WorldWideScience

Sample records for related fluid characteristics

  1. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    Science.gov (United States)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  2. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  3. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  4. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    Science.gov (United States)

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  5. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, F.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); AZ St-Maarten, Department of Radiology, Duffel/Mechelen (Belgium); Vogel, J. [Leiden University Medical Centre, Department of Orthopedics, Leiden (Netherlands); Kroon, H.M.; Bloem, J.L. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Schepper, A.M.A. de [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)

    2006-12-15

    The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can

  6. Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids

    International Nuclear Information System (INIS)

    Chieh, J. J.; Hong, C. Y.; Yang, S. Y.; Horng, H. E.; Yang, H. C.

    2010-01-01

    We propose two optical fiber-based schemes using two magnetic fluid optical fiber modulators in series or in parallel for optical logic signal processing and operation. Here, each magnetic fluid optical fiber modulator consists of a bare multimode fiber surrounded by magnetic fluid in which the refractive index is adjustable by applying external magnetic fields amplifying the input electrical signal to vary the transmission intensity of the optical fiber-based scheme. The physical mechanisms for the performances of the magnetic fluid optical fiber devices, such as the transmission loss related to Boolean number of the logic operation as well as the dynamic response, are studied by the characteristics of superparamagnetic nanoparticles and magnetic fluids. For example, in the dynamic response composed of the retarding and response sub-procedures except the response times of the actuation coil, the theoretical evaluation of the retarding time variation with cladding magnetic fluids length has good agreement with the experimental results.

  7. Intraperitoneal fluid collection: CT characteristics in determining the causes

    International Nuclear Information System (INIS)

    Kim, Mi Young; Suh, Chang Hae; Chung, Won Kyun; Kim, Chong Soo; Choi, Ki Chul

    1995-01-01

    Abdominal CT scans in patients with intraperitoneal fluid were retrospectively studied to identify characteristic features useful for differential diagnosis of various causes. One hundred and seventy patients with intraperitoneal fluid collection were classified as categories of hepatic disease, carcinomatosis, and infectious disease. We analyzed sites of fluid collection, the presence of peritoneal thickening, omental and mesenteric fat infiltration, and lymph node enlargement. Intraperitoneal fluid was present in subhepatic space, subphrenic space, paracolic gutter, mesentery, and fossa of the gallbladder in decreasing order of frequency. Fluid in the gallbladder fossa was the most frequent in hepatic disease. The fluid collection in subhepatic and subphrenic space was less frequent in infectious disease. Peritoneal thickening was noted in infectious diseases, and carcinomatosis. Omental fat infiltration and enlarged lymph nodes were the most frequent in carcinomatosis (58% and 44%, respectively), whereas, mesenteric fat infiltration and enlarged lymph nodes were the most common in infectious diseases (61%, and 26%, respectively). The location of peritoneal fluid collection showed some lesion specific characteristics, and CT features of fat infiltration and enlarged lymph nodes of peritoneum, omentum, and mesentery were helpful for differential diagnosis between carcinomatosis and infectious diseases

  8. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    Directory of Open Access Journals (Sweden)

    Vidal A.

    2014-03-01

    Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  9. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  10. The flow and spray characteristics of gelled fluids; Die Stroemungs- und Verspruehungseigenschaften gelfoermiger Fluide

    Energy Technology Data Exchange (ETDEWEB)

    Madlener, K.

    2008-07-01

    In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)

  11. Experimental investigation of nonlinear characteristics of a smart fluid damper

    Science.gov (United States)

    Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju

    2018-05-01

    Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.

  12. Associations of Hospital and Patient Characteristics with Fluid Resuscitation Volumes in Patients with Severe Sepsis

    DEFF Research Database (Denmark)

    Hjortrup, Peter Buhl; Haase, Nicolai; Wetterslev, Jørn

    2016-01-01

    PURPOSE: Fluid resuscitation is a key intervention in patients with sepsis and circulatory impairment. The recommendations for continued fluid therapy in sepsis are vague, which may result in differences in clinical practice. We aimed to evaluate associations between hospital and patient characte....... The data indicate variations in clinical practice not explained by patient characteristics emphasizing the need for RCTs assessing fluid resuscitation volumes fluid in patients with sepsis.......PURPOSE: Fluid resuscitation is a key intervention in patients with sepsis and circulatory impairment. The recommendations for continued fluid therapy in sepsis are vague, which may result in differences in clinical practice. We aimed to evaluate associations between hospital and patient...... characteristics and fluid resuscitation volumes in ICU patients with severe sepsis. METHODS: We explored the 6S trial database of ICU patients with severe sepsis needing fluid resuscitation randomised to hydroxyethyl starch 130/0.42 vs. Ringer's acetate. Our primary outcome measure was fluid resuscitation volume...

  13. Experimental study on CHF characteristics of water-TiO2 nano-fluids

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim Moo Hwan; Kim, Jeong Bae

    2006-01-01

    CHF characteristics of nano-fluids were investigated with different volumetric concentrations of TiO 2 nanoparticles. Pool boiling experiments indicated that the application of nano-fluids, instead of pure water, as a cooling liquid significantly increased the CHF. SEM (Scanning Electron Microscope) observations subsequent to the pool boiling experiments revealed that nanoparticles were coated on the heating surface during pool boiling of nano-fluids. In order to investigate the roles of nanoparticles in CHF enhancement of nano-fluids, pool boiling experiments were performed using (a) a nanoparticle-coated heater, prepared by pool boiling of nano-fluids, immersed in pure water and (b) a nanoparticle-coated heater immersed in nano-fluids. The results demonstrated two different roles of nanoparticles in CHF enhancement using nano-fluids: the effect of nanoparticles coated on the heater surface and the effect of nanoparticles suspended in nano-fluids

  14. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  15. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  16. Relation between boundary slip mechanisms and waterlike fluid behavior

    Science.gov (United States)

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C.

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  17. Maternal and fetal characteristics associated with meconium-stained amniotic fluid

    DEFF Research Database (Denmark)

    Balchin, Imelda; Whittaker, John C; Lamont, Ronald F

    2011-01-01

    To estimate the rates of meconium-stained amniotic fluid (AF) and adverse outcome in relation to gestational age and racial group, and to investigate the predictors of meconium-stained AF.......To estimate the rates of meconium-stained amniotic fluid (AF) and adverse outcome in relation to gestational age and racial group, and to investigate the predictors of meconium-stained AF....

  18. Studying fluid squeeze characteristics for aerostatic journal bearing

    International Nuclear Information System (INIS)

    Abdel-Rahman, Gamal M.

    2008-01-01

    The Reynolds equation for studying fluid squeeze of aerostatic journal bearing is solved numerically by considering the quasi-steady behavior of the air film. The radial displacement can influence the air film thickness modifying the pressure distribution in the journal-bearing gap. Also, the variations in the seal characteristics with eccentricity, time, squeeze number, length-to-diameter and supply pressure are presented. The numerical results for the squeeze load-carrying capacity are given in a non-dimensional form

  19. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    Science.gov (United States)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  20. The Characteristics of Fluid Potential in Mud Diapirs Associated with Gas Hydrates in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2006-01-01

    Full Text Available Many mud diapirs have been identified in the southern Okinawa Trough from a seismic survey using R/V KEXUE I in 2001. The movement and accumulation of free gas related to mud diapirs are discussed in detail by an analysis of fluid potential which is based upon velocity data. It can be found that free gas moves from the higher fluid potential strata to the lower ones and the gas hydrate comes into being during free gas movement meeting the proper criteria of temperature and pressure. In fact, gas hydrates have been found in the upper layers above the mud diapirs and in host rocks exhibiting other geophysical characteristics. As the result of the formation of the gas hydrate, the free gas bearing strata are enclosed by the gas hydrate bearing strata. Due to the high pressure anomalies of the free gas bearing strata the fluid potential increases noticeably. It can then be concluded that the high fluid potential anomaly on the low fluid potential background may be caused by the presence of the free gas below the gas hydrate bearing strata.

  1. Fluid Flow Characteristic Simulation of the Original TRIGA 2000 Reactor Design Using Computational Fluid Dynamics Code

    International Nuclear Information System (INIS)

    Fiantini, Rosalina; Umar, Efrizon

    2010-01-01

    Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.

  2. Damping characteristics and flow behaviors of an ER fluid with a piston sine vibration in a viscous damper

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Zhang, Xin-Rong; Niu, Xiao-Dong

    2010-01-01

    The damping characteristics and flow behaviors of ER fluids inside a piston–cylinder viscous damper subjected to external electric fields are studied based on experiment, theoretical analysis and numerical simulation. The viscous damper is a closed system with an inner piston and an outer cylinder, which is designed and constructed in our laboratory. In the experiment, the test ER fluid is enclosed in the gap of a piston–cylinder system. To examine the damping characteristics of the test ER fluid, a piston sine vibration experiment is performed with accompanying theoretical analyses. In addition, in order to investigate the ER flow behaviors inside the damper, a numerical simulation is carried out. The present study discloses the damping characteristics and the fluid mechanism of the ER fluid in the piston–cylinder damper with an applied external electric field

  3. Two-phase flow characteristics of HFC and HCFC fluid

    International Nuclear Information System (INIS)

    Ueno, T.; Matsuda, K.; Kusakabe, T.

    1998-01-01

    Some two-phase flow characteristics of HFC and HCFC fluid have been investigated experimentally. Fluids used in this experiment are HCFC22 (hereinafter called 'R22'), HCFC123 (hereinafter called 'R123') and Mixture of HFC fluid (hereinafter called 'R407C'). The fluid R407C are mixture of HFC32, HFC134a and HFC125, and their concentrations are 23wt%, 52wt% and 25wt%, respectively. This paper presents main flow parameters such as void fraction, interfacial velocities, bubble diameter distribution and pressure drop multiplier, which can characterize flow behavior. The void fractions and interfacial velocities were measured at some local positions in the single pipe using the bi-optical probe(hereinafter called 'BOP'). The procedure to calculate the void fraction from the void signals obtained by BOP were adopted the so-called slice method. The effects of slice levels on the void fraction were discussed taking into account bubble diameter. The new correlation of slice level as the function of void fraction has been proposed. The area-averaged void fractions obtained from BOP's void signals using new correlation were compared with void fractions obtained from pressure drops. The area-averaged interfacial velocities were also compared with the superficial gas velocities. It was concluded that the accuracy of BOP measurements are 5% for void fraction and less than 8.5% for interfacial velocity

  4. Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media

    Directory of Open Access Journals (Sweden)

    Meijuan Yun

    2014-01-01

    Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.

  5. Stokes-Einstein relation for pure simple fluids

    Science.gov (United States)

    Cappelezzo, M.; Capellari, C. A.; Pezzin, S. H.; Coelho, L. A. F.

    2007-06-01

    The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by α, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (α=4) can be satisfied in some state points. An intermediate value of α =5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (α=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for α in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.

  6. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  7. Spinning fluids in general relativity: a variational formulation

    International Nuclear Information System (INIS)

    Oliveira, H.P. de; Salim, J.M.

    1990-01-01

    In this paper we present a variational formulation for spinning fluids in General Relativity. In our model each volume element of the fluid has rigid microstructure. We deduce a symmetrical energy-moment tensor where there is an explicit contribution of kinetic spin energy to the total energy. (author)

  8. Crystallography of biological fluid as a method for evaluating its physicochemical characteristics.

    Science.gov (United States)

    Martusevich, A K; Kamakin, N F

    2007-03-01

    Using an integral qualitative and quantitative approach to the studies of initiation of the biological material crystallogenesis, we showed in experiments with normal human saliva that the external characteristics of biological fluid (pH, osmolality, and environmental temperature) determine the results of crystallization (tesigraphic facies). The main external (macroenvironment) and inner (microenvironment) factors of biological fluid crystal formation, determining specific features of the tesigraphic facies, were distinguished and classified. The informative value of differential analysis of biomaterial properties by means of modulating the environmental conditions is established.

  9. Diagnostic accuracy of the defining characteristics of the excessive fluid volume diagnosis in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Maria Isabel da Conceição Dias Fernandes

    2015-12-01

    Full Text Available Objective: to evaluate the accuracy of the defining characteristics of the excess fluid volume nursing diagnosis of NANDA International, in patients undergoing hemodialysis. Method: this was a study of diagnostic accuracy, with a cross-sectional design, performed in two stages. The first, involving 100 patients from a dialysis clinic and a university hospital in northeastern Brazil, investigated the presence and absence of the defining characteristics of excess fluid volume. In the second step, these characteristics were evaluated by diagnostic nurses, who judged the presence or absence of the diagnosis. To analyze the measures of accuracy, sensitivity, specificity, and positive and negative predictive values were calculated. Approval was given by the Research Ethics Committee under authorization No. 148.428. Results: the most sensitive indicator was edema and most specific were pulmonary congestion, adventitious breath sounds and restlessness. Conclusion: the more accurate defining characteristics, considered valid for the diagnostic inference of excess fluid volume in patients undergoing hemodialysis were edema, pulmonary congestion, adventitious breath sounds and restlessness. Thus, in the presence of these, the nurse may safely assume the presence of the diagnosis studied.

  10. Reviewing fluid systems for age-related degradation

    International Nuclear Information System (INIS)

    Smith, Stan

    1991-01-01

    Yankee Atomic Electric Company has developed the component degradation assessment tool (CoDAT), an expert system, that aids in handling and evaluating the large amounts of data required to support the license renewal process for nuclear power station fluid systems. In 1990, CoDAT evaluated the Yankee Nuclear Power Station fluid systems for age-related degradation. Its results are now being used to help focus the plant's maintenance programs and manage the expected degradation. CoDAT uses 'If-Then' rules, developed from industry codes, standards and publications, to determine the potential for 19 age-related degradation mechanisms. Other nuclear utilities pursuing the license renewal option also could use CoDAT. (author)

  11. In vitro and in vivo spin echo diffusion imaging characteristics of synovial fluid: potential non-invasive differentiation of inflammatory and degenerative arthritis

    International Nuclear Information System (INIS)

    Eustace, S.; DiMasi, M.; Adams, J.; Ward, R.; Caruthers, S.; McAlindon, T.

    2000-01-01

    Objective. This study was undertaken to analyse the diffusion characteristics of synovial fluid in degenerative and inflammatory arthropathies.Design and patients. Ten in vitro specimens of synovial fluid from patients with both degenerative and inflammatory arthropathy were studied at body temperature with a navigator-corrected spin echo diffusion sequence (B values 0-512 s/mm 2 ), on a Philips 1.5-T Gyroscan. Subsequently synovial fluid from knee joint effusions of 25 patients (10 patients with osteoarthritis, 10 patients with effusions following trauma and 5 patients with effusions secondary to inflammatory arthritis) was evaluated with the same navigator-corrected spin echo diffusion sequence.Results. Both in vitro and in vivo study demonstrated decreased diffusion in patients with effusions secondary to degenerative joint disease (less than 2.40 x 10 -5 cm 2 /s) relative to patients with effusions accompanying knee trauma (greater than 2.75 x 10 -5 cm 2 /s) and inflammatory arthritis (in vitro and in vivo greater than 3.00 x 10 -5 cm 2 /s).Conclusion. Synovial fluid in degenerative arthritis shows less diffusion or free water movement than synovial fluid in inflammatory arthritis. Diffusion characteristics of synovial fluid may be used to predict the nature of the underlying form of arthritis in patients presenting with knee joint effusions. (orig.)

  12. Grinding Fluid Jet Characteristics and Their Effect on a Gear Profile Grinding Process

    Directory of Open Access Journals (Sweden)

    Philip Geilert

    2017-10-01

    Full Text Available Profile gear grinding is characterized by a high level of achievable process performance and workpiece quality. However, the wide contact length between the workpiece and the grinding wheel is disadvantageous for the fluid supply to the contact zone and leads to the risk of locally burning the workpiece surface. For the reduction of both the thermal load and the risk of thermo-mechanical damage, the usage of a grinding fluid needs to be investigated and optimized. For this purpose, different kinds of grinding fluid nozzles were tested, which provide different grinding fluid jet characteristics. Through a specific design of the nozzles, it is possible to control the fluid flow inside the nozzle. It was found that this internal fluid flow directly influences the breakup of the coolant fluid jet. There are three groups of jet breakup (“droplet”, “wave & droplet”, and “atomization”. The first experimental results show that the influence of the jet breakup on the process performance is significant. The “wave & droplet” jet breakup can achieve a high process performance, in contrast to the “atomization” jet breakup. It can therefore be assumed that the wetting of the grinding wheel by the grinding fluid jet is significantly influenced by the jet breakup.

  13. Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

    Science.gov (United States)

    Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.

    2014-12-01

    The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids

  14. Characteristics of pediatric patients with enterovirus meningitis and no cerebral fluid pleocytosis

    NARCIS (Netherlands)

    de Crom, Stephanie C. M.; van Furth, Marceline A. M.; Peeters, Marcel F.; Rossen, John W. A.; Obihara, Charles C.

    UNLABELLED: Human non-polio enterovirus (EV) is the most important cause of aseptic meningitis in children. Only a few studies report the lack of cerobrospinal fluid (CSF) pleocytosis in children with confirmed EV meningitis; however, the characteristics of these children have not been well defined.

  15. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    Science.gov (United States)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow

  16. Effect of Temperature and Electric Field on the Damping and Stiffness Characteristics of ER Fluid Short Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    H. P. Jagadish

    2013-01-01

    Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.

  17. Fluid Characteristics in the Giant Quartz Reef System of the Bundelkhand Craton, India: Constraints from Fluid Inclusion Study

    Science.gov (United States)

    Rout, D.; Panigrahi, M. K.; Pati, J. K.

    2017-12-01

    fluid that possibly mixed with a moderate salinity fluid. Such a moderate salinity fluid could represent a magmatic fluid that evolved to such low temperatures through prolonged fluid rock interaction. Although these quartz reefs do not bear any economic grade mineralization, the fluid characteristics compare well with mineralized reefs in the Dharwar and Bastar cratons.

  18. Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel

    International Nuclear Information System (INIS)

    Tatsumi, K; Takeda, Y; Nakabe, K; Suga, K

    2011-01-01

    Flow velocity measurement and visualization using particle image velocimetry and fluorescent dye were carried out for a viscoelastic fluid flow in a serpentine microchannel for the purpose to quantitatively evaluate the unsteady flow characteristics that is observed even under very low Reynolds number regime due to the combined effect of the viscoelastic fluid properties and the channel shape. Sucrose water solution (Newtonian fluid) and the polyacrylamide-sucrose water solution (viscoelastic fluid) were used as working fluids. The mixing performance markedly increased when the Reynolds number exceeded a certain value in the polyacrylamide solution case. The single-point, cross-sectional and two-dimensional velocity distributions showed that low frequency fluctuation was produced in the polyacrylamide solution case. Particularly large fluctuation in the channel spanwise direction was observed in the upstream area of the serpentine channel. On the other hand, the amplitude of the fluctuation decreased in the downstream region. The fluctuation in the upstream region is believed to be generated by the flow instability at the curved part of the channel, while the fluctuations in the downstream area were attributed to the local instability and the vortices provided from the upstream region.

  19. Shale characteristics impact on Nuclear Magnetic Resonance (NMR fluid typing methods and correlations

    Directory of Open Access Journals (Sweden)

    Mohamed Mehana

    2016-06-01

    Full Text Available The development of shale reservoirs has brought a paradigm shift in the worldwide energy equation. This entails developing robust techniques to properly evaluate and unlock the potential of those reservoirs. The application of Nuclear Magnetic Resonance techniques in fluid typing and properties estimation is well-developed in conventional reservoirs. However, Shale reservoirs characteristics like pore size, organic matter, clay content, wettability, adsorption, and mineralogy would limit the applicability of the used interpretation methods and correlation. Some of these limitations include the inapplicability of the controlling equations that were derived assuming fast relaxation regime, the overlap of different fluids peaks and the lack of robust correlation to estimate fluid properties in shale. This study presents a state-of-the-art review of the main contributions presented on fluid typing methods and correlations in both experimental and theoretical side. The study involves Dual Tw, Dual Te, and doping agent's application, T1-T2, D-T2 and T2sec vs. T1/T2 methods. In addition, fluid properties estimation such as density, viscosity and the gas-oil ratio is discussed. This study investigates the applicability of these methods along with a study of the current fluid properties correlations and their limitations. Moreover, it recommends the appropriate method and correlation which are capable of tackling shale heterogeneity.

  20. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  1. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    Science.gov (United States)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  2. Remote detection of fluid-related diagenetic mineralogical variations in the Wingate Sandstone at different spatial and spectral resolutions

    Science.gov (United States)

    Okyay, Unal; Khan, Shuhab D.

    2016-02-01

    Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near

  3. CFD Activity at Aerojet Related to Seals and Fluid Film Bearing

    Science.gov (United States)

    Bache, George E.

    1991-01-01

    Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.

  4. Relation between fluid intelligence and frontal lobe functioning in older adults.

    Science.gov (United States)

    Isingrini, M; Vazou, F

    1997-01-01

    This study reports the relations among normal aging, intelligence, and frontal lobe functioning. Intelligence tasks and frontal lobe functioning tasks were administered to 107 adults from two age groups (25 to 46 years and 70 to 99 years). Intelligence measures were assessed with two crystallized tests (WAIS Vocabulary and Information subtests), one fluid intelligence test (Cattell's Matrices), and one mixed, crystallized and fluid test (WAIS Similarities subtest). Frontal functioning was assessed using the Wisconsin Card Sorting Test (WCST) and two tests of verbal fluency. Significant age differences in favor of the young were found on the two intelligence tests with a fluid component and on all measures of frontal lobe functioning. Correlational analyses examining the relationship of intelligence measures to frontal variables indicated that these last measures were significantly correlated with only fluid intelligence tests in the elderly group. The implications for the relations among aging, fluid intelligence, and frontal lobe functioning are discussed.

  5. Pregnancy-related mortality in California: causes, characteristics, and improvement opportunities.

    Science.gov (United States)

    Main, Elliott K; McCain, Christy L; Morton, Christine H; Holtby, Susan; Lawton, Elizabeth S

    2015-04-01

    To compare specific maternal and clinical characteristics and contributing factors among the five leading causes of pregnancy-related mortality to develop focused clinical and public health prevention programs. California pregnancy-related deaths from 2002-2005 were identified with enhanced surveillance using linked birth and death certificates. A multidisciplinary committee reviewed medical records, autopsy reports, and coroner reports to determine cause of death, clinical and demographic characteristics, chance to alter outcome, contributing factors (at health care provider, facility, and patient levels), and quality improvement opportunities. The five leading causes of death were compared with each other and with the overall California birth population. Among the 207 pregnancy-related deaths, the five leading causes were cardiovascular disease, preeclampsia or eclampsia, hemorrhage, venous thromboembolism, and amniotic fluid embolism. Among the leading causes of death, we identified differing patterns for race, maternal age, body mass index, timing of death, and method of delivery. Overall, there was a good-to-strong chance to alter the outcome in 41% of deaths, with the highest rates of preventability among hemorrhage (70%) and preeclampsia (60%) deaths. Health care provider, facility, and patient contributing factors also varied by cause of death. Pregnancy-related mortality should not be considered a single clinical entity. Reducing mortality requires in-depth examination of individual causes of death. The five leading causes exhibit different characteristics, degrees of preventability, and contributing factors, with the greatest improvement opportunities identified for hemorrhage and preeclampsia. These findings provide additional support for hospital, state, and national maternal safety programs.

  6. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study

    Directory of Open Access Journals (Sweden)

    Nima Mohamadian

    2018-05-01

    Full Text Available The suspension properties of drilling fluids containing pure and polymer-treated (partially-hydrolyzed polyacrylamide (PHPA or Xanthan gum clay nanoparticles are compared withthose of a conventional water-and-bentonite-based drilling fluid, used as the referencesample. Additionally, the mud weight, plastic viscosity, apparent viscosity, yield point, primary and secondary gelatinization properties, pH, and filtration properties of the various drilling fluids studied are also measured and compared. The performance of each drilling fluid type is evaluated with respect in terms of its ability to reduce mud cake thickness and fluid loss thereby inhibiting differential-pipe-sticking. For that scenario, the mud-cake thickness is varied, and the filtration properties of the drilling fluids are measured as an indicator of potential well-diameter reduction, caused by mud cake, adjacent to permeable formations. The novel results show that nanoparticles do significantly enhance the rheological and filtration characteristics of drilling fluids. A pure-clay-nanoparticle suspension, without any additives, reduced fluid loss to about 42% and reduced mud cake thickness to 30% compared to the reference sample. The xanthan-gum-treated-clay-nanoparticle drilling fluid showed good fluid loss control and reduced fluid loss by 61% compared to the reference sample. The presence of nanofluids also leads to reduced mud-cake thicknesses, directly mitigating the risks of differential pipe sticking.

  7. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  8. Fluid–fluid level in hepatic metastases: A characteristic sign of metastases of neuroendocrine origin

    International Nuclear Information System (INIS)

    Sommer, Wieland H.; Zech, Christoph J.; Bamberg, Fabian; Auernhammer, Christoph J.; Helck, Andreas; Paprottka, Philipp M.; Notohamiprodjo, Mike; Reiser, Maximilian F.; Herrmann, Karin A.

    2012-01-01

    Objectives: The aim of this study is to determine MRI characteristics which indicate liver metastases of neuroendocrine tumors (NET) rather than metastases of other origin (non-NET). Methods: Sixty-nine patients with histopathologically proven liver metastases from NET and 69 patients with known liver metastases of other origin underwent MRI of the liver using a 1.5 T MR-scanner. Two board certified radiologists assessed presence of fluid–fluid-levels, number and distribution pattern, signal intensity (SI) characteristics, lesion homogeneity, presence of central necrosis and intratumoral hemorrhage in T2w and T1w non-contrast imaging. A multivariate logistic regression analysis was performed to determine the independent association of image findings and occurrence of NET. Results: Fluid–fluid-levels were identified in 19/69 of patients with NET-metastases, and in none of the patients in the control group (p < 0.0001). Hyperintense SI in T1w imaging, markedly hyperintense SI in T2w imaging, a disseminated distribution pattern and intratumoral hemorrhage were indicative of NET metastases (p < 0.05). After statistical adjustment for all significant MRI findings, fluid–fluid-levels (OR: 17.6, 95% CI: 1.9–166.5), strongly hyperintense SI in T2w (OR: 4.7, 95% CI: 1.8–12.7) and a disseminated distribution pattern (OR: 2.9, 95% CI: 1.1–7.4) were independent predictors for NET metastases. Conclusions: The presence of fluid–fluid-levels is highly indicative of NET liver metastases and can be used as an independent predictor to distinguish them from metastases of other origin

  9. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids : Symposia

    CERN Document Server

    Sedov, L

    1968-01-01

    At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig­ inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre­ versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re­ sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...

  10. Chemical and isotopic characteristics of the coso east flankhydrothermal fluids: implications for the location and nature of the heatsource

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.

    2007-01-08

    Fluids have been sampled from 9 wells and 2 fumaroles fromthe East Flank of the Coso hydrothermal system with a view toidentifying, if possible, the location and characteristics of the heatsource inflows into this portion of the geothermal field. Preliminaryresults show that there has been extensive vapor loss in the system, mostprobably in response to production. Wells 38A-9, 51-16 and 83A-16 showthe highest CO2-CO-CH4-H2 chemical equilibration temperatures, rangingbetween 300-340oC, and apart from 38A-9, the values are generally inaccordance with the measured temperatures in the wells. Calculatedtemperatures for the fractionation of 13C between CO2 and CH4 are inexcess of 400oC in fluids from wells 38A-9, 64-16-RD2 and 51A-16,obviously pointing to equilibrium conditions from deeper portions of thereservoir. Given that the predominant reservoir rock lithologies in theCoso system are relatively silicic (granitic to dioritic), the isotopicsignatures appear to reflect convective circulation and equilibrationwithin rocks close to the plastic-brittle transition. 3He/4He signatures,in conjunction with relative volatile abundances in the Coso fluids,point to a possibly altered mantle source for the heat sourcefluids.

  11. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  12. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  13. The Characteristics of natural convection heat transfer of Al_2O_3–water nano fluid flow in a vertical annulus pipe

    International Nuclear Information System (INIS)

    Reinaldy Nazar

    2016-01-01

    Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al_2O_3-water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e"+"0"9 ≤ Ra ≤ 1.955 e"+"1"3 obtained empirical correlations for water is N_U = 1.065 (R_a(D_H/x))"0"."1"7"9 and empirical correlations for Al_2O_3-water nano fluids is N_U = 14.869 (R_a(D_H/x))"0"."1"1"5.(author)

  14. On the characteristics of a numerical fluid dynamics simulator

    International Nuclear Information System (INIS)

    Winkler, K.H.A.; Norman, M.L.; Norton, J.L.

    1986-01-01

    John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics

  15. Experimental investigation of the characteristics of a laser beam passing through a fluid layer for surface quality in-process measurement

    International Nuclear Information System (INIS)

    Guo, Ruipeng; Tao, Zhengsu

    2010-01-01

    The optical characteristics of a laser beam passing through a fluid parallel layer are examined through a series of experimental tests in this project. The experimental apparatus consists of a bare surface quality measurement system and a fluid-supporting system. In the case of laser beam propagation through the static fluid layer, a modified Beckmann–Kirchhoff scattering model has been developed. Based on this model, the results of the surface quality in-process optical measurement can be amended. By extracting a ratio parameter from the image of the scattered light pattern to estimate surface roughness, the modified model can be verified quantitatively in the experimental system. As far as laser beam propagation through the flowing fluid layer is concerned, the deflection of the laser beam caused by fluid flow is small. The experiments are conducted to investigate the characteristics, and the results show that the resulting measurement error for surface quality optical measurement is in an acceptable range

  16. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  17. Characteristics of an electro-rheological fluid valve used in an inkjet printhead

    Science.gov (United States)

    Lee, C. Y.; Liao, W. C.

    2000-12-01

    The demand for non-impact printers has grown considerably with the advent of personal computers. For entry-level mass production, two drop-on-demand techniques have dominated the market - piezoelectric impulse and thermal-bubble types. However, the high cost of the piezoelectric printhead and the thermal problems encountered by the thermal-bubble jet printhead have restrained the use of these techniques in an array-type printhead. In this study, we propose a new design of printhead with an electro-rheological (ER) fluid acting as a control medium. The ER fluid valve controls the ink ejection. As a first step toward developing this new printhead, the characteristics of an ER fluid valve which controls the deflection of the elastic diaphragm are investigated. First, the response of a prototype is tested experimentally to prove the feasibility of using this ER valve for the inkjet printhead. Then, the discretized governing equation of the ER valve is derived. Finally, the prototype of the ER valve is fabricated. The experimental measurement based on the sinusoidal response verifies both the theoretical analysis and the controllability of the response of the ER valve by the applied electric field.

  18. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  19. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    Science.gov (United States)

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  20. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  1. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  2. Characterization and modelling of fluid flows in fissured and fractured media. relation with hydrothermal alterations and paleo-stress quantification; Caracterisation et modelisation des ecoulements fluides en milieu fissure. relation avec les alterations hydrothermales et quantification des paleocontraintes

    Energy Technology Data Exchange (ETDEWEB)

    Sausse, J.

    1998-10-15

    In all materials (rocks, concretes, ceramics,...), the presence of fractures at different scales implies high permeability and often oriented fluid flows. These fluid circulations in fractures induce more or less intense fluid-rock interactions with mineral crystallisation and/or dissolution. These phenomena directly depend on the nature of the fluids and the rocks, the physical and chemical properties of the media and the rate of fluid renewal (permeabilities). Usually, the development of such alterations leads to a massive sealing of the fractures (vein alterations) and of the fissures (fluid inclusion planes and microcracks, pervasive alteration). Therefore, their study brings us precious indications for the understanding of the mechanisms of fluid migrations in fossil systems. A geometrical study of the fracture systems at micro or macroscopic scales, based on the spatial distribution of sealing minerals, is applied to two different granites: the Soultz-sous-Foret granite (Bas-Rhin, France) and the Brezouard granite (Vosges, France). At the macroscopic scale, a new graphical method is proposed in order to study drilling data (Soultz granite). It allows to identify the presence of three independent mineral associations (quartz - illite, calcite-chlorite and hematite) in independent fracture systems characterised by a specific 3D geometry and hydraulic properties. These three types of vein alteration correspond to distinct and non contemporaneous fluid percolations. At the microscopic scale, the reconstitution of crack opening - fluid percolation - crack sealing stages is delicate. However, the study of their geometrical characteristics (orientations, radius, volume densities) and thereby the quantification of their porosities, exchange surfaces and permeabilities, allow to identify their respective roles in the fluid propagation. These microstructures, which are very numerous in granites, imply high but variable matrix permeabilities. This has been confirmed by

  3. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    Science.gov (United States)

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  4. A numerical study on the flow and performance characteristics of a piezoelectric micropump with electromagnetic resistance for electrically conducting fluids

    International Nuclear Information System (INIS)

    An, Yong Jun; Choi, Chung Ryul; Kim, Chang Nyung

    2008-01-01

    A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD (MagnetoHydroDynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS (Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studied by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study

  5. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  6. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  7. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    Science.gov (United States)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  8. Geochemical characteristics of oil sands fluid petroleum coke

    International Nuclear Information System (INIS)

    Nesbitt, Jake A.; Lindsay, Matthew B.J.; Chen, Ning

    2017-01-01

    The geochemical characteristics of fluid petroleum coke from the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada were investigated. Continuous core samples were collected to 8 m below surface at several locations (n = 12) from three coke deposits at an active oil sands mine. Bulk elemental analyses revealed the coke composition was dominated by C (84.2 ± 2.3 wt%) and S (6.99 ± 0.26 wt%). Silicon (9210 ± 3000 mg kg"−"1), Al (5980 ± 1200 mg kg"−"1), Fe (4760 ± 1200 mg kg"−"1), and Ti (1380 ± 430 mg kg"−"1) were present in lesser amounts. Vanadium (1280 ± 120 mg kg"−"1) and Ni (230 ± 80 mg kg"−"1) exhibited the highest concentrations among potentially-hazardous minor and trace elements. Sequential extractions revealed potential for release of these metals under field-relevant conditions. Synchrotron powder X-ray diffraction revealed the presence of Si and Ti oxides, organically-complexed V and hydrated Ni sulfate, and provided information about the asphaltenic carbon matrix. X-ray absorption near edge structure (XANES) spectroscopy at the V and Ni K-edges revealed that these metals were largely hosted in porphyrins and similar organic complexes throughout coke grains. Minor differences among measured V and Ni K-edge spectra were largely attributed to slight variations in local coordination of V(IV) and Ni(II) within these organic compounds. However, linear combination fits were improved by including reference spectra for inorganic phases with octahedrally-coordinated V(III) and Ni(II). Sulfur and Fe K-edge XANES confirmed that thiophenic coordination and pyritic-ilmenitic coordination are predominant, respectively. These results provide new information on the geochemical and mineralogical composition of oil sands fluid petroleum coke and improve understanding of potential controls on associated water chemistry. - Highlights: • Oil sands fluid petroleum coke contains wide range of major, minor and

  9. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    Science.gov (United States)

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  10. Mixing of immiscible fluids in chaotic flows and related issues

    International Nuclear Information System (INIS)

    Ottino, J.M.

    1993-01-01

    The basis goal of this work was to obtain a basic understanding of mixing of immiscible fluids leading to the determination of flow conditions which result in efficient breakup and dispersion of one mass of fluid in the bulk of another. Related issues were the prediction of the morphological structures and drop size distribution for a given set of operating conditions. The primary motivation for these investigations was to produce basic knowledge leading to increased understanding of industrial processes involving blending, agitation, emulsification, and dissolution

  11. Critical fluid technology for the processing of lipid-related natural products

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)

    2004-07-01

    In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or

  12. Regression analysis of traction characteristics of traction fluids

    Science.gov (United States)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.

  13. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    Directory of Open Access Journals (Sweden)

    Tian Jiande

    2015-01-01

    Full Text Available A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount.

  14. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    Science.gov (United States)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  15. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    International Nuclear Information System (INIS)

    Lee, J H; Nam, Y J; Park, M K; Yamane, R

    2009-01-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  16. Method and apparatus for measuring underground fluid flow characteristics

    International Nuclear Information System (INIS)

    Paap, H.J.; Richter, A.P.; Peelman, H.E.; Arnold, D.M.; Scot, H.D.

    1979-01-01

    This invention relates to the use of neutron activation techniques to measure the azimuth and speed of the horizontal fluid flow in earth formations in the vicinity of a well borehole and the analysis of the resultant gamma radiation based on count rate data obtained as functions of horizontal direction and time. The apparatus consisting of a sonde (a downhole well logging tool) equipped with a neutron source, a gamma detector and a rotatable shield with collimator slot and the data processing equipment located at the surface, are described. (UK)

  17. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  18. Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area.

    Science.gov (United States)

    Ruan, Sheng-Yuan; Chuang, Yu-Chung; Wang, Jann-Yuan; Lin, Jou-Wei; Chien, Jung-Yien; Huang, Chun-Ta; Kuo, Yao-Wen; Lee, Li-Na; Yu, Chong-Jen J

    2012-09-01

    Tuberculous pleurisy is traditionally indicated by extreme lymphocytosis in pleural fluid and low yield of effusion culture. However, there is considerable inconsistency among previous study results. In addition, these data should be updated due to early effusion studies and advances in culture methods. From January 2004 to June 2009, patients with tuberculous pleurisy were retrospectively identified from the mycobacteriology laboratories and the pathology and tuberculosis registration databases of two hospitals in Taiwan where tuberculosis is endemic. Pleural fluid characteristics and yields of mycobacterial cultures using liquid media were evaluated. A total of 382 patients with tuberculous pleurisy were identified. The median lymphocyte percentage of total cells in pleural fluids was 84% (IQR 64-95%) and 17% of cases had a lymphocyte percentage of pleural biopsy specimens. The degree of lymphocyte predominance in tuberculous pleurisy was lower than was previously thought. The lymphocyte percentage in pleural fluid was negatively associated with the probability of a positive effusion culture. With the implementation of a liquid culture method, the sensitivity of effusion culture was much higher than has been previously reported, and the combination of effusion and sputum cultures provided a good diagnostic yield.

  19. Characteristics of Plasma Probes in an MHD Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Whitman, A. M.; Hsuan, Yeh [Towne School of Civil and Mechanical Engineering, University of Pennsylvania (United States)

    1966-10-15

    In this paper an attempt is made to formulate a theory of electrostatic probes in a high-pressure plasma in which an external electrical field may be imposed. Such a situation exists in high-pressure arc discharges and in MHD channels. First, it is shown that an adequate theory must include the ionization and recombination phenomena which were ignored in almost all previous theories. Secondly, due to the preferred direction induced by the presence of the electric field, the probe problem is no longer a symmetrical one. The analysis is based on the assumption that the three-body recombination and ionization is the dominant process. In a typical MHD working fluid, say an argon gas seeded with caesium at 2000 Degree-Sign K and one atmosphere of pressure, the penetration length I of ions and electrons, i.e. the distance that an ion or electron diffuses before recombination, is of the order of 10{sup -3} cm. (It is to be noted that ambipolar diffusion prevents the electrons from travelling much faster than the ions. ) We thus have a situation where Script-Small-L /L << 1, d/ Script-Small-L << 1, {lambda}/L <<1, and {lambda}/d >> 1, where L is the characteristic dimension of the probe {lambda} is the mean free path and d the Debye length. Because of the last condition, i. e, d << {lambda}, the space charge region is contained wholly in a ''free-falling'' zone in the immediate neighbourhood of the probe. Since, also, (d/ Script-Small-L ) << 1, the region outside of the ''free-falling'' zone is in a state of ''quasi-neutrality'', i.e. the number densities of electrons and ions are approximately equal. In this latter region, the mechanisms of diffusion and recombination are both important. The two regions must of course be matched at their connecting boundaries. Furthermore, the external boundary of the ''quasi-neutrality'' region must be matched to the discharge field. Using the approximations of the classical boundary layer theory, analytic solutions are obtained in

  20. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  1. Fluid spheres and R- and T-regions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    McVittie, G C; Wiltshire, R J [Kent Univ., Canterbury (UK)

    1975-10-01

    R- and T-regions of spacetime are first defined in a particular coordinate system and then with the aid of the Schwarzschild vacuum solution are shown to represent the outside and inside of a black hole respectively. A certain class of interior solutions, relating to a perfect fluid, are also considered and it is found that these R- and T-solutions have distinct physical properties. The R-solutions are static, spherically symmetric, permanent, and have a classical analogue, while the corresponding T-solutions, which are wholly time dependent, are cylindrical, temporary, and do not have a classical analogue. It is shown that these T-solutions cannot be generated from their R-region counterparts. Particular T-solutions are also presented in which the corresponding fluid occupies the whole of a T-region. The fluid would under certain circumstances be black body radiation while for other cases the internal pressure is always greater than the density.

  2. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  3. Heat transfers and related effects in supercritical fluids

    CERN Document Server

    Zappoli, Bernard; Garrabos, Yves

    2015-01-01

    This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...

  4. Using Computational Fluid Dynamics to examine airflow characteristics in Empty Nose Syndrome

    Science.gov (United States)

    Flint, Tim; Esmaily-Moghadam, Mahdi; Thamboo, Andrew; Velasquez, Nathalia; Nayak, Jayakar V.; Sellier, Mathieu; Moin, Parviz

    2016-11-01

    The enigmatic disorder, empty nose syndrome (ENS), presents with a complex subjective symptom profile despite objectively patent nasal airways, and recent reports suggest that surgical augmentation of the nasal airway can improve quality of life and ENS-related complaints. In this study, computational fluid dynamics (CFD) was performed both prior to, and following, inferior turbinate augmentation to model the resultant changes in airflow patterns and better understand the pathophysiology of ENS. An ENS patient with marked reduction in ENS symptoms following turbinate augmentation was identified, and pre- and post-operative CT imaging was collected. A Finite element framework with the variational multiscale method (Esmaily-Moghadam, Comput. Methods Appl. Mech. Engrg. 2015) was used to compute the airflow, temperature, and moisture transport through the nasal cavity. Comparison of the CFD results following corrective surgery showed higher levels of airflow turbulence. Augmentation produced 50%, 25%, and 25% increases in root mean square pressure, wall shear stress, and heat flux respectively. These results provide insight into the changes in nasal airflow characteristics attainable through surgical augmentation, and by extension, how nasal airflow patterns may be distorted in the 'overly patent' airway of ENS patients. Supported by Stanford University CTR and Fulbright New Zealand.

  5. Hamiltonian formalism for perfect fluids in general relativity

    International Nuclear Information System (INIS)

    Demaret, J.; Moncrief, V.

    1980-01-01

    Schutz's Hamiltonian theory of a relativistic perfect fluid, based on the velocity-potential version of classical perfect fluid hydrodynamics as formulated by Seliger and Whitham, is used to derive, in the framework of the Arnowitt, Deser, and Misner (ADM) method, a general partially reduced Hamiltonian for relativistic systems filled with a perfect fluid. The time coordinate is chosen, as in Lund's treatment of collapsing balls of dust, as minus the only velocity potential different from zero in the case of an irrotational and isentropic fluid. A ''semi-Dirac'' method can be applied to quantize astrophysical and cosmological models in the framework of this partially reduced formalism. If one chooses Taub's adapted comoving coordinate system, it is possible to derive a fully reduced ADM Hamiltonian, which is equal to minus the total baryon number of the fluid, generalizing a result previously obtained by Moncrief in the more particular framework of Taub's variational principle, valid for self-gravitating barotropic relativistic perfect fluids. An unconstrained Hamiltonian density is then explicitly derived for a fluid obeying the equation of state p=(gamma-1)rho (1 < or = γ < or = 2), which can adequately describe the phases of very high density attained in a catastrophic collapse or during the early stages of the Universe. This Hamiltonian density, shown to be equivalent to Moncrief's in the particular case of an isentropic fluid, can be simplified for fluid-filled class-A diagonal Bianchi-type cosmological models and appears as a suitable starting point for the study of the canonical quantization of these models

  6. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  7. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    International Nuclear Information System (INIS)

    Zhang, P.; Lee, K.H.; Lee, C.H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.

  8. Vibration and stability behaviour of pipes conveying fluid

    International Nuclear Information System (INIS)

    Becker, O.

    1980-01-01

    Modelling, solution methods, and results related to the hydroelastic system 'pipe conveying fluid' are discussed. In particular, the vibration and stability conditions for a straightline and a curved pipe are reviewed considering constant and pulsating flow characteristics. Problems still unsolved are pointed out. (author)

  9. Numerical investigation of fluid flow and heat transfer characteristics in a helically-finned tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangkeun; Kim, Minsung; Park, Yong Gap; Min, June Kee; Ha, Man Yeong [Pusan National University, Busan (Korea, Republic of)

    2017-07-15

    In order to investigate the characteristics of flow and heat transfer rate in a Helically-finned tub (HFT), we used continuity, momentum and energy equations under a steady, three-dimensional and incompressible fluid flow assumptions. For the performance metrics, we considered the Darcy friction factor, Colburn j-factor, volume goodness factor and area goodness factor of the HFT. We could also evaluate the effect of geometry parameters on the results of local pressure coefficient, fluid vorticity and Nusselt number of the HFT. We carried out the CFD calculation for a range of laminar flow (Re = 100) and turbulent flow (Re = 2000 and 10000). In a laminar and turbulent flow regime, the friction factor increases with increasing the each geometric parameter. While the Colburn j-factor decreases as increasing these geometric parameters. Consequently, the thermal performance of HFT is poorer than that of single straight circular tube type because of having a small volume and area goodness factor as increasing the Reynolds numbers.

  10. Some applications of the moving finite element method to fluid flow and related problems

    International Nuclear Information System (INIS)

    Berry, R.A.; Williamson, R.L.

    1983-01-01

    The Moving Finite Element (MFE) method is applied to one-dimensional, nonlinear wave type partial differential equations which are characteristics of fluid dynamic and related flow phenomena problems. These equation systems tend to be difficult to solve because their transient solutions exhibit a spacial stiffness property, i.e., they represent physical phenomena of widely disparate length scales which must be resolved simultaneously. With the MFE method the node points automatically move (in theory) to optimal locations giving a much better approximation than can be obtained with fixed mesh methods (with a reasonable number of nodes) and with significantly reduced artificial viscosity or diffusion content. Three applications are considered. In order of increasing complexity they are: (1) a thermal quench problem, (2) an underwater explosion problem, and (3) a gas dynamics shock tube problem. The results are briefly shown

  11. Approximate Riemann solver for the two-fluid plasma model

    International Nuclear Information System (INIS)

    Shumlak, U.; Loverich, J.

    2003-01-01

    An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves

  12. Fluid Mechanics of Blood Clot Formation.

    Science.gov (United States)

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  13. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon [Pusan National University, Busan (Korea, Republic of); Kim, Bong Hwan [Jinju National University, Jinju (Korea, Republic of)

    2011-07-15

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system.

  14. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon; Kim, Bong Hwan

    2011-01-01

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  15. Embedding Entrepreneurial Thinking into Fluids-related Courses: Small Changes Lead to Positive Results

    Science.gov (United States)

    Carnasciali, Maria-Isabel

    2017-11-01

    Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.

  16. Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility.

    Science.gov (United States)

    Jørgensen, Hilde; Hill, Abby S; Beste, Michael T; Kumar, Manu P; Chiswick, Evan; Fedorcsak, Peter; Isaacson, Keith B; Lauffenburger, Douglas A; Griffith, Linda G; Qvigstad, Erik

    2017-05-01

    Our aim was to characterize peritoneal cytokine profiles in patients with infertility, with and without endometriosis, to illuminate potential differences in immune profiles that may reflect mechanistic differences between these two patient populations. Cross-sectional study. University hospital and research center. Women undergoing laparoscopy for infertility investigation (n = 107). Peritoneal fluid was collected during surgery. Clinical characteristics were registered preoperatively. We determined the concentration of 48 different cytokines from the peritoneal fluid with multiplex immunoassays. Associations between cytokines and clinical findings were assessed with logistic regression and partial least squares discriminant analyses (PLS-DA). Concentrations of SCGF-β, IL-8, HGF, and MCP-1 were significantly higher, while IL-13 was significantly lower in the endometriosis group compared with the group without endometriosis. Multiple stepwise logistic regression identified a combination of SCGF-β, IL-13, and G-CSF concentrations that predicted the presence of endometriosis with 86% sensitivity and 67% specificity. PLS-DA identified a class of 11 cytokines (SCGF-β, HGF, IL-13, MCP-1, CTACK, MCP-3, M-CSF, LIF, IL-5, IL-9, and IFN-a2) that were more characteristic of endometriosis than nonendometriosis patients. By combining univariate and multivariate analyses, profiles of cytokines more likely to be enriched or depleted in infertility patients with endometriosis compared with those without endometriosis were identified. These findings may inform future analyses of pathophysiological mechanisms of endometriosis in infertile patients, including dysregulated Th1/Th2 response and mobilization and proliferation of hematopoietic stem cells. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    that was necessary not only to make fluid injections safe, but an economic asset, DOE organized a series of workshops. The first workshop was held on February 4, 2010, at Stanford University. A second workshop will be held in mid-2010 to address the critical elements of a 'best practices/protocol' that industry could use as a guide to move forward with safe implementation of fluid injections/production for energy-related applications, i.e., a risk mitigation plan, and specific recommendations for industry to follow. The objectives of the first workshop were to identify critical technology and research needs/approaches to advance the understanding of induced seismicity associated with energy related fluid injection/production, such that: (1) The risk associated with induced seismicity can be reduced to a level that is acceptable to the public, policy makers, and regulators; and (2) Seismicity can be utilized/controlled to monitor, manage, and optimize the desired fluid behavior in a cost effective fashion. There were two primary goals during the workshop: (1) Identify the critical roadblocks preventing the necessary understanding of human-induced seismicity. These roadblocks could be technology related (better imaging of faults and fractures, more accurate fluid tracking, improved stress measurements, etc.), research related (fundamental understanding of rock physical properties and geochemical fluid/rock interactions, development of improved constitutive relations, improved understanding of rock failure, improved data processing and modeling, etc.), or a combination of both. (2) After laying out the roadblocks the second goal was to identify technology development and research needs that could be implemented in the near future to address the above objectives.

  18. Stochastic characteristics and Second Law violations of atomic fluids in Couette flow

    Science.gov (United States)

    Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin

    2018-04-01

    Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.

  19. Fundamental study on turbulent fluid mixing characteristics in piping systems. Fundamental study on fluid mixing mechanism in T-junction areas

    International Nuclear Information System (INIS)

    Toda, Saburo; Yuki, Kazuhisa; Muramatsu, Toshiharu

    2002-03-01

    In a region where two fluids with different temperatures are mixed together, unsteady temperature fluctuation, i.e. thermal striping, occurs in going through the unstable mixing process of the fluids, and structural materials in the surrounding area may be damaged by high-cycle thermal fatigue. In this report, in order to clarify the relation between the thermal striping and temperature fluctuation of structural wall, PIV measuring system is applied to visualize the fluid mixing state in a T-junction area in which important parameters for the fluid mixing are the flow velocity and aperture ratios of a main pipe to a small pipe and an incidence angle of the small pipe to the main pipe as well as temperature difference of the two flows. As a result of visualization experiments in a isothermal field, it is confirmed that a jet-axis, which is a stream line flowing out from the center of the small pipe, vibrates unsteadily and that its behavior is strongly affected by circulating flow, Karman vortex formed behind the jet axis, and especially flow-fluctuation which exists as a background-flow in the main pipe. Especially, the frequency band of the flow-fluctuation in the main pipe almost corresponds to that of the vibration of the jet-axis where the ratio of flow rate is low. Furthermore, in order to estimate the vibration state of the jet-axis and to find out the conditions for preventing the thermal fatigue, the penetration depth of the jet-axis is generalized. From measurements of temperature fluctuation of wall, it is shown that a high power fluctuation area exists universally behind the junction point of the small pipe where the flow rate of the small pipe flow is relatively lower than that of the main pipe flow. The band of dominant frequency of the temperature fluctuation is almost the same as the flow-fluctuation and the jet-axis vibration mentioned above. In addition, visualization experiments of secondary flow formed in a 90-degree bend, which is installed

  20. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  1. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique

    NARCIS (Netherlands)

    Cone, J.W.; Rodrigues, M.A.M.; Guedes, C.M.; Blok, M.C.

    2009-01-01

    In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to

  2. Deciphering fluid inclusions in high-grade rocks

    Directory of Open Access Journals (Sweden)

    Alfons van den Kerkhof

    2014-09-01

    Full Text Available The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary inclusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the “original” peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL techniques combined with trace element analysis of quartz (EPMA, LA-ICPMS have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and Al, low-temperature re-equilibrated quartz typically shows reduced trace element concentrations. The resulting microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries, and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 °C, i.e. the range of semi-brittle deformation (greenschist-facies and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.

  3. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  4. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  5. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.

    2016-11-15

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  6. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.

    2016-01-01

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  7. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  8. Improvements in or relating to fluid operated devices for moving articles

    International Nuclear Information System (INIS)

    Rogerson, Victor.

    1986-01-01

    The patent relates to fluid operated devices for moving articles. The machine may be used in filling a nuclear fuel canister with fuel pellets where there is a tendency for out of squareness of pellets to produce a jam condition readily cleared by a modest force. (U.K.)

  9. Characteristics of estrogen-induced peroxidase in mouse uterine luminal fluid

    International Nuclear Information System (INIS)

    Jellinck, P.H.; Newbold, R.R.; McLachlan, J.A.

    1991-01-01

    Peroxidase activity in the uterine luminal fluid of mice treated with diethylstilbestrol was measured by the guaiacol assay and also by the formation of 3H2O from [2-3H]estradiol. In the radiometric assay, the generation of 3H2O and 3H-labeled water-soluble products was dependent on H2O2 (25 to 100 microM), with higher concentrations being inhibitory. Tyrosine or 2,4-dichlorophenol strongly enhanced the reaction catalyzed either by the luminal fluid peroxidase or the enzyme in the CaCl2 extract of the uterus, but decreased the formation of 3H2O from [2-3H]estradiol by lactoperoxidase in the presence of H2O2 (80 microM). NADPH, ascorbate, and cytochrome c inhibited both luminal fluid and uterine tissue peroxidase activity to the same extent, while superoxide dismutase showed a marginal activating effect. Lactoferrin, a major protein component of uterine luminal fluid, was shown not to contribute to its peroxidative activity, and such an effect by prostaglandin synthase was also ruled out. However, it was not possible to exclude eosinophil peroxidase, brought to the uterus after estrogen stimulation, as being the source of peroxidase activity in uterine luminal fluid

  10. Fingerprinting the Hydrothermal Fluid Characteristics from LA-ICP-MS Trace Element Geochemistry of Garnet in the Yongping Cu Deposit, SE China

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-10-01

    Full Text Available The large Yongping Cu deposit is situated in the eastern Qin-Hang Metallogenic Belt, Southeast China and on the southern side of the Yangtze—Cathaysia suture zone, and is characterized by large stratiform orebodies. Garnet represents the main non-metallic mineral at Yongping, and shows variations in color from dark red to green to light brown with distance from the Shizitou porphyritic biotite granite stock. An in situ elemental analysis using EPMA and LA-ICP-MS and fluid inclusions microthermometric measurement on the Yongping garnet were conducted to constrain the hydrothermal and physicochemical mineralization conditions and the ore origin. The Yongping garnet ranges from nearly pure to impure andradite, is characterized by low concentrations of MnO (0.11–0.71 wt % with a wide range of Y/Ho (2.1–494.9 and does not exhibit any melting inclusions or fluid-melt inclusions, indicating that they are likely to be resulted from hydrothermal replacements. The Yongping garnet is rich in LREEs, Cs, Th, U and Pb; relatively depleted in HREEs, Rb, Sr and Ba; but exhibits distinct Eu anomalies (δEu of the dark red, green and light brown garnet range 2.12–20.54, 0.74–1.70 and 0.52–0.85, respectively with the homogenization temperatures and salinities of the fluid inclusions principally ranging from 387–477 °C and 7.8–16.0 wt % NaCl equivalent, respectively. The distinct trace elements and microthermometric characteristics reveal that the garnet was formed in a physicochemical conditions of medium-high temperature, 44–64 MPa pressures, mildly acidic pH levels, and unstable oxygen fugacity, and indicate that they were primarily formed by infiltration metasomatism, quite fitting with the scenario that the preferential entrance of magmatic-hydrothermal fluids derived from the Shizitou stock into the relatively low-pressure fracture zones between the limestone and quartz sandstone in the Yejiawan Formation, and further led to the formation

  11. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  12. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  13. Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow

    International Nuclear Information System (INIS)

    Inada, Fumio; Kawamura, Koji; Yasuo, Akira

    1996-01-01

    Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity

  14. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  15. Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available Digital holographic microscopy is presented in this study, which can measure the magnetorheological (MR fluid in different volume fractions of particles and different magnetic field strengths. Based on the chain structure of magnetic particle under applied magnetic field, the relationships between shear yield stress, magnetic field, size, and volume fraction of MR fluid in two parallel discs are established. In this experiment, we choose three MR fluid samples to check the rheological properties of MR fluid and to obtain the material parameters with the test equipment of MR fluid; the conclusion is effective.

  16. Study on Influence of Tube Arrays on Fluid Elastic Instability

    Science.gov (United States)

    Ishihara, Kunihiko; Kitayama, Gen

    The tube bank is used in boilers, heat exchangers in power plants and steam generators in nuclear plants. These tubes sometimes vibrate violently and come to the fatigue failure due to the flow induced vibration which is caused by the cross flow. This phenomenon is that the large vibrations arise at the critical flow velocity and it is called fluid elastic instability. However the relation between the onset velocity of fluid elastic instability and the tube array's geometry has not been clarified sufficiently. There is a few reference related to the relation between the pitch to diameter ratio and the onset velocity even in the lattice arrays. In this paper, the influence of tube arrays on fluid elastic instability is examined by experiments. As a result, it is clarified that the tube vibrations become large as T/D increases and L/D decreases, and the tube vibrations strongly depend on the dynamic characteristics of tubes such as the natural frequency and the damping ability.

  17. Ore Characteristics and Fluid Inclusion of the Base Metal Vein Deposit in Moncong Bincanai Area, Gowa, South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Asmariyadi Asmariyadi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.146This paper is dealing with ore characteristics and fluid inclusion of the Moncong Bincanai, Biringbulu Subregency of Gowa Regency, South Sulawesi Province, Indonesia. The mineralization is a vein type, with the orientation of N170oE /65oSW, hosted in open-space filling within basalt. The mineralization consists of galena, sphalerite, chalcopyrite, and pyrite. Vein thickness ranges from 5 - 17 cm, showing a crustiform banding texture, with a sequence from outer to centre: quartz, carbonate (siderite, sulphide. The quartz displays primary growth textures such as comb, crystalline, saccharoidal, and colloform. Analytical methods applied include AAS and fluid inclusion microthermometry. Chemical composition of the vein indicates an average of Pb = 47.92%, Cu = 1.27%, Zn = 1.02%, and Fe = 9.46%, which shows a significant concentration of Pb. Fluid inclusion microthermometry results indicate a range of formation temperature of 240 - 250C and salinity of the responsible hydrothermal fluid of 2.1 - 2.5 wt.% NaCl eq. The deposit is categorized into low-sulfidation epithermal deposits, which was formed within a range of 410 - 440 m below paleosurface.

  18. Report of workshop on vibration related to fluid in atomic energy field. 4

    International Nuclear Information System (INIS)

    1993-01-01

    This is the fourth workshop on the vibration related to fluid in atomic energy field of Yayoi research group. This time, two topics were taken up. One is edgetone phenomena and the liquid surface vibration phenomena due to flow. Another is the introduction of the experience in light water reactors. The workshop was held on August 30 and 31, 1993 at Nuclear Engineering Research Laboratory, University of Tokyo. At the workshop, lectures were given on the mechanism of occurrence of edgetone, the theoretical analysis of edgetone and edgenoise, the self-excited vibration of free liquid surface due to vertical plane jet and vertical cylindrical jet, the research on flow instability phenomena in parallel loop system, the irregular vibration behavior of U-shaped tubes excited by flow, the research on the vibration of cyclindrical weir due to fluid discharge, the examples of the vibration related to fluid in LWRs, the estimation of fatigue phenomena in bearing rings, the vibration of rotary vanes and verifying test, the analysis of flow in isolated phase bus plate vane and the measurement of velocity distribution, flow in piping and the behavior of valve vibration, the condition for the occurrence of flow vibration in the main steam separation valve of BWR, the vibration of piping due to orifice, the analysis of flow in two-dimensional vibrating cascade, and the subjects of fluid vibration assessment in atomic energy. (K.I.)

  19. Overview of NSSS Fluid System Design of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ji-Woong; Choi, Seok-Ki; Kim, Seong-O; Kim, Eui-Kwang; Kim, Dehee; Hong, Jonggan; Ye, Huee-Youl; Yeom, Sujin; Ryu, Seungho; Yoon, Jung; Choi, Sun Rock; Park, Jin-Seok; Lee, Tae-Ho Lee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper an overview on the NSSS fluid system design of PGSFR is described based on the issued design documents. System concepts and major components design concepts for PHTS, IHTS, DHRS and SWRPRS were developed. Thermal-hydraulic characteristics were analyzed based on CFD simulation. The design bases and concepts for auxiliary systems were also developed. The upstream design requirements of fluid system such as system design requirements, component design requirements, I and C design requirements, BOP interface design requirements, design guides and P and IDs were produced. The control logic and computer code for the analysis for operational characteristics is under progress. The protection system consists of a safety grade PPS and a non-safety grade DPS (Diverse Protection System). The DPS provides a diverse method to trip the reactor to satisfy the requirements relative to ATWS (Anticipated Transients Without Scram) as well as Defense-In-Depth and Diversity.

  20. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    Science.gov (United States)

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Fluid inclusion characteristics and geological significance of the Dajinshan W-Sn polymetallic deposit in Yunfu, Guangdong Province

    Science.gov (United States)

    Yu, Zhangfa; Chen, Maohong; Zhao, Haijie

    2015-05-01

    The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.

  2. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ali, Amir [Univ. of New Mexico, Albuquerque, NM (United States); Liu, Maolong [Univ. of New Mexico, Albuquerque, NM (United States); Blandford, Edward [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-06-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.

  3. [Analysis of factors related to the number of mesenchymal stem cells derived from synovial fluid of the temporomandibular joint].

    Science.gov (United States)

    Sun, Y P; Zheng, Y H; Zhang, Z G

    2017-06-09

    Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain ( r= 0.041, P= 0.672), blood containing ( P= 0.063), condylar bony destruction ( P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week ( r= 0.186, P= 0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state ( P= 0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group ( P= 0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.

  4. Performance Characteristics and Temperature Compensation Method of Fluid Property Sensor Based on Tuning-Fork Technology

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2016-01-01

    Full Text Available Fluid property sensor (FPS based on tuning-fork technology is applied to the measurement of the contaminant level of lubricant oil. The measuring principle of FPS sensor is derived and proved together with its resolution. The performance characteristics of the FPS sensor, such as sensitivity coefficient, resolution, and quality factor, are analyzed. A temperature compensation method is proposed to eliminate the temperature-dependence of the measuring parameters, and its validity is investigated by numerical simulation of sensitivity, oscillating frequency, and dielectric constant. The values of purification efficiency obtained using microwave and without microwave are compared experimentally.

  5. New electrorheological fluids - characteristics and implementation in industrial and mobile applications

    International Nuclear Information System (INIS)

    Gurka, M; Adams, D; Johnston, L; Petricevic, R

    2009-01-01

    Various applications for controllable dampers in the industrial and automotive sector are demanding an improved ER-Fluid, concerning performance and long time behavior. The new ER-Fluid RheOil (registered) 3.0 developed by us and presented here overcomes the main disadvantages like sedimentation and re-dispersing behavior. Besides this, better ER-performance (control ratio, current-density, step response time) could also be achieved. During tests of the response to changing temperature and long time behavior no significant degradation of the fluid or abrasive wear in the components was found over a wide temperature range.

  6. Headache under simulated microgravity is related to endocrine, fluid distribution, and tight junction changes.

    Science.gov (United States)

    Feuerecker, Matthias; van Oosterhout, Willebrordus P J; Feuerecker, Benedikt; Matzel, Sandra; Schelling, Gustav; Rehm, Markus; Vein, Alla A; Choukèr, Alexander

    2016-05-01

    Head-down-tilted bed rest (HDTBR) induces headaches similar to headaches during space flights. The objective of this investigation was to study hematological, endocrinological, fluid changes and tight junctions in HDTBR-induced headaches as a proxy for space headache. The randomized crossover HDTBR design by the European Space Agency included 12 healthy, nonheadache male subjects. Before, during, and after confined HDTBR periods, epinephrine (urine), cortisol (saliva), hematological, endothelium markers, and fluid distribution parameters were measured. Headaches were assessed with a validated headache questionnaire. Compared with baseline, HDTBR in all subjects was associated with higher hematocrit, hemoglobin, and epinephrine levels, higher erythrocyte counts, and lower relative plasma volumes (all P zonulin was elevated (vs headache-free subjects in HDTBR days 1, 3, 5; P < 0.05). HDTBR induces hemoconcentration and fluid redistribution in all subjects. During headache episodes, endocrinological changes, fluid distribution, and tight junctions were more pronounced, suggesting an additional role in headache pathophysiology.

  7. Characteristic and Mixing Mechanisms of Thermal Fluid at the Tampomas Volcano, West Java, Using Hydrogeochemistry, Stable Isotope and 222Rn Analyses

    Directory of Open Access Journals (Sweden)

    Irwan Iskandar

    2018-03-01

    Full Text Available The Tampomas Volcano is a Quaternary volcano located on Java Island and controlled by a west-northwest–east-southeast (WNW-ESE regional fault trend. This regional structure acts as conduits for the hydrothermal fluids to ascend from a deeper system toward the surface and, in the end, mix with groundwater. In this research, water geochemistry, gas chemistry and isotopes 2H, 18O and 13C were used to explore the subsurface fluid characteristics and mixing mechanisms of the hydrothermal fluids with groundwater. In addition to those geochemical methods, soil-gas and dissolved 222Rn observations were performed to understand the geological control of fluid chemistry. Based on the analytical results, the hydrothermal system of Tampomas is only developed at the northeastern flank of the volcano, which is mainly controlled by NE-SW structures as deep fluid conduits, while the Cimalaka Caldera Rim around Sekarwangi act as the boundary flow of the system. This system is also categorized as an “intermediate temperature system” wherein fluid is derived from the interaction between the volcanic host-rock at 170 ± 10 °C mixed with trace organic gas input from sedimentary formation; afterwards, the fluid flows laterally and is diluted with groundwater near the surface. Soil-gas and dissolved 222Rn confirm that these permeable zones are effective conduits for the ascending thermal fluids. It is found that NE faults carry higher trace elements from the deeper system, while the circular feature of the Caldera Rim acts as the boundary of the hydrothermal system.

  8. Closed-cycle gas turbine working fluids

    International Nuclear Information System (INIS)

    Lee, J.C.; Campbell, J. Jr.; Wright, D.E.

    1981-01-01

    Characteristic requirements of a closed-cycle gas turbine (CCGT) working fluid were identified and the effects of their thermodynamic and transport properties on the CCGT cycle performance, required heat exchanger surface area and metal operating temperature, cycle operating pressure levels, and the turbomachinery design were investigated. Material compatibility, thermal and chemical stability, safety, cost, and availability of the working fluid were also considered in the study. This paper also discusses CCGT working fluids utilizing mixtures of two or more pure gases. Some mixtures of gases exhibit pronounced synergetic effects on their characteristic properties including viscosity, thermal conductivity and Prandtl number, resulting in desirable heat transfer properties and high molecular weights. 21 refs

  9. Report of workshop on vibration related to fluid in atomic energy field. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Because of the nonlinearity of the equation that governs flow, sometimes vibration occurs in an unexpected system, and it causes trouble. This 7th workshop on vibration related to fluid in atomic energy field was held at Nuclear Engineering Research Laboratory of University of Tokyo on August 25 and 26, 1997. Two themes were ``Vibration of liquid surface by flow`` and ``Numerical analysis of coupled vibration of fluid-structures``. The former is related to the problem in the development of a demonstration FBR, and the latter is related to the numerical analysis technology such as the handling of boundary conditions and the method of taking position, moving velocity and acceleration into account. This workshop aims at thoroughly discussing a small number of themes, and deepening the understanding. In this report, the summaries of 17 papers are collected, of which the titles are as follows. Liquid surface self-exciting vibration by flow, vibration of upper plenum liquid surface of fast reactor, stability analysis of multiple liquid surfaces, flow instability phenomena of multi-loop system, sloshing in a vessel in which fluid flows, the mechanism of occurrence of self-exciting sloshing in a vessel elucidated by numerical analysis, numerical analysis of manometer vibration excited by flow, numerical analysis of flutter phenomena of aircraft, numerical analysis of aerodynamic elastic problem, mechanism of in-line excitation, numerical analysis of hydrodynamic elastic vibration of tube nest and so on. (K.I.)

  10. Antioxidant content and cytological examination of aqueous fluid from patients with age-related cataracts at different stages.

    Science.gov (United States)

    Wang, X; Sun, J; Dang, G F; Gao, Y; Duan, L; Wu, X Y

    2015-06-11

    We investigated the antioxidant content and conducted a cytological examination of the aqueous fluid and lenses of patients with age-related cataracts at different stages. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in the aqueous fluid and lenses were determined by the xanthine oxidase method, the colorimetric method, and the improved reduced glutathione (GSH) depletion method, respectively. SOD, CAT, and GSH-PX content in the aqueous fluid and lenses decreased significantly with increasing lenticular nucleus hardness grading. However, the number of white blood cells, neutrophils, monocytes, lymphocytes, and eosinophils did not vary significantly with varying lenticular nucleus hardness. Antioxidant content examination is an important quantitative indicator for clinical diagnosis and treatment of age-related cataracts. Antioxidant content in the aqueous fluid and lenses decreased significantly with increasing lenticular nucleus hardness grading. Lenses at hardness level V had the lowest content of antioxidants.

  11. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  12. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    Science.gov (United States)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  13. STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE ...

    African Journals Online (AJOL)

    Test

    Results are highly accurate and promising for all models based on Lewis' criteria. ... hydrological cycle. Future increases in ... STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE HUMIDITY OF OGUN BASIN, NIGERIA. 71 ...

  14. Tactic-specific differences in seminal fluid influence sperm performance.

    Science.gov (United States)

    Locatello, Lisa; Poli, Federica; Rasotto, Maria B

    2013-03-22

    Seminal fluid often makes up a large part of an ejaculate, yet most empirical and theoretical studies on sperm competition have focused on how sperm characteristics (number and quality) affect fertilization success. However, seminal fluid influences own sperm performance and may potentially influence the outcome of sperm competition, by also affecting that of rivals. As a consequence males may be expected to allocate their investment in both sperm and seminal fluid in relation to the potential level of competition. Grass goby (Zosterisessor ophiocephalus) is an external fertilizer with guard-sneaker mating tactics, where sperm competition risk varies according to the tactic adopted. Here, we experimentally manipulated grass goby ejaculates by separately combining sperm and seminal fluid from territorial and sneaker males. While sperm of sneaker and territorial males did not differ in their performance when they interacted with their own seminal fluid only, sperm of sneakers increased their velocity and fertilization rate in the presence of territorial males' seminal fluid. By contrast, sneaker males' seminal fluid had a detrimental effect on the performance of territorial males' sperm. Sperm velocity was unaffected by the seminal fluid of males employing the same tactic, suggesting that seminal fluid's effect on rival-tactic sperm is not based on a self/non-self recognition mechanism. Our findings show that cross interactions of sperm and seminal fluid may influence the fertilization success of competing ejaculates with males investing in both sperm and seminal fluid in response to sperm competition risk.

  15. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    Science.gov (United States)

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  17. Mathematical modeling of impact of two metal plates using two-fluid approach

    Science.gov (United States)

    Utkin, P. S.; Fortova, S. V.

    2018-01-01

    The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.

  18. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    This special issue of Sadhana contains selected papers from two conferences related to fluid mechanics held in India recently, Fluid Mechanics and Fluid Power conference at NIT, Hamirpur, and an International Union of Theoretical ... A simple, well thought out, flow visualization experiment or a computation can sometimes ...

  19. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2012-03-10

    Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  1. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  2. Behavior of fluids in a weightless environment

    Science.gov (United States)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  3. Geology, mineralogy and ore fluid characteristics of the Masjed Daghi gold bearing veins system, NW Iran

    Directory of Open Access Journals (Sweden)

    Susan Ebrahimi

    2017-11-01

    Full Text Available Introduction The Masjed- Daghi gold deposit lies in an area of widespread Cenozoic volcanic and plutonic rocks at the intersection of the Alborz- Azarbaijan and Urumieh- Dokhtar belts. The area was covered by a detailed exploration program, including geological maps at 1:1,000 scales (~8 km², several hundred meters of trenches and systematic sampling for Au, Ag, Pb, Zn, Cu, As, Hg analysis, and 16 diamond drill holes at a total of 1200 meters (Mohammadi et al, 2005. The vein type gold deposit in Masjed- Daghi is closely associated with a porphyry type Cu-Au deposit. Our study focuses on the gold bearing veins system in an attempt to understand the characteristics of ore fluids and mechanisms of ore formation, and to develop exploration criteria for Masjed Daghi and similar occurrences in Alborz and other Cenozoic magmatic assemblages in Iran. Materials and methods Various rock types, alteration assemblages and mineral parageneses were characterized by transmitting and reflected light microscopy, X-ray diffraction (XRD and electron microprobe analysis. Microprobe analyses were performed using a JEOL 8600 Superprobe electron microprobe at Saskatchewan University. Operating conditions were an accelerating voltage of 15 kV and a beam current of 50 nA. Representative samples from drill holes were selected for fluid inclusion studies. Fluid inclusion data were obtained using a fluid Inc. adapted USGS gas flow heating and freezing system at the Department of Geological Science at the University of Saskatchewan, Canada. To investigate the source of ore fluids, representative sulfidic samples from drill holes were selected for sulfur isotope studies. Isotopic analyses were performed using a Thermo Finnigan DeltaPlus at the G.G. Hatch Stable Isotope Laboratories, University of Ottawa. The standard error of analyses is less than ±0.1 per mil. Results Auriferous quartz veins in Masjed- Daghi are associated with porphyry style mineralization. Various

  4. Dynamics of two coaxial cylindrical shells containing viscous fluid

    International Nuclear Information System (INIS)

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  5. Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids

    Science.gov (United States)

    Hadjiconstantinou, Nicolas; Wang, Gerald

    2017-11-01

    Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.

  6. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    International Nuclear Information System (INIS)

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  7. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence.

    Science.gov (United States)

    Clay, Olivio J; Edwards, Jerri D; Ross, Lesley A; Okonkwo, Ozioma; Wadley, Virginia G; Roth, David L; Ball, Karlene K

    2009-06-01

    To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. In addition, the common cause, sensory degradation and speed of processing hypotheses were compared. Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. The findings support both the sensory degradation and speed of processing accounts of age-related, cognitive decline. Furthermore, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained.

  8. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer

    International Nuclear Information System (INIS)

    Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu

    2017-01-01

    Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.

  9. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  10. Uniting ripple-formation theory under water and winds: A universal scaling relation for the wavelength of fluid-drag ripples across fluids and planetary bodies

    Science.gov (United States)

    Lapotre, M. G. A.; Lamb, M. P.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Current ripples form on riverbeds and on the seafloor from viscous drag exerted by water flow over sand and are thought to be absent in subaerial systems, where ripple formation is dominated by a mechanism involving the impacting and splashing of sand grains. A fluid-drag mechanism, however, is not precluded in subaerial conditions and was originally hypothesized by R. A. Bagnold. Despite decades of observations in the field and in the laboratory, no universal scaling relation exists to predict the size of fluid-drag ripples. We combine dimensional analysis and a new extensive data compilation to develop a relationship and predict the equilibrium wavelength of current ripples. Our analysis shows that ripples are spaced farther apart when formed by more viscous fluids, smaller bed shear velocities, in coarser grains, or for smaller sediment specific gravity. Our scaling relation also highlights the abrupt transition between current ripples and subaqueous dunes, and thus allows for a process-based segregation of ripples from dunes. When adjusting for subaerial conditions, we predict the formation of decimeter-scale wind-drag ripples on Earth and meter-scale wind-drag ripples on Mars. The latter are ubiquitous on the Red Planet, and are found to co-exist with smaller decimeter-scale ripples, which we interpret as impact ripples. Because the predicted scale of terrestrial wind-drag ripples overlaps with that of impact ripples, it is possible that wind-drag ripples exist on Earth too, but are not recognized as such. When preserved in rocks, fluid-drag ripple stratification records flow directions and fluid properties that are crucial to constrain paleo-environments. Our new theory allows for predictions of ripple size, perhaps in both fluvial and eolian settings, and thus potentially represents a powerful tool for paleo-environmental reconstructions on different planetary bodies.

  11. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  12. Studying Validity of Single-Fluid Model in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Gu Jian-Fa; Fan Zheng-Feng; Dai Zhen-Sheng; Ye Wen-Hua; Pei Wen-Bing; Zhu Shao-Ping

    2014-01-01

    The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path λ, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/λ is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. (physics of gases, plasmas, and electric discharges)

  13. Development of models of the magnetorheological fluid damper

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Yu.B., E-mail: elmash@em.ispu.ru; Morozov, N.A.; Nesterov, S.A., E-mail: sergeinesterov37@gmail.com

    2017-06-01

    The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper. - Highlights: • Division of a MR fluid rheological curve into two sections with different viscosities. • Algorithm for calculation of a power characteristic of MR dampers is proposed. • Finite element model of a MR damper is developed. • Results of finite element simulation coincide with analytical solutions.

  14. Amniotic fluid index predicts the relief of variable decelerations after amnioinfusion bolus.

    Science.gov (United States)

    Spong, C Y; McKindsey, F; Ross, M G

    1996-10-01

    Our purpose was to determine whether intrapartum amniotic fluid index before amnioinfusion can be used to predict response to therapeutic amnioinfusion. Intrapartum patients (n = 85) with repetitive variable decelerations in fetal heart rate that necessitated amnioinfusion (10 ml/min for 60 minutes) underwent determination of amniotic fluid index before and after bolus amnioinfusion. The fetal heart tracing was scored (scorer blinded to amniotic fluid index values) for number and characteristics of variable decelerations before and 1 hour after initiation of amnioinfusion. The amnioinfusion was considered successful if it resulted in a decrease of > or = 50% in total number of variable decelerations or a decrease of > or = 50% in the rate of atypical or severe variable decelerations after administration of the bolus. Spontaneous vaginal births before completion of administration of the bolus (n = 18) were excluded from analysis. The probability of success of amnioinfusion in relation to amniotic fluid index was analyzed with the chi(2) test for progressive sequence. The mean amniotic fluid index before amnioinfusion was 6.2 +/- 3.3 cm. An amniotic fluid index of amnioinfusion decreased with increasing amniotic fluid index before amnioinfusion (76% [16/21] when initial amniotic fluid index was 0 to 4 cm, 63% [17/27] when initial amniotic fluid index was 4 to 8 cm, 44% [7/16] when initial amniotic fluid index was 8 to 12 cm, and 33% [1/3] when initial amniotic fluid index was > 12 cm, p = 0.03). The incidence of nuchal cords or true umbilical cord knots increased in relation to amniotic fluid index before amnioinfusion. Amniotic fluid index before amnioinfusion can be used to predict the success of amnioinfusion for relief of variable decelerations in fetal heart rate. Failure of amnioinfusion at a high amniotic fluid index before amnioinfusion may be explained by the increased prevalence of nuchal cords or true knots in the umbilical cord.

  15. Dynamic Characteristics of Rotors on Passive and Active Thrust Fluid-film Bearings with Fixed Pads

    Directory of Open Access Journals (Sweden)

    Babin Alexander

    2018-01-01

    Full Text Available Application of fluid-film bearings in rotor machines in many cases could have no alternative due to obvious advantages when compared to roller element bearings. Integration of information technology in mechanical engineering resulting in emergence of a new field of research – mechatronic bearings which allowed tracking condition of the most important parts of a machine and adjusting operational parameters of the system. Application of servo valves to control the flow rate through a fluid-film bearing is the most universal and simple way of rotor’s position control due to relative simplicity of modelling and absence of need to radically change the design of conventional hydrodynamic bearings. In the present paper numerical simulations of passive (conventional as opposed to mechatronic and active hybrid thrust fluid-film bearings with a central feeding chamber are presented, that are parts of a mechatronic rotor-bearing node. Numerical model of an active thrust bearing is based on solution of equations of hydrodynamics, rotor dynamics and an additional model of a servo valve. Various types of control have been investigated: P, PI and PID control, and the dynamic behaviour of a system has been estimated under various loads, namely static, periodic and impulse. A design of a test rig has been proposed to study passive and active thrust fluid-film bearings aimed at, among other, validation of numerical results of active bearings simulation.

  16. Effect of Morinda citrifolia leaf as saponin sources on fermentation characteristic, protozoa defaunated, gas and methane production of ruminal fluid in vitro

    Directory of Open Access Journals (Sweden)

    Hendra Herdian

    2011-06-01

    Full Text Available Many studies have reported that the Morinda citrifolia (pace plant was a useful material for human health. However the exploration of this plant on rumen fermentation is still needed. Therefore, a research was done to study the effect of M. citrifolia leaf on fermentation characteristics of rumen fluid consisted of protozoa defaunated process, VFA composition, NH3 content, rumen microbial protein content, gas and methane production using in vitro techniques. Rumen fluid obtained from two fistulated Ongole crossbreed cattle fed with forage and concentrate feed ration (70 : 30. The fluid was incubated at 39ºC for 48 hours. The treatment on the rumen fluid consisted of control treatment: 100% (200 mg DM kolonjono forage substrate (Penisetum purpureum and M. citrifolia treatments: kolonjono forage plus M. citrifolia (equivalent saponin 3; 6; 9; and 12 mg DM, respectively. The treatment of M. citrifolia leaf addition showed declined patterns in the number of protozoa population (P 0.05. Microbial protein content in rumen fluid increased (P 0.05 compared to control, while M. citrifolia treatments reduced the methane gas production of (P < 0.05 compared to control. It was concluded that M. citrifolia leaf has potential as a limiting agent of protozoa population and methane gas production in rumen.

  17. Generalized Bondi-Sachs equations for characteristic formalism of numerical relativity

    Science.gov (United States)

    Cao, Zhoujian; He, Xiaokai

    2013-11-01

    The Cauchy formalism of numerical relativity has been successfully applied to simulate various dynamical spacetimes without any symmetry assumption. But discovering how to set a mathematically consistent and physically realistic boundary condition is still an open problem for Cauchy formalism. In addition, the numerical truncation error and finite region ambiguity affect the accuracy of gravitational wave form calculation. As to the finite region ambiguity issue, the characteristic extraction method helps much. But it does not solve all of the above issues. Besides the above problems for Cauchy formalism, the computational efficiency is another problem. Although characteristic formalism of numerical relativity suffers the difficulty from caustics in the inner near zone, it has advantages in relation to all of the issues listed above. Cauchy-characteristic matching (CCM) is a possible way to take advantage of characteristic formalism regarding these issues and treat the inner caustics at the same time. CCM has difficulty treating the gauge difference between the Cauchy part and the characteristic part. We propose generalized Bondi-Sachs equations for characteristic formalism for the Cauchy-characteristic matching end. Our proposal gives out a possible same numerical evolution scheme for both the Cauchy part and the characteristic part. And our generalized Bondi-Sachs equations have one adjustable gauge freedom which can be used to relate the gauge used in the Cauchy part. Then these equations can make the Cauchy part and the characteristic part share a consistent gauge condition. So our proposal gives a possible new starting point for Cauchy-characteristic matching.

  18. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  19. Patient-stated preferences regarding volume-related risk mitigation strategies for hemodialysis.

    Science.gov (United States)

    Flythe, Jennifer E; Mangione, Thomas W; Brunelli, Steven M; Curhan, Gary C

    2014-08-07

    Larger weight gain and higher ultrafiltration rates have been associated with poorer outcomes among patients on dialysis. Dietary restrictions reduce fluid-related risk; however, adherence is challenging. Alternative fluid mitigation strategies include treatment time extension, more frequent dialysis, adjunct peritoneal dialysis, and wearable ultrafiltration devices. No data regarding patient preferences for fluid management exist. A survey was designed, tested, and administered to assess patient-stated preferences regarding fluid mitigation. A written survey concerning fluid-related symptoms, patient and treatment characteristics, and fluid management preferences was developed. The cross-sectional survey was completed by 600 patients on hemodialysis at 18 geographically diverse ambulatory facilities. Comparisons of patient willingness to engage in volume mitigation strategies across fluid symptom burden, dietary restriction experience, and patient characteristics were performed. Final analyses included 588 surveys. Overall, if allowed to liberalize fluid intake, 44.6% of patients were willing to extend treatment time by 15 minutes. Willingness to extend treatment time was incrementally less for longer treatment extensions; 12.2% of patients were willing to add a fourth weekly treatment session, and 13.5% of patients were willing to participate in nocturnal dialysis three nights per week. Patients more bothered by their fluid restrictions (versus less bothered) were more willing to engage in fluid mitigation strategies. Demographic characteristics and symptoms, such as cramping and dyspnea, were not consistently associated with willingness to engage in the proposed strategies. More than 25% of patients were unsure of their dry weights and typical interdialytic weight gains. Patients were generally averse to treatment time extension>15 minutes. Patients more bothered (versus less bothered) by their prescribed fluid restrictions were more willing to engage in volume

  20. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  1. Standard on microbiological management of fluids for hemodialysis and related therapies by the Japanese Society for Dialysis Therapy 2008.

    Science.gov (United States)

    Kawanishi, Hideki; Akiba, Takashi; Masakane, Ikuto; Tomo, Tadashi; Mineshima, Michio; Kawasaki, Tadayuki; Hirakata, Hideki; Akizawa, Tadao

    2009-04-01

    The Committee of Scientific Academy of the Japanese Society for Dialysis Therapy (JSDT) proposes a new standard on microbiological management of fluids for hemodialysis and related therapies. This standard is within the scope of the International Organization for Standardization (ISO), which is currently under revision. This standard is to be applied to the central dialysis fluid delivery systems (CDDS), which are widely used in Japan. In this standard, microbiological qualities for dialysis water and dialysis fluids are clearly defined by endotoxin level and bacterial count. The qualities of dialysis fluids were classified into three levels: standard, ultrapure, and online prepared substitution fluid. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently used in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility should validate the microbiological qualities of online prepared substitution fluid.

  2. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia

    Science.gov (United States)

    Soloviev, Serguei G.; Kryazhev, Sergey G.

    2017-08-01

    The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10

  3. Fluid management in children with diarrhea-related hyponatremic-hypernatremic dehydration: a retrospective study of 83 children.

    Science.gov (United States)

    Kocaoglu, Celebi; Selma Solak, Ece; Kilicarslan, Cengizhan; Arslan, Sukru

    2014-02-01

    To investigate serum creatinine and electrolyte status of children with diarrhea-related hyponatremic or hypernatremic dehydration. Medical history of 83 patients admitted to the Pediatric Intensive Care Unit of the Konya Education and Research Hospital, Konya, Turkey with diarrhea, dehydration and electrolyte imbalance was retrospectively evaluated according to the degree of dehydration, serum creatinine, electrolytes, blood gas, approaches to the treatment such as content of given fluid, HCO3- and acute periotenal dialysis. Of 65 patients with hyponatremia, 44 (67.7%) were given fluids at appropriate concentration according to their age, and 21 (32.3%) were given fluids at higher concentration. Of 18 hypernatremic patients, 11 (61.1%) were given fluids at appropriate concentration for age, and seven (38.9%) were given fluids at higher concentration. Mean duration of amelioration of serum sodium levels for those admitted with hyponatremia and given fluids at appropriate concentration for age and at higher concentration were 33.9 ± 28.3 h and 53.7 ± 31.6 h, respectively. Mean duration of amelioration of serum sodium levels for hypernatremics and given fluids at appropriate concentration for age and at higher concentration were 34.7 ± 22.1 h and 46.3 ± 32 h, respectively. Four (4.8%) hyponatremic patients and three (3.6%) with hypernatremia were treated with acute peritoneal dialysis. Mortality rate was 6% (five of all patients). The children with severe diarrhea should be closely followed-up as to clinical examination, serum electrolytes, creatinine and blood gases, and because no single intravenous fluid management is optimal for all children, intravenous fluid therapy should be individualized for each patient.

  4. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  5. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    Science.gov (United States)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  6. SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells

    Science.gov (United States)

    Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.

    2013-05-01

    This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.

  7. Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Choi, S.Y.; Kim, S.H.; Shim, J.B.; Paek, S.; Kim, I.T.

    2014-01-01

    A computational electrochemo-fluid dynamics model has been developed to describe the electrowinning behavior in an electrolyte stream through a planar electrode cell system. Electrode reaction of the uranium electrowinning process from a molten-salt electrolyte stream was modeled to illustrate the details of the flow-assisted mass transport of ions to the cathode. This modeling approach makes it possible to represent variations of the convective diffusion limited current density by taking into account the concentration profile at the electrode surface as a function of the flow characteristics and applied current density in a commercially available computational fluid dynamics platform. It was possible to predict the conventional current-voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variables, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic electrolysis cell. (author)

  8. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  9. Fluid curtailment during childhood diarrhea: a countdown analysis.

    Science.gov (United States)

    Perin, Jamie; Carvajal-Velez, Liliana; Carter, Emily; Bryce, Jennifer; Newby, Holly

    2015-06-26

    The foundation of recommended diarrhea management in young children is increased fluids and continued feeding. This increase in fluids is necessary to replace those lost during diarrhea and ultimately prevent dehydration. There may be an opportunity to prevent deaths in children under five by discouraging the practice of reducing or curtailing fluids during diarrhea episodes across different settings worldwide. We quantify and describe the extent of fluid curtailment in children with diarrhea in a selection of countries (Burkina Faso, Democratic Republic of Congo, Ethiopia, Nigeria, Tanzania, and Uganda) with high burden of diarrhea-related mortality with national cross sectional survey data. We examine the practice of fluid curtailment in these countries and its relationship to child and household traits and to characteristics of diarrhea management. The prevalence of fluid curtailment among children under five with diarrhea is strikingly high in these countries: 55 % in Nigeria, 49 % in Ethiopia, 44 % in Uganda, 37 % in Tanzania, 36 % in DR Congo and 32 % in Burkina Faso. Fluid curtailment is associated with giving less food, potentially worsening the impact of this harmful practice. Children who were reported to have had fluids curtailed during diarrhea episodes were also 3.51 (95 % confidence, 2.66 - 4.64) times more likely to be reported to have food withheld (α = 0.05; p water source. Children of poorer or less educated mothers and those living in rural areas are more likely to have curtailed fluids, compared to children of less poor or more educated mothers, or those living in urban areas. The harmful practice of curtailing fluids for a child with diarrhea is highly prevalent, representing an increased risk of dehydration and complications due to diarrhea, including death, especially for children in specific subgroups.

  10. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  11. [Study of work accidents related to human body fluids exposure among health workers at a university hospital].

    Science.gov (United States)

    Balsamo, Ana Cristina; Felli, Vanda Elisa Andres

    2006-01-01

    This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.

  12. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    Science.gov (United States)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  13. Insights gained from relating cumulative seismic moments to fluid injection activities

    Science.gov (United States)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  14. Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media

    CERN Document Server

    El-Dib, Y O

    2003-01-01

    In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...

  15. Resolution of through tubing fluid flow and behind casing fluid flow in multiple completion wells

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1977-01-01

    A method is provided for resolving undesired fluid flow in cement channels behind casing in one producing zone of a multi zone completion well operating on gas lift from the fluid flow from lower producing zones in the same well which is contained in production tubing passing through the producing zone being investigated. Gamma rays which are characteristic of the decay of the unstable isotope nitrogen 16 produced by activation of elemental oxygen nuclei comprising the molecular structure of both the tubing fluid flow and the undesired fluid flow are detected in at least two energy bonds at two longitudinally spaced detectors in a well borehole. By appropriately combining the four count rate signals so producing according to predetermined relationships the two fluid flow components in the same direction may be uniquely distinguished on the basis of their differing distances from the gamma ray detectors. 9 claims, 17 figures

  16. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF

    NARCIS (Netherlands)

    Nagy, R. A.; van Montfoort, A. P. A.; Dikkers, A.; van Echten-Arends, J.; Homminga, I.; Land, J. A.; Hoek, A.; Tietge, U. J. F.

    STUDY QUESTION: Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER: BAconcentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid

  17. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)

    2014-12-15

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  18. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen

    2014-01-01

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  19. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  20. Supercritical fluid chromatography in drug analysis: a literature survey.

    Science.gov (United States)

    Salvador, A; Jaime, M A; Becerra, G; Guardia, M de L

    1996-08-01

    The applications of supercritical fluid chromatography to the analysis of drugs have been carefully revised from the literature compiled in the Analytical Abstracts until March 1994. Easy-to-read tables provide useful information about the state-of-the-art and possibilities offered by SFC in pharmaceutical analysis. The tables comprise extensive data about samples analyzed, pharmaceutical principles determined, solvents used and sample quantity injected, supercritical fluids and modifiers employed, injection system, instrumentation, experimental conditions for chromatographic separations (density, pressure, flow, temperature), characteristics of columns employed (type, support, length, diameter, particle film thickness, stationary phase), detectors, type of restrictors, and also some analytical features of the methods developed (such as retention time, resolution, sensitivity, limit of detection and relative standard deviation).

  1. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  2. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  3. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  4. Demographic Characteristics Related To Wholesale Marketing Of ...

    African Journals Online (AJOL)

    Demographic Characteristics Related To Wholesale Marketing Of Yam In Delta State, Nigeria. ... analysis reveals that wholesale yam marketing in the study area was male - dominated (78.8%), most of ... EMAIL FULL TEXT EMAIL FULL TEXT

  5. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  6. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Relationship between Energy Expenditure Related Factors and Oxidative Stress in Follicular Fluid

    OpenAIRE

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr Esfahani, Mohammad Hosein; Saboor-Yaraghi, Ali Akbar; Nejat, Saharnaz Nejat; Rahimi-Foroshani, Abbas

    2014-01-01

    Background This study evaluated the impact of body mass index (BMI), total calorie intake and physical activity (PA) as energy expenditure related factors on oxidative stress (OS) in follicular fluid (FF). Materials and Methods This prospective study conducted on 219 infertile women. We evaluated patients’ BMI, total calorie intake and PA in their assisted reproduction treatment cycles. Malondialdehyde (MDA) and total antioxidant capacity (TAC) in pooled FF at oocyte retrieval were additional...

  8. Fluid-structure interaction of submerged structures

    International Nuclear Information System (INIS)

    Tang, H.T.; Becker, E.B.; Taylor, L.M.

    1979-01-01

    The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)

  9. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  10. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-15

    Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.

  11. Fluid discrimination based on rock physics templates

    International Nuclear Information System (INIS)

    Liu, Qian; Yin, Xingyao; Li, Chao

    2015-01-01

    Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)

  12. Chemical characteristics of hydrothermal fluids from the TAG Mound of the Mid-Atlantic Ridge in August 1994: Implications for spatial and temporal variability of hydrothermal activity

    Science.gov (United States)

    Gamo, Toshitaka; Chiba, Hitoshi; Masuda, Harue; Edmonds, Henrietta N.; Fujioka, Kantaro; Kodama, Yukio; Nanba, Hiromi; Sano, Yuji

    The TAG hydrothermal mound on the Mid-Atlantic Ridge (26°08‧N, 44°50‧W) was revisited in August 1994 with the submersible Shinkai 6500 in order to characterize time-series fluid chemistry prior to the ODP drilling. Fluid samples were taken from both black smokers and white smokers. Si, pH, alkalinity, H2S, major cations (Na+, K+, Ca2+, Mg2+), major anions (Cl-, SO42-), and minor elements (Li, Sr, B, Fe, Mn, Cu, Zn, Br) as well as Sr isotope ratios were measured. We report the first Br/Cl ratios for the TAG hydrothermal fluids, showing no fractionation between Br and Cl during the fluid-rock interaction. This study shows small changes in composition of the black smoker fluids from the 1990 data (Edmond et al., 1995). Changes of pH, alkalinity, Fe, K, and 87Sr/86Sr values are suggestive of subsurface FeS precipitation and a decrease of water/rock ratio at a deeper reaction zone. Differences in chemical characteristics between the black and white smoker fluids were similarly observed as in 1990.

  13. Simulations of flow induced ordering in viscoelastic fluids

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.

    2012-01-01

    In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the

  14. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737; 207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene-Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn-Pb sulfides formed by mixing of two fluids: one

  15. Control procedure for fluid kicks in hydrocarbons wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    This invention is a control procedure of the fluids inflows coming from an underground formation during a drill. These inflows happen when a drill reaches a permeable area containing a high pressure fluid. The latter will engulf into the well which may cause a catastrophic eruption, if nothing is done. Therefore is it necessary to know as soon as possible the physical nature of the fluids inflows. The proposed method consists in calculating the fluids characteristic through the measure of the pressures and debits of injection and return of the drilling mud.

  16. Spinodal decomposition in fluid mixtures

    International Nuclear Information System (INIS)

    Kawasaki, Kyozi; Koga, Tsuyoshi

    1993-01-01

    We study the late stage dynamics of spinodal decomposition in binary fluids by the computer simulation of the time-dependent Ginzburg-Landau equation. We obtain a temporary linear growth law of the characteristic length of domains in the late stage. This growth law has been observed in many real experiments of binary fluids and indicates that the domain growth proceeds by the flow caused by the surface tension of interfaces. We also find that the dynamical scaling law is satisfied in this hydrodynamic domain growth region. By comparing the scaling functions for fluids with that for the case without hydrodynamic effects, we find that the scaling functions for the two systems are different. (author)

  17. Life Cycle Assessment of age-related environmental impact of biogenic hydraulic fluids; Life Cycle Assessment der alterungsbedingten Umweltvertraeglichkeit biogener Hydraulik-Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bressling, Jana

    2012-07-01

    fluids after tribological application. The quantification of the metal content in used oils as well as the determination of the water soluble metal content allows a better interpretation and differentiation of age-related aquatic ecotoxicity. The additional characterisation of conditional-use changes in the ecological characteristics allows a comprehensive assessment and is still widely unknown, but an important aspect regard of LCA for biogenic hydraulic fluids. Such a methodical approach allows therefore the feedback of the desired product properties on the production method during chemical modification. The results of this study demonstrate that optimisation of the lubricant synthesis on the base of herbal reactants (high oleic sunflower oil) leads to successful reproducibility of synthetic esters and therefore also to an invariable environmental compatibility. The storage of basic synthetic esters and complicated ester mixtures leads to increasing toxicity with increasing temperature and storage time conditioned by oxidation. Besides, the age-related toxicity correlates with decreasing DOC-content of the WSF. The typical kinematic viscosity of 32 mm2/s for hydraulic fluids represents positive effects if stored at room temperature, since it causes a slower degredation by oxygen diffusion. The ageing behaviour of synthetic esters during tribological application is independent of their previous synthesis process or their storage, so that biogenic hydraulic fluids can still be used after previous storage in environmentally friendly hydraulic systems. The long term investigation in an environmentally friendly tribosystem leads in spite of metal entry to a decrease of eco- and genotoxic potential which was already available by storage at room temperature. In contrast, in a short period of use the metal content is correlated with the ecotoxicity, since the tribological load is in the foreground. Therefore the influence and change of the toxicity is dependent not exclusively

  18. Contact angle dependence on the fluid-wall dispersive energy

    NARCIS (Netherlands)

    Horsch, M.; Heitzig, M.; Dan, C.M.; Harting, J.D.R.; Hasse, H.; Vrabec, J.

    2010-01-01

    Menisci of the truncated and shifted Lennard-Jones fluid between parallel planar walls are investigated by molecular dynamics simulation. Thereby, the characteristic energy of the unlike dispersive interaction between fluid molecules and wall atoms is systematically varied to determine its influence

  19. Imaging techniques applied to the study of fluids in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tomutsa, L.; Doughty, D.; Mahmood, S.; Brinkmeyer, A.; Madden, M.P.

    1991-01-01

    A detailed understanding of rock structure and its influence on fluid entrapment, storage capacity, and flow behavior can improve the effective utilization and design of methods to increase the recovery of oil and gas from petroleum reservoirs. The dynamics of fluid flow and trapping phenomena in porous media was investigated. Miscible and immiscible displacement experiments in heterogeneous Berea and Shannon sandstone samples were monitored using X-ray computed tomography (CT scanning) to determine the effect of heterogeneities on fluid flow and trapping. The statistical analysis of pore and pore throat sizes in thin sections cut from these sandstone samples enabled the delineation of small-scale spatial distributions of porosity and permeability. Multiphase displacement experiments were conducted with micromodels constructed using thin slabs of the sandstones. The combination of the CT scanning, thin section, and micromodel techniques enables the investigation of how variations in pore characteristics influence fluid front advancement, fluid distributions, and fluid trapping. Plugs cut from the sandstone samples were investigated using high resolution nuclear magnetic resonance imaging permitting the visualization of oil, water or both within individual pores. The application of these insights will aid in the proper interpretation of relative permeability, capillary pressure, and electrical resistivity data obtained from whole core studies. 7 refs., 14 figs., 2 tabs.

  20. Fracture-related fluid flow in sandstone reservoirs - Insights from outcrop analogues of South-eastern Utah

    NARCIS (Netherlands)

    Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Petrie, E.; Evans, J.P.

    2012-01-01

    Fault- And fold-related fractures influence the fluid circulation in the subsurface, thus being of high importance for CO2 storage site assessment, especially in terms of reservoir connectivity and leakage. In this context, discrete regions of concentrated sub-parallel fracturing known as fracture

  1. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  2. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  3. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    Science.gov (United States)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2017-02-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  4. Prenatal sex hormones (maternal and amniotic fluid) and gender-related play behavior in 13-month-old Infants.

    NARCIS (Netherlands)

    Beek, C.; Goozen, S.H.M. van; Buitelaar, J.K.; Cohen-Kettenis, P.T.

    2009-01-01

    Testosterone, estradiol, and progesterone levels were measured in the second trimester of pregnancy in maternal serum and amniotic fluid, and related to direct observations of gender-related play behavior in 63 male and 63 female offspring at age 13 months. During a structured play session, sex

  5. Radiological characteristics of AIDS- related lymphoma

    International Nuclear Information System (INIS)

    Ramos, Gloria Maria Martins G.; Marchiori, Edson

    1996-01-01

    The epidemic of acquired immunodeficiency syndrome (AIDS) increased the incidence of lymphoma, particularly the non-Hodgkin's lymphoma. The lymphoma in immune deficient patients is usually high-grade, very aggressive and with poor prognostic. We report the radiologic characteristics of AIDS-related lymphoma in 19 patients and correlate with the literature. The disease was predominant in homosexual male patients, with mean age of 38 years. The radiological characteristics are nonspecific to differential diagnosis, but we must suspect of lymphoma. We found ring-enhanced lesions in the radiologic studies of central nervous system. Hylar and mediastinal lymphadenopath, nodules and alveolar infiltration were detected on thoracic examinations. Abdominal examinations showed hepatosplenomegaly, lymphadenopathy, hepatic focal lesions and thickneded with distorted mucosa in the alimentary tract. Bone involvement presented as focal and disseminated destructive lesions. (author)

  6. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    Science.gov (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  7. Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.

    Science.gov (United States)

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

  8. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    Directory of Open Access Journals (Sweden)

    Cornel Velescu

    2014-01-01

    Full Text Available We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc., for the laminar and permanent motion regime.

  9. Optimal composition of fluid-replacement beverages.

    Science.gov (United States)

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  10. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    Science.gov (United States)

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  11. Comparison of Venous Return Characteristics with Right Ventricular Mechanics During Cephalic Fluid Shift

    Science.gov (United States)

    Elliott, Morgan; Martin, David

    2015-01-01

    For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail

  12. Analysis of static characteristic roots and propagation of disturbance of adjustable centrifuge cascade

    International Nuclear Information System (INIS)

    Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi

    2014-01-01

    The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)

  13. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  14. Cosmology with moving bimetric fluids

    Energy Technology Data Exchange (ETDEWEB)

    García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado, E-mail: cargar08@ucm.es, E-mail: maroto@ucm.es, E-mail: pradomm@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2016-12-01

    We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.

  15. Continental basinal origin of ore fluids from southwestern Massif central fluorite veins (Albigeois, France): evidence from fluid inclusion and stable isotope analyses

    International Nuclear Information System (INIS)

    Munoz, M.; Boyce, A.J.; Courjault-Rade, P.; Fallick, A.E.; Tollon, F.

    1999-01-01

    The most important fluorspar mining district in France is located in the Palaeozoic basement of the Albigeois in southwestern French Massif Central. The massive fluorite is hosted within large E-W striking fractures, crosscutting Cambro-Ordovician clastics, associated with large zones of hypersilicified tectonic breccia which form the wall of the mined deposits. Fluid inclusion data for pre-fluorite and fluorite stage fluids have salinities between 20-26 wt% NaCl equiv., with homogenisation temperatures between 85-170C. Furthermore, low first ice melting temperatures (around -50C) indicates the presence of significant CaCl 2 and possibly MgCl 2 together with NaCl. Calculated fluid δ 18 O for pre-fluorite quartz ranges from -9.1per thousand to -5.2per thousand, with δD between -55per thousand to -64per thousand, placing the data directly on the present day meteoric water line. Fluorite stage fluids have δ 18 O between +0.1per thousand to +3.2per thousand, and δD ranging from -53per thousand to -75per thousand, indicating an interacted meteoric fluid origin. Combining the fluid inclusion and stable isotope data illustrates that the main fluorite depositing fluid has characteristics typical of a basinal brine. The authors have no evidence that a magmatic system was involved in the deposit genesis. The proposed model highlights that mineralisation was related to major Mesozoic extensional events coinciding with the gradual opening of the Atlantic and Tethys oceans. In order to account for the chemistry of the fluids, and the siting of the deposits, the authors postulate a genetic relationship with local, continental, evaporite-bearing basins coincident with, and controlled by the E-W fractures. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Hydromagnetic stability of rotating stratified compressible fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA

    1984-09-01

    The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.

  17. Mathematical well-posedness of a two-fluid equations for bubbly two-phase flows

    International Nuclear Information System (INIS)

    Okawa, Tomio; Kataoka, Isao

    2000-01-01

    It is widely known that two-fluid equations used in most engineering applications do not satisfy the necessary condition for being mathematical well-posed as initial-value problems. In the case of stratified two-phase flows, several researchers have revealed that differential models satisfying the necessary condition are to be derived if the pressure difference between the phases is related to the spatial gradient of the void fraction through the effects of gravity or surface tension. While, in the case of dispersed two-phase flows, no physically reasonable method to derive mathematically well-posed two-fluid model has been proposed. In the present study, particularly focusing on the effect of interfacial pressure terms, we derived the mathematically closed form of the volume-averaged two-fluid model for bubbly two-phase flows. As a result of characteristic analyses, it was shown that the proposed two-fluid equations satisfy the necessary condition of mathematical well-posedness if the void fraction is sufficiently small. (author)

  18. Studies on characteristics of fluid dynamics in the coal liquefaction reactor; Sekitan ekika hanno tonai no ryudo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sakawaki, K.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Tachikawa, N.; Moki, T.; Ishikawa, I. [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1996-10-28

    To design the coal liquefaction reactor of large scale plant in future, it is important to understand characteristics of fluid dynamics within the coal liquefaction reactor. In this study, to measure the fluid dynamics of liquid phase within the coal liquefaction reactor operated under high temperature and high pressure coal liquefaction condition, neutron attenuating tracer (NAT) technique, one of the tracer test methods, was applied using 1 t/d coal treating PSU. The residence time of liquid phase within the reactor can be measured by utilizing property of neutron of being absorbed by materials. The tracer was injected at the inlets of first and third reactors, and the neutron was counted at each outlet. The concentration of tracer was derived from the discrete value, to determine the residence time distribution of liquid phase. The mean residence time of liquid phase in the single first reactor and in the total three reactors were prolonged under the severe operation conditions of liquefaction. The more severe the liquefaction operation condition was, the more active the mixing of liquid phase was in the first reactor. It was found that the progress of reaction was accelerated. 2 refs., 5 figs., 1 tab.

  19. Computational fluid dynamics modeling patterns and force characteristics of flow over in-line four square cylinders

    Directory of Open Access Journals (Sweden)

    Song Yidan

    2017-01-01

    Full Text Available The flow over four square cylinders in an in-line, square arrangement was numerically investigated by using the finite volume method with CFD techniques. The working fluid is an incompressible ideal gas. The length of the sides of the array, L, is equal. The analysis is carried out for a Reynolds number of 300, with center-to-center distance ratios, L/D, ranging from 1.5 to 8.0. To fully understand the flow mechanism, details in terms of lift and drag coefficients and Strouhal numbers of the unsteady wake frequencies are analyzed, and the vortex shedding patterns around the four square cylinders are described. It is concluded that L/D has important effects on the drag and lift coefficients, vortex shedding frequencies, and flow field characteristics.

  20. Nonlinear fluid/structure interaction relating a rupture-disc pressure-relief device

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Shin, Y.W.; Youngdahl, C.K.

    1983-01-01

    Rupture disc assemblies are used in piping network systems as a pressure-relief device. The reverse-buckling type is chosen for application in a liquid metal fast breeder reactor. This assembly is used successfully in systems in which the fluid is highly compressible, such as air; the opening up of the disc by the knife setup is complete. However, this is not true for a liquid system; it had been observed experimentally that the disc may open up only partially or not at all. Therefore, to realistically understand and represent a rupture disc assembly in a liquid environment, the fluid-structure interactions between the liquid medium and the disc assembly must be considered. The methods for analyzing the fluid and the disc and the mechanism interconnecting them are presented. The fluid is allowed to cavitate through a column-cavitation model and the disc is allowed to become plastically deformed through the classic Von Mises' yield criteria, when necessary

  1. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.

    Science.gov (United States)

    Felderhof, B U

    2017-08-21

    The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.

  2. Psychological effects of relational job characteristics: validation of the scale for hospital nurses.

    Science.gov (United States)

    Santos, Alda; Castanheira, Filipa; Chambel, Maria José; Amarante, Michael Vieira; Costa, Carlos

    2017-07-01

    This study validates the Portuguese version of the psychological effects of the relational job characteristics scale among hospital nurses in Portugal and Brazil. Increasing attention has been given to the social dimension of work, following the transition to a service economy. Nevertheless, and despite the unquestionable relational characteristics of nursing work, scarce research has been developed among nurses under a relational job design framework. Moreover, it is important to develop instruments that study the effects of relational job characteristics among nurses. We followed Messick's framework for scale validation, comprising the steps regarding the response process and internal structure, as well as relationships with other variables (work engagement and burnout). Statistical analysis included exploratory factor analysis and confirmatory factor analysis. The psychological effects of the relational job characteristics scale provided evidence of good psychometric properties with Portuguese and Brazilian hospital nurses. Also, the psychological effects of the relational job characteristics are associated with nurses' work-related well-being: positively with work engagement and negatively concerning burnout. Hospitals that foster the relational characteristics of nursing work are contributing to their nurses' work-related well-being, which may be reflected in the quality of care and patient safety. © 2017 John Wiley & Sons Ltd.

  3. Thermomechanic equations for magnetic fluids of equilibrium magnetization

    International Nuclear Information System (INIS)

    Bashtovoy, V.G.; Berkovsky, B.M.; Vislovich, A.N.

    1988-01-01

    The main physical prerequisite for the existence of equilibrium magnetization is the assumption that nothing, except thermal motion, hinders the orientation of elementary magnetic moments along the field and that the mean value of magnetization is achieved instantaneously, i.e., within the times much shorter than the characteristic times of macroscopic processes (hydrodynamic, thermal, electromagnetic, etc.). This assumption makes it possible to consider the fluid magnetization vector M-vector at a given instant to be parallel to the vector of magnetic field intensity H-vector, which in the general form may be related as M-vector = (M/H)H-vector. Magnetization M is determined by the fluid temperature and density and by field intensity: M = M(T,rho,H). It is natural that it decreases with rising temperature and increases with the field intensity. The condition for the vectors M-vector and H-vector to be parallel is realized in a MF only for certain colloid characteristics. Nevertheless, for a wide range of problems this condition may be regarded as fulfilled and enables one to study those effects in a MF which are caused to occur by the volume magnetic force due to the interaction between equilibrium magnetization and the magnetic field

  4. Industrial applications and current trends in supercritical fluid technologies

    OpenAIRE

    Gamse Thomas

    2005-01-01

    Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop...

  5. Fluid collections in amputations are not indicative or predictive of infection.

    Science.gov (United States)

    Polfer, Elizabeth M; Hoyt, Benjamin W; Senchak, Lien T; Murphey, Mark D; Forsberg, Jonathan A; Potter, Benjamin K

    2014-10-01

    further analyzed clinical parameters, objective physical examination findings at the extremity, and characteristics of the fluid collection to determine if there were other parameters associated with infection. Over half (55%) of the limbs demonstrated fluid collection in the early postoperative period and the prevalence decreased in the late group (11%; p = 0.001). There was no association between the presence of a fluid collection and infection. However, there was an association between objective clinical signs at the extremity (erythema and/or drainage) and infection (p collections are common in combat-related amputations in the immediate postoperative period and become smaller and less frequent over time. In the absence of extremity erythema and wound drainage, imaging of a residual limb to evaluate for the presence of a fluid collection appears to be of little clinical use.

  6. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-01-01

    simply by the evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737;207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene–Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn

  7. Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... without (p = 0.004 and p = 0.0003, respectively). The pressure was significantly related (inversely) to pancreatic duct diameter only in the group of 19 patients with earlier pancreatic surgery (R = -0.57, p = 0.02). The pressure was not related to functional factors or the presence of pancreatic...... without pain. The pressure was higher in patients with pain than in patients without pain (p = 0.000001), and this was significantly related to a pain score from a visual analogue scale (p less than 0.001). Patients with pancreatic pseudocysts had both higher pressure and higher pain score than patients...

  8. Structure and fluid evolution of Yili basin and their relation to sandstone type uranium mineralization

    International Nuclear Information System (INIS)

    Wang Juntang; Wang Chengwei; Feng Shirong

    2008-01-01

    Based on the summary of strata and structure distribution of Yili basin, the relation of structure and fluid evolution to sandstone type ur alum mineraliation are analyzed. It is found that uranium mineralization in Yili basin experienced ore hosting space forming, pre-alteration of hosting space, hosting space alteration and uranium formation stages. (authors)

  9. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF.

    Science.gov (United States)

    Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F

    2015-05-01

    Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the

  10. Health related quality of life and sociodemographic characteristics ...

    African Journals Online (AJOL)

    Health related quality of life and sociodemographic characteristics among Iranian ... for the groups of students due to the modern highly stressful education period. ... of life among the male and female students in the Islamic Azad University of ...

  11. Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper

    Science.gov (United States)

    Choi, Young T.; Hartzell, Christine M.; Leps, Thomas; Wereley, Norman M.

    2018-05-01

    The design and test of a magnetorheological fluid (MRF)-based universal gripper (MR gripper) are presented in this study. The MR gripper was developed to have a simple design, but with the ability to produce reliable gripping and handling of a wide range of simple objects. The MR gripper design consists of a bladder mounted atop an electromagnet, where the bladder is filled with an MRF, which was formulated to have long-term stable sedimentation stability, that was synthesized using a high viscosity linear polysiloxane (HVLP) carrier fluid with a carbonyl iron particle (CIP) volume fraction of 35%. Two bladders were fabricated: a magnetizable bladder using a magnetorheological elastomer (MRE), and a passive (non-magnetizable) silicone rubber bladder. The holding force and applied (initial compression) force of the MR gripper for a bladder fill volume of 75% were experimentally measured, for both magnetizable and passive bladders, using a servohydraulic material testing machine for a range of objects. The gripping performance of the MR gripper using an MRE bladder was compared to that of the MR gripper using a passive bladder.

  12. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  13. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  14. Fluid behavior in microgravity environment

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  15. Determination of the vibration characteristics of nuclear fuel rods in a fluid flow using multiphysics computation

    International Nuclear Information System (INIS)

    Sbragio, Ricardo

    1999-01-01

    The determination of natural frequencies and displacement Power Spectrum Density (PSD) of fuel rods in a fluid using Computational Fluid Dynamics and Finite Element Methods is presented. The rods are modeled as slender beams subjected to small displacements in a fluid using three-dimensional mesh. The incompressible Navier-Stokes and linear momentum balance equations are solved simultaneously using Spectrum code. Two examples from literature are analyzed. The first consists in one rod in a fluid. The excitation is an impulse force at the rod central node. The second example is a two rod system in a fluid. In this case, the excitation force is random and is determined from a PSD. (author)

  16. Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Robertson, Richard; Beckles, Denise M.

    2013-03-01

    Sulphur Springs is a vigorous, geothermal field associated with the active Soufrière Volcanic Centre in southern Saint Lucia, Lesser Antilles island arc. The 'Sulphur Springs Park' is an important tourist attraction (touted as the 'world's only drive-through volcano') with some of the hot pools being developed into recreational pools. Some 200,000 people visit the park each year. Since 2001, the hydrothermal fluids of Sulphur Springs have been sampled as part of an integrated volcanic monitoring programme for the island. Gas and water samples were analysed to characterise the geochemistry of the hydrothermal system, and to assess the equilibrium state and subsurface temperatures of the reservoir. This has also enabled us, for the first time, to establish baseline data for future geochemical monitoring. The gases are of typical arc-type composition, with N2 excess and low He and Ar content. The dry gas composition is dominated by CO2 (ranging from 601-993 mmol/mol), with deeper magmatic sourced H2S-rich vapour undergoing boiling and redox changes in the geothermal reservoir to emerge with a hydrothermal signature in the fumarolic gases. Fluid contributions from magmatic degassing are also evident, mainly from the moderate to high contents of HCl and deeply-sourced H2S gas, respectively. Sulphur Springs hydrothermal waters have acid-sulphate type compositions (SO4 = 78-4008 mg/L; pH = 3-7), and are of primarily meteoric origin which have been affected by evaporation processes based on the enrichment in both δ18O and δD (δ18O = - 1 to 15‰ and δD = - 9 to 14‰ respectively) in relation to the global meteoric water line (GMWL). These waters are steam-heated water typically formed by absorption of H2S-rich gases in the near surface oxygenated groundwaters. Reservoir temperatures calculated from the evaluation of gas equilibria in the CO2-CH4-H2 system reveal higher temperatures (190 to 300 °C) than those derived from quartz geothermometry (95 to 169 °C), which

  17. Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement

    Directory of Open Access Journals (Sweden)

    Masaki Yamaguchi

    2014-08-01

    Full Text Available Point-of-care measurement of the stress hormone cortisol will greatly facilitate the timely diagnosis and management of stress-related disorders. We describe an automated salivary cortisol immunosensor, incorporating centrifugal fluid valves and a disposable disc-chip that allows for truncated reporting of cortisol levels (<15 min. The performance characteristics of the immunosensor are optimized through select blocking agents to prevent the non-specific adsorption of proteins; immunoglobulin G (IgG polymer for the pad and milk protein for the reservoirs and the flow channels. Incorporated centrifugal fluid valves allow for rapid and repeat washings to remove impurities from the saliva samples. An optical reader and laptop computer automate the immunoassay processes and provide easily accessible digital readouts of salivary cortisol measurements. Linear regression analysis of the calibration curve for the cortisol immunosensor showed 0.92 of coefficient of multiple determination, R2, and 38.7% of coefficient of variation, CV, for a range of salivary cortisol concentrations between 0.4 and 11.3 ng/mL. The receiver operating characteristic (ROC curve analysis of human saliva samples indicate potential utility for discriminating stress disorders and underscore potential application of the biosensor in stress disorders. The performance of our salivary cortisol immunosensor approaches laboratory based tests and allows noninvasive, quantitative, and automated analysis of human salivary cortisol levels with reporting times compatible with point-of-care applications. Keywords: Immunosensor, Centrifugal fluid valve, Automation, Cortisol, Saliva

  18. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  19. Association between aqueous humor and vitreous fluid levels of Th17 cell-related cytokines in patients with proliferative diabetic retinopathy.

    Science.gov (United States)

    Takeuchi, Masaru; Sato, Tomohito; Sakurai, Yutaka; Taguchi, Manzo; Harimoto, Kozo; Karasawa, Yoko; Ito, Masataka

    2017-01-01

    Inflammation is known to be involved in the progression of diabetic retinopathy. We have recently reported that vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα are higher than the respective serum levels in proliferative diabetic retinopathy (PDR) patients, and that vitreous levels of these cytokines are higher in PDR than in other non-inflammatory vitreoretinal diseases or uveitis associated with sarcoidosis. In the present study, we investigated inflammatory cytokines including Th17 cell-related cytokines in aqueous humor samples obtained from eyes with PDR, and analyzed the association between the aqueous humor and vitreous fluid levels of individual cytokines. The study group consisted of 31 consecutive type 2 diabetic patients with PDR who underwent cataract surgery and vitrectomy for vitreous hemorrhage and/or tractional retinal detachment. Undiluted aqueous humor was collected during cataract surgery, and then vitreous fluid was obtained using a 25G vitreous cutter inserted into the mid-vitreous cavity at the beginning of vitrectomy. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble CD40 ligand (sCD40L), and TNFα levels in the aqueous humor and vitreous fluid were measured using a beads-array system. Although IL-17A was detected in the aqueous humor of eyes with PDR and the level correlated with IL-17A level in the vitreous fluid, both percent detectable and level of IL-17A in the aqueous humor were significantly lower than those in the vitreous fluid. Vitreous IL-17A level was related significantly to IL-10, IL-22, and TNFα levels in aqueous humor as well as in vitreous fluid, On the other hand, aqueous IL-17A level was not related significantly to aqueous or vitreous levels of IL-10, IL-22 or TNFα level. The present study demonstrated that IL-17A level and detectable rate in the aqueous humor of patients with PDR are markedly lower than those in the vitreous fluid and aqueous IL-17A does not

  20. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    Science.gov (United States)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  1. Characteristics and Classification of Topological Spatial Relations in 3-D Cadasters

    Directory of Open Access Journals (Sweden)

    Lili Fu

    2018-03-01

    Full Text Available The application of a 3-D topology to cadasters is becoming increasingly important as 3-D cadasters continue to develop and cadastral data applications increase. This study discusses spatial topological relations related to 3-D cadasters, the geometric objects used in 3-D cadastral spatial modelling, and the characteristics of the spatial data. The characteristics of the topological relations for a 3-D cadaster are summarized, and a classification method is proposed. Research on the classification of topological spatial relations in 3-D cadasters provides guidance for the analysis and computation of the topological spatial relations, changing of cadastral parcels, and topological consistency in cadastral spatial data.

  2. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  3. Percutaneous transcatheter drainage of intrathoracic air and fluid collections

    International Nuclear Information System (INIS)

    Klein, J.S.; Salmon, C.J.

    1991-01-01

    In this paper, the authors review their experience with radiologically guided percutaneous, small-bore catheter drainage of 89 intrathoraic air or fluid collections in 81 patients to determine the effect of various clinical and radiographic features and fluid characteristics on successful treatment of the collections. The majority of patients underwent drainage for malignant pleural effusion. Patients with pneumothorax, complicated parapneumonic effusion or empyema, hemothorax, chylothorax, and lung abscess were included. Each patient's diagnosis and symptoms; the size, position, and characteristics of the fluid collection; catheter type and size, and use of urokinase were recorded; their effect on clinical and radiographic resolution was determined with logistic regression analysis. The vast majority of malignant effusions were successfully drained and sclerosed with small bore (8-F) pigtail catheters. In patients with pneumothorax, those from Pneumocystis carinii pneumonia required prolonged suction and pleurodesis

  4. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  5. The application of SEM in analyzing the damage to the petroleum reservoirs caused by drilling fluids

    International Nuclear Information System (INIS)

    Abdul Razak Ismail

    1996-01-01

    An experimental study has been conducted to analyze the damage to the potential oil and gas reservoirs due to the invasion of drilling fluid during drilling operation. Two types of rock samples representing low and high permeability were used to stimulate the petroleum reservoirs. Sea water based drilling fluids were used in this study. Detail observations to the rock samples were analyzed using scanning electron microscope (SEM). The results of both permeability restoration and SEM observation showed that severe permeability impairments were obtained for high permeability rock. These results indicate that the relative size of the barite particles and the pore size distribution and characteristics of the formation play an important role in determining the damage caused by the drilling fluids

  6. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  7. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon

    International Nuclear Information System (INIS)

    Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.; Jovanović, A. P.; Petković, M. D.

    2015-01-01

    The simple fluid model, an extended fluid model, and the fluid model with nonlocal ionization are applied for the calculations of static breakdown voltages, Paschen curves and current-voltage characteristics. The best agreement with the experimental data for the Paschen curve modeling is achieved by using the model with variable secondary electron yield. The modeling of current-voltage characteristics is performed for different inter-electrode distances and the results are compared with the experimental data. The fluid model with nonlocal ionization shows an excellent agreement for all inter-electrode distances, while the extended fluid model with variable electron transport coefficients agrees well with measurements at short inter-electrode distances when ionization by fast electrons can be neglected. (physics of gases, plasmas, and electric discharges)

  8. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  9. The Role of Objective Numeracy and Fluid Intelligence in Sex-Related Protective Behaviors.

    Science.gov (United States)

    Dieckmann, Nathan F; Peters, Ellen; Leon, Juan; Benavides, Martin; Baker, David P; Norris, Alison

    2015-01-01

    A wealth of studies has indicated that greater cognitive ability is related to healthier behaviors and outcomes throughout the lifespan. In the present paper, we focus on objective numeracy (ability with numbers) and present findings from a study conducted in the Peruvian Highlands that examines the relations among formal education, numeracy, other more general cognitive skills, and a sex-related protective behavior (condom use). Our results show a potential unique protective effect of numeracy on this healthprotective behavior even after accounting for measures of fluid intelligence and potential confounding factors. These results add to a growing literature highlighting the robust protective effect on health behaviors of greater cognitive skills that are enhanced through schooling. Challenges for future research will be identifying the causal mechanisms that underlie these effects and translating this knowledge into effective interventions for improving health.

  10. Neural Network Modeling of Cutting Fluid Impact on Energy Consumption during Turning

    Directory of Open Access Journals (Sweden)

    M. Bachraty

    2016-06-01

    Full Text Available This paper presents a part of research on power consumption differences between various cutting fluids used during turning operations. An attempt was made to study the possibility of artificial neural network to model the behavior function and predicting the electrical power consumption. Friction factor of examined cutting fluids was also measured to describe a more complete picture of investigated cutting fluids characteristics. It was discovered that wide spectrum of characteristics is present in today’s market and that artificial neural networks are suitable for purpose of modeling the power consumption of the lathe during machining. This paper could be used as a foundation for later database building where it would be possible to predict how certain cutting fluid will behave in a specific machining parameter combination.

  11. Development of bubble-induced turbulence model for advanced two-fluid model

    International Nuclear Information System (INIS)

    Hosoi, Hideaki; Yoshida, Hiroyuki

    2011-01-01

    A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small

  12. Physiological Characteristics of Some Monoamine Metabolites in Cat Cerebrospinal Fluid

    OpenAIRE

    Orešković, Darko; Sanković, Mauricio; Fröbea, Ana; Klarica, Marijan

    1995-01-01

    The concentrations of main metabolites of serotonin and dopamine, 5-hydroxyindoleacetic acid and homovanillic acid, respectively, were measured in cisternal cerebrospinal fluid of cats by high performance liquid chromatography with an electrochemical detector. Higher concentrations of homovanillic acid and a wide interindividual oscillation for both parameters have been found. However, samples collected at four different time intervals showed stabile intraindividual concentrations of the m...

  13. Verification of capillary pressure functions and relative permeability equations for gas production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)

    2016-10-25

    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  14. Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study

    OpenAIRE

    Aguilera, Felipe; Layana, Susana; Rodríguez-Díaz, Augusto; González, Cristóbal; Cortés, Julio; Inostroza, Manuel

    2016-01-01

    A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and characteristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the pres...

  15. Agarwood Waste as A New Fluid Loss Control Agent in Water-based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Azlinda Azizi

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Agarwood has been used widely in various ways, including traditional medicine and art. The usage of agarwood has grown broader in modern times include in therapeutic medicines and perfumery. In this paper the agarwood waste has been explored to be used as a fluid loss control agent to control fluid loss without affecting the drilling fluid rheological properties which are density, pH, viscosity, yield point and gel strength. Agarwood waste was used as an additive in the drilling fluid system due to its unique characteristic. Rheological and filtration measurements were performed on the formulated water-based drilling fluid. Formulations of a base solution of fresh water, sodium hydroxide, bentonite, barite, and xanthan gum were presented. The performance of the agarwood waste as the fluid loss control agent was compared with based fluid formulation and water-based drilling fluid with treating with conventional fluid loss control agent (starch. The filtrate volume of drilling fluid with agarwood waste was about 13 ml while for drilling fluid with conventional fluid loss control agent, starch gave 12 ml of filtrate volume after undergoing filtration test by using LPLT filter press. The performance of drilling fluid with agarwood was efficient as drilling fluid with starch. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso

  16. Two-fluid equilibria with flow

    International Nuclear Information System (INIS)

    Steinhauer, L.

    1999-01-01

    The formalism is developed for flowing two-fluid equilibria. The equilibrium system is governed by a pair of second order partial differential equations for the magnetic stream function and the ion stream function plus a Bernoulli-like equation for the density. There are six arbitrary surface function. There are separate characteristic surfaces for each species, which are the guiding-center surfaces. This system is a generalization of the familiar Grad-Shafranov system for a single-fluid equilibrium without flow, which has only one equation and two arbitrary surface functions. In the case of minimum energy equilibria, the six surface functions take on particular forms. (author)

  17. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  18. The relative importance of relational and scientific characteristics of psychotherapy: Perceptions of community members vs. therapists.

    Science.gov (United States)

    Farrell, Nicholas R; Deacon, Brett J

    2016-03-01

    Although client preferences are an integral component of evidence-based practice in psychology (American Psychological Association, 2006), relatively little research has examined what potential mental health consumers value in the psychotherapy they may receive. The present study was conducted to examine community members' preferences for the scientific and relational aspects of psychotherapy for different types of presenting problems, and how accurately therapists perceive these preferences. Community members (n = 200) were surveyed about the importance of scientific (e.g., demonstrated efficacy in clinical trials) and relational (e.g., therapist empathy) characteristics of psychotherapy both for anxiety disorders (e.g., obsessive-compulsive disorder) and disorder-nonspecific issues (e.g., relationship difficulties). Therapists (n = 199) completed the same survey and responded how they expected the average mental health consumer would. Results showed that although community members valued relational characteristics significantly more than scientific characteristics, the gap between these two was large for disorder-nonspecific issues (d = 1.24) but small for anxiety disorders (d = .27). Community members rated scientific credibility as important across problem types. Therapists significantly underestimated the importance of scientific characteristics to community members, particularly in the treatment of disorder-nonspecific issues (d = .74). Therapists who valued research less in their own practice were more likely to underestimate the importance of scientific credibility to community members. The implications of the present findings for understanding the nature of client preferences in evidence-based psychological practice are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Relational job characteristics and nurses' affective organizational commitment: the mediating role of work engagement.

    Science.gov (United States)

    Santos, Alda; Chambel, Maria José; Castanheira, Filipa

    2016-02-01

    To study work engagement as a mediator of the associations between relational job characteristics and nurses' affective commitment to the hospital. Earlier research has shown that work engagement mediates the relationship between job resources and affective organizational commitment. However, relational job characteristics, which may be job resources, have not been studied or examined in relation to work engagement and affective organizational commitment in the nursing profession. This study uses a correlational survey design and an online survey for data collection. Data for this correlational study were collected by survey over months (2013) from a sample of 335 hospital nurses. Measures included Portuguese translations of the Relational Job Characteristics' Psychological Effects Scale, the Utrecht Work Engagement Scale and the Affective Organizational Commitment Scale. Data analysis supports a full mediation model where relational job characteristics explained affective commitment to the hospital through nurses' work engagement. Relational job characteristics contribute to nurses' work engagement, which in turn contributes to affective organizational commitment. © 2015 John Wiley & Sons Ltd.

  20. Non-contact fluid characterization in containers using ultrasonic waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  1. Selected topics of fluid mechanics

    Science.gov (United States)

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as

  2. Stable Isotope Evidence for a Complex Fluid Evolution of the Northwestern British Columbia Coast Ranges Related to Terrane Accretion

    Science.gov (United States)

    Moertle, J.; Holk, G. J.

    2015-12-01

    Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a

  3. Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Demissie, E.A.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Laminar mixing by the inline-mixing principle is key to many industrial fluids-engineering systems of size extending from microns to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains

  4. Fluid conductivity sensor

    International Nuclear Information System (INIS)

    Miller, F. M.

    1985-01-01

    Apparatus for sensing the electrical conductivity of fluid which can be used to detonate an electro explosive device for operating a release mechanism for uncoupling a parachute canopy from its load upon landing in water. An operating network connected to an ignition capacitor and to a conductivity sensing circuit and connected in controlling relation to a semiconductor switch has a voltage independent portion which controls the time at which the semiconductor switch is closed to define a discharge path to detonate the electro explosive device independent of the rate of voltage rise on the ignition capacitor. The operating network also has a voltage dependent portion which when a voltage of predetermined magnitude is developed on the conductivity sensing circuit in response to fluid not having the predetermined condition of conductivity, the voltage dependent portion closes the semiconductor switch to define the discharge path when the energy level is insufficient to detonate the electro explosive device. A regulated current source is connected in relation to the conductivity sensing circuit and to the electrodes thereof in a manner placing the circuit voltage across the electrodes when the conductivity of the fluid is below a predetermined magnitude so that the sensing circuit does not respond thereto and placing the circuit voltage across the sensing circuit when the conductivity of the fluid is greater than a predetermined magnitude. The apparatus is operated from a battery, and the electrodes are of dissimilar metals so selected and connected relative to the polarity portions of the circuit to maximize utilization of the battery output voltage

  5. Estimating small area health-related characteristics of populations: a methodological review

    Directory of Open Access Journals (Sweden)

    Azizur Rahman

    2017-05-01

    Full Text Available Estimation of health-related characteristics at a fine local geographic level is vital for effective health promotion programmes, provision of better health services and population-specific health planning and management. Lack of a micro-dataset readily available for attributes of individuals at small areas negatively impacts the ability of local and national agencies to manage serious health issues and related risks in the community. A solution to this challenge would be to develop a method that simulates reliable small-area statistics. This paper provides a significant appraisal of the methodologies for estimating health-related characteristics of populations at geographical limited areas. Findings reveal that a range of methodologies are in use, which can be classified as three distinct set of approaches: i indirect standardisation and individual level modelling; ii multilevel statistical modelling; and iii micro-simulation modelling. Although each approach has its own strengths and weaknesses, it appears that microsimulation- based spatial models have significant robustness over the other methods and also represent a more precise means of estimating health-related population characteristics over small areas.

  6. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus

    Science.gov (United States)

    Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia

    2018-04-01

    In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.

  7. Fluid dynamics theoretical and computational approaches

    CERN Document Server

    Warsi, ZUA

    2005-01-01

    Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin

  8. Vibration of a group of circular cylinders subjected to fluid flow

    International Nuclear Information System (INIS)

    Chen, S.

    1981-01-01

    Many structural and mechanical components consist of multiple circular cylinders, such as heat exchanger tubes and nuclear fuel bundles. These components are subjected to fluid flow. The fluid flow represents a source of energy that can induce and sustain vibration. The fluid moving with vibrating structures has an important effect on the dynamic characteristics of the structure. The objective of this paper is to review the dynamics of multiple circular cylinders in stationary fluid, parallel flow and cross flow, and to present general design guides to avoid detrimental vibration and instability. 77 refs

  9. Physics of quantum fluids. New trends and hot topics in atomic and polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Bramati, Alberto [Paris Univ. (France). Laboratoire Kastler Brossel; Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Modugno, Michele (eds.) [IKERBASQUE, Bilbao (Spain); Univ. del Pais Vasco, Bilbao (Spain). Dept. de Fisica Teorica e Historia de la Ciencia

    2013-10-01

    Provides an overview of the field of quantum fluids. Presents analogies and differences between polariton and atomic quantum fluids. With contributions from the major actors in the field. Explains a new type of quantum fluid with specific characteristics. The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  10. Fall-related gait characteristics on the treadmill and in daily life.

    Science.gov (United States)

    Rispens, Sietse M; Van Dieën, Jaap H; Van Schooten, Kimberley S; Cofré Lizama, L Eduardo; Daffertshofer, Andreas; Beek, Peter J; Pijnappels, Mirjam

    2016-02-02

    Body-worn sensors allow assessment of gait characteristics that are predictive of fall risk, both when measured during treadmill walking and in daily life. The present study aimed to assess differences as well as associations between fall-related gait characteristics measured on a treadmill and in daily life. In a cross-sectional study, trunk accelerations of 18 older adults (72.3 ± 4.5 years) were recorded during walking on a treadmill (Dynaport Hybrid sensor) and during daily life (Dynaport MoveMonitor). A comprehensive set of 32 fall-risk-related gait characteristics was estimated and compared between both settings. For 25 gait characteristics, a systematic difference between treadmill and daily-life measurements was found. Gait was more variable, less symmetric, and less stable during daily life. Fourteen characteristics showed a significant correlation between treadmill and daily-life measurements, including stride time and regularity (0.48  0.25). Gait characteristics revealed less stable, less symmetric, and more variable gait during daily life than on a treadmill, yet about half of the characteristics were significantly correlated between conditions. These results suggest that daily-life gait analysis is sensitive to static personal factors (i.e., physical and cognitive capacity) as well as dynamic situational factors (i.e., behavior and environment), which may both represent determinants of fall risk.

  11. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2016-04-01

    Full Text Available Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 4.3 x 10-3 mJ h-1 ml-1 was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63 °C and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 hours during a step-wise isothermal scan from 35.5 to 85.0 °C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 x 104 cells ml-1FLUID and their subsequent metabolic activity at temperatures greater than 50 °C. The average cellular energy consumption (1.79 x 10-7 kJ h-1 cell-1 reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8 °C, relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 hours as temperature ramped from 34.8 to 43.0 °C. Corresponding cell-specific energy turnover rates (0.18 pW cell-1 were converted to oxygen uptake rates of 24.5 nmol O2 ml-1FLUID d-1, validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  12. The magnetic fluid for heat transfer applications

    International Nuclear Information System (INIS)

    Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.

    2002-01-01

    Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case

  13. The relation between the anthropometric characteristics of fingers and cancer

    Directory of Open Access Journals (Sweden)

    Omid Mardanshahi

    2017-07-01

    Full Text Available Anthropometry is a science of human body measurement that could be used for manufacturing artificial limbs or prosthesis, investigating body differences between populations, utilizing in forensics and criminology, or even in the diagnosis of some diseases. Two of the most important anthropometric characteristics are dermatoglyphic patterns and finger length. Many studies have evaluated the relation between these two characteristics in different diseases such as cancers. It assumed that dermatoglyphic patterns and finger length could be used as predictors of some cancers such as gastric, ovarian, prostate, testicular, and breast cancers. In this review, we evaluated the relation between dermatoglyphic variability and finger length in different cancers more precisely.

  14. Peristaltic motion of a Johnson-Segalman fluid in a planar channel

    Directory of Open Access Journals (Sweden)

    Hayat T.

    2003-01-01

    Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.

  15. [Forensic medical characteristic of the thermal injury caused by inflammation of combustible fluids].

    Science.gov (United States)

    Khushkadamov, Z K; Iskhizova, L N; Gornostaev, D V

    2012-01-01

    The diagnostics of thermal injuries caused by inflammation of combustible fluids should be based on the comprehensive assessment of the results of examination of the scene of the accident, autopsy studies, forensic chemical expertise, and analysis of the circumstances of the case and/or medical documentation. Special attention should be given to the choice of adequate methods for taking samples to be used in forensic chemical studies. The assessment of thermal injuries caused by inflammation of combustible fluids must take into consideration the time and conditions under which they were inflicted (e.g. closed or open space, vertical or horizontal position, etc.).

  16. Permselectivity of the liver blood-lymph (ascitic fluid) barrier to macromolecules in decompensated cirrhosis: relation to calculated pore-size

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1983-01-01

    in plasma and ascitic fluid from 13 cirrhotic patients. As previously substantiated in patients with cirrhosis, the ascitic fluid/plasma concentration ratio (R) of a protein is proportional to the transport rate from blood to lymph (ascitic fluid). Mean Ralb = 0.28 and RIgG = 0.29 were identical......, but significantly higher than, RIgM = 0.18 (P less than 0.01). Ralb was directly correlated to RIgG (r = 0.97, P less than 0.001) and to RIgM (r = 0.78, P less than 0.005). Mean RIgG/Ralb = 1.03, which expresses the relative flux rates between IgG and albumin, was significantly above the ratio between the free...... diffusion coefficients (DIgG/Dalb = 0.64, P less than 0.01). Mean RIgM/Ralb = 0.61 was significantly above DIgM/Dalb = 0.39 (P less than 0.05) and significantly below unity (P less than 0.01). The results are best explained by filtration as the dominant mechanism of the liver blood-lymph (ascitic fluid...

  17. Prenatal sex hormones (maternal and amniotic fluid) and gender-related play behavior in 13-month-old Infants.

    Science.gov (United States)

    van de Beek, Cornelieke; van Goozen, Stephanie H M; Buitelaar, Jan K; Cohen-Kettenis, Peggy T

    2009-02-01

    Testosterone, estradiol, and progesterone levels were measured in the second trimester of pregnancy in maternal serum and amniotic fluid, and related to direct observations of gender-related play behavior in 63 male and 63 female offspring at age 13 months. During a structured play session, sex differences in toy preference were found: boys played more with masculine toys than girls (d = .53) and girls played more with feminine toys than boys (d = .35). Normal within-sex variation in prenatal testosterone and estradiol levels was not significantly related to preference for masculine or feminine toys. For progesterone, an unexpected significant positive relationship was found in boys between the level in amniotic fluid and masculine toy preference. The mechanism explaining this relationship is presently not clear, and the finding may be a spurious one. The results of this study may indicate that a hormonal basis for the development of sex-typed toy preferences may manifest itself only after toddlerhood. It may also be that the effect size of this relationship is so small that it should be investigated with more sensitive measures or in larger populations.

  18. Investigation of fluid-structure interaction with various types of junction coupling

    Science.gov (United States)

    Ahmadi, A.; Keramat, A.

    2010-10-01

    In this study of water hammer with fluid-structure interaction (FSI) the main aim was the investigation of junction coupling effects. Junction coupling effects were studied in various types of discrete points, such as pumps, valves and branches. The emphasis was placed on an unrestrained pump and branch in the system, and the associated relations were derived for modelling them. Proposed relations were considered as boundary conditions for the numerical modelling which was implemented using the finite element method for the structural equations and the method of characteristics for the hydraulic equations. The results can be used by engineers in finding where junction coupling is significant.

  19. Towards a collisionless fluid closure in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dif Pradalier, G

    2005-07-01

    In this work 2 generic possible descriptions of a plasma have been compared namely the kinetic and the fluid approaches. The latter focuses on the successive moments (n, u, p, q,...) of the distribution function, whereas the former describes the time-evolution in phase space of this distribution function, both being based on the Vlasov equation. The fluid description is attractive for the Vlasov equation is tractable with great difficulties. Nevertheless it rests on a major difficulty: as the set of fluid equations constitute an infinite hierarchy, a closure equation must be chosen. The first chapter details physical characteristics of a fundamental kinetic interaction mechanism between waves and particles. In chapter 2 we propose a fluid closure that allows analytic comparison with a linear fully kinetic result, near an homogeneous, electrostatic, Maxwellian equilibrium. This approach consists in adjusting chosen parameters in order to minimize the discrepancies between fluid and kinetic linear response functions. In chapter 3 we present a general frame for a fluid closure in a magnetized plasma. This is attempted in a linear, simplified model with low dimensionality.

  20. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  1. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Science.gov (United States)

    Preusse, Franziska; van der Meer Elke; Deshpande, Gopikrishna; Krueger, Frank; Wartenburger, Isabell

    2011-01-01

    Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.

  2. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Directory of Open Access Journals (Sweden)

    Franziska ePreusse

    2011-03-01

    Full Text Available Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ. Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence, however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation–intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for

  3. Market and plan characteristics related to HMO quality and improvement.

    Science.gov (United States)

    Scanlon, Dennis P; Swaminathan, Shailender; Chernew, Michael; Lee, Woolton

    2006-12-01

    Existing research on health plan performance examines whether variation in plans' scores is related to enrollee and health plan traits, primarily using cross-sectional research designs. This study extends that literature by incorporating data on market characteristics using a longitudinal framework. We estimate multivariate growth models that relate plan performance on standard measures to market and HMO characteristics using an unbalanced panel of data for 1998 to 2002. We find that HMO competition is not associated with better performance or greater rates of improvement in performance on the HEDIS chronic care measures. HMO penetration, on the other hand, is positively associated with HEDIS performance in several of the chronic care process-and-outcomes measures but not with a greater rate of improvement through time. Our analysis indicates that a significant percentage of the unexplained variation in quality improvement is because of permanent, unobserved plan-level characteristics that future research should strive to identify.

  4. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  5. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  6. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  7. Fluid Flow Programming in Paper-Derived Silica-Polymer Hybrids.

    Science.gov (United States)

    Dubois, Christelle; Herzog, Nicole; Rüttiger, Christian; Geißler, Andreas; Grange, Eléonor; Kunz, Ulrike; Kleebe, Hans-Joachim; Biesalski, Markus; Meckel, Tobias; Gutmann, Torsten; Gallei, Markus; Andrieu-Brunsen, Annette

    2017-01-10

    In paper-based devices, capillary fluid flow is based on length-scale selective functional control within a hierarchical porous system. The fluid flow can be tuned by altering the paper preparation process, which controls parameters such as the paper grammage. Interestingly, the fiber morphology and nanoporosity are often neglected. In this work, porous voids are incorporated into paper by the combination of dense or mesoporous ceramic silica coatings with hierarchically porous cotton linter paper. Varying the silica coating leads to significant changes in the fluid flow characteristics, up to the complete water exclusion without any further fiber surface hydrophobization, providing new approaches to control fluid flow. Additionally, functionalization with redox-responsive polymers leads to reversible, dynamic gating of fluid flow in these hybrid paper materials, demonstrating the potential of length scale specific, dynamic, and external transport control.

  8. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  9. Analysis of vorticity dynamics for hump characteristics of a pump turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Han, Lei; Wei, Xianzhu; Qin, Daqing [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2016-08-15

    Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  10. Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rahman

    2016-11-01

    Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.

  11. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  12. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2002-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  13. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)

    2002-07-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  14. Time response model of ER fluids for precision control of motors

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Ken' ichi [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    For improvement of control performance or new control demands of mechatronics devices using particle type ER fluids, it will be needed to further investigate a response time of the fluids. It is commonly said around 5-mili seconds, however, the formula structure of that delay has not been clear. This study aims to develop a functional damper (attenuators), that can control its viscous characteristics in real time using ER fluids as its working fluid. ER dampers are useful to accomplish high precision positioning not to prevent high speed movement of the motor. To realize the functional damper that can be manipulated according to situations or tasks, the modeling and control of ER fluids are necessary. This paper investigates time delay affects of ER fluids and makes an in-depth dynamic model of the fluid by utilizing simulation and experiment. The mathematical model has a dead-time and first ordered delays of the fluid and the high voltage amplifier for the fluid.

  15. Fluid-Elastic Instability of U-Tube Bundle in Air-Water Two-Phase Flow

    International Nuclear Information System (INIS)

    Chu, In Cheol; Lee, Chang Hee; Yun, Young Jung; Chung, Heung June

    2007-03-01

    Using steam generator U-tube flow-induced vibration test facility, the flow-induced vibration characteristics of U-tube in row 34-44 and line 71-77 were investigated. Air and water at room temperature and near atmospheric pressure were used as working fluids. In the present experiments, followings were evaluated under two-phase cross-flow condition: the fundamental vibration responses and the critical gap velocity for a fluid-elastic instability of U-tubes, the damping ratio and hydrodynamic mass of U-tubes. In addition, the fluid-elastic instability factor, K, was preliminary assessed using Connors' relation. In the case of the U-tubes which are not supported by partial egg-crate in OPR100 steam generator, it has been found that the vibration displacement of those U-tubes are highly possible to exceed the design limit even by a turbulent excitation mechanism. The damping ratio of U-tubes measured in the present experiments was significantly higher than the OPR1000 steam generator design value. The fluid-elastic instability factor of U-tube bundle obtained in the present experiments were preliminary evaluated to be mostly in the range of 6.5-10.5

  16. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process.

    Science.gov (United States)

    Guo, Ce; Zhu, Xijing

    2018-03-01

    The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in

  17. Fluid-inclusion data on samples from Creede, Colorado, in relation to mineral paragenesis

    Science.gov (United States)

    Woods, T.L.; Roedder, Edwin; Bethke, P.M.

    1982-01-01

    Published and unpublished data on 2575 fluid inclusions in ore and gangue minerals from the Creede, Colorado, Ag-Pb-Zn-Cu vein deposit collected in our laboratories from 1959 to 1981 have shown that the average salinity (wt. % NaCl equivalent, hereinafter termed wt.% eq.) and homogenization temperature (Th), and the ranges of these two parameters for fluid inclusions in sphalerite, quartz, fluorite, and rhodochrosite, respectively, are 8.1 (4.6 - 13.4), 239?C (195-274?C); 6.1 (1.1-10.0), 260?C (190->400?C); 10.7 (6.1-11.1), 217?C (213-229?C) and 260?C (247-268?C) (bimodal distribution of Th); and 9.9 (9.3 - 10.6), 214?C (185-249?C). Inclusions have been measured in minerals from four of the five stages of mineralization previously recognized at Creede. The few inclusions of fluids depositing rhodochrosite (A-stage, earliest in the paragenesis) yield Th and salinity values more similar to those of the low-temperature (average Th 217?C) fluids forming some of the much later fluorite (C-stage) than to any of the other fluids. Th measurements on A-stage quartz range from 192?C to 263?C and average 237?C. The early, fine-grained, B-stage sphalerites yielded Th of 214 to 241?C and salinities of 6.1 to 10.2 wt. % eq. D-stage sphalerite (late in the paragenesis) has been studied in detail (growth-zone by growth-zone) for several localities along the OH vein and reveals a generally positive correlation among Th, salinity and iron content of the host sphalerite. The deposition of D-stage sphalerite was characterized by repeated cycling through different regions of salinity/Th space, as Th and salinity generally decreased with time. Seventeen salinity-Th measurements were made on D-stage sphalerite from one locality on the Bulldog Mountain vein system, which, like the OH vein, is one of four major ore-producing vein systems at Creede. These data suggest a lower Th for a given salinity fluid from sphalerite on the Bulldog Mountain vein than on the OH vein. The very high values

  18. 46 CFR 58.30-30 - Fluid power cylinders.

    Science.gov (United States)

    2010-10-01

    ... all pneumatic power transmission systems. (b) Fluid power cylinders consisting of a container and a... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-30 Fluid power cylinders. (a) The...

  19. Fluid inclusions in salt: an annotated bibliography

    International Nuclear Information System (INIS)

    Isherwood, D.J.

    1979-01-01

    An annotated bibliography is presented which was compiled while searching the literature for information on fluid inclusions in salt for the Nuclear Regulatory Commission's study on the deep-geologic disposal of nuclear waste. The migration of fluid inclusions in a thermal gradient is a potential hazard to the safe disposal of nuclear waste in a salt repository. At the present time, a prediction as to whether this hazard precludes the use of salt for waste disposal can not be made. Limited data from the Salt-Vault in situ heater experiments in the early 1960's (Bradshaw and McClain, 1971) leave little doubt that fluid inclusions can migrate towards a heat source. In addition to the bibliography, there is a brief summary of the physical and chemical characteristics that together with the temperature of the waste will determine the chemical composition of the brine in contact with the waste canister, the rate of fluid migration, and the brine-canister-waste interactions

  20. Field test to assess the effects of drilling fluids on groundwater chemistry collected from Columbia River basalts

    International Nuclear Information System (INIS)

    Graham, D.L.; Bryce, R.W.; Halko, D.J.

    1984-03-01

    The Basalt Waste Isolation Project has used water-based drilling fluids in borehole construction. Fluids begin as a mixture of Columbia River water and bentonite. Other compounds such as organic polymers, soda ash, and chromium lignosulfonate are added to attain desired fluid characteristics. A field test was conducted to assess the effects of these fluids on basaltic groundwater chemistry. A one-month hydrochemistry baseline was established for a single interlow zone in borehole DC-14. Following baseline data collection, approximately 40,000 liters of drilling fluid were injected into the interflow. Samples were collected and analyzed for anions, cations, stable and radioactive isotopes, dissolved gases, and three specific drilling fluid tracers (i.e., tritium, fluorescein, and total organic carbon), for a period of one year following injection. Nearly 8.0 million liters of fluid were removed since initiation of the test. Test results demonstrated that drilling fluid tracers are useful indicators of how well drilling fluids have been removed from a borehole. Constituents such as Na + , SO 4 -2 , and all carbon species showed increases in concentration, whereas species such as Cl - , F - , and Si demonstrated a substantial decrease in concentration as a consequence of drilling fluid injection. Stable isotope ratios of oxygen and hydrogen were insensitive to relatively small amounts ( 14 C was significantly affected by the introduction of ''live'' carbon as a result of drilling fluid injection. 8 refs., 7 figs., 2 tabs

  1. Work-home interference in relation to work, organizational, and home characteristics

    NARCIS (Netherlands)

    Dikkers, J.S.E.

    2008-01-01

    In this thesis we examine work-home interference in relation to work, organizational, and home characteristics. The study is guided by the following three research questions: i) how are workload and negative WHI temporally related? (research question 1); ii) is work-home culture related to the use

  2. Relationship between Energy Expenditure Related Factors and Oxidative Stress in Follicular Fluid.

    Science.gov (United States)

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr Esfahani, Mohammad Hosein; Saboor-Yaraghi, Ali Akbar; Nejat, Saharnaz Nejat; Rahimi-Foroshani, Abbas

    2014-07-01

    This study evaluated the impact of body mass index (BMI), total calorie intake and physical activity (PA) as energy expenditure related factors on oxidative stress (OS) in follicular fluid (FF). This prospective study conducted on 219 infertile women. We evaluated patients' BMI, total calorie intake and PA in their assisted reproduction treatment cycles. Malondialdehyde (MDA) and total antioxidant capacity (TAC) in pooled FF at oocyte retrieval were additionally assessed. There was no relation between OS biomarkers to total calorie intake and PA. The TAC levels in FF adjusted for age, duration of infertility, etiology of infertility, number of used gonadotrophin and PA showed a positive relation to BMI (p=0.001). The number of used gonadotrophin and PA had a negative relation to duration of infertility (p=0.03) and anovulation disorder as an etiology of infertility. The MDA level in FF had a positive association with anovulation disorder as the etiology of infertility (p=0.02). MDA in FF was unaffected by BMI. Increasing age, BMI and PA do not affect OS in FF. In women with longtime infertility and those with anovulation disorder as an etiology of infertility, decreased potent antioxidant defense in the follicular microenvironment may contribute to ovarian function. Therefore antioxidant supplements may be beneficial for these groups of women.

  3. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  4. Effect of seven different additives on the properties of MR fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J Q; Zhang, J; Jing, Q [Department of Technical Support Engineering, Academy of Armored Force Engineering, Beijing 100072 (China)], E-mail: zhangjq63@yahoo.com.cn

    2009-02-01

    Magnetorheological (MR) fluids have been developed for application in semi-active magnetorheological fluid dampers and other magnetorheological fluid devices. In order to prepare special MR fluids to satisfy the demands of tracked vehicle, two different carrier fluids were chose to prepare MR fluids. Preparation of MR fluids, which are based on carriers such as special shock absorption fluid and 45 transformer oil, was finished. And characteristics of these samples were tested and analyzed. Results indicate, Tween-80 and Span-80 can improve sedimentary stability. Using 45 transformer oil instead of special shock absorption fluid as a carrier, the shear yield stress remains nearly invariable but the viscosity and the sedimentary stability are reduced. MR fluids with diameter of 2.73{mu}m show better sedimentary stability than that of the MR fluids with diameter of 2.3{mu}m, or 4.02{mu}m. Stearic acid obviously improves sedimentary stability and off-state viscosity, but don't perform an obvious function on shear yield stress. In magnetic field of 237KA/m, the shear yield stress of MR fluid based on special shock absorption fluid and 45 transformer oil is 18.34KPa, 14.26KPa, respectively.

  5. Effect of fluid supplementation and modality on peritoneal permeability characteristics in a rat peritoneal dialysis model

    NARCIS (Netherlands)

    Zweers, M. M.; Splint, L. J.; Krediet, R. T.; Struijk, D. G.

    2001-01-01

    OBJECTIVE: Hemoconcentration may influence peritoneal permeability parameters in anesthetized animals without fluid supplementation. Therefore, the aim of this study was to investigate the effects of fluid supplementation on peritoneal permeability in an acute peritoneal dialysis model in

  6. Characteristic evolutions in numerical relativity using six angular patches

    International Nuclear Information System (INIS)

    Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela

    2007-01-01

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50

  7. Characteristic evolutions in numerical relativity using six angular patches

    Energy Technology Data Exchange (ETDEWEB)

    Reisswig, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Bishop, Nigel T [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Lai, Chi Wai [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)

    2007-06-21

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.

  8. ISO 15859 Propellant and Fluid Specifications: A Review and Comparison with Military and NASA Specifications

    Science.gov (United States)

    Greene, Ben; McClure, Mark B.; Baker, David L.

    2006-01-01

    This work presents an overview of the International Organization for Standardization (ISO) 15859 International Standard for Space Systems Fluid Characteristics, Sampling and Test Methods Parts 1 through 13 issued in June 2004. These standards establish requirements for fluid characteristics, sampling, and test methods for 13 fluids of concern to the propellant community and propellant characterization laboratories: oxygen, hydrogen, nitrogen, helium, nitrogen tetroxide, monomethylhydrazine, hydrazine, kerosene, argon, water, ammonia, carbon dioxide, and breathing air. A comparison of the fluid characteristics, sampling, and test methods required by the ISO standards to the current military and NASA specifications, which are in use at NASA facilities and elsewhere, is presented. Many ISO standards composition limits and other content agree with those found in the applicable parts of NASA SE-S-0073, NASA SSP 30573, military performance standards and details, and Compressed Gas Association (CGA) commodity specifications. The status of a current project managed at NASA Johnson Space Center White Sands Test Facility (WSTF) to rewrite these documents is discussed.

  9. Fundamental trends in fluid-structure interaction

    CERN Document Server

    Galdi, Giovanni P

    2010-01-01

    The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. ""Fundamental Trends in Fluid-Structure Interaction"" is a unique collection of important papers wr

  10. Dependence of cycle optimal configuration for closed gas turbines on thermodynamic properties of working fluids

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Dubinin, A.B.; Krylov, E.E.

    1988-01-01

    The problem of choice of working fluids for NPP closed gas turbines (CGT) is discussed. Thermostable in the working temperature range, chemically inert relatively to structural materials, fire- and explosion - proof substances, radiation-resistant and having satisfactory neutron-physical characteristics are used as the working fluids. Final choice of a gas as a working fluid is exercised based on technical and economic comparison of different variants at optimum thermodynamic cycle and parameters for each gas. The character and degree of the effect of thermodynamic properties of gases on configuration of reference cycles of regenerative CGT are determined. It is established that efficiency and optimum parameters in nodal points of the reference cycle are specified by the degree of removing the compression processes from the critical point. Practical importance of the obtained results presupposes the possibility of rapid estimation of the efficiency of using a gas without multiparametric optimization

  11. Diffuse-Interface Methods in Fluid Mechanics

    Science.gov (United States)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  12. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  13. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  14. Application of hydrophilic magnetic fluid to oil seal

    Science.gov (United States)

    Kim, Y. S.; Nakatsuka, K.; Fujita, T.; Atarashi, T.

    1999-07-01

    Bearing and gear are important components in machines. Lubricant for bearing or gear is usually confined in working space by rubber retainer or mechanical seal, and its lifetime which is determined by the friction wear of sealing material is important. In this report, the basic characteristics of magnetic fluid seal applied to lubricant retainer is studied. The fluid used for this purpose is ethyleneglycol-based magnetic fluid in which silica-coated iron particles are dispersed. The lubricant oil seal set consisting of six stages of pole piece and Nd-permanent magnets (4.0 Wb/m 2) in seal housing showed an excellent pressure resistance of 618 kPa under a rotating speed of 1800 rpm.

  15. Description of a general method to compute the fluid-structure interaction

    International Nuclear Information System (INIS)

    Jeanpierre, F.; Gibert, R.J.; Hoffmann, A.; Livolant, M.

    1979-01-01

    The vibrational characteristics of a structure in air may be considerably modified when the structure is immersed in a dense fluid. Such fluid structure interaction effects are important for the seismic or flow induced vibrational studies of various nuclear equipments, as for example the PWR internals, the fast reactor vessels, heat exchangers and fuel elements. In some simple situations, the fluid effects can be simulate by added masses, but in general, they are much more complicated. A general formulation to calculate precisely the vibrational behaviour of structures containing dense fluids is presented in this paper. That formulation can be easily introduced in finite elements computer codes, the fluid being described by special fluid elements. Its use is in principle limited to the linear range: small movements of structures, small pressure fluctuations. (orig.)

  16. Research of psychological characteristics and performance relativity of operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2008-01-01

    Based on the working tasks of an operator being taken into full consideration in this paper, on the one hand the table of measuring psychological characteristics is designed through the selection of special dimensions; on the other hand the table of performance appraisal is drafted through the choice of suitable standards of an operator. The paper analyzes the results of two aspects, sets relevant nuclear power plant operators as the research objective, and obtains the psychological characteristics and performance relativity of operators. The research can be as important and applied reference for the selection, evaluation and use of operators

  17. Effect of Fluid Intake on Hydration Status and Skin Barrier Characteristics in Geriatric Patients: An Explorative Study.

    Science.gov (United States)

    Akdeniz, Merve; Boeing, Heiner; Müller-Werdan, Ursula; Aykac, Volkan; Steffen, Annika; Schell, Mareike; Blume-Peytavi, Ulrike; Kottner, Jan

    2018-04-03

    Inadequate fluid intake is assumed to be a trigger of water-loss dehydration, which is a major health risk in aged and geriatric populations. Thus, there is a need to search for easy to use diagnostic tests to identify dehydration. Our overall aim was to investigate whether skin barrier parameters could be used for predicting fluid intake and/or hydration status in geriatric patients. An explorative observational comparative study was conducted in a geriatric hospital including patients aged 65 years and older. We measured 3-day fluid intake, skin barrier parameters, Overall Dry Skin Score, serum osmolality, cognitive and functional health, and medications. Forty patients were included (mean age 78.45 years and 65% women) with a mean fluid intake of 1,747 mL/day. 20% of the patients were dehydrated and 22.5% had an impending dehydration according to serum osmolality. Multivariate analysis suggested that skin surface pH and epidermal hydration at the face were associated with fluid intake. Serum osmolality was associated with epidermal hydration at the leg and skin surface pH at the face. Fluid intake was not correlated with serum osmolality. Diuretics were associated with high serum osmolality. Approximately half of the patients were diagnosed as being dehydrated according to osmolality, which is the current reference standard. However, there was no association with fluid intake, questioning the clinical relevance of this measure. Results indicate that single skin barrier parameters are poor markers for fluid intake or osmolality. Epidermal hydration might play a role but most probably in combination with other tests. © 2018 S. Karger AG, Basel.

  18. Normal forms for characteristic functions on n-ary relations

    NARCIS (Netherlands)

    D.J.N. van Eijck (Jan)

    2004-01-01

    textabstractFunctions of type (n) are characteristic functions on n-ary relations. Keenan established their importance for natural language semantics, by showing that natural language has many examples of irreducible type (n) functions, i.e., functions of type (n) that cannot be represented as

  19. Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes

    Science.gov (United States)

    Okamura, Emiko; Yoshii, Noriyuki

    2008-12-01

    Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.

  20. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  1. Study of blood flow in several benchmark micro-channels using a two-fluid approach.

    Science.gov (United States)

    Wu, Wei-Tao; Yang, Fang; Antaki, James F; Aubry, Nadine; Massoudi, Mehrdad

    2015-10-01

    It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs.

  2. Study of blood flow in several benchmark micro-channels using a two-fluid approach

    Science.gov (United States)

    Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad

    2015-01-01

    It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs. PMID:26240438

  3. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  4. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    International Nuclear Information System (INIS)

    Jonkkari, I; Syrjala, S; Kostamo, E; Kostamo, J; Pietola, M

    2012-01-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate–plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ∼ 0.3 μm) and rough (Ra ∼ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights. (paper)

  5. Fluid mechanics. Vol. 2

    International Nuclear Information System (INIS)

    Truckenbrodt, E.

    1980-01-01

    The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)

  6. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  7. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  8. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias

    International Nuclear Information System (INIS)

    Philip, P.; Pedersen-Bjergaard, J.

    1988-01-01

    From 1978 to 1985, we observed eight cases of acute nonlymphocytic leukemia or preleukemia, three cases of acute lymphoblastic leukemia, and three cases of chronic myeloid leukemia in patients previously treated exclusively with radiotherapy for other tumor types. The latent period from administration of radiotherapy to development of leukemia varied between 12 and 243 months. Clonal chromosome aberrations reported previously as characteristic of acute nonlymphocytic leukemia following therapy with alkylating agents were observed in three of the eight patients with acute nonlymphocytic leukemia (5q- and -7) and in two of the three patients with acute lymphoblastic leukemia (-7 and 12p-). All three patients with radiotherapy-related chronic myeloid leukemia presented a t(9;22)(q34;q11). The results suggest that cytogenetic characteristics may reflect the etiology in radiation-induced acute leukemias, whereas radiation-related chronic myeloid leukemia does not seem to differ chromosomally from de novo cases of the disease

  9. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    Science.gov (United States)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  10. Alumino-silicate speciation in aqueous fluids at deep crustal conditions

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2014-12-01

    Alumina and silica are major oxides in most crustal rocks. While SiO2 is quite soluble in aqueous fluids at metamorphic conditions, behavior of Al2O3 in crustal metamorphic fluids has been poorly understood. It is known that alumina is dramatically less soluble in aqueous fluids and hence it is difficult to explain the common occurrence of quartz with aluminous minerals in metamorphic veins. In order to understand this complex behavior of alumina, we investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 oC. In order to better understand the spectral features of the aqueous fluids, we used first principles simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with KOH solution in equilibrium with Al2O3 show a sharp band at ~620 cm-1 which could be attributed to the [Al(OH)4]1- species. The band grows in intensity with temperature along an isochore. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [Al(OH)4]1- species to dimers [(OH)2-Al-O2-Al(OH)2]2- or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. We are also investigating the effect of SiO2 on the solubility of Al2O3 and the relative energetics of formation of pure alumina dimer [(OH)3-Al-O-Al(OH)3]2- vs. the aluminosilicate dimers, [(OH)3-Al-O-Si(OH)3]2- at deep crustal conditions. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  11. The energy supplied to a body in the theory of relativity and the impulse-energy tensor of a compressible fluid

    International Nuclear Information System (INIS)

    Ricard, J.

    1979-01-01

    In the relativity theory, the variation of a certain amount of energy supplied to a body, according to its speed, has been a matter of controversy. We study this variation either for a fluid that is submitted by a compression, or for a gas receiving heat from outward. It is shown that the problem is solved by a simple matter of definition of the energy received in the system of coordinate where the body is moving. Besides, we establish the impulse-energy tensor for a compressible fluid [fr

  12. Characteristics of Fluid Composition of Left Displaced Abomasum in Beef Cattle Fed High-Starch Diets

    Science.gov (United States)

    ICHIJO, Toshihiro; SATOH, Hiroshi; YOSHIDA, Yuki; MURAYAMA, Isao; KIKUCHI, Tomoko; SATO, Shigeru

    2014-01-01

    ABSTRACT To clarify the pathophysiology of left displaced abomasum (LDA), beef cattle fed high-starch diets were examined. The abomasal pH in beef cattle with LDA was lower than that in non-LDA reference animals (data from beef cattle at an abattoir), suggesting that it facilitated acidity. Bacteriological examinations of the abomasal fluid in cattle with LDA revealed the presence of Pseudomonas spp., Clostridium spp. and Candida spp., presumably reflecting the accelerated influx of ruminal fluid into the abomasum. Biochemical analyses of serum revealed that LDA cattle had higher lactic acid and lower vitamin A and E levels than non-LDA reference animals. These results indicate that beef cattle with LDA may suffer from vitamin A and E deficiencies due to maldigestion of starch and the high acidity of abomasal fluid. PMID:24813464

  13. Home Visiting Processes: Relations with Family Characteristics and Outcomes

    Science.gov (United States)

    Peterson, Carla A.; Roggman, Lori A.; Green, Beth; Chazan-Cohen, Rachel; Korfmacher, Jon; McKelvey, Lorraine; Zhang, Dong; Atwater, Jane B.

    2013-01-01

    Variations in dosage, content, and family engagement with Early Head Start (EHS) home visiting services were examined for families participating in the EHS Research and Evaluation Project. Families were grouped by characteristics of maternal age, maternal ethnicity, and level of family risk. All home visiting variables were related differentially…

  14. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    Science.gov (United States)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase

  15. Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)

    2007-02-15

    Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)

  16. The new standard of fluids for hemodialysis in Japan.

    Science.gov (United States)

    Kawanishi, Hideki; Masakane, Ikuto; Tomo, Tadashi

    2009-01-01

    The standard of fluids for hemodialysis is being evaluated by the International Organization for Standardization (ISO), and will be decided within a few years. In 2008, the Japanese Society for Dialysis Therapy (JSDT) proposed the standard of fluids for hemodialysis by taking the draft ISO standard into consideration and the circumstances in Japan. It was characteristically a standard for Japan, where the central dialysis fluid delivery system (CDDS) is routinely used. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently employed in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility validate the microbiological qualities of online-prepared substitution fluid, making the responsibility of the dialysis facility clear. This standard is more rigid than those of other countries, and is expected to contribute to improvements in the survival outcome of dialysis patients. (c) 2009 S. Karger AG, Basel.

  17. Comparison of thermohydraulic characteristics in the use of various coolants

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Suda, Kazunori; Yamaguchi, Akira

    2000-11-01

    Numerical calculations were carried out for a free surface sloshing, a thermal stratification, a thermal striping, and a natural convection as key phenomena of in-vessel thermohydraulics in future fast reactor systems with various fluids as coolants. This numerical work was initiated based on a recognition that the fundamental characteristics of the phenomena have been unsolved quantitatively in the use of various coolants. From the analysis for the phenomena, the following results were obtained. [Free Surface Sloshing phenomena] (1) There is no remarkable difference between liquid sodium and liquid Pb-Bi in characteristics of internal flows and free surface characteristics based on Fr number. (2) The AQUA-VOF code has a potential enough to evaluate gas entrainment behavior from the free surface including the internal flow characteristics. [Thermal Stratification Phenomena] (1) On-set position of thermal entrainment process due to dynamic vortex flows was moved to downstream direction with decreasing of Ri number. On the other hand, the position in the case of CO 2 gas was shifted to upstream side with decreasing of Ri number. (2) Destruction speed of the thermal stratification interface was dependent on thermal diffusivity as fluid properties. Therefore it was concluded that an elimination method is necessary for the interface generated in CO 2 gas. [Thermal Striping Phenomena] (1) Large amplitudes of fluid temperature fluctuations was reached to down stream area in the use of CO 2 gas, due to larger fluid viscosity and smaller thermal diffusivity, compared with liquid sodium and liquid Pb-Bi cases. (2) To simulate thermal striping conditions such as amplitude and frequency of the fluid temperature fluctuations, it is necessary for coincidences of Re number for the amplitude and of velocity value for the frequency, in various coolants. [Natural Convection Phynomlena] (1) Fundamental behavior of the natural convection in various coolant follows buoyant jet

  18. Reviving the shear-free perfect fluid conjecture in general relativity

    Science.gov (United States)

    Sikhonde, Muzikayise E.; Dunsby, Peter K. S.

    2017-12-01

    Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.

  19. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  20. Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wolrath, H; Forsum, U; Larsson, P G; Borén, H

    2001-11-01

    The presence of various amines in vaginal fluid from women with malodorous vaginal discharge has been reported before. The investigations have used several techniques to identify the amines. However, an optimized quantification, together with a sensitive analysis method in connection with a diagnostic procedure for vaginal discharge, including the syndrome of bacterial vaginosis, as defined by the accepted "gold standard," has not been done before. We now report a sensitive gas chromatographic and mass spectrometric method for identifying the amines isobutylamine, phenethylamine, putrescine, cadaverine, and tyramine in vaginal fluid. We used weighted samples of vaginal fluid to obtain a correct quantification. In addition, a proper diagnosis was obtained using Gram-stained smears of the vaginal fluid that were Nugent scored according to the method of Nugent et al. (R. P. Nugent et al., J. Clin. Microbiol., 29:297-301, 1991). We found that putrescine, cadaverine, and tyramine occurred in high concentrations in vaginal fluid from 24 women with Nugent scores between 7 and 10. These amines either were not found or were found only in very low concentrations in vaginal fluid from women with Nugent scores of 0 to 3. There is a strong correlation between bacterial vaginosis and the presence of putrescine, cadaverine, and tyramine in high concentrations in vaginal fluid.

  1. The psychosocial and behavioral characteristics related to energy misreporting.

    Science.gov (United States)

    Maurer, Jaclyn; Taren, Douglas L; Teixeira, Pedro J; Thomson, Cynthia A; Lohman, Timothy G; Going, Scott B; Houtkooper, Linda B

    2006-02-01

    Energy underreporting occurs in 2% to 85% and overreporting in 1% to 39% of various populations. Efforts are needed to understand the psychosocial and behavioral characteristics associated with misreporting to help improve the accuracy of dietary self-reporting. Past research suggests that higher social desirability and greater eating restraint are key factors influencing misreporting, while a history of dieting and being overweight are more moderately associated. Eating disinhibition, body image, depression, anxiety, and fear of negative evaluation may be related to energy misreporting, but evidence is insufficient. This review will provide a detailed discussion of the published associations among psychosocial and behavioral characteristics and energy misreporting.

  2. Black holes as lumps of fluid

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Dias, Oscar J.C.; Emparan, Roberto; Klemm, Dietmar

    2009-01-01

    The old suggestive observation that black holes often resemble lumps of fluid has recently been taken beyond the level of an analogy to a precise duality. We investigate aspects of this duality, and in particular clarify the relation between area minimization of the fluid vs. area maximization of the black hole horizon, and the connection between surface tension and curvature of the fluid, and surface gravity of the black hole. We also argue that the Rayleigh-Plateau instability in a fluid tube is the holographic dual of the Gregory-Laflamme instability of a black string. Associated with this fluid instability there is a rich variety of phases of fluid solutions that we study in detail, including in particular the effects of rotation. We compare them against the known results for asymptotically flat black holes finding remarkable agreement. Furthermore, we use our fluid results to discuss the unknown features of the gravitational system. Finally, we make some observations that suggest that asymptotically flat black holes may admit a fluid description in the limit of large number of dimensions.

  3. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    Science.gov (United States)

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  4. Well-differentiated liposarcoma of the retroperitoneum with a fat-fluid level: US, CT, and MR appearance

    International Nuclear Information System (INIS)

    Kurosaki, Y.; Tanaka, Y.O.; Itai, Y.

    1998-01-01

    We report a case of retroperitoneal liposarcoma with a fat-fluid level that has not been previously described. A 36-year-old man presented with abdominal distension. Ultrasonography, CT, and MR imaging showed a tumor with a fat-fluid level; nondependent fluid was characteristic of fat. Liposarcoma should be included in the differential diagnosis of tumors exhibiting a fat-fluid level. (orig.)

  5. Degradation characteristics of irradiated poly-(caprolactonechitosan-hydroxyapatite) biomaterial in simulated body fluid solution

    International Nuclear Information System (INIS)

    Warastuti, Y.; Suryani, N.

    2013-01-01

    This investigation purpose was to study degradation characteristics of poly-(caprolactone -chitosan-hydroxyapatite) biomaterial in simulated body fluid (SBF) solution. A composite membrane has been synthesized using blending and stirring method with acetic acid solvent and then molded into thin film. Electron beam radiation dose 0 - 30 kGy were done in order to evaluate radiation effects. SBF absorption with various immersing times and degradation for 0 -12 weeks were conducted. Fourier Transform Infra Red Spectroscopy (FTIR) was used to identification functional groups of composite and Scanning Electron Microscopy (SEM) was applied to analyse micro structural surface of membrane before and after immersion. The irradiation process indicate that SBF absorption decrease because NH 2 groups in chitosan which contributes to the hydrophilicity was broken. The composite III indicate maximum absorption (58,2% ± 2,22) due to its smallest concentration of polycaprolactone and highest concentration of chitosan that caused decrease of hydrophobicity. Optimum degradation of composite III (1,3% ± 0,98) was reached after 8 weeks of immersion time. FTIR spectrum indicate the unity of typical peaks of the constituent materials and specific spectrum of CO 3 2- of carbonated apatite which was formed because immersion of SBF. Microstructural analysis using SEM indicate the formation of needle like apatite layer or calcium phosphate precipitate over all surface membrane. All the results indicate that these composite meet the requirements to biomaterial. (author)

  6. Fluid Structure Interaction for Hydraulic Problems

    International Nuclear Information System (INIS)

    Souli, Mhamed; Aquelet, Nicolas

    2011-01-01

    Fluid Structure interaction plays an important role in engineering applications. Physical phenomena such as flow induced vibration in nuclear industry, fuel sloshing tank in automotive industry or rotor stator interaction in turbo machinery, can lead to structure deformation and sometimes to failure. In order to solve fluid structure interaction problems, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a unique code with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The development of the ALE method as well as the coupling in a computational structural dynamic code, allows to solve more large industrial problems related to fluid structure coupling. (authors)

  7. Performances of Magnetic Fluid Seal and Application to Turbopumps

    OpenAIRE

    北洞, 貴也; 黒川, 淳一; 宮副, 雄貴; 林, 正悦

    1994-01-01

    A magnetic fluid shaft seal can achieve zero-leakage and operate stably against shaft vibration, but the sealing pressure is very low. In order to improve the pressure performance of a magnetic fluid seal and apply it to a turbopump, the seal pressure characteristics are studied theoretically and experimentally. The Poisson equation for magnetic vector potential is solved by FEM, and the seal performances are determined by use of the Bernoulli equation. The validity of the theory is confirmed...

  8. Characterization of boundary layer thickness of nano fluid ZrO_2 on natural convection process

    International Nuclear Information System (INIS)

    V-Indriati Sri Wardhani; Henky P Rahardjo

    2015-01-01

    Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at BATAN Bandung have made nano fluid ZrO_2 from local materials, as well as experimental equipment for studying the thermohydraulic characteristics of nano fluid as the cooling fluid. In this study, thermohydraulic characteristics of nano fluid ZrO_2 are observed through experimentation. Nano fluid ZrO_2 is made from a mixture of water with ZrO_2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/liter. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO_2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO_2 is not much different from the conventional fluid water. (author)

  9. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    International Nuclear Information System (INIS)

    Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji

    2011-01-01

    Highlights: ► Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. ► Fluid streaming is a potent factor for peritoneal fibrosis in PD. ► We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. ► A history of fluid streaming exposure promoted mesothelial proliferative activity. ► We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial–mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination

  10. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication

    Science.gov (United States)

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan

    2014-03-01

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations

  11. A case of pathological drainage and aberrant cerebrospinal fluid pathway demonstrated by using radioisotopic imaging

    International Nuclear Information System (INIS)

    Tondeur, M.; Oulad Ben Taibb, N.

    2007-01-01

    We describe the case of a woman with ventriculo-peritoneal drainage who presented, following bilateral breast reparative surgery, an abnormally abundant liquid production in one of the surgical drains. This production was related to unknown rupture of the thoracic portion of the ventriculo-peritoneal drain, having led to the direct passage of the cerebrospinal fluid into the surgical drain. Rupture of the thoracic portion of the ventriculo-peritoneal drain was demonstrated by X-ray. However, the pathway of the cerebrospinal fluid and its direct passage throughout the surgical drain were demonstrated by isotopic procedure. Based upon this observation, we briefly describe and discuss the principle, technical characteristics, advantages and disadvantages of isotopic procedures, allowing to demonstrate permeability of ventricular derivations. (authors)

  12. Initial fluid resuscitation of patients with septic shock in the intensive care unit

    DEFF Research Database (Denmark)

    Carlsen, Sarah; Perner, A

    2011-01-01

    Fluid is the mainstay of resuscitation of patients with septic shock, but the optimal composition and volume are unknown. Our aim was to evaluate the current initial fluid resuscitation practice in patients with septic shock in the intensive care unit (ICU) and patient characteristics and outcome...

  13. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis.

    NARCIS (Netherlands)

    Schade, R.P.; Schinkel, J.; Roelandse, F.W.; Geskus, R.B.; Visser, L.G.; Dijk, M.C.R.F. van; Voormolen, J.H.; Pelt, H. van; Kuijper, E.J.

    2006-01-01

    OBJECT: Routine microbiological and chemical analysis of cerebrospinal fluid (CSF) is often performed to diagnose external drainage-related bacterial meningitis (ED-BM) at an early stage. A cohort study was performed to investigate the value of several commonly used CSF parameters for the prediction

  14. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis

    NARCIS (Netherlands)

    Schade, RP; Schinkel, J; Roelandse, FWC; Geskus, RB; Visser, L.G.; van Dijk, J.M.C.; Voormolen, JHC; van Pelt, H; Kuijper, EJ

    Object. Routine microbiological and chemical analysis of cerebrospinal fluid (CSF) is often performed to diagnose external drainage-related bacterial meningitis (ED-BM) at an early stage. A cohort study was performed to investigate the value of several commonly used CSF parameters For the prediction

  15. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis

    NARCIS (Netherlands)

    Schade, Rogier P.; Schinkel, Janke; Roelandse, Freek W. C.; Geskus, Ronald B.; Visser, Leo G.; van Dijk, J. Marc C.; van Dijk, Marc C.; Voormolen, Joan H. C.; van Pelt, Hans; Kuijper, Ed J.

    2006-01-01

    Routine microbiological and chemical analysis of cerebrospinal fluid (CSF) is often performed to diagnose external drainage-related bacterial meningitis (ED-BM) at an early stage. A cohort study was performed to investigate the value of several commonly used CSF parameters for the prediction and

  16. Turbine lubrication fluid varnish mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Khalid [Pall Corporation, Port Washington, NY (United States)

    2010-04-15

    Varnish deposits on internal surfaces in turbine lube systems result in a number of adverse operational issues, especially the restriction and sticking of the moving parts of servo- or directional control valves, resulting in their malfunction. The lubrication fluid has limited solvency for the varnish-forming material, hence a typical turbine will have the majority of this material as deposits and a relatively small portion as suspension in the fluid phase, in quasi-equilibrium with the deposits. The lube system needs to be cleaned by removing the suspended varnish-forming material from the fluid phase, which allows the deposits to re-entrain into the fluid phase, until the majority of the transferable deposits are removed and the fluid carries no significant amount of the material to have any adverse effect. The methods used for the removal of varnish from turbine lube systems include chemical cleaning/flushing, electrostatic charge induced agglomeration/retention, and the adsorption of the varnish suspended in the oil on an adsorbent medium. The paper discusses an absorption-based removal method that utilizes a fibrous medium that has pronounced affinity for the removal and retention of the varnish-forming material from the fluid as well as the deposits from surfaces that are in quasi-equilibrium with the varnish precursors in the fluid. The filtration medium is a composite, made with cellulose bonded by specially formulated, temperature-cured resins. The absorptive medium exhibits high structural and chemical integrity and has been thoroughly tested on operating turbines, showing reduction in varnish levels from the critical range to below normal range in a relatively short time. The experience with the utilization of the absorptive medium in laboratory tests and in two operating turbines is presented. (orig.)

  17. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  18. Testing of CFC replacement fluids for arc-induced toxic by-products

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Goerz, D.A.; Hawley-Fedder, R.A.

    1993-06-01

    The authors have developed a unique test-stand for quantifying the generation of perfluoroisobutylene (PFIB) in chlorofluorocarbon (CFC) replacement fluids when they are subjected to high electrical stress/breakdown environments. PFIB is an extremely toxic gas with a threshold limit value of 10 ppbv as set by the American Conference of Governmental Industrial Hygienists. They have tested several new fluids from various manufacturers for their potential to generate PFIB. Their goal is to determine breakdown characteristics and quantify toxic by-products of these replacement fluids to determine a safe, usable alternative for present CFC`s.

  19. An assessment of health related quality of life in a male prison population in Greece associations with health related characteristics and characteristics of detention.

    Science.gov (United States)

    Togas, Constantinos; Raikou, Maria; Niakas, Dimitris

    2014-01-01

    Prisoners constitute a group with increased health and social care needs. Although implementing policies that aim at improving outcomes within this population should be a priority area, studies that attempt to assess health outcomes and health related quality of life (HRQoL) in this population are limited. To assess HRQoL in a prison population in Greece and to explore the relationship between HRQoL and a set of individual sociodemographic and health related characteristics and characteristics of detention. A cross-sectional study involving 100 male prisoners was conducted in the prison of Corinth in Greece. HRQoL was assessed through the use of the SF-36 and the EQ-5D. The mean physical and mental summary scores of the SF-36 were 55.33 and 46.82, respectively. The EQ-VAS mean score was 76.41%, while the EQ-5D index was 0.72. Multivariate analysis identified a statistical relationship between HRQoL and the conditions of detention, controlling for the effect of sociodemographic characteristics, morbidity, and mental problems. The use of narcotics in particular is significantly associated with lower HRQoL. Implementation of policies that aim at preventing the use of narcotics within the prison environment is expected to contribute to improved HRQoL in this population.

  20. Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures

    International Nuclear Information System (INIS)

    Feng, Yong-qiang; Hung, Tzu-Chen; He, Ya-Ling; Wang, Qian; Wang, Shuang; Li, Bing-xi; Lin, Jaw-Ren; Zhang, Wenping

    2017-01-01

    Highlights: • Experimental comparison using R123, R245fa and their mixtures has been investigated. • The basic operation parameters and the detailed operation characteristics of pure and mixture working fluids are addressed. • The mixture owns a relatively higher pump power consumption, 10–50% higher than that of R245fa and 2–47% higher than that of R123. • The highest system generating efficiency of 4.53% is obtained by 0.67R245fa/0.33R123. - Abstract: The operation characteristic and performance comparison of low-grade organic Rankine cycle (ORC) using R245fa, R123 and their mixtures have been investigated. The heat source temperature is set to be 120 °C, while the mass flow rate is controlled by adjusting the pump frequency. The basic operation parameters are first examined, while the detailed operation characteristics of pure and mixture working fluids are addressed. The system overall performance, including thermal efficiency and system generating efficiency, for pure and mixture working fluids are explored. The experimental results show that the mixtures own a relatively higher pump power consumption and enhancing the pump performance is also significant for ORC application. Whether the mixtures exhibit better thermodynamic performance than the pure working fluids depend on the operation parameters and mass fraction of mixtures. 0.67R245fa/0.33R123 owns the highest maximum net electricity output of 1.67 kW, 4.38% higher than that of R245fa and 63.73% higher than that of R123. Compared to the pure working fluids, the mixture working fluids own a better thermodynamic performance and a moderate economic performance.

  1. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  2. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  3. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    Science.gov (United States)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-10-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, Phys. Fluids 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλD of interest to Raman backscatter of a laser driver in inertial confinement fusion.

  4. Caffeine-containing beverages, total fluid consumption, and premenstrual syndrome.

    Science.gov (United States)

    Rossignol, A M; Bonnlander, H

    1990-09-01

    The main objective of this study was to evaluate whether daily consumption of caffeine-containing beverages is related to the prevalence and severity of premenstrual syndrome apart from any effects of daily total fluid consumption. A secondary objective was to determine whether daily total fluid consumption itself is related to premenstrual syndrome. The study is based on 841 responses to a questionnaire probing menstrual and premenstrual health, and daily fluid consumption, which was mailed to female university students in Oregon. Analysis of the data revealed that consumption of caffeine-containing beverages was strongly related to the prevalence of premenstrual syndrome. Among women with more severe symptoms, the relation between consumption of caffeine-containing beverages and premenstrual syndrome was dose-dependent, with prevalence odds ratios equal to 1.3 for consumers of one cup of a caffeine-containing beverage per day and increasing steadily to 7.0 for consumers of eight to 10 cups per day. The effects were apparent among both caffeine-containing tea/coffee consumers and caffeine-containing soda consumers. The observed effects were only slightly reduced when daily total fluid consumption was controlled. Daily total fluid consumption also was related to the prevalence of premenstrual symptoms although the effects were large only for consumers of 13-19 cups of fluid per day (the largest amount studied).

  5. Measurement bias of fluid velocity in molecular simulations

    International Nuclear Information System (INIS)

    Tysanner, Martin W.; Garcia, Alejandro L.

    2004-01-01

    In molecular simulations of fluid flow, the measurement of mean fluid velocity is considered to be a straightforward computation, yet there is some ambiguity in its definition. We show that in systems far from equilibrium, such as those with large temperature or velocity gradients, two commonly used definitions give slightly different results. Specifically, a bias can arise when computing the mean fluid velocity by measuring the mean particle velocity in a cell and averaging this mean over samples. We show that this bias comes from the correlation of momentum and density fluctuations in non-equilibrium fluids, obtain an analytical expression for predicting it, and discuss what system characteristics (e.g., number of particles per cell, temperature gradients) reduce or magnify the error. The bias has a physical origin so although we demonstrate it by direct simulation Monte Carlo (DSMC) computations, the same effect will be observed with other particle-based simulation methods, such as molecular dynamics and lattice gases

  6. Fluid-induced vibration of composite natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G.P.; Cheraghi, N.; Taheri, F. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, NS (Canada)

    2005-02-01

    Advancements in materials bonding techniques have led to the use of reinforced composite pipelines. The use of steel pipe with a fiber-reinforced composite over-wrap together has produced an exceptionally strong pipe with positive advantages in weight and corrosion resistivity. Understanding the dynamic characteristics of this kind of sub-sea composite pipelines, which often accommodate axial flow of gas, and prediction of their response is of great interest. This paper presents a state-variable model developed for the analysis of fluid-induced vibration of composite pipeline systems. Simply supported, clamped and clamped-simply supported pipelines are investigated. The influence of fluid's Poisson ratio, the ratio of pipe radius to pipe-wall thickness, laminate layup, the ratio of liquid mass density to pipe-wall mass density, the fluid velocity, initial tension and fluid pressure are all considered. The results of our proposed methodology are compared with those of finite element analysis, using ANSYS ssoftware. (Author)

  7. Well-differentiated liposarcoma of the retroperitoneum with a fat-fluid level: US, CT, and MR appearance

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Y.; Tanaka, Y.O.; Itai, Y. [Department of Radiology, University of Tsukuba, Tsukuba-shi (Japan)

    1998-03-27

    We report a case of retroperitoneal liposarcoma with a fat-fluid level that has not been previously described. A 36-year-old man presented with abdominal distension. Ultrasonography, CT, and MR imaging showed a tumor with a fat-fluid level; nondependent fluid was characteristic of fat. Liposarcoma should be included in the differential diagnosis of tumors exhibiting a fat-fluid level. (orig.) With 1 fig., 11 refs.

  8. Methodological quality and descriptive characteristics of prosthodontic-related systematic reviews.

    Science.gov (United States)

    Aziz, T; Compton, S; Nassar, U; Matthews, D; Ansari, K; Flores-Mir, C

    2013-04-01

    Ideally, healthcare systematic reviews (SRs) should be beneficial to practicing professionals in making evidence-based clinical decisions. However, the conclusions drawn from SRs are directly related to the quality of the SR and of the included studies. The aim was to investigate the methodological quality and key descriptive characteristics of SRs published in prosthodontics. Methodological quality was analysed using the Assessment of Multiple Reviews (AMSTAR) tool. Several electronic resources (MEDLINE, EMBASE, Web of Science and American Dental Association's Evidence-based Dentistry website) were searched. In total 106 SRs were located. Key descriptive characteristics and methodological quality features were gathered and assessed, and descriptive and inferential statistical testing performed. Most SRs in this sample originated from the European continent followed by North America. Two to five authors conducted most SRs; the majority was affiliated with academic institutions and had prior experience publishing SRs. The majority of SRs were published in specialty dentistry journals, with implant or implant-related topics, the primary topics of interest for most. According to AMSTAR, most quality aspects were adequately fulfilled by less than half of the reviews. Publication bias and grey literature searches were the most poorly adhered components. Overall, the methodological quality of the prosthodontic-related systematic was deemed limited. Future recommendations would include authors to have prior training in conducting SRs and for journals to include a universal checklist that should be adhered to address all key characteristics of an unbiased SR process. © 2013 Blackwell Publishing Ltd.

  9. Challenges with Tertiary-Level Mechatronic Fluid Power

    DEFF Research Database (Denmark)

    Dransfield, Peter; Conrad, Finn

    1996-01-01

    As authors we take the view that mechatronics, as it relates to fluid power, has three levels which we designate as primary, secondary and tertiary. A brief review of the current status of fluid power, hydraulic and pneumatic, and of electronic control of it is presented and discussed. The focus...... is then on tertiary-level mechatronic fluid power and the challenges to it being applied successfully....

  10. Etiological features of borderline personality related characteristics in a birth cohort of 12 year old children

    NARCIS (Netherlands)

    Belsky, D.; Caspi, A.; Arseneault, L.; Bleidorn, W.; Fonagy, P.; Goodman, M.; Houts, R.; Moffitt, T.

    2012-01-01

    It has been reported that borderline personality related characteristics can be observed in children, and that these characteristics are associated with increased risk for the development of borderline personality disorder. It is not clear whether borderline personality related characteristics in

  11. Flow of conductive fluid between parallel disks in an axial magnetic field, (2)

    International Nuclear Information System (INIS)

    Koike, Kazuo; Kamiyama, Shin-ichi

    1981-01-01

    The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)

  12. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  13. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-01-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  14. Etiological features of borderline personality related characteristics in a birth cohort of 12-year-old children.

    Science.gov (United States)

    Belsky, Daniel W; Caspi, Avshalom; Arseneault, Louise; Bleidorn, Wiebke; Fonagy, Peter; Goodman, Marianne; Houts, Renate; Moffitt, Terrie E

    2012-02-01

    It has been reported that borderline personality related characteristics can be observed in children, and that these characteristics are associated with increased risk for the development of borderline personality disorder. It is not clear whether borderline personality related characteristics in children share etiological features with adult borderline personality disorder. We investigated the etiology of borderline personality related characteristics in a longitudinal cohort study of 1,116 pairs of same-sex twins followed from birth through age 12 years. Borderline personality related characteristics measured at age 12 years were highly heritable, were more common in children who had exhibited poor cognitive function, impulsivity, and more behavioral and emotional problems at age 5 years, and co-occurred with symptoms of conduct disorder, depression, anxiety, and psychosis. Exposure to harsh treatment in the family environment through age 10 years predicted borderline personality related characteristics at age 12 years. This association showed evidence of environmental mediation and was stronger among children with a family history of psychiatric illness, consistent with diathesis-stress models of borderline etiology. Results indicate that borderline personality related characteristics in children share etiological features with borderline personality disorder in adults and suggest that inherited and environmental risk factors make independent and interactive contributions to borderline etiology.

  15. Impact of Interfacial Characteristics on Foam Structure: Study on Model Fluids and at Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mezdour Samir

    2017-03-01

    Full Text Available Foams represent an important area of research because of their relevance to many industrial processes. In continuous foaming operations, foaming ability depends on the process parameters and the characteristics of the raw materials used for foamed products. The effects of fluid viscosity and equilibrium surface tension on foam structure have been studied extensively. Furthermore, as surface active agents diffuse to the interface, they can modify other interface properties through their adsorption, such as interfacial rheology and surface tension kinetics. In order to better understand how these two interfacial properties influence foam structuring, we formulated model foaming solutions with different interface viscoelasticity levels and adsorption rates, but all with the same equilibrium surface tension and viscosity. The solutions were made up of a surface active agent and glucose syrup, so as to maintain a Newtonian behaviour. Five surface active agents were used: Whey Protein Isolate (WPI, sodium caseinate, saponin, cetyl phosphate and Sodium Dodecyl Sulphate (SDS, at concentrations ranging from 0.1% to 1%. Their molecular characteristics, and their interaction with the glucose syrup, made it possible to obtain a range of interface viscoelasticities and surface tension kinetics for these model solutions. The solutions were whipped in a continuously-operating industrial foaming device in order to control process parameters such as shearing and overrun, and to ensure that the experiment was representative of industrial production. The structure of the foams thus obtained foams was then determined by characterising bubble size using image analysis. For all the model solutions, both the viscoelastic moduli and apparent diffusion coefficient were linked to foam structure. The results showed that both high interface viscoelasticity and rapid diffusion kinetics induced a foam structure containing small bubbles. Both effects, as well as the impact of

  16. Abdominal cerebrospinal fluid pseudocyst

    International Nuclear Information System (INIS)

    Pathi, Ramon; Sage, Michael; Slavotinek, John; Hanieh, Ahmad

    2004-01-01

    A case of an abdominal cerebrospinal fluid (CSF) pseudocyst in a patient with a ventriculoperitoneal shunt is reported to illustrate this known but rare complication. In the setting of a VP shunt, the frequency of abdominal CSF pseudocyst formation is approximately 3.2%, often being precipitated by a recent inflammatory or infective process or recent surgery. Larger pseudocysts tend to be sterile, whereas smaller pseudocysts are more often infected. Ultrasound and CTeach have characteristic findings Copyright (2004) Blackwell Publishing Asia Pty Ltd

  17. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  18. Hydration, Fluid Intake, and Related Urine Biomarkers among Male College Students in Cangzhou, China: A Cross-Sectional Study—Applications for Assessing Fluid Intake and Adequate Water Intake

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2017-05-01

    Full Text Available The objectives of this study were to assess the associations between fluid intake and urine biomarkers and to determine daily total fluid intake for assessing hydration status for male college students. A total of 68 male college students aged 18–25 years recruited from Cangzhou, China completed a 7-day cross-sectional study. From day 1 to day 7; all subjects were asked to complete a self-administered 7-day 24-h fluid intake record. The foods eaten by subjects were weighed and 24-h urine was collected for three consecutive days on the last three consecutive days. On the sixth day, urine osmolality, specific gravity (USG, pH, and concentrations of potassium, sodium, and chloride was determined. Subjects were divided into optimal hydration, middle hydration, and hypohydration groups according to their 24-h urine osmolality. Strong relationships were found between daily total fluid intake and 24-h urine biomarkers, especially for 24-h urine volume (r = 0.76; p < 0.0001 and osmolality (r = 0.76; p < 0.0001. The percentage of the variances in daily total fluid intake (R2 explained by PLS (partial least squares model with seven urinary biomarkers was 68.9%; two urine biomarkers—24-h urine volume and osmolality—were identified as possible key predictors. The daily total fluid intake for assessing optimal hydration was 2582 mL, while the daily total fluid intake for assessing hypohydration was 2502 mL. Differences in fluid intake and urine biomarkers were found among male college students with different hydration status. A strong relationship existed between urine biomarkers and fluid intake. A PLS model identified that key variables for assessing daily total fluid intake were 24-h urine volume and osmolality. It was feasibility to use total fluid intake to judge hydration status.

  19. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  20. Study of blood flow in several benchmark micro-channels using a two-fluid approach

    OpenAIRE

    Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad

    2015-01-01

    It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated ...

  1. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  2. The Lagoa Real uranium province, Bahia state, Brazil: some petrographic aspects and fluid inclusion studies

    International Nuclear Information System (INIS)

    Fuzikawa, K.; Alves, J.V.; Cuney, M.; Kostolanyl, C.; Poti, B.

    1988-01-01

    The Lagoa Real Uranium Province in the central-southern Bahia State, consisting of six deposits and several prospects, has a reserve of near one hundred tons of U 3 O 8 . The main lithological unit in the area is the Lagoa Real Complex which is formed by granites and gneisses derived from them. The unit overthrusts the Espinhaco metasediments the west. The Complex is the host of albities which may contain uraninite. The mineralization is manly associated with pyroxene and garnet. Petrographic and field relations indicate the overthrusting as the latest event, having left implants in the orebodies and their hosts. Fluid inclusion studies indicated fluids of different characteristics in the Espinhaco and the Lagoa Real Complex although they were similar in composition (carbonic and aqueous). The types inclusions detected are in agreement with the geologic processes suggested for the area: emplacement of the Sao Timoteo granite at 1.72 Ga; albitization and uranium mineralization at ∼ 1.4 Ga; and metamorphism at ∼ 0.49 Ga. The study is an example of fluid inclusion behaviour in a metamorphic process with very limited amount of fluids. (author) [pt

  3. Aggressiveness and characteristics of object-relations in students at risk of migrainous headaches

    Directory of Open Access Journals (Sweden)

    Darja Škrila

    2001-06-01

    Full Text Available The purpose of the research, carried out in a sample of Slovene students, was to determine how subjects with migraine differ from subjects with migrainous disorder, subjects with non-migrainous headaches and subjects without recurrent headaches. The existence of migraine was assessed by UCSD migraine questionnaire, aggressiveness by Buss-Durkee hostility inventory and characteristics of object-relations by Bell object relations and reality testing inventory - form O. Subjects with migraine express significantly more negativism, indirect aggressiveness, irritability, hostility, suspicion and feelings of guilt than subject without recurrent headaches, while there are no differences in physical and verbal aggressiveness. There are less significant differences among subjects with different types of headache (migraine, migrainous disorder, non-migrainous headaches. Subjects with migraine and subjects without recurrent headaches differ significantly in characteristics of object-relations, subjects with migraine having more disturbed object-relations. Subject with different types of headaches do not differ in characteristics of object-relations. It is concluded that subjects with migraine have a raised level of aggressiveness, especially of indirect forms, which can indicate non-neutralized aggressiveness, and their object-relations are more disturbed.

  4. Big bang nucleosynthesis with a stiff fluid

    International Nuclear Information System (INIS)

    Dutta, Sourish; Scherrer, Robert J.

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density ρ S that scales as a -6 , where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking ρ S10 and ρ R10 to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by ΔY p =0.00024(ρ S10 /ρ R10 ). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T * , where we find T * =0.55 MeV. Current estimates of the primordial 4 He abundance give the constraint on a stiff fluid energy density of ρ S10 /ρ R10 <30.

  5. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  6. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  7. Thermal mixing of two miscible fluids in a T-shaped microchannel.

    Science.gov (United States)

    Xu, Bin; Wong, Teck Neng; Nguyen, Nam-Trung; Che, Zhizhao; Chai, John Chee Kiong

    2010-10-01

    In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.

  8. Micro/Nanospheres Generation by Fluid-Fluid Interaction Technology: A Literature Review.

    Science.gov (United States)

    Lei, Lei; Bergstrom, Don; Zhang, Bing; Zhang, Hongbo; Yin, Ruixue; Song, Ki-Young; Zhang, Wenjun

    2017-01-01

    This review focuses on the fundamental fluid mechanics which governs the generation of micro/nanospheres. The micro/nanosphere generation process has gathered significant attention in the past two decades, since micro/nanospheres are widely used in drug delivery, food science, cosmetics, and other application areas. Many methods have been developed based on different operating principles, such as microfluidic methods, electrospray methods, chemical methods, and so forth. This paper focuses on microfluidic methods. Although the structure of the microfluidic devices may be different, the operating principles behind them are often very similar. Following an initial discussion of the fluid mechanics related to the generation of microspheres, various design approaches are discussed, including T-junction, flow focusing, membrane emulsification, modified T-junction, and double emulsification methods. The advantages and problems associated with each method are also discussed. Next, the most commonly used computational fluid dynamics (CFD) methods are reviewed at three different levels: microscopic, mesoscopic, and macroscopic. Finally, the issues identified in the current literature are discussed, and some suggestions are offered regarding the future direction of technology development related to micro/nanosphere generation. Few relevant patents to the topic have been reviewed and cited. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Fluid-mediated redox transfer in subduction zones: Measuring the intrinsic fO2 of slab fluids in the lab

    Science.gov (United States)

    Iacovino, K.; Till, C. B.

    2017-12-01

    the redox exchange reaction responsible for these fluid characteristics. These data suggest the dehydration of slab serpentine and the derivative fluid may play an important role in controlling the redox of arc magmas and the sub-arc mantle.

  10. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  11. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  12. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  13. Tailoring peritoneal dialysis fluid for optimal acid-base targets.

    Science.gov (United States)

    Feriani, Mariano

    2009-01-01

    Mild derangements of acid-base status are common features in peritoneal dialysis patients, metabolic acidosis being the most frequent alteration. One of the main tasks of dialysis is to correct these derangements and the target is the normalization of the acid-base parameters since they affect several organs and functions. Since factors affecting acid-base homeostasis are intrinsic characteristics of the individual patient (metabolic acid production, distribution space for bicarbonate, dialytic prescription, etc.), it is not surprising that only relatively few patients achieve the normal range. Only a certain modulation of buffer infusion by using different buffer concentrations in the dialysis fluid may ensure a good correction in a large percentage of patients.

  14. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  15. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  16. Investigation of magnetic fluids exhibiting field-induced increasing loss peaks

    International Nuclear Information System (INIS)

    Fannin, P.C.; Marin, C.N.; Couper, C.

    2010-01-01

    A theoretical analysis to explain an increase of the Brownian loss peak with increasing polarizing field, H, in a magnetic fluid, is presented. The model is based on the competition between the Brownian and Neel relaxation processes. It is demonstrated that in magnetic fluids with particles having small anisotropy constant, small average magnetic diameter and narrow particle size distribution an increase of the Brownian loss peak with the polarizing field can be observed. The theoretical results are compared with the experimental results of an Isopar M-based magnetic fluid with magnetite particles stabilized with oleic acid and the model explains qualitatively the main characteristics of the experimental results.

  17. The friction control of magnetic fluid in the Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Labkovich, O.N., E-mail: olji@tut.by; Reks, A.G.; Chernobai, V.A.

    2017-06-01

    In the work characteristic areas of magnetic fluid flow are experimentally determined in the gap between the cylinders: the area of strong dipole-dipole interaction between magnetite particles 041,2. For areas with high flow losses in viscous friction is shown the possibility of reducing the introduction of magnetic fluid of carbon nanotubes and creating a rotating magnetic field. - Highlights: • Typical areas of magnetic fluid flow are determined in the gap. • Influence of dipole-dipole interaction of magnetite particles on the viscous friction. • Features of Taylor vortex flow.

  18. Fluid effects on the core seismic behavior of a liquid metal reactor

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2004-01-01

    In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts

  19. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  20. Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats.

    Science.gov (United States)

    Musi, Barbara; Braide, Magnus; Carlsson, Ola; Wieslander, Anders; Albrektsson, Ann; Ketteler, Markus; Westenfeld, Ralf; Floege, Jürgen; Rippe, Bengt

    2004-01-01

    Long-term peritoneal dialysis (PD) leads to structural and functional changes in the peritoneum. The aim of the present study was to investigate the long-term effects of PD fluid components, glucose and glucose degradation products (GDP), and lactate-buffered solution on morphology and transport characteristics in a nonuremic rat model. Rats were subjected to two daily intraperitoneal injections (20 mL/day) during 12 weeks of one of the following: commercial PD fluid (Gambrosol, 4%; Gambro AB, Lund, Sweden), commercial PD fluid with low GDP levels (Gambrosol trio, 4%; Gambro AB), sterile-filtered PD fluid (4%) without GDP, or a glucose-free lactate-buffered PD fluid. Punctured and untreated controls were used. Following exposure, the rats underwent a single 4-hour PD dwell (30 mL, 4% glucose) to determine peritoneal function. Additionally, submesothelial tissue thickness, percentage of high mesothelial cells (perpendicular diameter > 2 microm), vascular density, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF) beta1 mRNA expression were determined. Submesothelial collagen concentration was estimated by van Gieson staining. Submesothelial tissue thickness and vascular density, mediated by VEGF and TGFbeta production, in the diaphragmatic peritoneum increased significantly in rats exposed to any PD fluid. Gambrosol induced a marked increased fibrosis of the hepatic peritoneum. A significant increase in high mesothelial cells was observed in the Gambrosol group only. Net ultrafiltration was reduced in the Gambrosol and in the glucose-free groups compared to untreated controls. Small solute transport was unchanged, but all groups exposed to fluids showed significantly increased lymph flow. Our results show that long-term exposure to different components of PD fluids leads to mesothelial cell damage, submesothelial fibrosis, and neoangiogenesis. Mesothelial cell damage could be connected to the presence of GDP; the other changes were

  1. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  2. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  3. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    Science.gov (United States)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  4. An Assessment of Health Related Quality of Life in a Male Prison Population in Greece Associations with Health Related Characteristics and Characteristics of Detention

    Directory of Open Access Journals (Sweden)

    Constantinos Togas

    2014-01-01

    Full Text Available Background. Prisoners constitute a group with increased health and social care needs. Although implementing policies that aim at improving outcomes within this population should be a priority area, studies that attempt to assess health outcomes and health related quality of life (HRQoL in this population are limited. Aim. To assess HRQoL in a prison population in Greece and to explore the relationship between HRQoL and a set of individual sociodemographic and health related characteristics and characteristics of detention. Methods. A cross-sectional study involving 100 male prisoners was conducted in the prison of Corinth in Greece. HRQoL was assessed through the use of the SF-36 and the EQ-5D. Results. The mean physical and mental summary scores of the SF-36 were 55.33 and 46.82, respectively. The EQ-VAS mean score was 76.41%, while the EQ-5D index was 0.72. Multivariate analysis identified a statistical relationship between HRQoL and the conditions of detention, controlling for the effect of sociodemographic characteristics, morbidity, and mental problems. The use of narcotics in particular is significantly associated with lower HRQoL. Conclusions. Implementation of policies that aim at preventing the use of narcotics within the prison environment is expected to contribute to improved HRQoL in this population.

  5. Analyses of fluid flow and heat transfer inside calandria vessel of CANDU-6 reactor using CFD

    International Nuclear Information System (INIS)

    Yu, Seon Oh; Kim, Man Woong; Kim, Hho Jung

    2005-01-01

    In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a Loss Of Coolant Accident (LOCA) with coincident Loss Of Emergency Core Cooling (LOECC). as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines

  6. Outdoor play among children in relation to neighborhood characteristics : A cross-sectional neighborhood observation study

    NARCIS (Netherlands)

    Aarts, M.J.; de Vries, Sanne I; van Oers, J.A.M.; Schuit, A.J.

    2012-01-01

    Background: Although environmental characteristics as perceived by parents are known to be related to children's outdoor play behavior, less is known about the relation between independently measured neighborhood characteristics and outdoor play among children. The purpose of this study was to

  7. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    Science.gov (United States)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  8. Capillary condensation and orientational ordering of confined polar fluids.

    Science.gov (United States)

    Gramzow, Matthias; Klapp, Sabine H L

    2007-01-01

    The phase behavior and the orientational structure of polar model fluids confined to slit pores is investigated by means of density functional theory in a modified mean-field approximation. We focus on fluid states and further assume a uniform number density throughout the pore. Our results for spherical dipolar particles with additional van der Waals-like interactions (Stockmayer fluids) reveal complex fluid-fluid phase behavior involving condensation and first- and second-order isotropic-to-ferroelectric phase transitions, where the ferroelectric ordering occurs parallel to the confining walls. The relative importance of these phase transitions depends on two "tuning" parameters, that is the strength of the dipolar interactions (relative to the isotropic attractive ones) between fluid particles, and on the pore width. In particular, in narrow pores the condensation transition seen in bulk Stockmayer fluids is entirely suppressed. For dipolar hard spheres, on the other hand, the impact of confinement consists in a decrease of the isotropic-to-ferroelectric transition temperatures. We also demonstrate that the local orientational structure is inhomogeneous and anisotropic even in globally isotropic systems, in agreement with computer simulation results.

  9. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  10. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  11. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  12. Fluid-structure interaction and its effect on the performance of composite structures under air-blast loading

    Directory of Open Access Journals (Sweden)

    E Wang

    2016-09-01

    Full Text Available Three material systems: E-glass Vinyl-Ester (EVE composites, sandwich composites with EVE facesheet and monolithic foam core (2 different core thicknesses, and monolithic aluminum alloy plates, were subjected to shock wave loading to study their blast response and fluid-structure interaction behaviors. High-speed photography systems were utilized to obtain the real-time side-view and back face deformation images. A 3-D Digital Image Correlation (DIC technique was used to analyze the real-time back face displacement fields and subsequently obtain the characteristic fluid-structure interaction time. The reflected pressure profiles and the deflection of the back face center point reveal that the areal density plays an important role in the fluid-structure interaction. The predictions from Taylor's model (classical solution, does not consider the compressibility and model by Wang et al. (considers the compressibility were compared with the experimental results. These results indicated that the model by Wang et al. can predict the experimental results accurately, especially during the characteristic fluid-structure interaction time. Further study revealed that the fluid-structure interaction between the fluid and the sandwich composites cannot be simplified as the fluid-structure interaction between the fluid and the facesheet. Also, it was observed that the core thickness affects the fluid-structure interaction behavior of sandwich composites.

  13. Vertically aligned carbon nanotubes for sensing unidirectional fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Keivan, E-mail: k_kiani@kntu.ac.ir

    2015-05-15

    From applied mechanics points of view, potential application of ensembles of single-walled carbon nanotubes (SWCNTs) as fluid flow sensors is aimed to be examined. To this end, useful nonlocal analytical and numerical models are developed. The deflection of the ensemble of SWCNTs at the tip is introduced as a measure of its sensitivity. The influences of the length and radius of the SWCNT, intertube distance, fluid flow velocity, and distance of the ensemble from the leading edge of the rigid base on the deflection field of the ensemble are comprehensively examined. The obtained results display how calibration of an ensemble of SWCNTs can be methodically carried out in accordance with the characteristics of the ensemble and the external fluid flow.

  14. Potential characteristics that relate to teachers mathematics-related beliefs

    Science.gov (United States)

    Purnomo, Y. W.; Aziz, T. A.; Pramudiani, P.; Darwis, S.; Suryadi, D.

    2018-01-01

    A characteristic of the persons was very potential to affect the beliefs they held. This study examines whether there was a significant difference between the beliefs factors with characteristics such as gender, teaching experience, certification status, and grade level assignments. There were 325 primary school teachers in East Jakarta who participated in this research. MANOVA was applied to analyze the data. The findings of this study indicate that only on teaching experience, there was a significant difference between the beliefs held by the teachers, i.e. teachers who have 11-20 years teaching experience were more likely to think absolute than constructivism. Moreover, there was no difference between each belief they held with the other characteristics.

  15. Characteristics of the USA dairy herd as related to management and demographic elements

    Science.gov (United States)

    The data characteristics of the United States dairy herd related to animals enrolled in milk recording (dairy herd improvement) are the basic foundation and important influencers for the management and genetic progress achieved in a population or animal production unit. The amount, characteristics ...

  16. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  17. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  18. Numerical assessment and comparison of heat transfer characteristics of supercritical water in bare tubes and tubes with heat transfer enhancing appendages

    International Nuclear Information System (INIS)

    Farah, Amjad; Harvel, Glenn; Pioro, Igor

    2015-01-01

    Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. A numerical study on heat transfer to supercritical water (SCW) flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the SST k-ω turbulence model. The 3D mesh consists of a 1/8 section (45deg radially) of a bare tube. The numerical results on wall temperature distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The same geometry is then simulated with an orifice to study the effect of geometrical perturbation on the flow and heat transfer characteristics of SCW. The orifice is placed areas to test the effect on normal, deteriorated and enhanced heat transfer regimes. The flow effects and heat transfer characteristics will be studied around the appendages to arrive at a fundamental understanding of the phenomena related to supercritical water turbulence. (author)

  19. Making a Magnetorheological Fluid from Mining Tailings

    Science.gov (United States)

    Quitian, G.; Saldarriaga, W.; Rojas, N.

    2017-12-01

    We have obtained magnetite mining tailings and used it to fabricate a magnetorheological fluid (MRF). Mineralogical and morphological characteristics were determined using X-ray diffraction (XRD) and energy dispersive spectrometry (EDS), as well as size and geometry for the obtained magnetite. Finally, the fabricated MRF was rheologically characterized in a device attached to a rheometer. The application of a magnetic field of 0.12 Tesla can increase the viscosity of the MRF by more than 400 pct. A structural formation should occur within the fluid by a reordering of particles into magnetic columns, which are perpendicular to the flow direction. These structures give the fluid an increased viscosity. As the magnetic field increases, the structure formed is more resistant, resulting in an increased viscosity. One can appreciate that with a value equal to or less than 0.06 Tesla of applied magnetic field, many viscosity values associated with the work area of the oils can be achieved (0.025 and 0.34 Pa s).

  20. A study on self-excited sloshing due to the fluid discharge over a flexible weir

    International Nuclear Information System (INIS)

    Nagakura, Hiroshi; Kaneko, Shigehiko.

    1995-01-01

    An analytical model for the fluid-elastic instability as observed in Super-Phenix-1 LMFBR is proposed. This fluid-structure system is constituted by the flexible weir and adjoining fluid plenums, and the fluid is discharged from the upstream plenum to the downstream plenum over a flexible weir. The characteristic equation of the system is derived for the case in which the weir vibrates at the frequency of the downstream plenum sloshing. The effects of the fluid level difference between the upstream and the downstream plenum and weir rigidity are examined, and the mechanism for instability is discussed. (author)

  1. Simulated behavior of drilling fluid discharges off Southern California

    International Nuclear Information System (INIS)

    Brandsma, M.G.; Kolpack, R.L.; Dickey, T.D.; Balcom, B.J.

    1990-01-01

    This paper focuses on the computer-simulated short-term behavior of drilling-fluid solids from the time of release to initial deposition on the ocean bottom. The geographic areas of primary interest were the Santa Barbara Channel and Point Conception regions off southern California. Simulations (53) were conducted for water depths ranging from 30 to 750 m. Oceanographic parameters for several representative oceanic conditions were obtained from available field measurements in the area. Characteristics of representative drilling-fluid solids were formulated from information supplied by several offshore operators and by laboratory analyses of samples

  2. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  3. On the fluid mechanics of fires

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  4. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these

  5. Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Aitana Braza-Boïls

    Full Text Available UNLABELLED: Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. METHODS: Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222 by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. RESULTS: Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion , this "in vitro

  6. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  7. A Fluid Model for Performance Analysis in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Coupechoux Marceau

    2010-01-01

    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  8. Precision Fluid Management in Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-01-01

    Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.

  9. Fluid Overload and Cumulative Thoracostomy Output Are Associated With Surgical Site Infection After Pediatric Cardiothoracic Surgery.

    Science.gov (United States)

    Sochet, Anthony A; Nyhan, Aoibhinn; Spaeder, Michael C; Cartron, Alexander M; Song, Xiaoyan; Klugman, Darren; Brown, Anna T

    2017-08-01

    To determine the impact of cumulative, postoperative thoracostomy output, amount of bolus IV fluids and peak fluid overload on the incidence and odds of developing a deep surgical site infection following pediatric cardiothoracic surgery. A single-center, nested, retrospective, matched case-control study. A 26-bed cardiac ICU in a 303-bed tertiary care pediatric hospital. Cases with deep surgical site infection following cardiothoracic surgery were identified retrospectively from January 2010 through December 2013 and individually matched to controls at a ratio of 1:2 by age, gender, Risk Adjustment for Congenital Heart Surgery score, Society of Thoracic Surgeons-European Association for Cardiothoracic Surgery category, primary cardiac diagnosis, and procedure. None. Twelve cases with deep surgical site infection were identified and matched to 24 controls without detectable differences in perioperative clinical characteristics. Deep surgical site infection cases had larger thoracostomy output and bolus IV fluid volumes at 6, 24, and 48 hours postoperatively compared with controls. For every 1 mL/kg of thoracostomy output, the odds of developing a deep surgical site infection increase by 13%. By receiver operative characteristic curve analysis, a cutoff of 49 mL/kg of thoracostomy output at 48 hours best discriminates the development of deep surgical site infection (sensitivity 83%, specificity 83%). Peak fluid overload was greater in cases than matched controls (12.5% vs 6%; p operative characteristic curve analysis, a threshold value of 10% peak fluid overload was observed to identify deep surgical site infection (sensitivity 67%, specificity 79%). Conditional logistic regression of peak fluid overload greater than 10% on the development of deep surgical site infection yielded an odds ratio of 9.4 (95% CI, 2-46.2). Increased postoperative peak fluid overload and cumulative thoracostomy output were associated with deep surgical site infection after pediatric

  10. Study of the hard-disk system at high densities: the fluid-hexatic phase transition.

    Science.gov (United States)

    Mier-Y-Terán, Luis; Machorro-Martínez, Brian Ignacio; Chapela, Gustavo A; Del Río, Fernando

    2018-06-21

    Integral equations of uniform fluids have been considered unable to predict any characteristic feature of the fluid-solid phase transition, including the shoulder that arises in the second peak of the fluid-phase radial distribution function, RDF, of hard-core systems obtained by computer simulations, at fluid densities very close to the structural two-step phase transition. This reasoning is based on the results of traditional integral approximations, like Percus-Yevick, PY, which does not show such a shoulder in hard-core systems, neither in two nor three dimensions. In this work, we present results of three Ansätze, based on the PY theory, that were proposed to remedy the lack of PY analytical solutions in two dimensions. This comparative study shows that one of those Ansätze does develop a shoulder in the second peak of the RDF at densities very close to the phase transition, qualitatively describing this feature. Since the shoulder grows into a peak at still higher densities, this integral equation approach predicts the appearance of an orientational order characteristic of the hexatic phase in a continuous fluid-hexatic phase transition.

  11. Performance characteristics of plane-wall venturi-like reverse flow diverters

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems

  12. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  13. Energy transport in cooling device by magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroshi, E-mail: hyamaguc@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyo-tanabe, Kyoto 610-0321 (Japan); Iwamoto, Yuhiro [Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  14. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  15. Numerical Investigation of the Performance of Kenics Static Mixers for the Agitation of Shear Thinning Fluids

    OpenAIRE

    A. Mahammedi; H. Ameur; A. Ariss

    2017-01-01

    The laminar flow of non-Newtonian fluids through a Kenics static mixer is investigated by using the CFD (Computational Fluid Dynamics) tool. The working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. We focus on the effect of Reynolds number, fluid properties, twist angle and blade pitch on the flow characteristics and energy cost. The pressure drop information obtained from the simulations was compared to several experimental correlations and data available in the...

  16. Flow of two stratified fluids in an open channel with addition of fluids along the channel length

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1980-01-01

    It is shown that two stably stratified fluids flowing in an open channel have two critical flow conditions. The one at higher flowrates is equivalent to the choked flow condition of a single fluid over a broad-crested weir, when the Froude number is unity. The lower critical condition imposes restrictions, which define the system if fluids are added progressively along the channel length and the flowrates increase from low to high values. However, if the flowrate does not become sufficiently large to pass through the lower critical condition, this condition will then define a form of choking, which again determines the system. It is shown that an important special case, with the proportional flowrates of the two fluids kept constant, has an analytical solution in which the relative depths of the fluids is a constant along the channel. Other systems must be solved numerically. (orig.)

  17. Fluid dynamics characteristics of IFMIF Li-jet under deuteron load

    International Nuclear Information System (INIS)

    Fuertes, F.M.; Casal, N.; Barbero, R.; Garcia, A.; Branas, B.; Riccardi, B.

    2006-01-01

    IFMIF is an accelerator-based neutron source with the purpose of testing and fully qualify fusion candidate materials. Two 40 MeV deuteron beams, 125 mA current each, strike a target of liquid lithium flowing over a concave back-plate. The deuteron-lithium stripping reactions produce an intense high energy neutron flux which simulates the fusion reactor irradiation. To remove the beam power deposited on it (up to 10 MW), the lithium jet must have a speed around 20 m/s, which may give rise to flow instabilities. However, a stable liquid free surface is a very critical requirement of the target system, otherwise the neutron field could be altered. Therefore, the possible occurrences that could affect the hydrodynamical stability of the lithium jet are being examined in the frame of EFDA Technology Workprogramme. This paper summarizes the studies of the fluid dynamics characteristics of the lithium jet under the deuteron heat load, based on applications of the CFX 5.7 code, a commercial Navier-Stokes equations solver with specific modelling of turbulence, like the classical k - ε among others. Significant effort has been dedicated to develop an optimized and reliable numerical mesh, able to illustrate the behaviour of the lithium free surface and other issues like heat transport along the stream and to the back-plate, and lithium vaporization. First activities were dedicated to explore the effects on the results of a three-dimensional unstructured numerical mesh covering the area from the nozzle upstream the target to the exit of the target region. Subsequently, a more effective approach to this issue has been undertaken by developing a fine two-dimensional mesh along the longitudinal flow direction, with refined areas in the free surface and close to the wall regions. The numerical convergence criteria have been found to be strongly sensitive with respect to small modifications of the adopted unstructured mesh. Owing to the uncertainties associated with modelling

  18. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.

    Science.gov (United States)

    Woodcock, T E; Woodcock, T M

    2012-03-01

    I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.

  19. Characterization of sugar cane bagasse: part II: fluid dynamic characteristics; Caracterizacion del bagazo de la cana de azucar: parte II: caracteristicas fluidodinamicas

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Guillermo A. Roca [Universidad de Oriente (CEEFE/UO), Santiago de Cuba (Cuba). Centro de Estudios de Eficiencia Energetica], Emails: roca@ceefe.uo.edu.cu, grocabayamon@hotmail.com; Sanchez, Caio Glauco [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], Email: caio@fem.unicamp.br; Gomez, Edgardo Olivares [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: gomez@bioware.com.br, egomez@energiabr.org.br; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (NIPE/FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Nucleo Interdisciplinar de Planejamento Energetico], Email: cortez@reitoria.unicamp.br

    2006-07-01

    This paper is the second part of a general study about physic-geometrical and fluid-dynamics characteristic of the sugarcane bagasse particles. These properties has relevant importance on the dimensions and operation of the equipment for transport and treatment of solid particles. Was used the transport column method for the determination of the drag velocity and later on the drag coefficient of the sugarcane bagasse particles was calculated. Both, the installation and experimental technique used for materials of these characteristics are simple and innovations tools, but rigorous conceptually, thus the results obtained are reliable. Were used several sugarcane bagasse fractions of particles of known mean diameter. The properties determined were expressed as a function of Reynolds and Archimedes a dimensional criteria. The best considered model from statistical analysis (model from equation 8) was statistically validated for determined ranges of Reynolds and Archimedes. These empirical equations can be used to determine these properties in the range and conditions specified and also for modeling some processes where these fractions are employed. (author)

  20. Fluid inclusion study of the Witwatersrand gold-uranium ores

    International Nuclear Information System (INIS)

    Shepherd, T.J.

    1977-01-01

    Fluid inclusions, preserved in quartz pebbles of the uraniferous and auriferous Precambrian oligomictic conglomerates of the Witwatersrand Basin, provide a unique insight into the genesis of the ores. Using differences in inclusion characteristics in conjunction with intra- and inter-deformational textures for adjacent pebbles, a distinction is made between pre- and post-depositional inclusions. Excluding those related to subsequent brittle fracture, the former comprise five principal types; two of which are distinguished by the development of liquid carbon dioxide. Collectively they indicate a moderate to high pressure-temperature environment of vein quartz formation. Systematic variation in the relative abundance of these inclusion assemblages for different sections of the orefield demonstrates the importance of well-defined provenance areas or multiple entry points into the basins. A marked sympathetic relationship between uraniferous banket ores and the presence of vein quartz rich in liquid carbon dioxide inclusions, together with a corresponding antipathetic relationship for gold, strongly suggests separate sources for the metals. The temporal and spatial aspects of the association 'U-CO 2 ' also imply a uranium influx into the basin from discrete areas of the hinterland contemporaneous with the sediments. Post-depositional inclusions are subordinate and offer no support for the alternative epigenetic model and show only a later interaction of relatively cool circulating groundwaters. A discussion is given of the probable nature and origin of uranium in the source rocks and its mode of transportation. In conclusion, a proposal is made for the use of applied fluid inclusion research in the evaluation of and exploration for similar deposits. (author)

  1. Trauma in relation to psychological characteristics in women with eating disorders

    Directory of Open Access Journals (Sweden)

    Bernadetta Izydorczyk

    2017-05-01

    Full Text Available Background The aim of the article was to present the results of the author’s own study that sought relationships between having experienced psychological trauma and the psychological characteristics of people with eating disorders. The basic research question was the following: To what degree are the traumatic events experienced by females with various types of eating disorders related to these females’ psychological characteristics? Participants and procedure The sample comprised 120 females with eating disorders: 30 females aged between 20 and 26 diagnosed with bulimia nervosa, 31 females diagnosed with binge-eating disorder and 59 females aged between 20 and 26 diagnosed with anorexia nervosa. The research was carried out in the years 2007-2012 in outpatient clinics treating neuroses and eating disorders and mental health outpatient clinics in Poland. The study employed a clinical and psychometric (i.e., questionnaires for measuring psychological characteristics approach. Results Statistical analysis confirmed the existence of significant differences between the females with eating disorders who have experienced relational trauma(s in their lives (particularly in their childhood and adolescence and those who did not reveal such experience. The females with anorexia and bulimia who have also experienced psychological, physical or sexual violence revealed a significantly different, higher level of bulimic thinking and tendencies for excessively uncontrolled, impulsive behaviors towards food and nutrition (i.e., vomit-provoking and other forms of body purgation, e.g. using purgative drugs and others than did females with no relational trauma experience. Conclusions The frequency of relational trauma occurrence was significantly higher for females with bulimia and bulimic anorexia. For females with restrictive anorexia and binge-eating disorder, no significantly frequent occurrence of trauma was observed. Diagnosing the occurrence of

  2. Light-cone reduction vs. TsT transformations: a fluid dynamics perspective

    Science.gov (United States)

    Dutta, Suvankar; Krishna, Hare

    2018-05-01

    We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.

  3. Method of measuring the degree of fluid pollution

    International Nuclear Information System (INIS)

    Mortensen, A.; Hammer, E.A.

    1995-01-01

    The invention relates to an method and device for measuring the degree of pollution from particulates in fluids. The device consists of an emitter sending out green and red light in succession through the fluid to a light recorder. The recorder itself includes a unit designed for comparing the measured intensity of light with the values of known pollution degree in fluids. 2 figs

  4. Biochemical Analysis of Synovial Fluid, Cerebrospinal Fluid and Vitreous Humor at Early Postmortem Intervals in Donkeys

    Directory of Open Access Journals (Sweden)

    Doha Yahia

    2014-01-01

    Full Text Available Biochemical analysis of body fluids after death is a helpful tool in veterinary forensic medicine. Synovial fluid, cerebrospinal fluid (CSF and vitreous humor are easily accessible and well preserved from contamination. Five donkeys (Equus africanus asinus aged 1 - 2 years old were subjected to the study. Samples (Synovial fluid, CSF and vitreous humor were collected before death (antimortem and then at 2, 4, 6, 8, 10 and 12 hours postmortem. Samples were analyzed for glucose, chloride, sodium, magnesium, potassium, enzymes and total protein. Synovial fluid analysis showed that glucose concentration started to decrease at 6 hours postmortem, while magnesium level increased with time. Other parameters were more stable. CSF analysis showed several changes related to time after death as the decrease in glucose and sodium levels, and the increased levels of potassium, magnesium, calcium and total protein. Vitreous analysis revealed a reduction in glucose level and increased potassium and magnesium concentrations. The present study concluded that biochemical analysis of synovial fluid, vitreous humor and CSF can help in determination of time since death in donkeys. This study recommend using CSF for determination of early post-mortem intervals.

  5. Second trimester amniotic fluid glucose, uric acid, phosphate, potassium, and sodium concentrations in relation to maternal pre-pregnancy BMI and birth weight centiles.

    Science.gov (United States)

    Fotiou, Maria; Michaelidou, Alexandra Maria; Athanasiadis, Apostolos P; Menexes, Georgios; Symeonidou, Maria; Koulourida, Vasiliki; Ganidou, Maria; Theodoridis, Theodoros D; Tarlatzis, Basil C

    2015-05-01

    To study the evolution profile of amniotic fluid (AF) glucose, uric acid, phosphate, potassium, and sodium, in the second trimester of pregnancy, and explore the possible relations between the concentration of these components and maternal, as well as neonatal characteristics. AF of 52 pregnant women was analyzed using an automatic multichannel analyzer. Maternal age, pre-pregnancy Body Mass Index (BMI), inter-pregnancy intervals, and smoking status were derived from questionnaires. Information on pregnancy and delivery was collected from medical records. Uric acid increased (r = 0.423, p pregnancy (r = -0.590, p pregnancy BMI was significantly correlated with AF uric acid concentration (r = 0.460, p sodium (r = 0.254, p = 0.070) levels. Multiple linear regression indicated that mid-trimester AF uric acid and phosphate levels were significantly related to birth weight centiles (R(2)( )= 0.345, p pregnancy BMI is significantly correlated with AF uric acid concentration, and (c) in appropriate for gestational age infants, AF phosphate and uric acid levels may serve as potential biomarkers of birth weight centiles. Further studies on AF composition may help to unravel the biochemical pathways underlying fetal development and could offer insight on the potential impact of maternal nutritional management on fetal growth regulation.

  6. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  7. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Lee, Kyung Won [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine; Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of); Han, Sang Wook; Kang, Heung Sik [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs.

  8. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    International Nuclear Information System (INIS)

    Chung, Hye Won; Lee, Kyung Won; Han, Sang Wook; Kang, Heung Sik

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs

  9. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.

    Science.gov (United States)

    Weiss, Volker C

    2010-07-22

    One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.

  10. The Synovial Lining and Synovial Fluid Properties after Joint Arthroplasty

    Directory of Open Access Journals (Sweden)

    Michael Shang Kung

    2015-05-01

    Full Text Available The lubrication of the cartilaginous structures in human joints is provided by a fluid from a specialized layer of cells at the surface of a delicate tissue called the synovial lining. Little is known about the characteristics of the fluids produced after a joint arthroplasty procedure. A literature review was carried out to identify papers that characterized the synovial lining and the synovial fluids formed after total hip or knee arthroplasty. Five papers about synovial lining histology and six papers about the lubricating properties of the fluids were identified. The cells making up the re-formed synovial lining, as well as the lining of interface membranes, were similar to the typical Type A and B synoviocytes of normal joints. The synovial fluids around joint replacement devices were typically lower in viscosity than pre-arthroplasty fluids but the protein concentration and phospholipid concentrations tended to be comparable, suggesting that the lining tissue function was preserved after arthroplasty. The widespread, long-term success of joint arthroplasty suggests that the lubricant formed from implanted joint synovium is adequate for good clinical performance in the majority of joints. The role the fluid plays in component wear or failure is a topic for future study.

  11. A field application of nanoparticle-based invert emulsion drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alexey S.; Husein, Maen, E-mail: mhusein@ucalgary.ca [University of Calgary, Department of Chemical & Petroleum Engineering (Canada); Hareland, Geir [Oklahoma State University, Department of Chemical Engineering (United States)

    2015-08-15

    Application of nanotechnology in drilling fluids for the oil and gas industry has been a focus of several recent studies. A process for the in situ synthesis of nanoparticles (NPs) into drilling fluids has been developed previously in our group and showed that calcium-based NPs (CNPs) and iron-based NPs (INPs), respectively, with concentrations of 0.5–2.0 wt% can dramatically improve filtration properties of commercial drilling fluids in a laboratory environment. In this work, a modified process for the emulsion-based synthesis of NPs on a 20 m{sup 3} volume and its subsequent full-scale field testing are presented. Comparison between NP carrier fluids prepared under controlled environment in the laboratory and those prepared on a large scale in a mixing facility revealed very little variation in the main characteristics of the drilling fluid; including the size of the solid constituents. Transmission electron microscopy photographs suggest an average CNP particle size in the carrier fluid of 51 ± 11 nm. Results from the full-scale field test showed that total mud losses while drilling with CNP-based invert emulsion were on average 27 % lower than in the case of conventional fluids. This loss prevention falls within the range observed in the laboratory.

  12. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    Science.gov (United States)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  13. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  14. Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)

    International Nuclear Information System (INIS)

    Andros, F.E.; Florschuetz, L.W.

    1982-01-01

    Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references

  15. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  16. Experimental investigation on the spray characteristics of power-law fluid in a swirl injector

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Fuqiang; Chen, Shixing; Guo, Jinpeng; Jiao, Kui; Du, Qing [State Key Laboratory of Engines, Tianjin University, Tianjin, 300072 (China); Chang, Qing, E-mail: duqing@tju.edu.cn [Wuxi Fuel Injection Equipment Research Institute, China FAW CO., Wuxi, 214063 (China)

    2017-06-15

    High-speed photography and 3D phase Doppler methods are used to obtain the swirl jet images, 3D velocities and size distribution of different droplets (including deionized water and two kinds of power-law fluid). For the power-law fluids, a short circular jet is formed after the nozzle exit at low pressure. Along the X direction, the distributions of axial velocity w and Sauter mean diameter (SMD) are symmetrical and increase from the center to both sides. The effect of injection pressure on the radial velocity u is not obvious. Along the Z axis, the absolute value of 3D velocities decreases to some extent with droplets moving downstream. The SMD decreases apparently with the increment of the distance along the Z axis at 1.0 MPa. (paper)

  17. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  18. Pleural fluid exchange in rabbits.

    Science.gov (United States)

    Stashenko, Gregg J; Robichaux, Amy; Lee, Y C Gary; Sanders, Jonathan R; Roselli, Robert J; Light, Richard W

    2007-07-01

    The study was designed to better characterize pleural fluid absorption in rabbits with the following two objectives: to determine the relative absorption of saline versus high-protein solutions, and to identify the relative rates of absorption of dextran molecules of varying sizes. Twenty New Zealand white rabbits received a 12-mL intrapleural injection of saline solution and a 10% protein solution on opposite sides, each solution containing dextran molecules with varying MWs. At sacrifice at 1, 4, 8, 18 and 24 h, the volume of pleural fluid and the concentrations of the dextran molecules were determined. Saline was absorbed faster than the high-protein fluid (P higher than those in the protein solution at all times after injection (P = 0.005; P higher-MW dextrans were cleared more slowly than the lower-MW dextrans in a continuously graded manner. Saline was absorbed faster than a solution with a high protein content. There was a continuous spectrum in the rate of absorption of the dextran molecules, with the larger molecules being absorbed more slowly.

  19. Critical discharge of fluids and gases

    International Nuclear Information System (INIS)

    Seewald, Michael

    2012-01-01

    The thermal hydraulic relations during discharge of fluids and gases are complex and a closed solution does not seem to be available. For the modeling of leakage accidents in nuclear power plants basic considerations are suitable for statements on the maximum mass flow, and thus the leak rate. The maximum mass flow is reached when the critical velocity is reached in the smallest cross section. This allows the appropriate design of safety systems for one-phase and two-phase flows. For German NPP simulators the hydrodynamics simulation program RELAP5-3D is used. The simulator center operates a 1:10 scale gas model of a two-loop PWR type reactor. The observable phenomena have occurred in nuclear power plants. The characteristics for a visualization of two-phase flows are not available in the simulation software and have to be added by correlations with experimental results. The realization of expectations on digital visualization techniques is discussed.

  20. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  1. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  2. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  3. Natural working fluids for solar-boosted heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chaichana, C.; Lu Aye [University of Melbourne, Victoria (Australia). International Technologies Centre, Department of Civil and Environmental Engineering; Charters, W.W.S. [University of Melbourne, Victoria (Australia). Department of Mechanical and Manufacturing Engineering

    2003-09-01

    The option of using natural working fluids as a substitute of R-22 for solar-boosted heat pumps depends not only upon thermal performance and hazardous rating but also on potential impacts on the environment. This paper presents the comparative assessment of natural working fluids with R-22 in terms of their characteristics and thermophysical properties, and thermal performance. Some justification is given for using natural working fluids in a solar boosted heat pump water heater. The results show that R-744 is not suitable for solar-boosted heat pumps because of its low critical temperature and high operational pressures. On the other hand, R-717 seems to be a more appropriate substitute in terms of operational parameters and overall performance. However, major changes in the heat pumps are required. R-290 and R-1270 are identified as candidates for direct drop-in substitutes for R-22. (author)

  4. Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth.

    Science.gov (United States)

    Clercx, H J H; van Heijst, G J F; Zoeteweij, M L

    2003-06-01

    The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.

  5. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  6. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  7. Fluid Mechanics and Homeland Security

    Science.gov (United States)

    Settles, Gary S.

    2006-01-01

    Homeland security involves many applications of fluid mechanics and offers many opportunities for research and development. This review explores a wide selection of fluids topics in counterterrorism and suggests future directions. Broad topics range from preparedness and deterrence of impending terrorist attacks to detection, response, and recovery. Specific topics include aircraft hardening, blast mitigation, sensors and sampling, explosive detection, microfluidics and labs-on-a-chip, chemical plume dispersal in urban settings, and building ventilation. Also discussed are vapor plumes and standoff detection, nonlethal weapons, airborne disease spread, personal protective equipment, and decontamination. Involvement in these applications requires fluid dynamicists to think across the traditional boundaries of the field and to work with related disciplines, especially chemistry, biology, aerosol science, and atmospheric science.

  8. Revision of ISO 15859 Aerospace Fluid Standards

    Science.gov (United States)

    Greene, Benjamin; McClure, Mark B.

    2012-01-01

    A detailed review of ISO 15859 "Space Systems - Fluid Characteristics, Sampling and Test Methods" was performed An approach to revising Parts 1-9 and 11-13 was developed and concurred by the NASA Technical Standards Program Office. The approach was to align them with the highest level source documents, and not to program-specific requirements. The updated documents were prepared and presented.

  9. Fluids in micropores. II. Self-diffusion in a simple classical fluid in a slit pore

    International Nuclear Information System (INIS)

    Schoen, M.; Cushman, J.H.; Diestler, D.J.; Rhykerd, C.L. Jr.

    1988-01-01

    Self-diffusion coefficients D are computed for a model slit pore consisting of a rare-gas fluid confined between two parallel face-centered cubic (100) planes (walls) of rigidly fixed rare-gas atoms. By means of an optimally vectorized molecular-dynamics program for the CYBER 205, the dependence of D on the thermodynamic state (specified by the chemical potential μ, temperature T, and the pore width h) of the pore fluid has been explored. Diffusion is governed by Fick's law, even in pores as narrow as 2 or 3 atomic diameters. The diffusion coefficient oscillates as a function of h with fixed μ and T, vanishing at critical values of h, where fluid--solid phase transitions occur. A shift of the pore walls relative to one another in directions parallel with the walls can radically alter the structure of the pore fluid and consequently the magnitude of D. Since the pore fluid forms distinct layers parallel to the walls, a local diffusion coefficient D/sup (//sup i//sup )//sub parallel/ associated with a given layer i can be defined. D/sup (//sup i//sup )//sub parallel/ is least for the contact layer, even for pores as wide as 30 atomic diameters (∼100 A). Moreover, D/sup (//sup i//sup )//sub parallel/ increases with increasing distance of the fluid layer from the wall and, for pore widths between 16 and 30 atomic diameters, D/sup (//sup i//sup )//sub parallel/ is larger in the center of the pore than in the bulk fluid that is in equilibrium with the pore fluid. The opposite behavior is observed in corresponding smooth-wall pores, in which the discrete fluid--wall interactions have been averaged by smearing the wall atoms over the plane of the wall

  10. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  11. Piezooptic behavior of certain fluids

    International Nuclear Information System (INIS)

    Weiss, J.D.

    1985-01-01

    In this paper we present an analysis of pressure--volume data for certain optical fluids, which characterizes them by two parameters: their bulk moduli and the pressure derivative of their bulk moduli, both evaluated at zero pressure. We then relate their refractive-index changes to density and pressure using this analysis and the Lorentz-Lorenz equation with a density-dependent polarizability. An example of the use of such fluids in a fiber-optic pressure gauge being developed at Sandia is also discussed

  12. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications.

    Science.gov (United States)

    Moraghebi, Roksana; Kirkeby, Agnete; Chaves, Patricia; Rönn, Roger E; Sitnicka, Ewa; Parmar, Malin; Larsson, Marcus; Herbst, Andreas; Woods, Niels-Bjarne

    2017-08-25

    Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. The potentially large donor base from caesarean section

  13. Proceedings of industrial applications of fluid mechanics

    International Nuclear Information System (INIS)

    Sherif, S.A.; Morrow, T.B.; Marshall, L.R.; Dalton, C.

    1990-01-01

    The is the fourth Forum on Industrial Applications of Fluid Mechanics sponsored by the Fluid Mechanics Committee of the ASME Fluids Engineering Division. The Forum objective is to promote the discussion and interchange of current information on developing and state-of-the-art applications of fluid mechanics technology. The program is organized as a technical forum to encourage the presentation of new ideas, especially those which may be so innovative that a conservative review process might delay their dissemination to the fluids engineering community. Four sessions and a total of 17 papers are scheduled for this program. Three of the four sessions were devoted to contributed papers, while the fourth is a panel discussion with three invited presentations. All papers were reviewed editorially to assure that they are related to the forum theme The papers were not evaluated technically, and therefore carry no endorsement from the Fluid Mechanics Committee or the Fluids Engineering Division with regard to peer evaluation. The forum presentations will focus on specific applications of fluid mechanics technology. Lively discussion of the papers is encouraged at the forum. The Fluid Mechanics Committee plans to sponsor a forum with an industrial applications theme each year at the ASME Winter Annual Meeting. In 1991, the scope of the forum will be enlarged to include the topic of textile applications of fluid mechanics, and another panel session featuring speakers with industrial experience in different areas of fluid mechanics applications. In future years, it is anticipated that the forum will solicit papers from other areas where fluid mechanics technology is applied

  14. Hydrodynamic 'memory' of binary fluid mixtures

    International Nuclear Information System (INIS)

    Kalashnik, M. V.; Ingel, L. Kh.

    2006-01-01

    A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones

  15. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    Science.gov (United States)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  16. Cutaneous wart-associated HPV types: prevalence and relation with patient characteristics

    NARCIS (Netherlands)

    Bruggink, S.C.; de Koning, M.N.; Gussekloo, J.; Egberts, P.F.; Ter Schegget, J.; Feltkamp, M.C.; Bavinck, J.N.; Quint, W.G.V.; Assendelft, W.J.J.; Eekhof, J.A.H.

    2012-01-01

    BACKGROUND: Epidemiological data on cutaneous wart-associated HPV types are rare. OBJECTIVES: To examine the prevalence of cutaneous wart-associated HPV types and their relation with patient characteristics. STUDY DESIGN: Swabs were taken from all 744 warts of 246 consecutive immunocompetent

  17. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  18. Cooling transfer fluids: advantages, drawbacks, refrigerant circuit architecture; Les fluides frigoporteurs: avantages, inconvenients, apercu sur l`architecture des circuits frigoporteurs

    Energy Technology Data Exchange (ETDEWEB)

    Duminil, M. [Association Francaise du Froid (AFF), 75 - Paris (France)

    1997-12-31

    The advantages and inconvenients of indirect cooling systems are summarized: simplification of the cooling distribution from a single refrigerating unit, a potential for a larger range of refrigerants, cooling circuit size diminution, but energy consumption increase, lower evaporation temperature, etc. The various types and characteristics of single- and two-phase refrigerant and heat transfer fluids are described, and more especially two-phase liquid-vapour and liquid-solid fluids. Based on the example of a two-temperature-level refrigerating system in a supermarket, the general architecture of the cold distribution circuit and the architecture of the refrigerant circuit itself, are presented with their different types, involving direct or indirect, and centralized or semi-centralized systems

  19. Static characteristics of a pilot relief valve; Baransupisuton gata ririfu ben no sei tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Washio, S.; Yonguang YU; Nakamura, Y. [Okayama Univ. (Japan). School of Engineering

    1997-09-25

    Among a lot of hydraulic valves, relief valve is the most fundamental and important valve which takes change of pressure control. It is essential to know the working characteristics accurately, in order to predict the performance of . system. So far, the numerical simulation of relief valve has been tried and the mathematical models of individual component characteristics based on the knowledge of hydraulics are proposed. In this report, it was revealed that the static relation among the pressure drop, flow rate and opening area for a constriction can be represented, not by the traditional hydraulic orifice equation which has always been used for the purpose but by a new one including an additional pressure loss proportional to the flow rate and the fluid viscosity and inversely proportional to the square of the opening area. The new characteristic equation has proved to consistently forecast the experimental findings in which the rise in oil temperature results in an increase in the piston displacement, but causes little changes as regards regulated pressure. It has also turned out that contrary to conventional preconception, the fluid force exerted on a poppet is negligible. 6 refs., 14 figs., 1 tab.

  20. Conformal collineations and anisotropic fluids in general relativity

    International Nuclear Information System (INIS)

    Duggal, K.L.; Sharma, R.

    1986-01-01

    Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = μ) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter

  1. Two-perfect fluid interpretation of an energy tensor

    International Nuclear Information System (INIS)

    Ferrando, J.J.; Morales, J.A.; Portilla, M.

    1990-01-01

    There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained

  2. Phase characteristics of rheograms. Original classification of phase-related changes of rheos

    Directory of Open Access Journals (Sweden)

    Mikhail Y. Rudenko

    2014-05-01

    Full Text Available The phase characteristics of a rheogram are described in literature in general only. The existing theory of impedance rheography is based on an analysis of the form of rheogram envelopes, but not on the phase-related processes and their interpretation according to the applicable laws of physics. The aim of the present paper is to describe the phase-related characteristics of a rheogram of the ascending aorta. The method of the heart cycle phase analysis has been used for this purpose. By synchronizing an ECG of the aorta and a rheogram, an analysis of specific changes in the aorta blood filling in each phase is provided. As a result, the phase changes of a rheogram associated with the ECG phase structure are described and tabulated for first time. The author hereof offers his own original classification of the phase-related changes of rheograms.

  3. Fluid mechanics

    International Nuclear Information System (INIS)

    Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.

    2003-01-01

    This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows

  4. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  5. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, Kathryn A. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9 (Canada); Lindsay, Matthew B.J., E-mail: matt.lindsay@usask.ca [Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cruz-Hernández, Pablo [Department of Geology, University of Huelva, Campus ‘El Carmen’, E-21071 Huelva (Spain); Halferdahl, Geoffrey M. [Environmental Research and Development, Syncrude Canada Limited, Edmonton, Alberta T6N 1H4 (Canada)

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186 Mm{sup 3} of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n = 588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n = 284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10 m of the FFT. Major pore-water constituents included Na (880 ± 96 mg L{sup −1}) and Cl (560 ± 95 mg L{sup −1}); Ca (19 ± 4.1 mg L{sup −1}), Mg (11 ± 2.0 mg L{sup −1}), K (16 ± 2.3 mg L{sup −1}) and NH{sub 3} (9.9 ± 4.7 mg L{sup −1}) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO{sub 4} concentrations decreased sharply across the FFT–water interface. Geochemical modeling indicated that FeS{sub (s)} precipitation was favoured under SO{sub 4}-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO{sub 4}·2H{sub 2}O], and near saturation with respect to calcite [CaCO{sub 3}], dolomite [CaMg(CO{sub 3}){sub 2}] and siderite [FeCO{sub 3}]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS{sub (s)}, pyrite [FeS{sub 2}], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer

  6. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  7. Age-Related Decline in Spelling Ability: A Link with Fluid Intelligence?

    Science.gov (United States)

    Stuart-Hamilton, Ian; Rabbitt, Patrick

    1997-01-01

    On spelling tests taken by 159 adults over 50, younger subjects had significantly higher scores. Statistically removing effects of crystallized intelligence and education had no effect, but removing effects of fluid intelligence made the difference insignificant. Although spelling is considered a crystallized skill, in older people it may rely…

  8. Identifying job characteristics related to employed women's breastfeeding behaviors.

    Science.gov (United States)

    Spitzmueller, Christiane; Zhang, Jing; Thomas, Candice L; Wang, Zhuxi; Fisher, Gwenith G; Matthews, Russell A; Strathearn, Lane

    2018-05-14

    For employed mothers of infants, reconciliation of work demands and breastfeeding constitutes a significant challenge. The discontinuation of breastfeeding has the potential to result in negative outcomes for the mother (e.g., higher likelihood of obesity), her employer (e.g., increased absenteeism), and her infant (e.g., increased risk of infection). Given previous research findings identifying return to work as a major risk factor for breastfeeding cessation, we investigate what types of job characteristics relate to women's intentions to breastfeed shortly after giving birth and women's actual breastfeeding initiation and duration. Using job titles and job descriptors contained in a large Australian longitudinal cohort data set (N = 809), we coded job titles using the U.S. Department of Labor (DOL)'s Occupational Information Network (O*NET) database and extracted job characteristics. Hazardous working conditions and job autonomy were identified as significant determinants of women's breastfeeding intentions, their initiation of breastfeeding, and ultimately their breastfeeding continuation. Hence, we recommend that human resource professionals, managers, and public health initiatives provide breastfeeding-supportive resources to women who, based on their job characteristics, are at high risk to prematurely discontinue breastfeeding to ensure these mothers have equal opportunity to reap the benefits of breastfeeding. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Personalised fluid resuscitation in the ICU: still a fluid concept?

    Science.gov (United States)

    van Haren, Frank

    2017-12-28

    The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically

  10. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    International Nuclear Information System (INIS)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-01-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, ibid. 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλ D of interest to Raman backscatter of a laser driver in inertial confinement fusion

  11. Computer program TMOC for calculating of pressure transients in fluid filled piping networks

    International Nuclear Information System (INIS)

    Siikonen, T.

    1978-01-01

    The propagation of a pressure wave in fluid filles tubes is significantly affected by the pipe wall motion and vice versa. A computer code TMOC (Transients by the Method of Characteristics) is being developed for the analysis of the coupled fluid and pipe wall transients. Because of the structural feedback, the pressure can be calculated more accurately than in the programs commonly used. (author)

  12. Fluid Flow in Low Permeable, Porous Media Écoulements fluides dans un milieu poreux peu perméable

    Directory of Open Access Journals (Sweden)

    Dutta N. C.

    2006-11-01

    Full Text Available Migration of hydrocarbons deals with the subsequent movement of petroleum after expulsion from the source rock through water saturated reservoirs or through permeability created by fractures and faults. Although the underlying principles that control the fluid movement in porous media (reservoirs are well understood by reservoir engineers, less is known about the flow characteristics in low-permeable, porous media, such as clays and shales. For flow considerations, the primary parameters are porosity, permeability and the fluid potential gradients. For clays and shales, these parameters are poorly known; yet these control the time periods during which fluid flow occurs in sedimentary basins (100 years to 100 million years. In this paper, I examine the parametric dependence of the time constantsof fluid flow in low permeability sediments on its porosity and permeability. This is accomplished in two parts. In the first part, a technique is presented to investigate the effect of fluid flow in shales which causes undercompaction and buildup of fluid pressures in excess of normal hydrostatic pressure. The technique is pre-drill in nature; it uses seismic velocity analysis of common depth point gather of surface seismic data and is based on the concept developed by Hottmann and Johnson (1965 and Pennebaker (1968. In the second part of the paper, the flow characteristics are discussed in the basin scale. I develop a model that describes the fluid flow in a continuously accreting and subsiding clastics basins, such as the Gulf of Mexico. I examine the pressure characteristics of such a basin by digital simulations and study the effect of the permeability variation of shales on the geologic time dependence of the fluid flux in the sediments, the basin subsidence rate and the pressure buildup with depth. The model incorporates both mechanical compaction and burial diagenesis involving smectite to illite conversion of shales. The latter is based on a

  13. Fluid region segmentation in OCT images based on convolution neural network

    Science.gov (United States)

    Liu, Dong; Liu, Xiaoming; Fu, Tianyu; Yang, Zhou

    2017-07-01

    In the retinal image, characteristics of fluid have great significance for diagnosis in eye disease. In the clinical, the segmentation of fluid is usually conducted manually, but is time-consuming and the accuracy is highly depend on the expert's experience. In this paper, we proposed a segmentation method based on convolution neural network (CNN) for segmenting the fluid from fundus image. The B-scans of OCT are segmented into layers, and patches from specific region with annotation are used for training. After the data set being divided into training set and test set, network training is performed and a good segmentation result is obtained, which has a significant advantage over traditional methods such as threshold method.

  14. MRI of subdural fluid collections in infants

    International Nuclear Information System (INIS)

    Fukushima, Tsuneyuki; Takagi, Takuji; Nagai, Hajime; Banno, Tatsuo

    1988-01-01

    Twenty cases of subdural fluid collectioin in infants were examined by MRI (0.5 Tesla). The findings of MRI were classified into 3 groups as follows: Group I: Blood component is observed in the entire subdural fluid (4 cases, 20 %). Group II: Blood component is observed in a part of the subdural fluid (4 cases, 20 %). Group III: Subdural fluid consists of pure CSF (12 cases, 60 %). In general, operative treatment should be considered for cases which have blood components in the subdural space and/or symptoms and signs of increased ICP. In group I, operation was performed on 2 cases (50 %). In group II, subdural fluid collections were associated with dilated subarachnoid spaces and 2 cases were operated on in this group (50 %). In group III, only one case was operated on (8.3 %) and subdural fluid collections disappeared spontaneously in 4 cases of this group. The precise anatomical location of subdural fluid collections could not be decided in several cases even by MRI. The cases which had blood components, tended to demonstrate membranes frequently on MRI. However, the existence of blood components did not affect the DQ S significantly. The prognosis of subdural fluid collection is supposedly related to the degree of preexistent brain damage. (author)

  15. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  17. Supercritical fluid chromatography-A Hybrid of GC and LC

    Directory of Open Access Journals (Sweden)

    Neha Sethi

    2010-01-01

    Full Text Available High performance specifications and unique functionality of chromatographic techniques is a demand of pharmaceutical industry and research. This leads to the origin of Supercritical Fluid Chromatography (SFC. It is a rapidly expanding analytical technique. The main feature that differentiates SFC from other chromatographic techniques is the replacement of either the liquid or gas mobile phase with a supercritical fluid mobile phase. It is considered a hybrid of GC and LC technique. High diffusion coefficient and low viscosity of supercritical fluids is responsible for high speed analysis, high efficiency and high sensitivity. Low mobile-phase flow rate, density programming and compatability with GC and LC detectors make SFC a versatile chromatographic technique in analytical re-search and development. It has a unique characteristic of analyzing thermo labile or non-volatile substances. This review highlights the role of supercritical fluid chromatography in the separation of polymers, thermally labile pesticides, fatty acids, metal chelates and organometallic compounds, chiral and achiral molecules, identification and analysis of polar samples, explosives, drugs of abuse and application of SFC in forensic science (fingerprint-ing.

  18. HIV-related travel restrictions: trends and country characteristics.

    Science.gov (United States)

    Chang, Felicia; Prytherch, Helen; Nesbitt, Robin C; Wilder-Smith, Annelies

    2013-06-03

    Increasingly, HIV-seropositive individuals cross international borders. HIV-related restrictions on entry, stay, and residence imposed by countries have important consequences for this mobile population. Our aim was to describe the geographical distribution of countries with travel restrictions and to examine the trends and characteristics of countries with such restrictions. In 2011, data presented to UNAIDS were used to establish a list of countries with and without HIV restrictions on entry, stay, and residence and to describe their geographical distribution. The following indicators were investigated to describe the country characteristics: population at mid-year, international migrants as a percentage of the population, Human Development Index, estimated HIV prevalence (age: 15-49), presence of a policy prohibiting HIV screening for general employment purposes, government and civil society responses to having non-discrimination laws/regulations which specify migrants/mobile populations, government and civil society responses to having laws/regulations/policies that present obstacles to effective HIV prevention, treatment, care, and support for migrants/mobile populations, Corruption Perception Index, and gross national income per capita. HIV-related restrictions exist in 45 out of 193 WHO countries (23%) in all regions of the world. We found that the Eastern Mediterranean and Western Pacific Regions have the highest proportions of countries with these restrictions. Our analyses showed that countries that have opted for restrictions have the following characteristics: smaller populations, higher proportions of migrants in the population, lower HIV prevalence rates, and lack of legislation protecting people living with HIV from screening for employment purposes, compared with countries without restrictions. Countries with a high proportion of international migrants tend to have travel restrictions - a finding that is relevant to migrant populations and travel

  19. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  20. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction