Boiling Conditions

    International Nuclear Information System (INIS)

    Melani, Ai; Shin, Byoong Su; Chang, Soon Heung

    2009-01-01

    Critical heat flux (CHF) is directly related to the performance of the system since CHF limits the heat transfer of a heat transfer system. Significant enhancement of CHF allows reliable operation of equipment with more margins to operational limit and more economic cost saving. The previous results show that the nano-fluids significantly enhanced pool boiling CHF compared to pure water. It was supposed that CHF enhancement was due to increased thermal conductivity of fluids, change of bubble shape and behavior, and nano-particle coating of the boiling surface. The previous researches also show that mainly the pool boiling experiment was employed metal particles. Fullerene (C 60 ) is a novel carbon allotrope that was first discovered in 1985 by a winner noble 'Sir Harold W.Kroto, Richard E. Smalley and Robert F.Curl Jr'. In this study we report the first CHF experiment in pool boiling conditions using Fullerene (C 60 ) nanofluids

  12. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.; Parida, Manas R.; Tosato, Alberto; AbdulHalim, Lina G.; Usman, Anwar; Alsulami, Qana; Banavoth, Murali; Alarousu, Erkki; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum

  13. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    KAUST Repository

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  14. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    Science.gov (United States)

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  15. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  16. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  17. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    Science.gov (United States)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  18. Discriminating between Different Heavy Metal Ions with Fullerene-Derived Nanoparticles

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2018-05-01

    Full Text Available A novel type of graphene-like nanoparticle, synthesized by oxidation and unfolding of C60 buckminsterfullerene fullerene, showed multiple and reproducible sensitivity to Cu2+, Pb2+, Cd2+, and As(III through different degrees of fluorescence quenching or, in the case of Cd2+, through a remarkable fluorescence enhancement. Most importantly, only for Cu2+ and Pb2+, the fluorescence intensity variations came with distinct modifications of the optical absorption spectrum. Time-resolved fluorescence study confirmed that the common origin of these diverse behaviors lies in complexation of the metal ions by fullerene-derived carbon layers, even though further studies are required for a complete explanation of the involved processes. Nonetheless, the different response of fluorescence and optical absorbance towards distinct cationic species makes it possible to discriminate between the presence of Cu2+, Pb2+, Cd2+, and As(III, through two simple optical measurements. To this end, the use of a three-dimensional calibration plot is discussed. This property makes fullerene-derived nanoparticles a promising material in view of the implementation of a selective, colorimetric/fluorescent detection system.

  19. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding; Min, Guangwei; Kim, Chul; Murkhejee, Bipasha; Larabell, Carolyn; Keasling, Jay D.; Chen,Fanqing Frank

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resulting metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7

  20. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  1. Fullerene derivatives as components for 'plastic' photovoltaic cells

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  2. Thermodynamics of association of water soluble fullerene derivatives

    Indian Academy of Sciences (India)

    SONANKI KESHRI

    2017-08-31

    Aug 31, 2017 ... Entropic and enthalpic contributions to the association of solute molecules are calculated ... authors.7,46–70 The association of fullerene in aque- ous media is ..... The main mechanism accounting for the stabiliza- tion of the ...

  3. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Science.gov (United States)

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  4. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    Science.gov (United States)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  5. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui

    2018-01-25

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  6. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui; Chen, Xiankai; Ashokan, Ajith; Zheng, Zilong; Ravva, Mahesh Kumar; Bré das, Jean-Luc

    2018-01-01

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  7. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  8. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  9. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Directory of Open Access Journals (Sweden)

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  10. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  11. J-V and C-V investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH3NH3PbI3 perovskite solar cell

    Science.gov (United States)

    Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi

    2017-11-01

    To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.

  12. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Thakur, P.; Kumar, Amit; Gautam, S.; Chae, K.H.

    2011-01-01

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode A g (2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  13. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    The main topic of my thesis was the optical spectroscopy of accepters for organic bulk-heterojunction polymer-fullerene solar cells in the visible till near-infrared regime. Pure fullerene samples as well as blends of fullerenes with polymers were studied. Additionally measurements regarding the morphology, spin states and solar cell performance were done. The aims were to determine the ability of new molecules as acceptors for organic solar cells, to find and understand the photoinduced absorption signatures of optical excited anions on fullerene bulks of different sizes and finally to learn about the charge carrier generation process in polymer:Lu{sub 3}N rate at C{sub 80} blends and thus understand the origin of the comparable low current density in this devices, about 25 % less than for P3HT:PC{sub 61}BM solar cells. In our publications due to these topics we presented that the novel C{sub 70}-C{sub 70} dimer fullerenes are fine acceptors for polymer:fullerene solar cells, showing a better absorption coefficient around 500 nm than C{sub 60} based acceptors and high singlet-exciton quenching rates. Anion signatures for fullerene molecules of different sizes were clearly found for C{sub 60{sup -}} at 1.18 eV and for C{sub 70{sup -}} at 0.92 eV. Less clear are my findings regarding the signatures for C{sub 80{sup -}} and C{sub 84{sup -}}. Due to the low signal-to-noise ratio in these measurements and some unique properties of the available materials I was only able to indicate a range from 0.7 eV down to 0.4 eV for the optically detected anion signatures of these fullerenes. Still all fullerenes showed a red shift to lower energies for the anion signatures getting stronger the more carbon atoms the fullerenes were made of. The most detailed research in this thesis was done about the Lu{sub 3}N rate at C{sub 80} molecules application as electron acceptor in P3HT:Lu{sub 3}N rate at C{sub 80} solar cells. The use of this acceptor in combination with P3HT lead to a

  14. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  15. Fullerene nanoparticles in soil: Analysis, occurrence and fate

    NARCIS (Netherlands)

    Carboni, A.

    2016-01-01

    Fullerenes are carbon-based nanomaterials that can occur in the environment due to both natural events and human production. Recently, the increasing use in novel nanotechnologies raised concern for the possible adverse effects on humans and the environment. However, the assessment is complicated by

  16. Raman spectroelectrochemistry of ordered C-60 fullerene layers

    Czech Academy of Sciences Publication Activity Database

    Krause, M.; Deutsch, D.; Dunsch, L.; Janda, Pavel; Kavan, Ladislav

    2005-01-01

    Roč. 13, - (2005), s. 159-166 ISSN 1536-383X R&D Projects: GA AV ČR IAA4040306 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerenes * thin films * nanostructuring * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 0.776, year: 2005

  17. Electron scattering on metal clusters and fullerenes

    International Nuclear Information System (INIS)

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  18. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.

    2015-11-09

    A profound understanding of charge transfer (CT) at semiconductor quantum dots (QDs) and nanoclusters (NCs) interfaces is extremely important to optimize the energy conversion efficiency in QDs and NCs-based solar cell devices. Here, we report on the ground- and excited-state interactions at the interface of two different bimolecular non-covalent donor-acceptor (D-A) systems using steady-state and femtosecond transient absorption (fs-TA) spectroscopy with broadband capabilities. We systematically investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum dots (QDs). For comparison purposes, we also monitor the interaction of each donor molecule with the neutral fullerene derivative C60-(malonic acid)n, which has minimal electrostatic interactions. Our steady-state and time-resolved data demonstrate that both QDs and NCs have strong interfacial electrostatic interactions and dramatic fluorescence quenching when the CF derivative is present. In other words, our results reveal that only CF can be in close molecular proximity with the QDs and NCs, allowing ultrafast photoinduced CT to occur. It turned out that the intermolecular distances, electronic coupling and subsequently CT from the excited QDs or NCs to fullerene derivatives can be controlled by the interfacial electrostatic interactions. Our findings highlight some of the key variable components for optimizing CT at QDs and NCs interfaces, which can also be applied to other D-A systems that rely on interfacial CT. © The Royal Society of Chemistry 2016.

  19. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  20. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew; Moser, Maximilian; Marks, Adam; Little, Mark S.; Gasparini, Nicola; Brabec, Christoph J.; Baran, Derya; McCulloch, Iain

    2018-01-01

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  1. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew

    2018-04-26

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  2. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  3. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Varanasi, S. R.; John, A.; Guskova, O. A.; Sommer, J.-U.

    2015-01-01

    Fullerene C 60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C 60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C 60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  4. New insights in low-energy electron-fullerene interactions

    Science.gov (United States)

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  5. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  6. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin

    OpenAIRE

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-01-01

    Background Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Findings Fullerene lotion significantly decreased conspicuous pores by 17.6% (p 

  7. Pentacene–fullerene bulk-heterojunction solar cell: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Anup [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Sarkar, Sunandan [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Dept. of Physical Chemistry, Palacký University, Olomouc (Czech Republic); Pal, Sougata [Department of Chemistry, University of Gour Banga, Malda 732103 (India); Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2015-06-12

    We perform DFT/TDDFT calculations to study the optoelectronic properties of some pentacene-based organic molecules and their derivatives, which can serve as donor moiety when blended with fullerene acceptors in the bulk-heterojunction solar cell model. We are motivated by a recent experiment in which an unoptimized device was shown to have a good photovoltaic performance and we aim to further improve the efficiency of this device. We try to optimize the photovoltaic properties on the basis of a quantum-mechanical calculation of the frontier energy levels and of the absorption properties of individual molecules and of the molecule–fullerine composite. - Highlights: • Optoelectronic properties of pentacene–fullerene nanocomposites are presented. • Photovoltaic properties of the nanocomposites are predicted. • DFT/TDDFT results are in well agreement with available experimental results. • Calculated results give a direction for optimizing device performance.

  8. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  9. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    Science.gov (United States)

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  10. Adsorption and possible dissociation of glucose by the [BN fullerene-B6]- magnetic nanocomposite. In silico studies

    Science.gov (United States)

    Anota, E. Chigo; Villanueva, M. Salazar; Shakerzadeh, E.; Castro, M.

    2018-02-01

    The adsorption, activation and possible dissociation of the glucose molecule on the magnetic [BN fullerene-B6]- system is performed by means of density functional theory calculations. Three models of magnetic nanocomposites were inspected: i) pristine BN fullerene, BN fullerene functionalized with a magnetic B6 cluster which generates two structures: ii) pyramidal (P) and iii) triangular (T). Chemical interactions of glucose appear for all these cases; however, for the BNF:B6(T)—glucose system, the interaction generates an effect of dissociation on glucose, due to the magnetic effects, since it has high spin multiplicity. The latter nanocomposite shows electronic behavior like-conductor and like-semi-conductor for the P and T geometries, respectively. Intrinsic magnetism associated to values of 1.0 magneton bohr (µB) for the pyramidal and 5.0 µB for the triangular structure, high polarity, and low-chemical reactivity are found for these systems. These interesting properties make these functionalized fullerenes a good option for being used as nano-vehicles for drug delivery. These quantum descriptors remain invariant when the [BN]-fullerene and [BNF:B6 (P) or (T)]- nanocomposites are interacting with the glucose molecule. According to the determined adsorption energy, chemisorption regimes occur in both the phases: gas and aqueous medium.

  11. Study of the nickel-fullerene nano-structured thin films

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Naramoto, H.; Narumi, K.; Yamamoto, S.; Abe, H.

    2004-01-01

    Roč. 219, č. 20 (2004), s. 862-866 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nickel * fullerene * magnesium oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.997, year: 2004

  12. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward

    2007-08-01

    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  13. Analysis of TOF-SIMS spectra from fullerene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kato, N. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)], E-mail: kato-nobuhiko@st.seikei.ac.jp; Yamashita, Y. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, S.; Sanada, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2008-12-15

    We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C{sub 60}, C{sub 70} and C{sub 84}) by using Ga{sup +}, Au{sup +} and Au{sub 3}{sup +} primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C{sub 70} and C{sub 84}, it was found that a fragment ion, identified as C{sub 60}{sup +} (m/z = 720), showed a relatively high intensity compared with that of other fragment ions related to C{sub 2} depletion. It was also found that the Au{sub 3}{sup +} bombardment caused intensity enhancement of intact molecules (C{sub 60}{sup +}, C{sub 70}{sup +} and C{sub 84}{sup +}) and restrained the fragmentation due to C{sub 2} depletion.

  14. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  15. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  16. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  17. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  18. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    International Nuclear Information System (INIS)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2010-01-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC 60 endofullerene compound. (fast track communication)

  19. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    Energy Technology Data Exchange (ETDEWEB)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S [Center for Innovation and Entrepreneurship, Department of Chemistry and Physics, Northwest Missouri State University, Maryville, MO 64468 (United States); Madjet, Mohamed E, E-mail: himadri@nwmissouri.ed [Institute of Chemistry and Biochemistry, Free University, Fabeckstrasse 36a, D-14195 Berlin (Germany)

    2010-09-28

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC{sub 60} endofullerene compound. (fast track communication)

  20. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junmeng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); School of Petrochemical Engineering, Lanzhou University of Technology , Lanzhou 730000 (China); Wang, Yongfu; Liang, Hongyu; Liang, Aimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China)

    2016-02-28

    Graphical abstract: - Highlights: • We prepared hydrogenated carbon films with different content of the fullerene-like nanostructure. • There is a linear relationship between the fullerene-like content and the mechanical properties, tribological behavior of as-deposited FL-C:H films. • New fullerene-like nanostructure may serve as a self-lubrication without addition of any other lubricant during the friction process. • New fullerene-like nanostructure may originate from the rapid annealing and stress relaxation during friction process. - Abstract: Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  1. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  2. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  3. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  4. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of С(60 fullerene on metabolic and proliferative activity of PKE cell line

    Directory of Open Access Journals (Sweden)

    I. V. Belochkina

    2014-04-01

    Full Text Available The effect of С60 fullerene aqueous colloid solution (C60FAS on activity of redox and proliferative processes in PKE (transplantable cell line of pig kidney embryo cells has been studied. In particular, it was established that the presence of С60 fullerene (127 μМ in culturing medium of PKE cells during 48 h did not change their ability to reduce non-toxic АlamarBlue redox indicator and proliferative acti­vity.

  6. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  7. Polymerized phase and amorphous diamond synthesized from C60 fullerene by shock compression

    International Nuclear Information System (INIS)

    Niwase, K.; Homae, T.; Nakamura, K.G.; Kondo, K.

    2006-01-01

    C 60 fullerene films were shock compressed to 23 and 52GPa. Both the recovered samples exhibit fracture into platelets and broad photoluminescence, and intensity of these increases with increasing pressure. At 23GPa, a characteristic single broad band appears at 1560-1570cm -1 , which is similar to the one found for three-dimensional (3D) polymerized C 60 fullerene under high-pressure-high-temperature treatment. At 52GPa, on the other hand, the single broad band has disappeared and a diamond peak sometimes appears, depending on platelets

  8. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    Science.gov (United States)

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  9. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  10. RBS and SEM analysis of the nickel-fullerene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Naramoto, J.; Narumi, K.; Yamanoto, S.; Abe, J.

    2003-01-01

    Roč. 206, - (2003), s. 395-398 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nicke-fullerene hybrid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2003

  11. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  12. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-Covalent Functionalisation of C30 Fullerene by Pyrrole-n-Carboxylic Acid (n=2, 3): Density Functional Theory Studies

    Science.gov (United States)

    Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad

    2017-12-01

    For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  14. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

    KAUST Repository

    Miller, Nichole Cates

    2012-08-22

    While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and smallmolecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is suffi cient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafl uoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist, and the calculations point to van der Waals interactions as a signifi cant driving force for molecular mixing. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  16. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  17. Naming polyhedra by general face-spirals - theory and applications to fullerenes and other polyhedral molecules

    DEFF Research Database (Denmark)

    Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil

    2018-01-01

    We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical...... polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can...... be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i. e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm...

  18. Interactions of carbon nanotubes and fullerenes with the immune system of the skin and the possible implications related to cutaneous nanotoxicity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Castro Fernandes

    2013-11-01

    Full Text Available The understanding of the interaction of carbon nanotubes and fullerenes with the constituents of the skin, especially the skin immune unit, is relevant to the determina-tion of toxicological endpoints. A systematic review was done focused on such aspects. Considerable part of the found references concentrated in cytotoxicity and skin per-meation. On a smaller scale, there are articles on immunomodulation and activation of immune cells and other elements. Few of the found studies deal specifically with cutaneous immune response, limiting the related knowledge. The findings suggest that nanomaterials studied may be involved in skin problems such irritant contact dermatitis, anaphylactoid reactions, urticaria, angioedema, and raised the need for performing additional studies to confirm the findings. The standardization of the description and testing of nanomaterials characteristics used in experiments can facilitate comparison of results.

  19. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung, E-mail: mskang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  20. Extraction of fullerenes from environmental matrices as affected by solvent characteristics and analyte concentration.

    Science.gov (United States)

    Place, Benjamin J; Kleber, Markus; Field, Jennifer A

    2013-03-01

    Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photoconducting properties of fullerene derivatized with a biphenil moiety

    Czech Academy of Sciences Publication Activity Database

    Corvis, Y.; Trzcinska, K.; Rink, R.; Bílková, Petra; Gorecka, E.; Bilewicz, R.; Rogalska, E.

    2006-01-01

    Roč. 80, č. 3 (2006), s. 1899-1907 ISSN 0137- 5083 Grant - others:Research Training Network(XE) HPRN-CT-2002-00171 Institutional research plan: CEZ:AV0Z10100520 Keywords : fullerene * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.491, year: 2006

  2. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates

    2012-09-05

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin.

    Science.gov (United States)

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-02-22

    Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Fullerene lotion significantly decreased conspicuous pores by 17.6% (p facial pores after an 8-week treatment possibly through the suppression of PGE2 production in the epidermis.

  4. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates; Cho, Eunkyung; Junk, Matthias J N; Gysel, Roman; Risko, Chad; Kim, Dongwook; Sweetnam, Sean; Miller, Chad E.; Richter, Lee J.; Kline, Regis Joseph; Heeney, Martin J.; McCulloch, Iain A.; Amassian, Aram; Acevedo-Feliz, Daniel; Knox, Christopher; Hansen, Michael Ryan; Dudenko, Dmytro V.; Chmelka, Bradley F.; Toney, Michael F.; Bré das, Jean Luc; McGehee, Michael D.

    2012-01-01

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  6. Negative differential resistance observation in complex convoluted fullerene junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  7. Surfactant-free fabrication of fullerene C{sub 60} nanotubules under shear

    Energy Technology Data Exchange (ETDEWEB)

    Vimalanathan, Kasturi; Raston, Colin L. [Flinders Centre for NanoScale Science Technology (CNST) Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Shrestha, Rekha Goswami [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Zhang, Zhi; Zou, Jin [Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD (Australia); Nakayama, Tomonobu [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan)

    2017-07-10

    A method for controlling the self-assembly of fullerene C{sub 60} molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C{sub 60} nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  9. Enantiopure vs. Racemic Naphthalimide End-Capped Helicenic Non-Fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance

    OpenAIRE

    Josse , Pierre; Favereau , Ludovic; Shen , Chengshuo; Dabos-Seignon , Sylvie; Blanchard , Philippe; Cabanetos , Clement; Crassous , Jeanne

    2017-01-01

    International audience; Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumpi...

  10. Non-covalent functionalisation of C{sub 30} fullerene by pyrrole-n-carboxylic acid (n=2, 3). Density functional theory studies

    Energy Technology Data Exchange (ETDEWEB)

    Harismah, Kun [Univ. Muhammadiyah Surakarta (Indonesia). Dept. of Chemical Engineering; Mirzaei, Mahmoud [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of). Bioinformatics Research Center; Ghasemi, Nahid [Islamic Azad Univ., Arak (Iran, Islamic Republic of). Dept. of Chemistry; Nejati, Mohammad [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2018-04-01

    For functionalisation of a representative C{sub 30} fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C{sub 60} fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C{sub 60}, the shape of C{sub 30} fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC{sub 30} and EC{sub 30}). The results indicated that both the positions of C{sub 30} have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C{sub 60}. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C{sub 30} than for C{sub 60} fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  11. Making and exploiting fullerenes, graphene, and carbon nanotubes

    International Nuclear Information System (INIS)

    Marcaccio, Massimo; Paolucci, Francesco

    2014-01-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene-Stoppered Bistable Rotaxanes'' by Aurelio Mateo-Alonso, which presents an

  12. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  13. Photodynamics of a constrained parachute-shaped fullerene-porphyrin dyad

    NARCIS (Netherlands)

    Schuster, D.I.; Cheng, P.; Wilson, S.R.; Prokhorenko, V.; Katterle, M.; Holzwarth, A.R.; Braslavsky, S.E.; Klihm, G.; Williams, R.M.

    1999-01-01

    The pronounced ability of fullerene C60 to act as an electron and energy acceptor has led to the synthesis of a large number of compounds in which C60 is covalently linked to photoactivatable groups which can serve as potential donors. Such compounds are of interest as model systems for

  14. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  15. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    Science.gov (United States)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  16. Memory effect in the deposition of C20 fullerenes on a diamond surface

    Science.gov (United States)

    Du, A. J.; Pan, Z. Y.; Ho, Y. K.; Huang, Z.; Zhang, Z. X.

    2002-07-01

    In this paper, the deposition of C20 fullerenes on a diamond (001)-(2×1) surface and the fabrication of C20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in ``C20-type'' films [P. Melion et al., Int. J. Mod. B 9, 339 (1995); P. Milani et al., Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp3 hybridization character, the same as that of a free C20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C20 film showed high stability even when the temperature was raised up to 1500 K.

  17. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    International Nuclear Information System (INIS)

    Li Wei; Chen Chunying; Ye Chang; Zhao Yuliang; Chen Zhen; Meng Huan; Gao Yuxi; Yuan Hui; Xing Genmei; Zhao Feng; Chai Zhifang; Wei Taotao; Zhang Xujia; Yang Fuyu; Lao Fang; Han Dong; Tang Xianhua; Zhang Yingge

    2008-01-01

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C 60 (C(COOH) 2 ) 2 ] n nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells

  18. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  19. Understanding triplet formation pathways in bulk heterojunction polymer : fullerene photovoltaic devices

    NARCIS (Netherlands)

    Tedla, B.; Zhu, F.; Cox, M.; Drijkoningen, J.; Manca, J.V.; Koopmans, B.; Goovaerts, E.

    2015-01-01

    Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) "super yellow" poly(p-phenylene vinylene) (SY-PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance

  20. Fullerene-based one-dimensional crystalline nanopolymer formed through topochemical transformation of the parent nanowire

    DEFF Research Database (Denmark)

    Geng, Junfeng; Solov'yov, Ilia; Reid, David G.

    2010-01-01

    Large-scale practical applications of fullerene (C_60) in nanodevices could be significantly facilitated if the commercially available micrometer-scale raw C_60 powder were further processed into a one-dimensional nanowire-related polymer displaying covalent bonding as molecular interlinks...... chromatography, mass spectrometry and ^13C nuclear magnetic resonance evidence is provided for the nature of the covalent bonding mode adopted by the polymeric chains. Theoretical analysis based on detailed calculations of the reaction energetics and structural analysis provides an in-depth understanding...

  1. Nonlinear absorption of fullerene- and nanotubes-doped liquid crystal systems

    Czech Academy of Sciences Publication Activity Database

    Kamanina, N.; Reshak, Ali H; Vasiliev, P.Y.; Vangonen, A. I.; Studeonov, V. I.; Usanov, Y. E.; Ebothe, J.; Gondek, E.; Wojcik, W.; Danel, A.

    2009-01-01

    Roč. 41, č. 3 (2009), s. 391-394 ISSN 1386-9477 Institutional research plan: CEZ:AV0Z60870520 Keywords : nonlinear absorption properties * organic electrooptical systems * liquid crystal * fullerene s * nanotubes * PVK-derivatives Subject RIV: BO - Biophysics Impact factor: 1.177, year: 2009

  2. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Directory of Open Access Journals (Sweden)

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  3. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    KAUST Repository

    Tummala, Naga Rajesh

    2017-10-06

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe how mixing affects the molecular packing, mechanical properties, and electronic parameters (site energy disorder, electronic couplings) of interest for solar-cell applications. Specifically, we consider mixtures of: (i) C60 and C70; (ii) C60, C70, and C84, and (iii) PC61BM and PC71BM.

  4. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  5. Role of four-membered rings in C32 fullerene stability and mechanisms of generalized Stone-Wales transformation: a density functional theory investigation.

    Science.gov (United States)

    Wang, Weiwei; Dang, Jingshuang; Zhao, Xiang

    2011-08-28

    Density functional theory (DFT) methods have been applied to study C(32) fullerenes built from four-, five-, and six-membered rings. The relative energies of pure C(32) fullerenes have been evaluated to locate three most stable structures, 32:D(4d) with two squares, 1:D(3) without square and 5:C(s) with one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer 1:D(3) and the lowest energy non-classical isomer 32:D(4d), and 5:C(s) behaves just as an intermediate between them. The kinetic processes of generalized Stone-Wales transformation (GSWT) with four-membered rings have been explored and two distinct reaction mechanisms are determined by all the transition states and intrinsic reaction coordinates with PBE1PBE/6-31G(d) approach for the first time. One mechanism is the concerted reaction with a rotating dimer closed to the cage surface and another is the stepwise reaction with a carbene-like sp(3) structure, whereas the latter is sorted into two paths based on four-membered ring vanishing before or after the formation of the carbene-like structure. It is indicated that there is no absolute preference for any mechanism, which depends on the adaptability of different reactants on the diverse mechanisms. Furthermore, it's found that the interconversion process with the participation of squares is more reactive than the rearrangement between C(60)_I(h) and C(60)_C(2v), implying some potential importance of non-classical small fullerenes in the fullerene isomerization.

  6. Syntéza makrocyklů pro komplexaci fullerenů

    Czech Academy of Sciences Publication Activity Database

    Holý, Petr; Buchta, M.; Rybáček, Jiří; Lipnická, Šárka; Bělohradský, Martin

    2007-01-01

    Roč. 101, č. 11 (2007), s. 932-933 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /42./. 16.11.2007-18.11.2007, Liblice] R&D Projects: GA AV ČR IAA400550704 Institutional research plan: CEZ:AV0Z40550506 Keywords : makrocycles * fullerens * alkylation Subject RIV: CC - Organic Chemistry

  7. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    Science.gov (United States)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  8. Fullerenes and fullerides - a kay to the advanced technologies of the 21st century in electrical engineering

    International Nuclear Information System (INIS)

    Trzaska, Z.

    2001-01-01

    Structures, properties, and methods of manufacturing of fullerenes as well as fullerides are described in the paper. These quite new materials known since beginning of the last decade represent the third crystallographic phase of the carbon and they belong to the nanostructural particles. They have been established during the past decade and awarded by the Nobel prize in 1996. The fullerene C 60 appears as a typical representative of this very large class od new nanostructural materials. Their possibilities and potential applications in the field of electrical engineering have been discussed. Because of many characteristic and useful properties of the fullerenes and fullerides their competition with respect to some materials frequently up-to-date used in the practice is proved. Examples of potential fields of applications, such as superconductors, electronic devices, effective measuring transducers of non-electric signals are also presented. Taking into account the high efficiency of the electric arc method which is widely used for manufacturing the fullerenes at the commercial level a prediction has been made that the dissemination of these new materials in the future industry creates a very good basis for a development of small and medium enterprises in the domain of electrical engineering. (author)

  9. The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Dmitry G. Deryabin

    2014-01-01

    Full Text Available We report a comparative investigation of the antibacterial activity of two water-soluble fullerene derivatives bearing protonated amine (AF and deprotonated carboxylic (CF groups appended to the fullerene cage via organic linkers. The negatively charged fullerene derivative CF showed no tendency to bind to the bacterial cells and, consequently, no significant antibacterial activity. In contrast, the compound AF loaded with cationic groups showed strong and partially irreversible binding to the negatively charged Escherichia coli K12 TG1 cells and to human erythrocytes, also possessing negative zeta potential. Adsorption of AF on the bacterial surface was visualized by atomic force microscopy revealing the formation of specific clusters (AF aggregates surrounding the bacterial cell. Incubation of E. coli K12 TG1 with AF led to a dose-dependent bactericidal effect with LD50 = 79.1 µM. The presence of human erythrocytes in the test medium decreased the AF antibacterial activity. Thus we reveal that the water-soluble cationic fullerene derivative AF possesses promising antibacterial activity, which might be utilized in the development of novel types of chemical disinfectants.

  10. High stability of the goldalloy fullerenes: A density functional theory investigation of M12@Au20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters

    International Nuclear Information System (INIS)

    Zhang Meng; Feng Xiao-Juan; Zhao Li-Xia; Zhang Hong-Yu; Luo You-Hua

    2012-01-01

    Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene. La 12 @Au 20 is found to be particularly stable among these clusters. The binding energy of La 12 @Au 20 is 3.43 eV per atom, 1.05 eV larger than that in Au 32 . The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV, suggesting that it should be relatively chemically reactive. (condensed matter: structural, mechanical, and thermal properties)

  11. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    Science.gov (United States)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  12. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  13. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  14. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes

    Science.gov (United States)

    Parlak, Cemal; Alver, Özgür

    2017-06-01

    Amantadine is a well-known drug for its treatment effect on Parkinson's disease and influenza infection or hepatitis. Heteroatom doped fullerenes have been extensively examined for their possible usage in sensor technology and medical applications as drug delivery vehicles. In this research, pristine and B, Al, Si, Ga, Ge doped C60 fullerenes and their interaction with amantadine drug molecule were investigated based on the density functional theory calculations. Findings suggest that doped C60 fullerenes might be used to detect the presence of amantadine and they might be used as drug delivery vehicles because of their moderately high adsorption energies with amantadine.

  15. In Silico Study of Spacer Arm Length Influence on Drug Vectorization by Fullerene C60

    Directory of Open Access Journals (Sweden)

    Haifa Khemir

    2015-01-01

    Full Text Available This work studies theoretically the effect of spacer arm lengths on the characteristics of a fullerene C60-based nanovector. The spacer arm is constituted of a carbon chain including a variable number of methylene groups (n = 2–11. To improve the ability of the fullerene carriage, two arms are presented simultaneously through a malonyl bridge. Then the evolution of selected physicochemical parameters is monitored as a function of the spacer arm length and the angle between the two arms. We show here that while the studied characteristics are almost independent of the spacer arm length or vary monotonically with it, the dipole moment and its orientation vary periodically with the parity of the number of carbon atoms. This periodicity is related to both modules and orientations of dipole moments of the spacer arms. In the field of chemical synthesis, these results highlight the importance of theoretical calculations for the optimization of operating conditions. In the field of drug discovery, they show that theoretical calculations of the chemical properties of a drug candidate can help predict its in vivo behaviour, notably its bioavailability and biodistribution, which are known to be tightly dependent of its polarity.

  16. Organic light-emitting devices with fullerene/aluminum composite anode

    International Nuclear Information System (INIS)

    Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.

    2008-01-01

    Our previous work demonstrates that fullerene/Aluminum (C 60 /Al) can be used as a composite anode in organic solar cells. In this work, we report that an organic light emitting devices (OLEDs) can be made with the C 60 /Al composite anode as well. The OLEDs show comparable current density and brightness to the traditional devices with the indium tin oxide anode

  17. Laser-induced periodic surface structure in nickel-fullerene composites

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Lavrentiev, Vasyl; Havránek, Vladimír; Horák, Pavel; Hnatowicz, Vladimír; Fajgar, Radek

    2016-01-01

    Roč. 171, 1-2 (2016), s. 154-160 ISSN 1042-0150 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:67985858 Keywords : fullerene * nickel * laser illumination * interference * selforganisation * LIPSS Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 0.443, year: 2016

  18. Thermal Effect on Structure Organizations in Cobalt-Fullerene Nanocomposition

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Sakai, S.

    2010-01-01

    Roč. 10, č. 4 (2010), s. 2624-2629 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR IAA200480702; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : cobalt * fullerene * simultaneous deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.351, year: 2010

  19. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  20. Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions

    International Nuclear Information System (INIS)

    Lin Hongzhen; Weng Yufeng; Huang Hongmin; He Qingguo; Zheng Min; Bai Fenglian

    2004-01-01

    Photoinduced charge transfer between a conjugated polymer and C 60 and the related processes were investigated in dilute solutions. The substantial fluorescence quenching is correlated with the efficient exciton diffusion within the polymer chains, according to which a sphere-of-action mechanism is proposed. An emissive exciplex was found formed between the conjugated polymer and fullerene in a nonpolar solvent, indicating the occurrence of a photoinduced partial charge transfer process. The low-energy sites in the polymer are believed to play a crucial role in the partial charge transfer. The asymmetry of the exciplex provides a method for evaluating the tendency of photoinduced charge separation between the donor and the acceptor. This method allows screening candidates for photovoltaic applications

  1. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    Science.gov (United States)

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  2. Imaging of fullerene-like structures in CNx thin films by electron microscopy; sample preparation artefacts due to ion-beam milling

    International Nuclear Information System (INIS)

    Czigany, Zs.; Neidhardt, J.; Brunell, I.F.; Hultman, L.

    2003-01-01

    The microstructure of CN x thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200 kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5 nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN x surfaces. The thickness of the damaged surface layer at 5 deg. grazing incidence was 13 and 10 nm at 3 and 0.8 keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25 keV, was less than 1 nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN x films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN x was observed at 200 kV

  3. Single-Size Thermometric Measurements on a Size Distribution of Neutral Fullerenes

    NARCIS (Netherlands)

    Cauchy, C.; Bakker, J. M.; Huismans, Y.; Rouzee, A.; Redlich, B.; van der Meer, A. F. G.; Bordas, C.; Vrakking, M. J. J.; Lepine, F.

    2013-01-01

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of

  4. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    DEFF Research Database (Denmark)

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    The non-fullerene acceptors with different geometric structures have great impact on light absorption, exciton dissociation, and charge transportation in the active layer of organic solar cells (OSCs). In this paper, we designed and synthesized two diketopyrrolopyrrole based non-fullerene acceptors......) while compared to Ph(DPP)2. Therefore, the resulting P3HT:PhDMe(DPP)2 based OSCs shows a better power conversion efficiency (PCE) of 0.65%, higher than that from P3HT:Ph(DPP)2 based OSCs (0.48%), which can be ascribed to more efficient exciton dissociation and electron transportation in the active layer...

  5. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M.

    2012-01-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated

  6. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Loft Steffen

    2009-02-01

    Full Text Available Abstract Background Exposure to small size particulate matter in urban air is regarded as a risk factor for cardiovascular effects, whereas there is little information about the impact on the cardiovascular system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes are nano-sized particles that are expected to have a widespread use, including cosmetics and medicines. Methods We investigated the association between intraperitoneal injection of pristine C60 fullerenes and vasomotor dysfunction in the aorta of 11–13 and 40–42 weeks old apolipoprotein E knockout mice (apoE-/- with different degree of atherosclerosis. Results The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent vasoconstriction response was increased. One hour after an intraperitoneal injection of 0.05 or 0.5 mg/kg of C60 fullerenes, the young apoE-/- mice had slightly reduced maximal endothelium-dependent vasorelaxation. A similar tendency was observed in the old apoE-/- mice. Hampered endothelium-independent vasorelaxation was also observed as slightly increased EC50 of sodium nitroprusside-induced vasorelaxation response in young apoE-/- mice. Conclusion Treatment with C60 fullerenes affected mainly the response to vasorelaxation in young apoE-/- mice, whereas the vasomotor dysfunction in old apoE-/- mice with more advanced atherosclerosis was less affected by acute C60 fullerene treatment. These findings represent an important step in the hazard characterization of C60 fullerenes by showing that intraperitoneal administration is associated with a moderate decrease in the vascular function of mice with atherosclerosis.

  7. Contrasting bonding behavior of thiol molecules on carbon fullerene structures

    International Nuclear Information System (INIS)

    Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.

    2003-01-01

    We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms

  8. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    Science.gov (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  9. Quantitative depth profiling of K-doped fullerene films using XPS and SIMS

    Czech Academy of Sciences Publication Activity Database

    Oswald, S.; Janda, Pavel; Dunsch, L.

    2003-01-01

    Roč. 141, 1-2 (2003), s. 79-85 E-ISSN 1436-5073 Institutional research plan: CEZ:AV0Z4040901 Keywords : XPS * SIMS * depth profiling * fullerenes * doping Subject RIV: CG - Electrochemistry Impact factor: 0.784, year: 2003

  10. Photoinduced electron transfer to fullerene C70 (An in situ EPR study)

    International Nuclear Information System (INIS)

    Brezova, V.; Dvoranova, D.; Kostova, B.; Stasko, A.

    1999-01-01

    The photoexcitation of fullerene C 70 by monochromatic light (λ = 546 nm) in the presence of electron donating substrate 3,3',5,5'-tetramethyl-benzidine (TMB) resulted in the charge-transfer, quenching the fullerene triplet state and forming corresponding C 70 anion-radicals. Analogously to the photo-reduction of C 60 , two EPR signal were observed upon in situ irradiation in the cavity of EPR spectrometer. EPR singlet A characterized by g-value, g A = 2.0009 and peak-to-peak line-width, pp A = 0.013 mT was assigned to the C 70 mono-anion. Signal B (g B = 2.0011; pp B = 0.011 mT) was tentatively attributed to the C 70 di-anion or to the associated forms of mono-anions. The stabilization of photo-generated anion-radicals significantly depends on solvent polarity. (authors)

  11. Charge Separation and Recombination in Small Band Gap Oligomer-Fullerene Triads

    NARCIS (Netherlands)

    Karsten, Bram P.; Bouwer, Ricardo K. M.; Hummelen, Jan C.; Williams, Rene M.; Janssen, Rene A. J.

    2010-01-01

    Synthesis and photophysics of a series of thiophene-thienopyrazine small band gap oligomers end-capped at both ends with C(60) are presented In these triads a photoinduced electron transfer reaction occurs between the oligomer as a donor and the fullerene as an acceptor Femtosecond photoinduced

  12. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  13. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  14. Molecular dynamics study on welding a defected graphene by a moving fullerene

    International Nuclear Information System (INIS)

    Cai, Kun; Wan, Jing; Yu, Jingzhou; Cai, Haifang; Qin, Qinghua

    2016-01-01

    Highlights: • Fullerene (FN) is adopted to weld the gap on a graphene (GN) sheet using molecular dynamics simulation. • The mechanism is that the dangling sp"1 carbon atoms on both sides of gap are excited by FN to form new sp"2-sp"2 carbon bonds. • The velocity of FN influences the welding result due to the fact that the deformation of GN depends on the velocity of FN. • A complex nanostructure, e.g., cone, can be formed by the present method, which will be applicable in nano fabrication/manufacturing. - Abstract: When a composite nanostructure is fabricated through van der Waals interaction only, the interaction among components may be sensitive to environmental conditions. To endow such a structure with relative stability, new covalent bonds should be applied. In this paper, a welding method for welding a circular graphene with a defect gap through a moving fullerene (C240 or C540 buckyball) is presented. When the buckyball moves above the gap, the two faces of the gap are attracted to each other and the distance between the two faces is shortened. When the dangling carbon atoms on both faces of the gap are excited to form new normal sp"2-sp"2 carbon bonds, the gap can be sewn up quickly. Molecular dynamics simulations are presented to demonstrate the welding process. When the gap is a sector, an ideal cone can be fabricated using the present method.

  15. Molecular dynamics study on welding a defected graphene by a moving fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Kun, E-mail: kuncai99@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Research School of Engineering, The Australian National University, ACT 2601 (Australia); Wan, Jing; Yu, Jingzhou; Cai, Haifang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Qin, Qinghua [Research School of Engineering, The Australian National University, ACT 2601 (Australia)

    2016-07-30

    Highlights: • Fullerene (FN) is adopted to weld the gap on a graphene (GN) sheet using molecular dynamics simulation. • The mechanism is that the dangling sp{sup 1} carbon atoms on both sides of gap are excited by FN to form new sp{sup 2}-sp{sup 2} carbon bonds. • The velocity of FN influences the welding result due to the fact that the deformation of GN depends on the velocity of FN. • A complex nanostructure, e.g., cone, can be formed by the present method, which will be applicable in nano fabrication/manufacturing. - Abstract: When a composite nanostructure is fabricated through van der Waals interaction only, the interaction among components may be sensitive to environmental conditions. To endow such a structure with relative stability, new covalent bonds should be applied. In this paper, a welding method for welding a circular graphene with a defect gap through a moving fullerene (C240 or C540 buckyball) is presented. When the buckyball moves above the gap, the two faces of the gap are attracted to each other and the distance between the two faces is shortened. When the dangling carbon atoms on both faces of the gap are excited to form new normal sp{sup 2}-sp{sup 2} carbon bonds, the gap can be sewn up quickly. Molecular dynamics simulations are presented to demonstrate the welding process. When the gap is a sector, an ideal cone can be fabricated using the present method.

  16. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  17. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

    International Nuclear Information System (INIS)

    Landa, Premysl; Vankova, Radomira; Andrlova, Jana; Hodek, Jan; Marsik, Petr; Storchova, Helena; White, Jason C.; Vanek, Tomas

    2012-01-01

    Highlights: ► Exposure to different nanoparticles resulted in specific changes in gene transcription. ► Nano ZnO caused most dramatic changes in Arabidopsis gene expression. ► Nano ZnO was the most toxic and up-regulated most stress-related genes. ► Fullerene soot caused significant gene expression response – mainly stress-related. ► Nano TiO 2 had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO 2 ) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO 2 exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] 2 exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  18. The influence of the admixture of the fullerene C60 on the strength properties of aluminum and copper under shock-wave loading

    International Nuclear Information System (INIS)

    Bezruchko, G S; Razorenov, S V; Popov, M Y

    2014-01-01

    Hugoniot elastic limit (HEL) and dynamic (spall) strength measurements of pressed aluminum and copper samples with an admixture of the fullerene C60 with 2-5 wt% under shock-wave loading were carried out. The peak pressure in the shock-wave was equal to 6 GPa. The measurements of the elastic-plastic and strength properties were based on the recording and the subsequent analysis of the sample free surface velocity histories, recorded by Velocity Interferometric System for Any Reflection (VISAR). It was found that the admixture of 5 wt% fullerene in aluminum samples led to an increase of the Hugoniot elastic limit for aluminum samples by a factor of ten. The copper samples with the admixture of 2 wt% fullerene also demonstrated an increase of the Hugoniot elastic limit in comparison with commercial copper. The measured values of the Hugoniot elastic limit were equal to 0.82-1.56 GPa for aluminum samples and 1.35-3.46 GPa for copper samples, depending on their porosity. As expected, the spall strength of the samples with fullerene decreased by about three times in comparison with the undoped samples as a result of the influence of the solid fullerene particles which were concentrators of tension stresses in the material under dynamic fracture.

  19. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei; Domingo, Ester; Sakowicz, Maciej; Rezasoltani, Elham; McCarthy-Ward, Thomas; Heeney, Martin; Zhang, Xinping; Stingelin, Natalie; Silva, Carlos

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  20. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  1. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene.

    Science.gov (United States)

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-09-17

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C 60 (OH) n ) and carboxylated fullerene (C 60 (C(COOH)₂) n ) has been investigated. C 60 (OH) n , C 60 (C(COOH)₂) n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C 60 (OH) n or C 60 (C(COOH)₂) n , the study of a ternary system showed the inhibition effect of C 60 (OH) n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C 60 (C(COOH)₂) n , even at its low concentration, on Th(IV) adsorption was observed in acid medium.

  2. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Directory of Open Access Journals (Sweden)

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  3. Properties of the Only Thorium Fullerene, Th@C-84, Uncovered

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Vícha, J.; Bouř, Petr; Straka, Michal

    2017-01-01

    Roč. 121, č. 16 (2017), s. 3128-3135 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR(CZ) GA17-07091S Institutional support: RVO:61388963 Keywords : thorium fullerene * electronic structure * UV-vis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  4. Contrasting magnetism in dilute and supersaturated cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Stupakov, Alexandr; Pokorný, Jan; Lavrentieva, Inna; Vacík, Jiří; Dejneka, Alexandr; Barchuk, M.; Čapková, P.

    2015-01-01

    Roč. 48, č. 33 (2015), s. 335002 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : cobalt * fullerene * nanomagnetism * nanostructure * self-organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.772, year: 2015

  5. Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene

    Czech Academy of Sciences Publication Activity Database

    Flídrová, K.; Liška, Alan; Ludvík, Jiří; Eigner, V.; Lhoták, P.

    2015-01-01

    Roč. 56, č. 12 (2015), s. 1535-1538 ISSN 0040-4039 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : calixarene * fullerene * complexation Subject RIV: CG - Electrochemistry Impact factor: 2.347, year: 2015

  6. The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu, J; Pan, Z Y; Wang, Y X; Zhou, L; Jiang, Q

    2007-01-01

    We investigate the bending flexibility of carbon nanotubes (CNTs) with encapsulated C 60 fullerenes, using molecular dynamics (MD) simulations. Our simulations on the bending of the fully ((C 60 ) 12 -(10,10)) and partially ((C 60 ) 10 -(10,10)) filled peapods show an 18 and 6.3% increase of the flexural rigidity, and a 45 and 11% increase of the buckling strength, respectively, compared to the empty (10, 10) CNT. What is characteristically different for the peapod from the empty CNT is the presence of a transitional region in the loading process that proceeds to the onset of buckling. Within this transitional region, the interaction between the encapsulated fullerenes and the hosting CNT leads to an unusual configuration of the peapod, in which there are ripples along the inner arc of the bent peapod. The transition region in the partially filled peapod is short compared with the fully filled peapod. This is mainly caused by the axial motion of C 60 fullerenes, especially after the appearance of the small ripple. The rippling configuration has been reported previously in the bending of multi-walled CNTs, where it emerges after the critical bending angle. However, in the present case, the peapod remains perfectly elastic in this transitional region until buckling takes place

  7. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the

  8. Structure and Properties of the Nonface-Spiral Fullerenes T-C380, D3-C384, D3-C440, and D3-C672 and Their Halma and Leapfrog Transforms

    DEFF Research Database (Denmark)

    Wirz, Lukas; Tonner, Ralf; Avery, James Emil

    2013-01-01

    The structure and properties of the three smallest nonface-spiral (NS) fullerenes NS-T-C380, NS-D3-C384, NS-D3-C440, and the first isolated pentagon NS-fullerene, NS-D3-C672, are investigated in detail. They are constructed by either a generalized face-spiral algorithm or by vertex insertions......-fullerenes compared to C60, but, as expected, in a lower stability than most stable isomers. None of the many investigated halma transforms on nonspiral fullerenes, NS-T-C380, NS-D3-C384, NS-D3-C440, and NS-D3-C672, admit any spirals, and we conjecture that all halma transforms of NS-fullerenes belong to the class...

  9. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Folkmann, Janne K; Risom, Lotte; Jacobsen, Nicklas R

    2009-01-01

    BACKGROUND: C60 fullerenes and single-walled carbon nanotubes (SWCNT) are projected to be used in medicine and consumer products with potential human exposure. The hazardous effects of these particles are expected to involve oxidative stress with generation of oxidatively damaged DNA that might...... be the initiating event in the development of cancer. OBJECTIVE: In this study we investigated the effect of a single oral administration of C60 fullerenes and SWCNT. METHODS: We measured the level of oxidative damage to DNA as the premutagenic 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the colon mucosa...... of genotoxicity, whereas corn oil per se generated more genotoxicity than the particles. Although there was increased mRNA expression of 8-oxoguanine DNA glycosylase in the liver of C60 fullerene-treated rats, we found no significant increase in repair activity. CONCLUSIONS: Oral exposure to low doses of C60...

  10. Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations.

    Science.gov (United States)

    Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo

    2016-02-21

    We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.

  11. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  12. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  13. Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    Science.gov (United States)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar

    2017-05-01

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS2) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS2 with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E1_{{2{{g}}}} and A 1g modes emanating from the IF nano-WS2 system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of 1.91 eV for the nano-WS2 system; whereas, photoluminescence analysis reveals a broad emission peak located at 638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS2 (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS2 would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance.

  14. Synthesis of MoS 2 Inorganic Fullerene-like Nanoparticles by a ...

    African Journals Online (AJOL)

    MoS2 nanoparticles with fullerene-like structure (IF-MoS2) were successfully obtained at heating temperature higher than 840 °C by a chemical vapour deposition method usingMoO3 and sulfur powders as raw materials. The synthesized samples were characterized by XRD, SEM, TEM, EDX and Raman spectrometry, ...

  15. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  16. Photochemical reactivity of aqueous fullerene clusters: C{sub 60} versus C{sub 70}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wen-Che, E-mail: whou@mail.ncku.edu.tw; Huang, Shih-Hong

    2017-01-15

    Highlights: • Aqueous C{sub 60} and C{sub 70} clusters (nC{sub 60} and nC{sub 70}) formed through direct mixing with water adopted a face-centered cubic crystal structure. • The AQYs of nC{sub 60} were greater than those of nC{sub 70}. • Both nC{sub 60} and nC{sub 70} lost considerable organic carbon contents (>80%) after ∼8 months of outdoor sunlight irradiation. • The intermediate photoproducts of nC{sub 60} and nC{sub 70} exhibited an increased content of oxygen-containing functionalities. - Abstract: Over the past few years, there has been a strong interest in exploring the potential impact of fullerenes in the environment. Despite that both C{sub 60} and C{sub 70} have been detected in environmental matrices, the research on the impact of higher fullerenes, such as C{sub 70,} has been largely missing. This study evaluated and compared the phototransformation of aqueous C{sub 60} and C{sub 70} clusters (nC{sub 60} and nC{sub 70}) and their {sup 1}O{sub 2} production under sunlight and lamp light irradiation (315 nm, 360 nm and 420 nm). The nC{sub 60} and nC{sub 70} samples formed by direct mixing with water adopted a face-centered cubic (FCC) crystal structure. The apparent quantum yields (AQYs) of fullerene phototransformed were relatively constant over the examined wavelengths, while {sup 1}O{sub 2} production AQYs decreased with increased wavelengths. The long-term fate studies with outdoor sunlight indicated that both nC{sub 60} and nC{sub 70} lost considerable organic carbon contents (>80%) in water after ∼8 months of irradiation and that the intermediate photoproducts of nC{sub 60} and nC{sub 70} exhibited a progressively increased level of oxygen-containing functionalities. Overall, the study indicates that nC{sub 70} can be photochemically removed under sunlight conditions and that the photoreactivity of nC{sub 60} based on AQYs is greater than that of nC{sub 70}.

  17. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Zhang, Yang

    2013-01-01

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho x M 3-x N rate at C 80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13 C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho x M 3-x N from Sc to Lu and further to Y. The LnSc 2 N rate at C 80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13 C and 45 Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ PC and δ con from δ para was achieved by the primary 13 C and 45 Sc NMR analysis of LnSc 2 N rate at C 80 (I). The

  18. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  19. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  20. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors

    Science.gov (United States)

    Turabekova, M.; Rasulev, B.; Theodore, M.; Jackman, J.; Leszczynska, D.; Leszczynski, J.

    2014-03-01

    Over the last decade, a great deal of attention has been devoted to study the inflammatory response upon exposure to multi/single-walled carbon nanotubes (CNTs) and different fullerene derivatives. In particular, carbon nanoparticles are reported to provoke substantial inflammation in alveolar and bronchial epithelial cells, epidermal keratinocytes, cultured monocyte-macrophage cells, etc. We suggest a hypothetical model providing the potential mechanistic explanation for immune and inflammatory responses observed upon exposure to carbon nanoparticles. Specifically, we performed a theoretical study to analyze CNT and C60 fullerene interactions with the available X-ray structures of Toll-like receptors (TLRs) homo- and hetero-dimer extracellular domains. This assumption was based on the fact that similar to the known TLR ligands both CNTs and fullerenes induce, in cells, the secretion of certain inflammatory protein mediators, such as interleukins and chemokines. These proteins are observed within inflammation downstream processes resulted from the ligand molecule dependent inhibition or activation of TLR-induced signal transduction. Our computational studies have shown that the internal hydrophobic pockets of some TLRs might be capable of binding small-sized carbon nanostructures (5,5 armchair SWCNTs containing 11 carbon atom layers and C60 fullerene). High binding scores and minor structural alterations induced in TLR ectodomains upon binding C60 and CNTs further supported our hypothesis. Additionally, the proposed hypothesis is strengthened by the indirect experimental findings indicating that CNTs and fullerenes induce an excessive expression of specific cytokines and chemokines (i.e. IL-8 and MCP1).Over the last decade, a great deal of attention has been devoted to study the inflammatory response upon exposure to multi/single-walled carbon nanotubes (CNTs) and different fullerene derivatives. In particular, carbon nanoparticles are reported to provoke

  1. A “fullerene-carbon nanotube” structure with tunable mechanical properties

    Science.gov (United States)

    Ji, W. M.; Zhang, L. W.; Liew, K. M.

    2018-03-01

    Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.

  2. Electron density as the main parameter influencing the formation of fullerenes in a carbon plasma

    International Nuclear Information System (INIS)

    Churilov, G.N.; Bulina, N.V.; Novikov, P.V.; Lopatin, V.A.; Vnukova, N.G.; Bachilo, S.M.; Tsyboulski, D.; Weisman, R.B.

    2002-01-01

    Thermodynamic estimates are presented for the formation of spheroidal and flat carbon clusters from reactant species of different charges. Charge is shown to strongly influence the geometry and stability of flat clusters. Changes in the charge of flat clusters can promote both their folding to spheroidal structures and their dissociation. It is concluded that the fluctuations of electron concentration in carbon plasma can result in the accumulation of fullerene clusters and the dissociation of flat clusters. Computer simulations of fullerene C 60 formation from carbon clusters having different charges are carried out using the program HyperChem 5 to calculate the optimal geometry of molecules and their molecular dynamics at different temperatures [ru

  3. Ionic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage

    DEFF Research Database (Denmark)

    Bähring, Steffen; Larsen, Karina R; Supur, Mustafa

    2017-01-01

    A cage molecule incorporating three electron donating monopyrrolotetrathiafulvalene units was synthesised to host electron accepting [60]fullerenes. Formation of a strong 1 : 1 donor-acceptor (D-A) complex C60⊂1 was confirmed by solid state X-ray analysis as well as (1)H NMR and absorption...... spectroscopic analyses of the arising charge-transfer (CT) band (λ = 735 nm, ε ≈ 840 M(-1) cm(-1)). Inserting Li(+) inside the [60]fullerene increased the binding 28-fold (Ka = 3.7 × 10(6) M(-1)) and a large bathochromic shift of the CT band to the near infrared (NIR) region (λ = 1104 nm, ε ≈ 4800 M(-1) cm(-1...

  4. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    Science.gov (United States)

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  5. C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro

    Science.gov (United States)

    Grebinyk, A.; Prylutska, S.; Grynyuk, I.; Kolp, B.; Hurmach, V.; Sliva, T.; Amirkhanov, V.; Trush, V.; Matyshevska, O.; Slobodyanik, M.; Prylutskyy, Yu.; Frohme, M.; Ritter, U.

    2018-03-01

    New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CEM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.

  6. An experimental study on pool boiling characteristics of carbon nano tube (CNT) and fullerene (C-60) nanofluids

    International Nuclear Information System (INIS)

    Ai, Melani

    2009-02-01

    In recent years, it was found that pool boiling critical heat flux (CHF) increases in nanofluids. The CHF conditions are important for safe and economic design of many heat transfer units including nuclear reactor. In this study, our objective is to evaluate the impact of Carbone Nano Tubes (Singlewalled CNTs and Multiwalled CNTs) and Fullerene (C-60) nanofluids at different particle concentration on pool boiling critical heat flux experimentally at saturated conditions. Multiwalled CNT and fullerene (C-60) added in the pure water at three volume concentrations (0.01%, 0.001%, and 0.0001%). Singlewalled CNT nanoparticles added in the pure water at two volume concentrations (0.0005%, and 0.0001%). For the dispersion of nanoparticles in pure water, several treatments were performed. Multiwalled CNTs and Fullerene (C-60) prepared using acid treatment, meanwhile two treatment are using for Singlewalled CNTs: (1)Singlewalled CNTs prepared using polymer treatment, (2)Singlewalled CNTs prepared using pre polymerization of micelle treatment. The zeta potential of CNTs and Fullerene nanofluids were in the range of 13-71 mV. The zeta potential of nanofluids was constant for more than one month. It concludes that the treatment has been succeeded produces water dispersible CNTs and Fullerene nanofluids with good stability. The critical heat flux (CHFs) of the solution is enhanced greatly for all nanofluids. Enhanced (∼167.9%) CHF was observed for solutions with Multiwalled CNT nanoparticles with concentration 0.01 vol%. Enhanced (∼109.4%) CHF was observed for solutions with Singlewalled CNT nanoparticles with concentration 0.0005 vol%. Enhanced (∼108.9%) CHF was observed for solutions with Fullerene nanoparticles with concentration 0.01 vol%. The pool boiling Heat Transfer Coefficient (HTCs) of the CNTs nanofluids are lower than those of pure water in the entire nucleate boiling regime. On the other hand, the pool boiling HTCs of Fullerene nanofluids are higher than

  7. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Beiley, Zach M.; McGehee, Michael D.

    2012-01-01

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  8. Photovoltaic properties of conjugated polymer/fullerene composites on large area flexible substrates

    Directory of Open Access Journals (Sweden)

    Desta Gebeyehu

    2000-06-01

    Full Text Available In this paper we present measurements of the photovoltaic response of bulk donor-acceptor heterojunction between the conjugated polymer, poly(3-octylthiophene, P3OT, (as a donor, D and fullerene (methanofullerene, (as acceptor, A, deposited between indium tin oxide and aluminum electrodes. The innovation involves the substrate, which is a polymer foil instead of glass. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation. We also present the efficiency and stability studies on large area (6 cm x 6 cm flexible plastic solar cells with monochromatic energy conversion efficiency (e of about 1.5% and carrier collection efficiency of nearly 20%. Further more, we have investigated the surface network morphology of these films layers by atomic force microscope (AFM. The development of solar cells based on composites of organic conjugated semi-conducting polymers with fullerene derivatives can provide a new method in the exploitation of solar energy.

  9. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  10. Polyhydroxy fullerenes (fullerols or fullerenols: beneficial effects on growth and lifespan in diverse biological models.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols, have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF. We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF.

  11. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads

    NARCIS (Netherlands)

    Lehtivuori, Heli; Lemmetyinen, Helge; Tkachenko, Nikolai V.

    2006-01-01

    Exciplex-exciplex annihilation was observed for the first time in porphyrin-fullerene molecular films. The films were prepared using Langmuir-Blodgett and drop casting methods. The exciplex-exciplex interactions were studied using femtosecond pump-probe method. The exciplex-exciplex annihilation can

  12. Diels-Alders adducts of C-60 and esters of 3-(1-indenyl)-propionic acid : alternatives for [60]PCBM in polymer:fullerene solar cells

    NARCIS (Netherlands)

    Sieval, Alexander B.; Treat, Neil D.; Rozema, Desiree; Hummelen, Jan C.; Stingelin, Natalie

    2015-01-01

    A series of new, easily synthesized C-60-fullerene derivatives is introduced that allow for optimization of the interactions between rr-P3HT and the fullerene by systematic variation of the size of the ester group. Two compounds gave overall cell efficiencies of 4.8%, clearly outperforming [60]PCBM

  13. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  14. Prediction of the electron redundant SinNn fullerenes

    Science.gov (United States)

    Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan

    2018-05-01

    The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.

  15. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Science.gov (United States)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  16. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  17. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  18. He-3 NMR: from free gas to its encapsulation in fullerene

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub

    2013-01-01

    Roč. 51, č. 8 (2013), s. 463-468 ISSN 0749-1581 R&D Projects: GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : He-3 NMR * GIAO * molecular modeling * ab initio * fullerene * SWCNT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.559, year: 2013

  19. Electronic structure, stability and non-linear optical properties of aza-fullerenes C60-2nN2n(n=1–12

    Directory of Open Access Journals (Sweden)

    K. Srinivasu

    2012-12-01

    Full Text Available Through ab initio based density functional theory calculations, we have investigated the electronic structure, stability and non-linear optical properties of a series of nitrogen substituted fullerenes (azafullerenes with the general formula C60-2nN2n (n=1–12. For each system, we have considered different possible isomers and the minimum energy isomer is subjected to further detailed investigations. We have calculated different properties such as HOMO-LUMO gaps, vertical ionization potentials, vertical electron affinities, etc. to verify the stability of the considered fullerenes. From the Hessian calculations, it is observed that all the fullerenes are not only associated with real vibrational frequencies, but the minimum frequencies are also found to be considerably large which further confirms the stability of the considered fullerenes. We find that the presence of unperturbed C6 rings enhances the stability of the fullerene whereas, the -N-C-N- fragments are found to destabilize the structure. At lower doping concentration, the stabilization due to C6 is more predominant and as the doping concentration is increased, the destabilization due to nitrogen-nitrogen repulsion plays a more important role. Our calculated polarizability and hyperpolarizability parameters of C60 are found to be in good agreement with the earlier reported results. On nitrogen doping, considerable variation is observed in the non-linear optical coefficients, which can be helpful in designing new photonic devices.

  20. Synthesis and Preliminary Characterization of a PPE-Type Polymer Containing Substituted Fullerenes and Transition Metal Ligation Sites

    Directory of Open Access Journals (Sweden)

    Corinne A. Basinger

    2015-01-01

    Full Text Available A substituted fullerene was incorporated into a PPE-conjugated polymer repeat unit. This subunit was then polymerized via Sonogashira coupling with other repeat units to create polymeric systems approaching 50 repeat units (based on GPC characterization. Bipyridine ligands were incorporated into some of these repeat units to provide sites for transition metal coordination. Photophysical characterization of the absorption and emission properties of these systems shows excited states located on both the fullerene and aromatic backbone of the polymers that exist in a thermally controlled equilibrium. Future work will explore other substituted polyaromatic systems using similar methodologies.

  1. Adsorption characteristics of heat-treated fullerene nano-whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z-M [Energy Storage Materials Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kato, R; Hotta, K; Miyazawa, K [Fullerene Engineering Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: zm-wang@aist.go.jp

    2009-04-01

    Fullerene nanowhiskers (FNWs) were synthesized by the liquid-liquid interfacial precipitation method and the adsorption properties of their heat-treated samples were characterized. It was found that vacuum-annealed FNWs at a high temperature are of microporous materials and, especially, ultramicropores are highly developed in these materials. Porosities even remain in samples after heat treatment at a temperature higher than 2273 K. The presence of ultramicroporosity is indicative of the molecular sieving properties of the vacuum-annealed FNW materials, suggesting the possibilities of their application as new materials for gas separation and gas storage.

  2. Synthesis of endohedral iron-fullerenes by ion implantation

    International Nuclear Information System (INIS)

    Minezaki, H.; Ishihara, S.; Uchida, T.; Muramatsu, M.; Kitagawa, A.; Rácz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.

    2014-01-01

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe + ion beam was irradiated to C 60 thin film by using a deceleration system. Fe + -irradiated C 60 thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe + beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe + -irradiated C 60 thin film by high performance liquid chromatography

  3. Structural organization of C{sub 60} fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents

    Energy Technology Data Exchange (ETDEWEB)

    Prylutskyy, Yu. I. [Taras Shevchenko National University of Kyiv (Ukraine); Evstigneev, M. P., E-mail: max-evstigneev@mail.ru [Belgorod State University, Department of Biology and Chemistry (Russian Federation); Cherepanov, V. V. [Institute of Physics of NAS of Ukraine (Ukraine); Kyzyma, O. A.; Bulavin, L. A.; Davidenko, N. A. [Taras Shevchenko National University of Kyiv (Ukraine); Scharff, P. [Ilmenau University of Technology (Germany)

    2015-01-15

    Specific features of structural self-organization of C{sub 60} fullerene (1 nm size range), antitumor antibiotic doxorubicin (Dox) and their complex in physiological solution (0.9 % NaCl) have been investigated by means of atomic-force microscopy, dynamic light scattering, and small-angle X-ray scattering. Significant ordering of the mixed system, C{sub 60} + Dox, was observed, suggesting the complexation between these drugs, and giving insight into the mechanism of enhancement of Dox antitumor effect on simultaneous administration with C{sub 60} fullerene.

  4. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    Science.gov (United States)

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  5. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    NARCIS (Netherlands)

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.

    2005-01-01

    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  6. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con

  7. In silico characterization of nitric oxide adsorption on a magnetic [B{sub 24}N{sub 36} fullerene/(TiO{sub 2}){sub 2}]{sup −} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Anota, E. Chigo, E-mail: ernesto.chigo@correo.buap.mx [Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel, Puebla, Código Postal 72570 (Mexico); Arriagada, D. Cortes [Laboratorio de Química Teórica Computacional (QTC), Pontificia Universidad Católica de Chile, Santiago, Av. Vicuña Mackenna 4860, Macul, Santiago 9900087 (Chile); Hernández, A. Bautista [Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería, Apdo. Postal J-39, Puebla, Pue., 72570 (Mexico); Castro, M., E-mail: miguel.castro.m@gmail.com [Universidad Nacional Autónoma de México-Departamento de Física y Química Teórica, DEPg-Facultad de Química, México D.F., C.P. 04510 (Mexico)

    2017-04-01

    Highlights: • Magnetic properties emerges in homonuclear nitrogen bonding [BN]{sup −} fullerene ions. • Adsorption of nitric oxide on magnetic [BNF/(TiO{sub 2}){sub 2}]{sup −} composites using DFT methods. • The stability of the BN fullerene-NO interaction is enhanced by homo-nuclear N bonds. • The nature of the [B{sub 24}N{sub 36}F/TiO{sub 2}]{sup −}-NO interaction, relatively strong and magnetic, may provide protection to the NO molecule. - Abstract: The (TiO{sub 2}){sub 2}{sup −} cluster supported on an magnetic boron nitride [BN]{sup −} fullerene, re-forced with homonuclear nitrogen bonding, fullerene [BNF]{sup −} was studied using density functional theory. Mainly, adsorption of the nitric oxide, NO, molecule on the [BNF/(TiO{sub 2}){sub 2}]{sup −} nanocomposite was studied. Calculations were done by means of the functional developed by Heyd-Scuseria-Ernzerhof, within the generalized gradient approximation. Quantum simulation results reveal chemical type adsorption for the (TiO{sub 2}){sub 2} anion, which is favorably done on an hexagonal face, of 5N1B composition, of the BNF surface, appearing Ti−N and O−B bonding. The [BNF/(TiO{sub 2}){sub 2}]{sup −} nanocomposite is characterized by magnetic semiconductor behavior: the HOMO–LUMO gap is of 0.93 eV and it presents 1.0 magneton bohr, being similar to those of the pristine BNF and (TiO{sub 2}){sub 2} species. Low-reactivity, high polarity and low work function are attributes of this system. Chemisorption occurs for the interaction of NO with [BNF/(TiO{sub 2}){sub 2}]{sup −}, carried out through the (TiO{sub 2}){sub 2} supported cluster. The increase of the polarity for the three BNF/(TiO{sub 2}){sub 2}-NO, BNF/(TiO{sub 2}){sub 2} and BNF systems, suggest improvement in their dispersion as well an in their solubility in aqueous mediums. Moreover, BNF/(TiO{sub 2}){sub 2}-NO presents a reduction of reactivity, as referred to that of pristine fullerene. Functionalization of fullerene

  8. Stability issues of conjugated polymer / fullerene solar cells from a chemical viewpoint

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Sánchez, L.

    2001-01-01

    The efficiency of energy conversion and the stability or lifetime of ‘plastic’ photovoltaic cells, based on conjugated polymer/ fullerene blends, are the two main issues to be improved for this type of devices. The stability of these PV cells depends potentially on a large number of factors. A brief

  9. Polychiral semiconducting carbon nanotube-fullerene solar cells.

    Science.gov (United States)

    Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C

    2014-09-10

    Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.

  10. Soluble fullerene derivatives : The effect of electronic structure on transistor performance and air stability

    NARCIS (Netherlands)

    Ball, James M.; Bouwer, Ricardo K.M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Buchaca Domingo, Ester; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D.C.; Anthopoulos, Thomas D.

    2011-01-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic

  11. Inorganic fullerene-type WS_2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    International Nuclear Information System (INIS)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar

    2017-01-01

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS_2) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS_2 with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E"1_2_g and A_1_g modes emanating from the IF nano-WS_2 system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of ∝1.91 eV for the nano-WS_2 system; whereas, photoluminescence analysis reveals a broad emission peak located at ∝638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS_2 (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS_2 would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance. (orig.)

  12. Architecture of clathrin fullerene cages reflects a geometric constraint--the head-to-tail exclusion rule--and a preference for asymmetry.

    Science.gov (United States)

    Schein, Stan

    2009-03-27

    Fullerene cages have n trivalent vertices, 12 pentagonal faces, and (n-20)/2 hexagonal faces. The smallest cage in which all of the pentagons are surrounded by hexagons and thus isolated from each other has 60 vertices and is shaped like a soccer ball. The protein clathrin self-assembles into fullerene cages of a variety of sizes and shapes, including smaller ones with adjacent pentagons as well as larger ones, but the variety is limited. To explain the range of clathrin architecture and how these fullerene cages self-assemble, we proposed a hypothesis, the "head-to-tail exclusion rule" (the "Rule"). Of the 5769 small clathrin cage isomers with n< or =60 vertices and adjacent pentagons, the Rule permits just 15, three identified in 1976 and 12 others. A "weak version" of the Rule permits another 99. Based on cryo-electron tomography, Cheng et al. reported six raw clathrin fullerene cages. One was among the three identified in 1976. Here, (1) we identify the remaining five. (2) Four are new and are among the 12 others permitted by the Rule. (3) One, also new, is among the 99 weak version cages. (4) Of particular note, none of the remaining 5565 excluded cages has been identified. These findings provide powerful experimental confirmation of the Rule and the principle on which it is based. (5) Surprisingly, the newly identified clathrin cages are among the least symmetric of those permitted. (6) By devising a method for counting assembly paths, (7) we show that asymmetric cages can be assembled by larger numbers of paths, thus providing a kinetic explanation for the prevalence of asymmetric cages. (8) Finally, we show that operation during cage growth of the Rule greatly increases the likelihood of producing a closed fullerene cage, specifically one of those permitted, but efficient assembly still appears to require internal remodeling.

  13. Single step fabrication method of fullerene/TiO2 composite photocatalyst for hydrogen production

    International Nuclear Information System (INIS)

    Kum, Jong Min; Cho, Sung Oh

    2011-01-01

    Hydrogen is one of the most promising alternative energy sources. Fossil fuel, which is the most widely used energy source, has two defects. One is CO 2 emission causing global warming. The other is exhaustion. On the other hand, hydrogen emits no CO 2 and can be produced by splitting water which is renewable and easily obtainable source. However, about 95% of hydrogen is derived from fossil fuel. It limits the merits of hydrogen. Hydrogen from fossil fuel is not a renewable energy anymore. To maximize the merits of hydrogen, renewability and no CO 2 emission, unconventional hydrogen production methods without using fossil fuel are required. Photocatalytic water-splitting is one of the unconventional hydrogen production methods. Photocatalytic water-splitting that uses hole/electron pairs of semiconductor is expectable way to produce clean and renewable hydrogen from solar energy. TiO 2 is the semiconductor material which has been most widely used as photocatalyst. TiO 2 shows high photocatalytic reactivity and stability in water. However, its wide band gap only absorbs UV light which is only 5% of sun light. To enhance the visible light responsibility, composition with fullerene based materials has been investigated. 1-2 Methano-fullerene carboxylic acid (FCA) is one of the fullerene based materials. We tried to fabricate FCA/TiO 2 composite using UV assisted single step method. The method not only simplified the fabrication procedures, but enhanced hydrogen production rate

  14. From astrophysics to mesoscopic physics: a sightseeing tour in the world of clusters and fullerenes

    Science.gov (United States)

    Rosen, Arne; Ostling, Daniel; Apell, P.; Tomanek, D.

    1996-12-01

    The discovery of the fullerenes in 1985 by Kroto, Heath, O'Brien, Curl and Smalley and the development of a method for production of macroscopic amounts in 1990 by Kraetschmer, Lamb, Fostiropoulos and Huffman opened a new area of carbon research with possible production of new materials with unique properties. The field has developed further later on with discoveries of nanotubes, metal filled nanotubes, carbon onions and more recently metal covered fullerenes. All these new discoveries show how cluster science opens approaches to the area of meososcopic physics. The general trend is here in the direction from small to large contrary to the general trend of modern meososcopic physics or micro-electronics where the movement is from large to small. It is especially fascinating how the whole area of fullerene research was initiated by problems in astrophysics. Originally Kraetschmer and Huffman had the intention to explain an observed strong extinction form interstellar dust and produced in experiments special carbon soot with a characteristics optical absorption known as 'the camel hump smoke'. This paper gives a short overview of some of our more recent theoretical work of the electronic properties of C60, metal covered C60 and nanotubes. In addition some results are also presented of optical properties of metal covered C60 as a function of metal coverage.

  15. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface

    KAUST Repository

    Sit, Wai-Yu

    2018-02-02

    Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p–n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

  16. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  17. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  18. The radioprotective effects of carboxy fullerene C3 on AHH-1 cell

    International Nuclear Information System (INIS)

    Shan, Husheng; Cai, Jianming; Huang, Yuecheng; Cui, Jianguo; Liu, Hanchen; Sun, Ding; Zhao, Fang; Dong, Junru; Li, Bailong

    2008-01-01

    Purpose: To investigate the radioprotective effects of carboxy fullerene C 3 on AHH-1 cell and it's prospective as a novel radioprotectant. Materials and Methods: Carboxy fullerene C 3 was prepared by chemical synthesis and trypan blue rejection test was performed to detect its cytotoxicity to AHH-1 cell. Then different concentration of C 3 was used to treat AHH-1 cells after radiated with 60 Coγ ray. Annexin-V/PI staining and flow cytometry assay were applied to assess the cell proliferation and apoptosis after irradiation. Results: C 3 showed little toxicity to AHH-1 cells with little change of trypan blue rejection rate during the drug concentration range 0-400 mg/L (P>0.05). We found in this study C 3 had good radioprotective effects to AHH-1 cell radiated with 1-8 Gy γ-ray. When the concentration was 10 mg/L, C 3 showed protection effects to AHH-1 cell irradiated with 4 Gy γ -ray, which was enhanced with increase of C 3 concentration. When the final concentration reached 200-400 mg/L, the cell survival rate after irradiation was similar to that of non-irradiated control cells(P >0.05). And the irradiation induced apoptosis and death rate were significantly lower than that of single radiation group cells(P 3 were time-dependant, and the best protection effects were observed when the C 3 was administered before irradiation (0-24 h). Conclusion: Carboxy fullerene C 3 has good radioprotective effects to AHH-1 cell, which is dose-dependent, and the higher concentration of C 3 is, the better protective effects it shows. In the effective drug concentration range of this study, C 3 do little harm on the survival rate of AHH-1 cell, which suggest that C 3 as a novel promising radioprotectant deserve to be further investigated. (author)

  19. Synthesis and structure of the first fullerene complex of titanium Cp{sub 2}Ti({eta}{sup 2}-C{sub 60})

    Energy Technology Data Exchange (ETDEWEB)

    Burlakov, V.V.; Usatov, A.V.; Lyssenko, K.A.; Antipin, M.Yu.; Novikov, Yu.N.; Shur, V.B. [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Nesmeyanov Inst. of Organoelement Compounds

    1999-11-01

    The first fullerene complex of titanium Cp{sub 2}Ti({eta}{sup 2}-C{sub 60}) has been synthesized by reaction of the bis(trimethylsilyl)-acetylene complex of titanocene Cp{sub 2}Ti({eta}{sup 2}-Me{sub 3}SiC{sub 2}SiMe{sub 3}) with an equimolar amount of fullerene-60 in toluene at room temperature under argon. An X-ray diffraction study of the complex has shown that it has the structure of a titanacyclopropane derivative. (orig.)

  20. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.; Chen, Mark S.; Niskala, Jeremy R.; Lee, Olivia P.; Yiu, Alan T.; Young, Eric P.; Frechet, Jean

    2014-01-01

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices

  1. Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers

    KAUST Repository

    Gan, Liyong

    2014-04-17

    First-principles calculations are performed to explore the geometry, bonding, and electronic structures of six ultrathin photovoltaic heterostructures consisting of pristine and B- or N-doped fullerenes and MoS2 or WS2 monolayers. The fullerenes prefer to be attached with a hexagon parallel to the monolayer, where B and N favor proximity to the monolayer. The main electronic properties of the subsystems stay intact, suggesting weak interfacial interaction. Both the C60/MoS 2 and C60/WS2 systems show type-II band alignments. However, the built-in potential in the former case is too small to effectively drive electron-hole separation across the interface, whereas the latter system is predicted to show good photovoltaic performance. Unfortunately, B and N doping destroys the type-II band alignment on MoS2 and preserves it only in one spin channel on WS2, which is unsuitable for excitonic solar cells. Our results suggest that the C60/WS 2 system is highly promising for excitonic solar cells. © 2014 American Chemical Society.

  2. Synthesis of endohedral iron-fullerenes by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  3. Effects of inter-fullerene π-band mixings in the photoexcitation of hybrid plasmons in the C60@C240 molecule

    Science.gov (United States)

    de, Rume; Madjet, Mohamed; Chakraborty, Himadri

    2013-05-01

    We perform a detailed study of the ground state electronic structure of a two-layer fullerene onion molecule C60@C240. Calculations are carried out in a quantum mechanical framework of local density approximation (LDA) where the onion's ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 is smeared into a classical jellium distribution. Significant inter-fullerene mixing between the bands of single-node radial symmetry, the π-bands, is found. We then compute the photoionization from all the levels of the system using a time-dependent version of LDA at photon energies where the ionization is dominated by the inter-layer hybridization of collective plasmon resonances. It is determined, by comparing the isolated fullerene cross sections with the cross section of the onion system for both π and σ (having nodeless radial waves) symmetry, that the π-band mixing is predominantly responsible for the production of plasmon hybrids. Supported by NSF and DOE.

  4. Stable Au-C bonds to the substrate for fullerene-based nanostructures

    Czech Academy of Sciences Publication Activity Database

    Chutora, Taras; López, Roso Redondo Jesús R.; De La Torre Cerdeño, Bruno; Švec, Martin; Jelínek, Pavel; Vázquez, Héctor

    2017-01-01

    Roč. 8, č. 1 (2017), s. 1073-1079 ISSN 2190-4286 R&D Projects: GA ČR GA15-19672S Institutional support: RVO:68378271 Keywords : Au-C bonds * density functional theory (DFT) * fullerenes * scanning tunneling microscopy (STM) * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  5. Polymer membranes modified by fullerene C-60 for pervaporation of organic mixtures

    Czech Academy of Sciences Publication Activity Database

    Polotskaya, G. A.; Penkova, A. V.; Pientka, Zbyněk; Toikka, A. M.

    2010-01-01

    Roč. 14, 1-3 (2010), s. 83-88 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA ČR GA104/09/1165 Institutional research plan: CEZ:AV0Z40500505 Keywords : pervaporation * fullerene -containing membranes * poly(phenylene oxide) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.752, year: 2010

  6. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    International Nuclear Information System (INIS)

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.

    2017-01-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  7. Isothermal crystallization kinetics of isotactic polypropylene with inorganic fullerene-like WS2 nanoparticles

    International Nuclear Information System (INIS)

    Naffakh, Mohammed; Martin, Zulima; Marco, Carlos; Gomez, Marian A.; Jimenez, Ignacio

    2008-01-01

    Nanometric-sized inorganic fullerene-like tungsten disulfide particles (IF-WS 2 ) were used to produce new isotactic polypropylene (iPP) nanocomposites. A remarkable increase of the crystallization rate of iPP in the nanocomposites was observed by DSC and X-ray diffraction techniques using synchrotron radiation. This fact was related to the high nucleation efficiency of IF-WS 2 nanoparticles on the α-form crystals of iPP. Other parameters such as the Avrami exponent, the equilibrium melting temperature, and the fold surface free energy of crystallization of iPP chains in the nanocomposites were obtained from the calorimetric data in order to determine the effect of the nanoparticles on them. A decrease in the fold surface free energy was calculated with increasing IF-WS 2 content

  8. On the Stability of Fullerene C60 in Aqueous Medium

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Kolivoška, Viliam; Kavan, Ladislav; Kocábová, Jana; Pospíšil, Lubomír; Hromadová, Magdaléna; Zukalová, Markéta; Sokolová, Romana; Kielar, F.

    2012-01-01

    Roč. 20, č. 8 (2012), s. 737-742 ISSN 1536-383X R&D Projects: GA ČR GP203/09/P502; GA ČR GA203/09/1607; GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional support: RVO:61388955 Keywords : fullerene s * AFM * dispersion Subject RIV: CG - Electrochemistry Impact factor: 0.764, year: 2012

  9. Inorganic fullerene-type WS{sub 2} nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar [Tezpur University, Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur, Assam (India)

    2017-05-15

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS{sub 2}) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS{sub 2} with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E{sup 1}{sub 2g} and A{sub 1g} modes emanating from the IF nano-WS{sub 2} system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of ∝1.91 eV for the nano-WS{sub 2} system; whereas, photoluminescence analysis reveals a broad emission peak located at ∝638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS{sub 2} (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS{sub 2} would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance. (orig.)

  10. Structure and pervaporation properties of poly(phenylene-iso-phthalamide) membranes modified by Fullerene C-60

    Czech Academy of Sciences Publication Activity Database

    Penkova, A. V.; Polotskaya, G. A.; Toikka, A. M.; Trchová, Miroslava; Šlouf, Miroslav; Urbanová, Martina; Brus, Jiří; Brožová, Libuše; Pientka, Zbyněk

    2009-01-01

    Roč. 294, 6-7 (2009), s. 432-440 ISSN 1438-7492 Institutional research plan: CEZ:AV0Z40500505 Keywords : fullerene * methanol/cyclohexane mixture * modification Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.742, year: 2009

  11. Incorporation in Langmuir-Blodgett films of an amphiphilic derivative of fullerene C{sub 60} and oligo-para-phenylenevinylene

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Venicio, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Gutierrez-Nava, M. [CIATEQ, A.C., Centro de Tecnologia Avanzada, Circuito de la Industria Poniente Lote: 11, Mza. 3, No. 11, Colonia Parque Industrial Ex Hacienda Dona Rosa, Lerma C.P. 52004, Estado de Mexico (Mexico); Amelines-Sarria, O. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Alvarez-Zauco, E. [Facultad de Ciencias, UNAM, Circuito Exterior, C.U., C.P. 04510, D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Carreon-Castro, M.P., E-mail: pilar@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico)

    2012-12-30

    Langmuir (L) and Langmuir-Blodgett (LB) films of fullerene C{sub 60}-oligo-para-phenylenevinylene (OPV) derivative with six C{sub 12}H{sub 25} aliphatic chains were characterized. For the Langmuir films, isotherms of surface pressure versus molecular area, compression/expansion cycles (hysteresis curves) and Brewster angle microscopic images were obtained. We performed molecular mechanics and density functional theory calculations to determine the molecular and electronic structure of our compound at a water-air interface. We found agreement between experimental and theoretical values for the molecular surface area. LB films of up to ten layers were obtained on glass substrates, and were characterized by ultraviolet-visible spectroscopy. We observed that the absorbance at a wavelength of 326 nm grows almost linearly as a function of the number of layers. Films on glass-indium tin oxide were characterized by atomic force microscopy. We also observed a uniform deposition over the whole area of the scanned substrate. We demonstrated that the fullerene C{sub 60}-OPV derivative is able to form both L and LB films preventing fullerene aggregation with its aliphatic chains. We suggest that, due to its electron-acceptor properties, the C{sub 60}-OPV derivative could be used for organic-photovoltaic and organic-electronic applications. - Highlights: Black-Right-Pointing-Pointer We performed isotherm and hysteresis studies of fullerene derivative compound. Black-Right-Pointing-Pointer We found that the theoretical and experimental molecular areas agree. Black-Right-Pointing-Pointer We deposited Langmuir-Blodgett (LB) films on glass-indium tin oxide. Black-Right-Pointing-Pointer LB films were characterized using UV-visible spectroscopy. Black-Right-Pointing-Pointer We observed the morphology of the LB films through atomic force microscopy.

  12. Electrochemical impedance spectroscopy for analytical determination of paraquat in meconium samples using an immunosensor modified with fullerene, ferrocene and ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiulan [State Key Laboratory of Food Science and Technology, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.ne [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Cai, Yan; Wei, Zhilei [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Fang Yinjun; Ren Guoxiao; Huang Yaru [Zhejiang Zanyu Technology Limited Corporation, Hangzhou 311215 (China)

    2011-01-01

    The paper reports a highly sensitive electrochemical immunosensor for the detection of paraquat. The immunosensor bases on glassy carbon electrode modified with a composite made from fullerene, ferrocene and the ionic liquid. The components were immobilized on the electrode surface by chitosan. The antibody of paraquat was covalently conjugated to the surface which was then blocked with bovine serum albumin. Analytical characteristics of the immunosensor were investigated by electrochemical impedance spectroscopy. It offers good repeatability (RSD = 1.5%), a stability of more than 150 days, an impedimetric response to paraquat in the range from 3.89 x 10{sup -11} to 4.0 x 10{sup -8} mol L{sup -1}, and a detection limit (S/N = 3) of 9.0 x 10{sup -12} mol L{sup -1}. The effects of omitting fullerene and the ionic liquid were well tested. The results indicated that sensitivity of the immunosensor is 3.7-fold better if fullerene and ionic liquid are used. This demonstrates that fullerene facilitates electron transfer on surface of the electrode due to unique electrochemical properties, while the ionic liquid provides biocompatible microenvironment for the antibody, which results in the enhanced sensitivity and stability. Moreover, surface morphology feature and electrochemical properties of the electrode were also examined. The method was satisfactorily applied to the determination of paraquat in meconium.

  13. Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited.

    Science.gov (United States)

    Collado-Fregoso, Elisa; Hood, Samantha N; Shoaee, Safa; Schroeder, Bob C; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R

    2017-09-07

    In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC 70 BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC 70 BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.

  14. Peculiarities of fullerenes condensation from molecular beam in vacuum

    Directory of Open Access Journals (Sweden)

    Neluba P. L.

    2011-12-01

    Full Text Available There was investigated С60 fullerenes condensation in vacuum on unheated Si, GaAs, isinglass stone substrates. There were used atomic-force microscopy, Raman scattering and measurement of mechanical stresses in films. It is established that the С60 molecule can decay on the substrates with the formation of other carbon structures in the condensate without supplementary physical effects on the sublimated beam in «evaporator — substrate» space. The possibility was found to increase the grain size and reduce the mechanical stresses in the condensate.

  15. Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    The formation of mobile charges in a roll-to-roll processed poly-3-hexylthiophene-fullerene bulk heterojunction film is observed directly by using transient terahertz spectroscopy with sub-100 fs temporal resolution. The transient terahertz ac conductivity reveals that 20% of the incident pump...

  16. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  17. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  18. Realization of large area flexible fullerene - conjugated polymer photocells: a route to plastic solar cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor — acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and

  19. Electronic structure of the boron fullerene B14 and its silicon derivatives B13Si(+), B13Si(-) and B12Si2: a rationalization using a cylinder model.

    Science.gov (United States)

    Van Duong, Long; Nguyen, Minh Tho

    2016-06-29

    Geometric and electronic structures of the boron cluster B14 and its silicon derivatives B13Si(+), B13Si(-), and B12Si2 were determined using DFT calculations (TPSSh/6-311+G(d)). The B12Si2 fullerene, which is formed by substituting two B atoms at two apex positions of the B14 fullerene by two Si atoms, was also found as the global minimum structure. We demonstrated that the electronic structure and orbital configuration of these small fullerenes can be predicted by the wavefunctions of a particle on a cylinder. The early appearance of high angular node MOs in B14 and B12Si2 can be understood by this simple model. Replacement of one B atom at a top position of B14 by one Si atom, followed by the addition or removal of one electron does not lead to a global minimum fullerene structure for the anion B13Si(-) and cation B13Si(+). The early appearance of the 5σ1 orbital in B13Si(+) causes a lower stability for the fullerene-type structure.

  20. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    Science.gov (United States)

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.