WorldWideScience

Sample records for related axonal neuropathy

  1. Acute nutritional axonal neuropathy.

    Science.gov (United States)

    Hamel, Johanna; Logigian, Eric L

    2018-01-01

    This study describes clinical, laboratory, and electrodiagnostic features of a severe acute axonal polyneuropathy common to patients with acute nutritional deficiency in the setting of alcoholism, bariatric surgery (BS), or anorexia. Retrospective analysis of clinical, electrodiagnostic, and laboratory data of patients with acute axonal neuropathy. Thirteen patients were identified with a severe, painful, sensory or sensorimotor axonal polyneuropathy that developed over 2-12 weeks with sensory ataxia, areflexia, variable muscle weakness, poor nutritional status, and weight loss, often with prolonged vomiting and normal cerebrospinal fluid protein. Vitamin B6 was low in half and thiamine was low in all patients when obtained before supplementation. Patients improved with weight gain and vitamin supplementation, with motor greater than sensory recovery. We suggest that acute or subacute axonal neuropathy in patients with weight loss or vomiting associated with alcohol abuse, BS, or dietary deficiency is one syndrome, caused by micronutrient deficiencies. Muscle Nerve 57: 33-39, 2018. © 2017 Wiley Periodicals, Inc.

  2. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  3. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    Science.gov (United States)

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  4. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  5. Goldberg-Shprintzen megacolon syndrome with associated sensory motor axonal neuropathy.

    Science.gov (United States)

    Dafsari, Hormos Salimi; Byrne, Susan; Lin, Jean-Pierre; Pitt, Matthew; Jongbloed, Jan Dh; Flinter, Frances; Jungbluth, Heinz

    2015-06-01

    Goldberg-Shprintzen megacolon syndrome (GOSHS) (OMIM 609460) is characterized by a combination of learning difficulties, characteristic dysmorphic features and Hirschsprung's disease. Variable clinical features include iris coloboma, congenital heart defects and central nervous system abnormalities, in particular polymicrogyria. GOSHS has been attributed to recessive mutations in KIAA1279, encoding kinesin family member (KIF)-binding protein (KBP) with a crucial role in neuronal microtubule dynamics. Here we report on a 7-year-old girl with GOSHS as a result of a homozygous deletion of exons 5 and 6 of the KIAA1279 gene. She had been referred with the suspicion of an underlying neuromuscular disorder before the genetic diagnosis was established, prompted by the findings of motor developmental delay, hypotonia, ptosis and absent reflexes. Neurophysiological studies revealed unequivocal evidence of a peripheral axonal sensory motor neuropathy. We hypothesize that an axonal sensory motor neuropathy may be part of the phenotypical spectrum of KIAA1279-related GOSHS, probably reflecting the effects of reduced KBP protein expression on peripheral neuronal function. © 2015 Wiley Periodicals, Inc.

  6. Burning feet in polycythemia vera – peripheral sensorimotor axonal neuropathy with erythromelalgia

    Directory of Open Access Journals (Sweden)

    Wollina U

    2015-02-01

    Full Text Available Uwe Wollina Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden, Germany Abstract: Polycythemia vera is a rare myeloproliferative disease. Cutaneous symptoms are uncommon. We report about a 72-year-old female patient with JAK2V617F-positive polycythemia who developed peripheral sensorimotor axonal neuropathy and erythromelalgia. Possible causes and treatment are discussed. Keywords: bone marrow diseases, myeloproliferative diseases, JAK2 mutations, burning sensations, peripheral neuropathy

  7. Clinical and genetic characteristics of autosomal recessive axonal neuropathy with neuromyotonia in Russian patients

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2017-01-01

    Full Text Available Introduction. Hereditary motor and sensory neuropathies are genetically heterogeneous group of disorders characterized by a progressive muscle weakness, atrophy of hand and leg muscles often associated with deformations, and mild to moderate sensory loss. Axonal neuropathy with neuromyotonia (AR-ANM is one of the rarest autosomal recessive hereditary neuropathies. Materials and methods. Six (6 patients (4 men, 2 women aged 14–40 years from unrelated families with suspicion of HMSN were examined clinically, neurophysiologically and using DNA analysis. Results. Neurophysiological examination revealed motor and sensory neuropathy with neuromyotonia signs in all patients. In all cases homozygous variant of recessive mutations с.110G/C (р.Arg37Pro in the gene encoding the histidine triad nucleotide binding protein 1 (HINT1 has been revealed. Conclusion. There is the first description of the clinical and neurophysiological features of six patients with AR-ANM in Russia. 

  8. Toxins'' and nerve. ; Discussion on the pathogenesis of acrylamide intoxication, giant axonal neuropathy and krabbe disease. Doku'' to shinkei. ; Acrylamide chudoku, kyodaijikusaku neuropathy, Krabbe byo no byotai seiri wo meguru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Igusu, H. (University of Occupational and Environmental Health, Kitakyushu (Japan))

    1992-06-01

    Considerations were given on such neurological diseases as acrylamide intoxication, giant axonal neuropathy, and Krabbe disease. The point common to acrylamide intoxication and giant axonal neuropathy is that both peripheral nerves and central nerves suffer the lesion, and that tumefaction is seen in axonal terminals accompanying an increase in neurofilaments. Further, adding acrylamide to normally cultivated cells generates intermediate filament coagulation, and the same change can be seen in cells of giant axonal neuropathy patients. This suggests that a common pathophysiological mechanism is acting upon both diseases. However, acrylamide intoxication which is exogenous differs from giant axonal neuropathy in that it is an endogenous disease. On the other hand, a serious neuropathy of the Krabbe disease which is a hereditary neuropathy could be caused from actions of highly toxic psychosine. These facts suggest that toxicological approached would be effective in discussing pathologic manifestations. 37 refs., 2 figs., 1 tab.

  9. Giant axonal neuropathy-like disease in an Alexandrine parrot (Psittacula eupatria).

    Science.gov (United States)

    Stent, Andrew; Gosbell, Matthew; Tatarczuch, Liliana; Summers, Brian A

    2015-09-01

    A chronic progressive neurological condition in an Alexandrine parrot (Psittacula eupatria) was manifest as intention tremors, incoordination, and seizure activity. Histology revealed large eosinophilic bodies throughout the central nervous system, and electron microscopy demonstrated that these bodies were greatly expanded axons distended by short filamentous structures that aggregated to form long strands. The presence of periodic acid-Schiff-positive material within the neuronal bodies of Purkinje cells and ganglionic neurons is another distinctive feature of this disease. The histological features of this case display some features consistent with giant axonal neuropathy as reported in humans and dogs. Based on investigation of the lineage in this case, an underlying inherited defect is suspected, but some additional factor appears to have altered the specific disease presentation in this bird. © 2015 The Author(s).

  10. Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms.

    Science.gov (United States)

    Mussche, Silke; De Paepe, Boel; Smet, Joél; Devreese, Katrien; Lissens, Willy; Rasic, Vedrana Milic; Murnane, Matthew; Devreese, Bart; Van Coster, Rudy

    2012-08-01

    Giant axonal neuropathy (GAN) is a progressive hereditary disease that affects the peripheral and central nervous systems. It is characterized morphologically by aggregates of intermediate filaments in different tissues. Mutations have been reported in the gene that codes for gigaxonin. Nevertheless, the underlying molecular mechanism remains obscure. Cell lines from 4 GAN patients and 4 controls were analyzed by iTRAQ. Among the dysregulated proteins were ribosomal protein L29, ribosomal protein L37, galectin-1, glia-derived nexin, and aminopeptidase N. Also, nuclear proteins linked to formin-binding proteins were found to be dysregulated. Although the major role of gigaxonin is reported to be degradation of cytoskeleton-associated proteins, the amount of 76 structural cytoskeletal proteins was unaltered. Several of the dysregulated proteins play a role in cytoskeletal reorganization. Based on these findings, we speculate that disturbed cytoskeletal regulation is responsible for formation of aggregates of intermediate filaments. Copyright © 2012 Wiley Periodicals, Inc.

  11. γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots

    International Nuclear Information System (INIS)

    LoPachin, Richard M.; Jortner, Bernard S.; Reid, Maria L.; Das, Soma

    2003-01-01

    A quantitative analytical method was used to measure myelinated axon morphometric parameters (e.g., axon area, ratio of axon area/fiber area, and index of circularity) in rat nervous tissue during intoxication with 2,5-hexanedione (HD). Parameters were assessed in nerve roots (dorsal and ventral) and in ascending (gracile fasciculus and spinocerebellar tract) and descending (corticospinal and rubrospinal tracts) spinal cord white matter tracts (L4-L5) of rats intoxicated with HD at two different daily dose-rates (175 or 400 mg HD/kg/day, gavage). For each dose-rate, tissue was sampled at four neurological endpoints: unaffected, slight, moderate, and severe toxicity, as determined by gait analysis and measurements of grip strength. Results indicate that, regardless of the HD dose-rate, axon atrophy (reduced axon area) was a widespread, abundant effect that developed in concert with neurological deficits. The atrophy response occurred contemporaneously in both ascending and descending spinal tracts, which suggests that loss of caliber developed simultaneously along the proximodistal axon axis. In contrast, swollen axons were a numerically small component and were present in nerve roots and spinal tracts only during subchronic intoxication at the lower HD dose-rate (i.e., 175 mg/kg/day). Intoxication at the higher dose-rate (400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. These observations in conjunction with our previous studies of HD-induced peripheral neuropathy (Toxicol. Appl. Pharmacol. 135 (1995) 58; and Toxicol. Appl. Pharmacol. 165 (2000) 127) indicate that axon atrophy, and not axonal swelling, is a primary neuropathic phenomenon

  12. Acute motor and sensory axonal neuropathy-associated syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Weeraporn Srisung

    2015-10-01

    Full Text Available A 36-year-old man presented with a six week history of progressive ascending weakness. Physical examination showed generalized motor weakness, more severe in the lower extremities (LE, muscle wasting, absent LE reflexes, dysesthesia, and no cranial nerve involvement. Neurologic workup was consistent with acute motor and sensory axonal neuropathy (AMSAN, a variant of Guillain-Barre syndrome. Concomitantly on admission, serum chemistry panel showed a sodium (Na 115 mmol/L with normal kidney function. Urine showed Na <20 mmol/L, and specific gravity 1.045. Urine osmolality was not available initially. He received IV fluid for volume expansion. The Na did not significantly improve after he became euvolemic. Fluid restriction was then tried with mild improvement. Endocrine work-up ruled out hypothyroidism and adrenal insufficiency. Repeat labs showed serum Na 124 mmol/L, urine Na 191 mmol/L and urine Osm 531 mOsm, and the syndrome of inappropriate antidiuretic hormone secretion (SIADH was diagnosed. Our case report suggests that SIADH should be high on the differential diagnosis for hyponatremia in patients with AMSAN, especially in the setting of euvolemia.

  13. Genotype/phenotype correlations in AARS-related neuropathy in a cohort of patients from the United Kingdom and Ireland.

    Science.gov (United States)

    Bansagi, Boglarka; Antoniadi, Thalia; Burton-Jones, Sarah; Murphy, Sinead M; McHugh, John; Alexander, Michael; Wells, Richard; Davies, Joanna; Hilton-Jones, David; Lochmüller, Hanns; Chinnery, Patrick; Horvath, Rita

    2015-08-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy with heterogeneous clinical presentation and genetic background. The axonal form (CMT2) is characterised by decreased action potentials indicating primary axonal damage. The underlying pathology involves axonal degeneration which is supposed to be related to axonal protein dysfunction caused by various gene mutations. The overlapping clinical manifestation of CMT2 with distal hereditary motor neuropathy (dHMN) and intermediate CMT causes further diagnostic difficulties. Aminoacyl-tRNA synthetases have been implicated in the pathomechanism of CMT2. They have an essential role in protein translation by attaching amino acids to their cognate tRNAs. To date six families have been reported worldwide with dominant missense alanyl-tRNA synthetase (AARS) mutations leading to clinically heterogeneous axonal neuropathies. The pathomechanism of some variants could be explained by impaired amino acylation activity while other variants implicating an editing defect need to be further investigated. Here, we report a cohort of six additional families originating from the United Kingdom and Ireland with dominant AARS-related neuropathies. The phenotypic manifestation was distal lower limb predominant sensorimotor neuropathy but upper limb impairment with split hand deformity occasionally associated. Nerve conduction studies revealed significant demyelination accompanying the axonal lesion in motor and sensory nerves. Five families have the c.986G>A, p.(Arg329His) variant, further supporting that this is a recurrent loss of function variant. The sixth family, of Irish origin, had a novel missense variant, c.2063A>G, p.(Glu688Gly). We discuss our findings and the associated phenotypic heterogeneity in these families, which expands the clinical spectrum of AARS-related neuropathies.

  14. The neuropathic oesophagus. A radiographic and manometric study on the evolution of megaoesophagus in dogs with developing axonal neuropathy

    International Nuclear Information System (INIS)

    Satchell, P.M.

    1990-01-01

    Dogs given the neurotoxin acrylamide develop peripheral neuropathy and megaoesophagus. Sequential radiographic and manometric studies on the oesophagus demonstrated that the initial abnormalities consisted of a progressive decrease in the proportion of swallows that initiated peristalsis and a gradual increase in oesophageal calibre. Regurgitation, peristaltic failure and oesophageal dilatation all appeared within three days. The eating behaviour and gait abnormalities quickly resolved on stopping the neurotoxin, but the oesophagus remained dilated for longer. Previous studies have suggested that the abnormalities present in dogs which are developing a distal axonal neuropathy or in some dogs with idiopathic megaoesophagus may be limited to the proprioceptive elements of the oesophageal innervation. The present study suggests that the progressive inefficiency in the transmission of swallows and changes in oesophageal calibre in dogs with evolving megaoesophagus may be a consequence of damage to these proprioceptive elements

  15. Axonal neuropathy in female carriers of the fragile X premutation with fragile x-associated tremor ataxia syndrome.

    Science.gov (United States)

    Ram, Suresh; Devapriya, Inoka A; Fenton, Grace; Mcvay, Lindsey; Nguyen, Danh V; Tassone, Flora; Maselli, Ricardo A; Hagerman, Randi J

    2015-08-01

    In this study we examined whether females with the fragile X-associated tremor ataxia syndrome (FXTAS) and non-FXTAS premutation carriers have electrophysiological signs of underlying peripheral neuropathy. Nerve conduction studies (NCS) were performed on 19 women with FXTAS, 20 non-FXTAS carriers, and 26 age-matched controls. The results were compared with existing data on corresponding male carriers. Women with FXTAS and non-FXTAS carriers had reduced sensory nerve action potential amplitudes. Also, there was a strong trend for reduced compound muscle action potential amplitudes in women with FXTAS, but not in non-FXTAS carriers. No significant slowing of nerve conduction velocities, prolongation of F-wave latencies, or associations with molecular measures was observed. This study suggests an underlying axonal neuropathy in women with FXTAS. However, in comparison to men with FXTAS, the NCS abnormalities in women were less severe, possibly due to the effect of a normal X chromosome. © 2014 Wiley Periodicals, Inc.

  16. Burn-related peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  17. Severe pulmonary hypertension associated with the acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome.

    Science.gov (United States)

    Rooney, Kris A; Thomas, Neal J

    2010-01-01

    To evaluate pulmonary hypertension associated with acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome. Guillain-Barré syndrome consists of a group of autoimmune disorders that generally manifest as symmetric, progressive, ascending paralysis. There are five subtypes of Guillain-Barré syndrome, and autonomic involvement has been described in all subtypes, including cardiovascular, vasomotor, or pseudomotor dysfunction of both the sympathetic and parasympathetic systems. Case report. Tertiary care pediatric intensive care unit. Three-yr-old female patient. None. Serial measurements of pulmonary artery pressure. We report the case of a young girl with acute motor sensory axonal neuropathy who presented with severe cardiovascular collapse secondary to severe pulmonary hypertension. In this patient, multiple factors may have played a role in the development of pulmonary hypertension including autonomic dysfunction, hypoventilation, and immobility as a risk for thrombosis and pulmonary emboli. It is possible that many other individuals suffering from severe forms of Guillain-Barré syndrome, especially those with significant autonomic dysfunction, may actually have undiagnosed and therefore untreated pulmonary hypertension. Therefore, it is recommended that clinicians caring for critically ill children with Guillain-Barré syndrome have a high index of suspicion for pulmonary hypertension and consider echocardiography if there are clinical signs of this potentially fatal process.

  18. Clinical pathological and genetic analysis of 2 cases of mitochondrial myopathy presented as acute motor axonal neuropathy

    Directory of Open Access Journals (Sweden)

    Hou-min YIN

    2014-06-01

    Full Text Available Background The main clinical manifestations of mitochondrial myopathy are chronic limb weakness and muscular soreness. Subclinical peripheral nerve injury is also reported, but acute axonal neuropathy.like syndrome concurrent with lactic acidosis is rare. In this paper the clinical features of 2 patients presenting as acute lactic acidosis and sudden muscle weakness were analyzed. Pathological changes and genetic mutations were detected.  Methods Electromyography (EMG and muscle biopsy were performed. Modified Gomori trichrome (MGT and succinodehydrogenase (SDH staining were used to identify pathological changes. Changes of ultra microstructure of muscular tissue were observed under electron microscope. Mitochondrial DNA (mtDNA full length sequencing was performed using 24 pairs of partially overlapping primers.  Results EMG showed a coexistence of neurogenic and myogenic changes. Dramatic decrease of motor nerve amplitude and moderately reduced sensory nerve amplitude were observed but nerve conduction velocity was normal in both patients. Impressive ragged red fibers were seen on MGT staining. Electron microscope showed dramatic mitochondrial abnormalities in Case 1 and paracrystaline inclusions in Case 2. mtDNA sequencing showed 3243A > G mutation in Case 1 and 8344A > G mutation in Case 2. Conclusions Mitochondrial myopathy can present as metabolic crisis like acute lactic acidosis, dyspnea and acute motor axonal neuropathy.like syndrome. It is a life.threatening phenotype that needs more attention. doi: 10.3969/j.issn.1672-6731.2014.06.007

  19. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2

    NARCIS (Netherlands)

    Züchner, Stephan; de Jonghe, Peter; Jordanova, Albena; Claeys, Kristl G.; Guergueltcheva, Velina; Cherninkova, Sylvia; Hamilton, Steven R.; van Stavern, Greg; Krajewski, Karen M.; Stajich, Jeffery; Tournev, Ivajlo; Verhoeven, Kristien; Langerhorst, Christine T.; de Visser, Marianne; Baas, Frank; Bird, Thomas; Timmerman, Vincent; Shy, Michael; Vance, Jeffery M.

    2006-01-01

    OBJECTIVE: Charcot-Marie-Tooth (CMT) neuropathy with visual impairment due to optic atrophy has been designated as hereditary motor and sensory neuropathy type VI (HMSN VI). Reports of affected families have indicated autosomal dominant and recessive forms, but the genetic cause of this disease has

  20. Factors predicting optic nerve axonal degeneration after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Nurieva, O.; Kotíková, K.; Urban, P.; Navrátil, Tomáš; Pelclová, D.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 251-261 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : methanol optic neuropathy * visual evoked potentials * axonal degeneration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.282, year: 2016

  1. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  2. Molecular and cellular insights into Zika virus-related neuropathies.

    Science.gov (United States)

    Zhou, Kai; Wang, Long; Yu, Di; Huang, Hesuyuan; Ji, Hong; Mo, Xuming

    2017-06-01

    Zika virus (ZIKV), a relatively elusive Aedes mosquito-transmitted flavivirus, had been brought into spotlight until recent widespread outbreaks accompanied by unexpectedly severe clinical neuropathies, including fetal microcephaly and Guillain-Barré syndrome (GBS) in the adult. In this review, we focus on the underlying cellular and molecular mechanisms by which vertically transmitted microorganisms reach the fetus and trigger neuropathies.

  3. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.

    Science.gov (United States)

    Rivière, Jean-Baptiste; Ramalingam, Siriram; Lavastre, Valérie; Shekarabi, Masoud; Holbert, Sébastien; Lafontaine, Julie; Srour, Myriam; Merner, Nancy; Rochefort, Daniel; Hince, Pascale; Gaudet, Rébecca; Mes-Masson, Anne-Marie; Baets, Jonathan; Houlden, Henry; Brais, Bernard; Nicholson, Garth A; Van Esch, Hilde; Nafissi, Shahriar; De Jonghe, Peter; Reilly, Mary M; Timmerman, Vincent; Dion, Patrick A; Rouleau, Guy A

    2011-08-12

    Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. HIV-related neuropathy: current perspectives

    Directory of Open Access Journals (Sweden)

    Schütz SG

    2013-09-01

    Full Text Available Sonja G Schütz, Jessica Robinson-Papp Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA Abstract: Distal symmetric polyneuropathy (DSP related to human immunodeficiency virus (HIV is one of the most common neurologic complications of HIV, possibly affecting as many as 50% of all individuals infected with HIV. Two potentially neurotoxic mechanisms have been proposed to play a crucial role in the pathogenesis of HIV DSP: neurotoxicity resulting from the virus and its products; as well as adverse neurotoxic effects of medications used in the treatment of HIV. Clinically, HIV DSP is characterized by a combination of signs and symptoms that include decreased deep tendon reflexes at the ankles and decreased sensation in the distal extremities as well as paresthesias, dysesthesias, and pain in a symmetric stocking–glove distribution. These symptoms are generally static or slowly progressive over time, and depending on the severity, may interfere significantly with the patient's daily activities. In addition to the clinical picture, nerve conduction studies and skin biopsies are often pursued to support the diagnosis of HIV DSP. Anticonvulsants, antidepressants, topical agents, and nonspecific analgesics may help relieve neuropathic pain. Specifically, gabapentin, lamotrigine, pregabalin, amitriptyline, duloxetine, and high-dose topical capsaicin patches have been used in research and clinical practice. Further research is needed to elucidate the pathogenesis of HIV DSP, thus facilitating the development of novel treatment strategies. This review discusses the epidemiology, pathophysiology, clinical findings, diagnosis, and management of DSP in the setting of HIV. Keywords: neuropathy, human immunodeficiency virus, acquired immunodeficiency syndrome, AIDS, distal symmetric polyneuropathy, DSP, pain

  5. Association of peripheral neuropathy with sleep-related breathing disorders in myotonic dystrophies

    Directory of Open Access Journals (Sweden)

    Banach M

    2017-01-01

    Full Text Available Marta Banach,1,* Jakub Antczak,1,* Rafał Rola21Department of Clinical Neurophysiology, 2First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland *These authors contributed equally to this workBackground: Myotonic dystrophy (DM type 1 and type 2 are inherited diseases characterized by myotonia and myopathy. Additional symptoms include, among others, peripheral neuropathy and sleep-related breathing disorders (SRBDs. There is growing evidence for a complex association between DM1 and DM2, which was described in patients with diabetes mellitus and in the general population. In this study, we investigated whether there is an association between peripheral neuropathy and SRBDs also in the population of patients with DM.Methods: The study included 16 patients with DM1 (mean age, 37.9±14.1 years; 20–69 years and eight patients with DM2 (mean age, 47.6±14.1 years; 20–65 years, who underwent a sensory and motor nerve conduction study (NCS and diagnostic screening for SRBDs. In both groups, the NCS parameters were correlated with respiratory parameters.Results: In both groups, the amplitude of the ulnar sensory nerve action potential (SNAP correlated with the mean arterial oxygen saturation (SaO2. In addition, in the DM2 group, the median SNAP correlated with the mean SaO2. In the DM1 group, the median SNAP and the distal motor latency (DML of the ulnar nerve correlated with the apnea–hypopnea index, while the oxygen desaturation index correlated with the DML of the tibial nerve and with conduction velocity in the sural nerve.Conclusion: Our results indicate a complex association between neuropathy and SRBDs in DM1 and DM2. Axonal degeneration may contribute to nocturnal hypoxemia and vice versa. Neuropathy may contribute to muscle weakness, which in turn may cause respiratory events.Keywords: myotonic dystrophy, SRBD and neuropathy with AHI, SNAP, CMAP

  6. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    Directory of Open Access Journals (Sweden)

    Ji-Yon Kim

    2016-01-01

    Full Text Available The Charcot-Marie-Tooth disease 2F (CMT2F and distal hereditary motor neuropathy 2B (dHMN2B are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1 gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  7. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies

    NARCIS (Netherlands)

    van Paassen, Barbara W.; van der Kooi, Anneke J.; van Spaendonck-Zwarts, Karin Y.; Verhamme, Camiel; Baas, Frank; de Visser, Marianne

    2014-01-01

    PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is

  8. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v2; ref status: indexed, http://f1000r.es/3am

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  9. Giant Axonal Neuropathy

    Science.gov (United States)

    ... may become involved, causing a gradual decline in mental function, loss of control of body movement, and seizures. Most children become ... may become involved, causing a gradual decline in mental function, loss of control of body movement, and seizures. Most children become ...

  10. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance

    Directory of Open Access Journals (Sweden)

    James Gilchrist

    2012-08-01

    Full Text Available The mechanisms of alcohol-related peripheral neuropathy (ALPN are poorly understood. We hypothesize that, like alcohol-related liver and brain degeneration, ALPN may be mediated by combined effects of insulin/IGF resistance and oxidative stress. Adult male Long Evans rats were chronically pair-fed with diets containing 0% or 37% ethanol (caloric, and subjected to nerve conduction studies. Chronic ethanol feeding slowed nerve conduction in the tibial (p = 0.0021 motor nerve, and not plantar sensory nerve, but it did not affect amplitude. Histological studies of the sciatic nerve revealed reduced nerve fiber diameters with increased regenerative sprouts, and denervation myopathy in ethanol-fed rats. qRT-PCR analysis demonstrated reduced mRNA levels of insulin, IGF-1, and IGF-2 polypeptides, IGF-1 receptor, and IRS2, and ELISAs revealed reduced immunoreactivity for insulin and IGF-1 receptors, IRS-1, IRS-4, myelin-associated glycoprotein, and tau in sciatic nerves of ethanol-fed rats (all p < 0.05 or better. The findings suggest that ALPN is characterized by (1 slowed conduction velocity with demyelination, and a small component of axonal degeneration; (2 impaired trophic factor signaling due to insulin and IGF resistance; and (3 degeneration of myelin and axonal cytoskeletal proteins. Therefore, ALPN is likely mediated by molecular and signal transduction abnormalities similar to those identified in alcoholic liver and brain degeneration.

  11. A Clinical and Electrophysiological Study of Peripheral Neuropathies in Predialysis Chronic Kidney Disease Patients and Relation of Severity of Peripheral Neuropathy with Degree of Renal Failure.

    Science.gov (United States)

    Jasti, Dushyanth Babu; Mallipeddi, Sarat; Apparao, A; Vengamma, B; Sivakumar, V; Kolli, Satyarao

    2017-01-01

    To study the prevalence, clinical features, electrophysiological features, and severity of peripheral neuropathy in predialysis chronic kidney disease (CKD) patients with respect to severity of renal failure and presence of diabetes mellitus. Between May 2015 and December 2016, 200 predialysis CKD patients were assessed prospectively. The prevalence of peripheral neuropathy in predialysis CKD patients in the present study was 45% based on clinical symptoms and 90% electrophysiologically. Mean age of 200 predialysis CKD patients who participated in the study was 53.2 ± 13.2 years. One hundred and thirty-six (68%) patients were male and 64 (32%) patients were female. Mean duration of disease was 2.2 ± 1.6 years. Nearly 45% patients of patients had asymptomatic peripheral neuropathy in the present study, which was more common in mild-to-moderate renal failure group. One hundred twenty-six patients (63%) had definite damage and 54 patients (27%) had early damage. In mild-to-moderate renal failure ( n = 100) and severe renal failure patients ( n = 100), 88% and 92% had significant peripheral neuropathy, respectively. Most common nerves involved were sural nerve, median sensory nerve, and ulnar sensory nerve. Diabetic patients (97%) showed more severe and high prevalence of peripheral neuropathy when compared to nondiabetic patients (83%). Most common patterns were pure axonal sensorimotor neuropathy and mixed sensorimotor neuropathy. Peripheral neuropathy is common in predialysis patients, prevalence and severity of which increases as renal failure worsens. Predialysis patients with diabetes show higher prevalence and severity of peripheral neuropathy when compared with nondiabetics.

  12. A Clinical and Electrophysiological Study of Peripheral Neuropathies in Predialysis Chronic Kidney Disease Patients and Relation of Severity of Peripheral Neuropathy with Degree of Renal Failure

    Science.gov (United States)

    Jasti, Dushyanth Babu; Mallipeddi, Sarat; Apparao, A.; Vengamma, B.; Sivakumar, V.; Kolli, Satyarao

    2017-01-01

    Objective: To study the prevalence, clinical features, electrophysiological features, and severity of peripheral neuropathy in predialysis chronic kidney disease (CKD) patients with respect to severity of renal failure and presence of diabetes mellitus. Materials and Methods: Between May 2015 and December 2016, 200 predialysis CKD patients were assessed prospectively. Results: The prevalence of peripheral neuropathy in predialysis CKD patients in the present study was 45% based on clinical symptoms and 90% electrophysiologically. Mean age of 200 predialysis CKD patients who participated in the study was 53.2 ± 13.2 years. One hundred and thirty-six (68%) patients were male and 64 (32%) patients were female. Mean duration of disease was 2.2 ± 1.6 years. Nearly 45% patients of patients had asymptomatic peripheral neuropathy in the present study, which was more common in mild-to-moderate renal failure group. One hundred twenty-six patients (63%) had definite damage and 54 patients (27%) had early damage. In mild-to-moderate renal failure (n = 100) and severe renal failure patients (n = 100), 88% and 92% had significant peripheral neuropathy, respectively. Most common nerves involved were sural nerve, median sensory nerve, and ulnar sensory nerve. Diabetic patients (97%) showed more severe and high prevalence of peripheral neuropathy when compared to nondiabetic patients (83%). Most common patterns were pure axonal sensorimotor neuropathy and mixed sensorimotor neuropathy. Conclusion: Peripheral neuropathy is common in predialysis patients, prevalence and severity of which increases as renal failure worsens. Predialysis patients with diabetes show higher prevalence and severity of peripheral neuropathy when compared with nondiabetics. PMID:29204008

  13. Relative Frequencies of Arteritic and Nonarteritic Anterior Ischemic Optic Neuropathy in an Arab Population.

    Science.gov (United States)

    Gruener, Anna M; Chang, Jessica R; Bosley, Thomas M; Al-Sadah, Zakeya M; Kum, Clarissa; McCulley, Timothy J

    2017-12-01

    To evaluate the relative frequencies of arteritic and nonarteritic anterior ischemic optic neuropathy (AION) in an Arab population and to compare and contrast these findings with known epidemiological data from Caucasian populations. A retrospective review of the medical records of all patients diagnosed with AION at the King Khaled Eye Specialist Hospital (KKESH) in Riyadh, Saudi Arabia, between 1997 and 2012. Of 171 patients with AION, 4 had biopsy-proven giant-cell arteritis (GCA). The relative frequencies of arteritic anterior ischemic optic neuropathy (AAION) and nonarteritic anterior ischemic optic neuropathy (NAION) in this Arab cohort were 2.3% and 97.7%, respectively. The relative frequencies of arteritic anterior ischemic optic neuropathy and nonarteritic anterior ischemic optic neuropathy differ between Arab and North American clinic-based populations, with giant-cell arteritis-related ischemia being much less frequent in Saudi Arabia.

  14. Hepatitis C-related cryoglobulinemic neuropathy: potential role of oxcarbazepine for pain control.

    Science.gov (United States)

    Moretti, Rita; Caruso, Paola; Dal Ben, Matteo; Gazzin, Silvia; Tiribelli, Claudio

    2018-01-25

    Peripheral neuropathy is one most common, limiting and invalidating neurological symptom in subjects with hepatitis C virus and mixed cryoglobulinemia. Notably, the medical therapy proposed to eradicate HCV, can frequently exacerbate the painful neuropathy. Therefore, neuropathy therapies are insufficient and inadequate, and comprise immunosuppressive drugs, such as steroid or cyclosporine, intravenous immunoglobulin or plasma exchange. These have shown variable success in case reports, with a presumably temporary effect, but with major side effects. We assessed the effects of oxcarbazepine treatment in 67 cases of cryoglobulinemia related neuropathy, who did not respond to either steroid or Gabapentin, or Pregabalin. Oxcarbazepine was chosen based on the promising preliminary results. Patients treated with Oxcarbazepine showed a rapid, discrete and persistent relief of polyneuropathic signs, without consistent side effects, and with a limited interaction with concomitant drugs. These data favor the use of oxcarbazepine as a useful tool in the management of neuropathic pain associated with Hepatitis-C cryoglobulin neuropathy.

  15. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    Science.gov (United States)

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  16. Axoval neuropathy as initial manifestation of primary amyloidosis: report of a case submitted to bone marrow transplantation Neuropatia axonal como manifestação inicial de amiloidose primária: relato de caso submetido a transplante de medula óssea

    Directory of Open Access Journals (Sweden)

    Orlando G. Povoas Barsottini

    2004-09-01

    Full Text Available Amyloidosis is a syndrome characterized by deposition of a highly insoluble protein material in the extracellular space that may affect several organs. It may be generalized and idiopathic (primary amyloidosis. We describe the case of a 48 years-old woman with axonal neuropathy associated with proteinuria, whose final investigation resulted in diagnosis of primary amyloidosis (AL. She was submitted to autologous bone marrow transplantation. We discuss some aspects related to diagnosis of neuropathy and current treatment of AL.A amiloidose é uma síndrome caracterizada pela deposição no meio extracelular de material protéico altamente insolúvel e que pode afetar vários órgãos. Pode ocorrer como doença generalizada e pode ser idiopática (amiloidose primária. Descrevemos o caso de mulher de 48 anos com neuropatia axonal associada a proteinúria na qual a investigação final resultou no diagnóstico de amiloidose primária (AL. Foi submetida a transplante autólogo de medula óssea sem complicações. Discutiremos aspectos relacionados ao diagnóstico da neuropatia e do tratamento atual da AL.

  17. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies.

    Science.gov (United States)

    van Paassen, Barbara W; van der Kooi, Anneke J; van Spaendonck-Zwarts, Karin Y; Verhamme, Camiel; Baas, Frank; de Visser, Marianne

    2014-03-19

    PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is usually reported as 1:2,500, epidemiological studies show that 20-64% of CMT patients carry the PMP22 duplication. The prevalence of HNPP is not well known. CMT1A usually presents in the first two decades with difficulty walking or running. Distal symmetrical muscle weakness and wasting and sensory loss is present, legs more frequently and more severely affected than arms. HNPP typically leads to episodic, painless, recurrent, focal motor and sensory peripheral neuropathy, preceded by minor compression on the affected nerve. Electrophysiological evaluation is needed to determine whether the polyneuropathy is demyelinating. Sonography of the nerves can be useful. Diagnosis is confirmed by finding respectively a PMP22 duplication, deletion or point mutation. Differential diagnosis includes other inherited neuropathies, and acquired polyneuropathies. The mode of inheritance is autosomal dominant and de novo mutations occur. Offspring of patients have a chance of 50% to inherit the mutation from their affected parent. Prenatal testing is possible; requests for prenatal testing are not common. Treatment is currently symptomatic and may include management by a rehabilitation physician, physiotherapist, occupational therapist and orthopaedic surgeon. Adult CMT1A patients show slow clinical progression of disease, which seems to reflect a process of normal ageing. Life expectancy is normal.

  18. Acute optic neuropathy associated with a novel MFN2 mutation.

    Science.gov (United States)

    Leonardi, Luca; Marcotulli, Christian; Storti, Eugenia; Tessa, Alessandra; Serrao, Mariano; Parisi, Vincenzo; Santorelli, F M; Pierelli, Francesco; Casali, Carlo

    2015-07-01

    Mutations in the mitofusin 2 (MFN2) gene cause CMT2A the most common form of autosomal dominant axonal Charcot-Marie-Tooth (CMT). In addition, mutations in MFN2 have been shown to be responsible for Hereditary Motor Sensory Neuropathy type VI (HSMN VI), a rare early-onset axonal CMT associated with optic neuropathy. Most reports of HMSN VI presented with a sub-acute form of optic neuropathy. Herein, we report a CMT2A patient, who developed very rapidly progressing severe optic neuropathy. A 40-year-old Caucasian man was evaluated for gait disturbance and lower limbs weakness, slowly progressed over the last 2 years. Due to clinical data and family history, a diagnosis of CMT2 was made. The novel heterozygous c.775C > T (p.Arg259Cys) mutation in MFN2 was detected in the patient and his clinical affected mother. Interestingly, the patient developed a severe sudden bilateral visual deterioration few years early, with clinical and instrumental picture suggestive of acute bilateral optic neuropathy. Our report expands the spectrum of MFN2-related manifestation because it indicates that visual symptoms of HMSN VI may enter in the differential with acquired or hereditary acute optic neuropathies, and that severe optic neuropathy is not invariably an early manifestation of the disease but may occur as disease progressed. This report could have an impact on clinicians who evaluate patients with otherwise unexplainable bilateral acute-onset optic neuropathy, especially if associated with a motor and sensory axonal neuropathy.

  19. Paraneoplastic neuropathies.

    Science.gov (United States)

    Antoine, Jean-Christophe; Camdessanché, Jean-Philippe

    2017-10-01

    To review recent advances in paraneoplastic neuropathies with emphasis on their definition, different forms and therapeutic development. A strict definition of definite paraneoplastic neuropathies is necessary to avoid confusion. With carcinoma, seronegative sensory neuronopathies and neuronopathies and anti-Hu and anti-CV2/Contactin Response Mediator Protein 5 antibodies are the most frequent. With lymphomas, most neuropathies occur with monoclonal gammopathy including AL amyloidosis, Polyneuropathy-Organomegaly-Endocrinopathy-M component-Skin changes (POEMS) syndrome, type I cryoglobulinemia and antimyelin-associated glycoprotein (MAG) neuropathies and Waldenström's disease. Neuropathies improving with tumor treatment are occasional, occur with a variety of cancer and include motor neuron disease, chronic inflammatory demyelinating neuropathy and nerve vasculitis. If antibodies toward intracellular antigens are well characterized, it is not the case for antibodies toward cell membrane proteins. Contactin-associated protein-2 antibodies occur with neuromyotonia and thymoma with the Morvan's syndrome in addition to Netrin 1 receptor antibodies but may not be responsible for peripheral nerve hyperexcitability. The treatment of AL amyloidosis, POEMS syndrome, anti-MAG neuropathy and cryoglobulinemia is now relatively well established. It is not the case with onconeural antibodies for which the rarity of the disorders and a short therapeutic window are limiting factors for the development of clinical trials. A strict definition of paraneoplastic neuropathies helps their identification and is necessary to allow an early diagnosis of the underlying tumor.

  20. Axon guidance pathways served as common targets for human speech/language evolution and related disorders.

    Science.gov (United States)

    Lei, Huimeng; Yan, Zhangming; Sun, Xiaohong; Zhang, Yue; Wang, Jianhong; Ma, Caihong; Xu, Qunyuan; Wang, Rui; Jarvis, Erich D; Sun, Zhirong

    2017-11-01

    Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sensory Neuropathy Due to Loss of Bcl-w

    Science.gov (United States)

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  2. Autoimmunity related to IgM monoclonal gammopathy of undetermined significance. Peripheral neuropathy and connective tissue sensibilization caused by IgM M-proteins

    DEFF Research Database (Denmark)

    Jønsson, V; Schrøder, H D; Nolsøe, C

    1988-01-01

    of them, including two siblings with a demyelinating peripheral neuropathy, the IgM was bound to the myelin-associated glycoprotein (MAG) of peripheral nerves. One had axonal neuropathy with IgM activity against the peri- and endoneurium, while another case with post-infectious neuritis had IgM activity......In eight of 10 consecutive cases of IgM monoclonal gammopathy of undetermined significance (MGUS), the M-protein had specificity towards various tissues as estimated by direct and indirect immunofluorescence studies of skin and/or sural nerve biopsies. Five of the cases had neuropathy. In three...

  3. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy

    NARCIS (Netherlands)

    Lee, Jae Ran; Srour, Myriam; Kim, Doyoun; Hamdan, Fadi F.; Lim, So Hee; Brunel-Guitton, Catherine; Décarie, Jean Claude; Rossignol, Elsa; Mitchell, Grant A.; Schreiber, Allison; Moran, Rocio; Van Haren, Keith; Richardson, Randal; Nicolai, Joost; Oberndorff, Karin M E J; Wagner, Justin D.; Boycott, Kym M.; Rahikkala, Elisa; Junna, Nella; Tyynismaa, Henna; Cuppen, Inge; Verbeek, Nienke E.; Stumpel, Connie T R M; Willemsen, Michel A.; de Munnik, Sonja A.; Rouleau, Guy A.; Kim, Eunjoon; Kamsteeg, Erik Jan; Kleefstra, Tjitske; Michaud, Jacques L.

    2015-01-01

    KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations

  4. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  5. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  6. Four novel cases of periaxin-related neuropathy and review of the literature.

    Science.gov (United States)

    Marchesi, C; Milani, M; Morbin, M; Cesani, M; Lauria, G; Scaioli, V; Piccolo, G; Fabrizi, G M; Cavallaro, T; Taroni, F; Pareyson, D

    2010-11-16

    To report 4 cases of autosomal recessive hereditary neuropathy associated with novel mutations in the periaxin gene (PRX) with a review of the literature. Periaxin protein is required for the maintenance of peripheral nerve myelin. Patients with PRX mutations have early-onset autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT4F) or Déjèrine-Sottas neuropathy (DSN). Only 12 different mutations have been described thus far. Case reports and literature review. Four patients from 3 unrelated families (2 siblings and 2 unrelated patients) were affected by an early-onset, slowly progressive demyelinating neuropathy with relevant sensory involvement. All carried novel frameshift or nonsense mutations in the PRX gene. The 2 siblings were compound heterozygotes for 2 PRX null mutations (p.Q547X and p.K808SfsX2), the third patient harbored a homozygous nonsense mutation (p.E682X), and the last patient had a homozygous 2-nt insertion predicting a premature protein truncation (p.S259PfsX55). Electrophysiologic analysis showed a severe slowing of motor nerve conduction velocities (MNCVs, between 3 and 15.3 m/s) with undetectable sensory nerve action potentials (SNAPs). Sural nerve biopsy, performed in 2 patients, demonstrated a severe demyelinating neuropathy and onion bulb formations. Interestingly, we observed some variability of disease severity within the same family. These cases and review of the literature indicate that PRX-related neuropathies have early onset but overall slow progression. Typical features are prominent sensory involvement, often with sensory ataxia; a moderate-to-dramatic reduction of MNCVs and almost invariable absence of SNAPs; and pathologic demyelination with classic onion bulbs, and less commonly myelin folding and basal lamina onion bulbs.

  7. Cognitive representations of peripheral neuropathy and self-reported foot-care behaviour of people at high risk of diabetes-related foot complications

    DEFF Research Database (Denmark)

    Perrin, B. M.; Swerissen, H.; Payne, C. B.

    2014-01-01

    Aim: The aim of this study was to explore the cognitive representations of peripheral neuropathy and self-reported foot-care behaviour in an Australian sample of people with diabetes and peripheral neuropathy. Methods: This cross-sectional study was undertaken with 121 participants with diabetes...... and peripheral neuropathy. Cognitive representations of peripheral neuropathy were measured by the Patients' Interpretation of Neuropathy questionnaire and two aspects of self-foot-care behaviour were measured using a self-report questionnaire. Hierarchical cluster analysis using the average linkage method...... was used to identify distinct illness schemata related to peripheral neuropathy. Results: Three clusters of participants were identified who exhibited distinct illness schemata related to peripheral neuropathy. One cluster had more misperceptions about the nature of peripheral neuropathy, one cluster...

  8. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology

    DEFF Research Database (Denmark)

    Herwerth, Marina; Kalluri, Sudhakar Reddy; Srivastava, Rajneesh

    2016-01-01

    IgG autoantibodies against aquaporin-4 (AQP4), an astrocytic water channel. Antibodies against AQP4 can damage astrocytes via complement, but NMO histopathology also shows demyelination, and - importantly - axon injury, which may determine permanent deficits following NMO relapses. The dynamics...... antibodies in mice. RESULTS: We found that human AQP4 antibodies caused acute astrocyte depletion with initial oligodendrocyte survival. Within two hours of antibody application, we observed secondary axon injury in the form of progressive swellings. Astrocyte toxicity and axon damage were dependent on AQP4...... antibody concentration and complement, specifically C1q. INTERPRETATION: In vivo imaging of the spinal cord reveals the swift development of NMO-related acute axon injury following AQP4 antibody-mediated astrocyte depletion. This approach will be useful in studying the mechanisms underlying the spread...

  9. Immune mediated neuropathy following checkpoint immunotherapy.

    Science.gov (United States)

    Gu, Yufan; Menzies, Alexander M; Long, Georgina V; Fernando, S L; Herkes, G

    2017-11-01

    Checkpoint immunotherapy has revolutionised cancer therapy and is now standard treatment for many malignancies including metastatic melanoma. Acute inflammatory neuropathies, often labelled as Guillain-Barre syndrome, are an uncommon but potentially severe complication of checkpoint immunotherapy with individual cases described but never characterised as a group. We describe a case of acute sensorimotor and autonomic neuropathy following a single dose of combination ipilimumab and nivolumab for metastatic melanoma. A literature search was performed, identifying 14 other cases of acute neuropathy following checkpoint immunotherapy, with the clinical, electrophysiological and laboratory features summarised. Most cases described an acute sensorimotor neuropathy (92%) with hyporeflexia (92%) that could occur from induction up till many weeks after the final dose of therapy. In contrast to Guillain-Barre syndrome, the cerebrospinal fluid (CSF) analysis often shows a lymphocytic picture (50%) and the electrophysiology showed an axonal pattern (55%). Treatment was variable and often in combination. 11 cases received steroid therapy with only 1 death within this group, whereas of the 4 patients who did not receive steroid therapy there were 3 deaths. In conclusion checkpoint immunotherapy - induced acute neuropathies are distinct from and progress differently to Guillain-Barre syndrome. As with other immunotherapy related adverse events corticosteroid therapy should be initiated in addition to usual therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Incidence and relative risk of peripheral neuropathy in cancer patients treated with eribulin: a meta-analysis.

    Science.gov (United States)

    Peng, Ling; Hong, Yun; Ye, Xianghua; Shi, Peng; Zhang, Junyan; Wang, Yina; Zhao, Qiong

    2017-12-19

    Eribulin is a microtubule inhibitor, which is approved for the treatment of breast cancer. Peripheral neuropathy has been reported in the studies of eribulin, but the incidence and relative risk (RR) of eribulin-associated peripheral neuropathy varied greatly in cancer patients. The purpose of this meta-analysis was to determine the overall incidence and RR of eribulin-associated peripheral neuropathy in cancer patients. Pubmed database and Embase and abstracts presented at the American Society of Clinical Oncology (ASCO) meetings were systematically reviewed for primary studies. Eligible studies included prospective clinical trials and expanded access programs of cancer patients treated with eribulin. Statistical analyses were performed to calculate the incidences, RRs, and 95% confidence intervals (CIs). Altogether, 4,849 patients from 19 clinical trials were selected for this meta-analysis. The incidences of all-grade and high-grade peripheral neuropathy were 27.5% (95% CI: 23.3-32.4%) and 4.7% (95% CI: 3.6-6.2%), respectively. The relative risks of peripheral neuropathy of eribulin compared to control were increased for all-grade (RR = 1.89, 95% CI: 1.10-3.25) but not statistically significant for high-grade (RR = 2.98, 95% CI: 0.71-12.42). The use of eribulin is associated with an increased incidence of peripheral neuropathy. The RR is increased for all-grade peripheral neuropathy.

  11. Cardiac autonomic neuropathy in patients with uraemia is not related to pre-diabetes

    DEFF Research Database (Denmark)

    Eming, Marie Bayer; Hornum, Mads; Feldt-Rasmussen, Bo Friis

    2011-01-01

    INTRODUCTION: It has been proposed that pre-diabetes may cause neuropathy. The aim of this study was to investigate whether cardiac autonomic neuropathy (CAN) in uraemic patients was related to the presence of pre-diabetes. MATERIAL AND METHODS: The study included 66 non-diabetic uraemic patients...... enrolled. Beat-to-beat variability was determined from the echocardiographic (ECG) recording during deep inspiration and expiration. CAN was defined as a beat-to-beat value below 10 beats/min. Pre-diabetes was defined as presence of impaired fasting glucose and/or impaired glucose tolerance measured...... by oral glucose tolerance test (WHO/American Diabetes Association criteria 2007). RESULTS: The prevalence of CAN was 38% in uraemic patients compared with 8% in the controls (p prediabetic, while the remaining 39 had a normal glucose...

  12. [Acrodystrophic neuropathy in an alcoholic].

    Science.gov (United States)

    Yamamura, Y; Hironaka, M; Shimoyama, M; Toyota, Y; Kurokawa, M; Kohriyama, T; Nakamura, S

    1993-01-01

    The patient was a 48-year-old alcoholic man with no contributory family history. At age 36 he had developed sensory dominant polyneuropathy with highly impaired temperature sensation and deep sensation in the lower extremities, recurrent ulcers of the toes, and sexual impotence. A sural nerve biopsy at this time revealed marked loss of myelinated fibers with relative preservation of the population of unmyelinated fibers. Subsequently, he developed muscle atrophy of the lower thighs, urinary incontinence, and Wernicke's encephalopathy, and became non-ambulatory at age 44. The peripheral nerve conduction findings suggested predominantly axonal degeneration. The entire course was characterized by alternative progression and partial recovery influenced by his alcohol intake and nutritional state. Alcoholic neuropathy is a major cause of solitary acrodystrophic neuropathy (ADN). Manifestations of autonomic and motor neuropathy are more marked in alcoholic ADN than in HSAN-I, and central nervous system involvement is the hallmark of alcoholic ADN. In the treatment of patients with alcoholic ADN, attention should be paid to diabetes mellitus, malnutritional state, and vitamin deficiency, which frequently complicate alcoholism.

  13. Autonomic Neuropathy

    Science.gov (United States)

    ... risk of autonomic neuropathy. Other diseases. Amyloidosis, porphyria, hypothyroidism and cancer (usually due to side effects from treatment) may also increase the risk of autonomic neuropathy. ...

  14. Peripheral neuropathy

    Science.gov (United States)

    ... peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy; Chronic pain - peripheral neuropathy ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  15. Hepatitis C-related cryoglobulinemic neuropathy: potential role of oxcarbazepine for pain control

    OpenAIRE

    Moretti, Rita; Caruso, Paola; Dal Ben, Matteo; Gazzin, Silvia; Tiribelli, Claudio

    2018-01-01

    Background Peripheral neuropathy is one most common, limiting and invalidating neurological symptom in subjects with hepatitis C virus and mixed cryoglobulinemia. Notably, the medical therapy proposed to eradicate HCV, can frequently exacerbate the painful neuropathy. Therefore, neuropathy therapies are insufficient and inadequate, and comprise immunosuppressive drugs, such as steroid or cyclosporine, intravenous immunoglobulin or plasma exchange. These have shown variable success in case rep...

  16. HIV Associated Sensory Neuropathy.

    Science.gov (United States)

    G, Amruth; S, Praveen-Kumar; B, Nataraju; Bs, Nagaraja

    2014-07-01

    In the era of highly active antiretroviral therapy, sensory neuropathies have increased in prevalence. We have documented the frequency and profile of the two most common forms of sensory neuropathies associated with Human Immunodeficiency Virus (HIV) infection and looked into clinicoelectrophysiological correlates to differentiate the two entities. The study population comprised of all consecutive patients detected to be HIV positive and attending the Neurology outpatient department (from March 2011 to March 2012) who were aged ≥ 18 years and were able to give informed consent. The data were collected from the patient records (including CD4 counts and treatment details) and questionnaire based interview with each patient. All patients underwent detailed clinical examination and nerve conduction studies (NCSs). Among the total study population of 50 patients, there were 31 men and 19 women. Thirty two patients were in age range of 21 - 40 years and rest were above 40 years. 25 were on antiretroviral therapy (18 on regimen containing zidovudine; seven on regimen containing stavudine). The mean duration of antiretroviral therapy was 16.6±8.4 months. Low CD4 counts ( 40 years. Subclinical neuropathy was common in those on antiretroviral therapy. Axonal neuropathy was the commonest pattern noted in patients who were receiving antiretroviral therapy and demyelinating neuropathy in patients not on antiretroviral therapy. Surprisingly no significant correlation was found between low CD4 counts and symptomatic neuropathy.

  17. Screening for Electrophysiological Abnormalities in Chronic Hepatitis C Infection: Peripheral Neuropathy and Optic Neuropathy.

    Science.gov (United States)

    Köşkderelioğlu, Aslı; Ortan, Pınar; Ari, Alpay; Gedizlioğlu, Muhteşem

    2016-03-01

    To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in

  18. HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum.

    Science.gov (United States)

    Gess, Burkhard; Auer-Grumbach, Michaela; Schirmacher, Anja; Strom, Tim; Zitzelsberger, Manuela; Rudnik-Schöneborn, Sabine; Röhr, Dominik; Halfter, Hartmut; Young, Peter; Senderek, Jan

    2014-11-04

    To determine the nature and frequency of HSJ1 mutations in patients with hereditary motor and hereditary motor and sensory neuropathies. Patients were screened for mutations by genome-wide or targeted linkage and homozygosity studies, whole-exome sequencing, and Sanger sequencing. RNA and protein studies of skin fibroblasts were used for functional characterization. We describe 2 additional mutations in the HSJ1 gene in a cohort of 90 patients with autosomal recessive distal hereditary motor neuropathy (dHMN) and Charcot-Marie-Tooth disease type 2 (CMT2). One family with a dHMN phenotype showed the homozygous splice-site mutation c.229+1G>A, which leads to retention of intron 4 in the HSJ1 messenger RNA with a premature stop codon and loss of protein expression. Another family, presenting with a CMT2 phenotype, carried the homozygous missense mutation c.14A>G (p.Tyr5Cys). This mutation was classified as likely disease-related by several automatic algorithms for prediction of possible impact of an amino acid substitution on the structure and function of proteins. Both mutations cosegregated with autosomal recessive inheritance of the disease and were absent from the general population. Taken together, in our cohort of 90 probands, we confirm that HSJ1 mutations are a rare but detectable cause of autosomal recessive dHMN and CMT2. We provide clinical and functional information on an HSJ1 splice-site mutation and report the detailed phenotype of 2 patients with CMT2, broadening the phenotypic spectrum of HSJ1-related neuropathies. © 2014 American Academy of Neurology.

  19. [Review of the recent literature on hereditary neuropathies].

    Science.gov (United States)

    Birouk, N

    2014-12-01

    The recent literature included interesting reports on the pathogenic mechanisms of hereditary neuropathies. The axonal traffic and its abnormalities in some forms of Charcot-Marie-Tooth (CMT) disease were particularly reviewed by Bucci et al. Many genes related to CMT disease code for proteins that are involved directly or not in intracellular traffic. KIF1B controls vesicle motility on microtubules. MTMR2, MTMR13 and FIG4 regulate the metabolism of phosphoinositide at the level of endosomes. The HSPs are involved in the proteasomal degradation. GDAP1 and MFN2 regulate the mitochondrial fission and fusion respectively and the mitochondial transport within the axon. Pareyson et al. reported a review on peripheral neuropathies in mitochondrial disorders. They used the term of "mitochondrial CMT" for the forms of CMT with abnormal mitochondrial dynamic or structure. Among the new entities, we can draw the attention to a proximal form of hereditary motor and sensory neuropathy with autosomal dominant inheritance, which is characterized by motor deficit with cramps and fasciculations predominating in proximal muscles. Distal sensory deficit can be present. The gene TFG on chromosome 3 has been recently identified to be responsible for this form. Another rare form of axonal autosomal recessive neuropathy due to HNT1 gene mutation is characterized by the presence of hands myotonia that appears later than neuropathy but constitute an interesting clinical hallmark to orientate the diagnosis of this form. In terms of differential diagnosis, CMT4J due to FIG4 mutation can present with a rapidly progressive and asymmetric weakness that resembles CIDP. Bouhy et al. made an interesting review on the therapeutic trials, animal models and the future therapeutic strategies to be developed in CMT disease. Copyright © 2014. Published by Elsevier Masson SAS.

  20. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    Science.gov (United States)

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  1. Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2014-10-01

    stress, impairments of mitochondrial function, neuroinflammation, altered neurotrophin responses, etc. (reviewed, Soltaninejad and Abdollahi, 2009...Exposure to Chlorpyrifos in Rats: Protracted Effects on Axonal Transport, Neurotrophin Receptors, Cholinergic Markers, and Information Processing

  2. Organophosphate Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2015-10-01

    function, neuroinflammation, al- tered neurotrophin responses, etc. (reviewed, Soltaninejad and Abdollahi, 2009; Banks and Lein, 2012; Terry, 2012). Conflict...JN, Middlemore ML, Williamson LN, et al. Chronic, intermittent exposure to chlorpyrifos in rats: protracted effects on axonal transport, neurotrophin

  3. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2007-05-01

    Full Text Available Abstract Background Transient receptor potential (TRP receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14 and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG (n = 11, injured spinal nerve roots (n = 9, diabetic neuropathy skin (n = 8, non-diabetic neuropathic nerve biopsies (n = 6, their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels

  4. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  5. Diagnostic approach to peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Misra Usha

    2008-01-01

    Full Text Available Peripheral neuropathy refers to disorders of the peripheral nervous system. They have numerous causes and diverse presentations; hence, a systematic and logical approach is needed for cost-effective diagnosis, especially of treatable neuropathies. A detailed history of symptoms, family and occupational history should be obtained. General and systemic examinations provide valuable clues. Neurological examinations investigating sensory, motor and autonomic signs help to define the topography and nature of neuropathy. Large fiber neuropathy manifests with the loss of joint position and vibration sense and sensory ataxia, whereas small fiber neuropathy manifests with the impairment of pain, temperature and autonomic functions. Electrodiagnostic (EDx tests include sensory, motor nerve conduction, F response, H reflex and needle electromyography (EMG. EDx helps in documenting the extent of sensory motor deficits, categorizing demyelinating (prolonged terminal latency, slowing of nerve conduction velocity, dispersion and conduction block and axonal (marginal slowing of nerve conduction and small compound muscle or sensory action potential and dennervation on EMG. Uniform demyelinating features are suggestive of hereditary demyelination, whereas difference between nerves and segments of the same nerve favor acquired demyelination. Finally, neuropathy is classified into mononeuropathy commonly due to entrapment or trauma; mononeuropathy multiplex commonly due to leprosy and vasculitis; and polyneuropathy due to systemic, metabolic or toxic etiology. Laboratory investigations are carried out as indicated and specialized tests such as biochemical, immunological, genetic studies, cerebrospinal fluid (CSF examination and nerve biopsy are carried out in selected patients. Approximately 20% patients with neuropathy remain undiagnosed but the prognosis is not bad in them.

  6. Pathological Confirmation of Optic Neuropathy in Familial Dysautonomia.

    Science.gov (United States)

    Mendoza-Santiesteban, Carlos E; Palma, Jose-Alberto; Hedges, Thomas R; Laver, Nora V; Farhat, Nada; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2017-03-01

    Clinical data suggest that optic neuropathy and retinal ganglion cell loss are the main cause of visual decline in patients with familial dysautonomia, but this has not previously been confirmed by pathological analyses. We studied retinas and optic nerves in 6 eyes from 3 affected patients obtained at autopsy. Analyses included routine neurohistology and immunohistochemistry for neurofilaments, cytochrome c oxidase (COX), and melanopsin-containing ganglion cells. We observed profound axon loss in the temporal portions of optic nerves with relative preservation in the nasal portions; this correlated with clinical and optical coherence tomography findings in 1 patient. Retinal ganglion cell layers were markedly reduced in the central retina, whereas melanopsin-containing ganglion cells were relatively spared. COX staining was reduced in the temporal portions of the optic nerve indicating reduced mitochondrial density. Axonal swelling with degenerating lysosomes and mitochondria were observed by electron microscopy. These findings support the concept that there is a specific optic neuropathy and retinopathy in patients with familial dysautonomia similar to that seen in other optic neuropathies with mitochondrial dysfunction. This raises the possibility that defective expression of the IkB kinase complex-associated protein (IKAP) resulting from mutations in IKBKAP affects mitochondrial function in the metabolism-dependent retinal parvocellular ganglion cells in this condition. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  7. Vasculitic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Mona Amini

    2014-02-01

    Full Text Available Primary systemic vasculitis in pre-capillary arteries is associated with peripheral neuropathy. In some types of systematic vasculitis about 60 % of patients have peripheral nervous system (PNS involvement. In vasculitic peripheral neuropathies (VPN a necrotizing and inflammatory process leads to narrowing of vasa nervorum lumen and eventually the appearance of ischemic lesions in peripheral nerves. Some features might be suggestive of VPN, like: axonal nerve degeneration, wallerian-like degeneration, and diameter irregularity of nerve. Peripheral nervous system (PNS destruction during systemic vasculitides should be considered, due to its frequency and early occurrence in vasculitis progression. The first line treatment of non systematic VPNs is corticosteroid agents, but these drugs might worsen the VPNs or systemic vasculitis.

  8. [Severe, subacute axonal polyneuropathy due to hypophosphatemia].

    NARCIS (Netherlands)

    Eijk, J.J.J. van; Abdo, W.F.; Deurwaarder, E. den; Zwarts, M.J.; Warrenburg, B.P.C. van de

    2010-01-01

    A 46-year-old man receiving tube feeding because of anorexia and weight loss developed progressive neurological symptoms initially resembling Guillain-Barre syndrome. Eventually axonal neuropathy due to severe hypophosphatemia was diagnosed. Hypophosphatemia can be caused by the so-called refeeding

  9. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... Nerve. 2014 Oct;50(4):467-76. doi: 10.1002/mus.24321. Review. Citation on PubMed Kamate M, ... Nerve. 2012 Aug;46(2):246-56. doi: 10.1002/mus.23306. Citation on PubMed Neuromuscular Disease Center, ...

  10. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2'3'-dideoxycytidine (ddC).

    Science.gov (United States)

    Dalakas, M C; Semino-Mora, C; Leon-Monzon, M

    2001-11-01

    The 2'3'-dideoxycytidine (ddC), a nonazylated dideoxynucleoside analog used for the treatment of AIDS, causes a dose-dependent, painful, sensorimotor axonal peripheral neuropathy in up to 30% of the patients. To investigate the cause of the neuropathy, we performed morphological and molecular studies on nerve biopsy specimens from well-selected patients with ddC-neuropathy and from control subjects with disease, including patients with AIDS-related neuropathy never treated with ddC. Because ddC, in vitro, inhibits the replication of mitochondrial DNA (mtDNA), we counted the number of normal and abnormal mitochondria in a 0.04 mm(2) cross-sectional area of the nerves and quantified the copy numbers of mtDNA by competitive PCR in all specimens. A varying degree of axonal degeneration was present in all nerves. Abnormal mitochondria with enlarged size, excessive vacuolization, electron-dense concentric inclusions and degenerative myelin structures were prominent in the ddC-neuropathy and accounted for 55% +/- 2.5% of all counted mitochondria in the axon and Schwann cells, compared with 9% +/- 0.7% of the controls (p ddC-treated patients compared with the controls. We conclude that ddC induces a mitochondrial neuropathy with depletion of the nerve's mtDNA. The findings are consistent with the ability of ddC to selectively inhibit the gamma-DNA polymerase in neuronal cell lines. Toxicity to mitochondria of the peripheral nerve is a new cause of acquired neuropathy induced by exogenous toxins and may be the cause of neuropathy associated with the other neurotoxic antiretroviral drugs or toxic-metabolic conditions.

  11. Acquired neuropathies.

    Science.gov (United States)

    Lozeron, Pierre; Trocello, Jean-Marc; Kubis, Nathalie

    2013-09-01

    Acquired neuropathies represent most of the neuropathies encountered in clinical practice. Hundreds of causes have been identified even though up to 41% of patients are still classified as idiopathic (Rajabally and Shah in J Neurol 258:1431-1436, 1). Routine evaluation relies on comprehensive medical history taking, clinical examination, nerve conduction studies and laboratory tests. Other investigations such as nerve biopsy or nerve or muscle imaging are performed in specific settings. This review focuses on recent advances in acquired neuropathies.

  12. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN

    Directory of Open Access Journals (Sweden)

    Annalisa Canta

    2015-06-01

    Full Text Available The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN. This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

  13. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    Science.gov (United States)

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  14. Neuropathy of nitroimidazole radiosensitizers: clinical and pathological description

    International Nuclear Information System (INIS)

    Wasserman, T.H.; Nelson, J.S.; VonGerichten, D.

    1984-01-01

    The dose limiting toxicity of the nitroimidazole radiosensitizers is peripherial neuropathy. Improved pharmacology of newer drugs has eliminated the encephalopathy. Peripheral neuropathies are predominently mild to moderate paresthesias of both hands and feet. Subjective changes occur with or without minimal objective changes on neurologic exam. All of the neuropathies occurred within 30 days of the last drug dose and are of varible duration. Sural nerve biopsies from patients indicate progressive axonal degeneration affecting both large and small caliber myelinated fibers. Axonal damage appears to be more severe in the distal portion of the nerves. More data are needed for correlation of clinical and pathological changes

  15. Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability.

    NARCIS (Netherlands)

    Han, C.; Hoeijmakers, J.G.; Ahn, H.S.; Zhao, P.; Shah, P.; Lauria, G.; Gerrits, M.M.; Morsche, R.H.M. te; Dib-Hajj, S.D.; Drenth, J.P.H.; Faber, C.G.; Merkies, I.S.; Waxman, S.G.

    2012-01-01

    OBJECTIVES: Although small fiber neuropathy (SFN) often occurs without apparent cause, the molecular etiology of idiopathic SFN (I-SFN) has remained enigmatic. Sodium channel Na(v)1.7 is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons and their

  16. Gasoline sniffing multifocal neuropathy.

    Science.gov (United States)

    Burns, T M; Shneker, B F; Juel, V C

    2001-11-01

    The polyneuropathy caused by chronic gasoline inhalation is reported to be a gradually progressive, symmetric, sensorimotor polyneuropathy. We report unleaded gasoline sniffing by a female 14 years of age that precipitated peripheral neuropathy. In contrast with the previously reported presentation of peripheral neuropathy in gasoline inhalation, our patient developed multiple mononeuropathies superimposed on a background of sensorimotor polyneuropathy. The patient illustrates that gasoline sniffing neuropathy may present with acute multiple mononeuropathies resembling mononeuritis multiplex, possibly related to increased peripheral nerve susceptibility to pressure in the setting of neurotoxic components of gasoline. The presence of tetraethyl lead, which is no longer present in modern gasoline mixtures, is apparently not a necessary factor in the development of gasoline sniffer's neuropathy.

  17. Peripheral neuropathy associated with mitochondrial disease in children.

    Science.gov (United States)

    Menezes, Manoj P; Ouvrier, Robert A

    2012-05-01

    Mitochondrial diseases in children are often associated with a peripheral neuropathy but the presence of the neuropathy is under-recognized because of the overwhelming involvement of the central nervous system (CNS). These mitochondrial neuropathies are heterogeneous in their clinical, neurophysiological, and histopathological characteristics. In this article, we provide a comprehensive review of childhood mitochondrial neuropathy. Early recognition of neuropathy may help with the identification of the mitochondrial syndrome. While it is not definite that the characteristics of the neuropathy would help in directing genetic testing without the requirement for invasive skin, muscle or liver biopsies, there appears to be some evidence for this hypothesis in Leigh syndrome, in which nuclear SURF1 mutations cause a demyelinating neuropathy and mitochondrial DNA MTATP6 mutations cause an axonal neuropathy. POLG1 mutations, especially when associated with late-onset phenotypes, appear to cause a predominantly sensory neuropathy with prominent ataxia. The identification of the peripheral neuropathy also helps to target genetic testing in the mitochondrial optic neuropathies. Although often subclinical, the peripheral neuropathy may occasionally be symptomatic and cause significant disability. Where it is symptomatic, recognition of the neuropathy will help the early institution of rehabilitative therapy. We therefore suggest that nerve conduction studies should be a part of the early evaluation of children with suspected mitochondrial disease. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  18. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy.

    Science.gov (United States)

    Turkiew, Elliot; Falconer, Debbie; Reed, Nicole; Höke, Ahmet

    2017-09-01

    Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development. © 2017 Peripheral Nerve Society.

  19. Vasculitic Neuropathies.

    Science.gov (United States)

    Naddaf, Elie; Dyck, P James Bonham

    2015-10-01

    From pathological standpoint, we divide vasculitic neuropathies in two categories: nerve large arteriole vasculitides and nerve microvasculitis. It is also important to determine whether a large arteriole vasculitis has an infectious etiology as it entails different treatment approach. Treatment of non-infectious large arteriole vasculitides consists initially of induction therapy with corticosteroids. Adding an immunosuppressant, mainly cyclophosphamide, is often needed. Treatment of infectious large arteriole vasculitides needs a multidisciplinary approach to target both the underlying infection and the vasculitis. Corticosteroids are the first-line therapy for classic non-systemic vasculitic neuropathy. Stable or improving patients without biopsy evidence of active vasculitis can be either observed or treated. Currently, adding an immunosuppressant is only indicated for patients who continue to progress on corticosteroids alone or patients with a rapidly progressive course. The treatment of the radiculoplexus neuropathies such as diabetic lumbosacral radiculoplexus neuropathy, lumbosacral radiculoplexus neuropathy (in non-diabetic patients), and diabetic cervical radiculoplexus neuropathy, as well as painless diabetic motor neuropathy, is not well established yet. We treat patients, if they present early on in the disease course or if they have severe disabling symptoms, with IV methylprednisolone 1 g once a week for 12 weeks.

  20. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  1. Peripheral Neuropathy

    Science.gov (United States)

    ... wasting. Various dietary strategies can improve gastrointestinal symptoms. Timely treatment of injuries can help prevent permanent damage. ... diabetic neuropathy is more limited. Transcutaneous electrical nerve stimulation (TENS) is a non-invasive intervention used for ...

  2. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  3. Evaluation of pre-existing neuropathy and bortezomib retreatment as risk factors to develop severe neuropathy in a mouse model.

    Science.gov (United States)

    Bruna, Jordi; Alé, Albert; Velasco, Roser; Jaramillo, Jessica; Navarro, Xavier; Udina, Esther

    2011-09-01

    Pre-existing neuropathy, a not uncommon feature in oncologic patients, is a potential but non-confirmed risk factor to develop early or severe chemotherapy-induced neuropathy. The main goal of this study is to evaluate the role of pre-existing neuropathy induced by vincristine (VNC) or bortezomib (BTZ) as a risk factor to develop more severe BTZ-induced neuropathy in a mouse model. VNC, at doses of 1 and 1.5 mg/kg given twice per week for 4 weeks, induced a moderate and severe sensory-motor neuropathy, primarily axonal, with predominant involvement of myelinated sensory axons. The neuropathy induced by BTZ at dose of 1 mg/kg given twice per week for 6 weeks was a mild axonal sensory neuropathy involving myelinated and unmyelinated fibers. The neuropathy in mice previously treated and retreated with the same schedule of BTZ after 4 weeks of washout period was similar in profile and severity to the one observed after the first treatment. When basal neuropathy was classified as moderate (most of BTZ-treated animals) or severe (all VNC-treated animals and two BTZ-treated animals), there was a more marked decline in sensory nerve function during BTZ retreatment in the group with basal severe neuropathy (-86%) than in the groups with basal mild (-57%) or without neuropathy (-52%; p < 0.001). Histopathological findings supported the functional results. Therefore, this study shows that the presence of a severe neuropathy previous to treatment with an antitumoral agent, such as BTZ, results in a more marked involvement of peripheral nerves. © 2011 Peripheral Nerve Society.

  4. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle...... between muscle fiber diameter, muscle fiber type distribution, or capillary density and degree of neuropathy or muscle strength for either patient group. Muscle fiber diameter and the proportion of Type II fibers were greater for T1D patients than both T2D patients and controls. The T2D patients had fewer...

  5. The vasculitic neuropathies: an update.

    Science.gov (United States)

    Collins, Michael P

    2012-10-01

    Vasculitic neuropathy is a heterogeneous disorder that usually occurs in systemic diseases, but less commonly appears as nonsystemic vasculitic neuropathy (NSVN). This review is intended to highlight recent developments in the field of vasculitic neuropathies. A Peripheral Nerve Society guideline provides data-driven consensus recommendation on classification of vasculitic neuropathies and diagnosis/treatment of NSVN. NSVN is sometimes accompanied by subclinical inflammation of adjacent skin. Amyotrophic lateral sclerosis with sensory involvement can mimic NSVN. Systemic vasculitides with neuropathy include polyarteritis nodosa, microscopic polyangiitis (MPA), rheumatoid vasculitis, Churg-Strauss syndrome (CSS), and hepatitis C-related mixed cryoglobulinemic vasculitis (MCV). At autopsy, MPA affects limb nerves diffusely, with maximal damage in proximal/middle segments. CSS can be accompanied by antineutrophil cytoplasmic antibodies (ANCAs), but most patients with neuropathy lack ANCAs. Cryoglobulinemic neuropathies are usually caused by vasculitis, irrespective of phenotype. Two randomized trials revealed rituximab to be noninferior to cyclophosphamide for inducing remission in ANCA-associated vasculitis. Many reports also document efficacy of rituximab in MCV. Consensus guidelines on NSVN should be evaluated prospectively. MPA-associated vasculitic neuropathy results from vasculitic lesions distributed diffusely throughout peripheral extremity nerves. Rituximab is effective for ANCA-associated and cryoglobulinemic vasculitis with neuropathy.

  6. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  7. Visual loss related to macular subretinal fluid and cystoid macular edema in HIV-related optic neuropathy

    DEFF Research Database (Denmark)

    Gautier, David; Rabier, Valérie; Jallet, Ghislaine

    2012-01-01

    Optic nerve involvement may occur in various infectious diseases, but is rarely reported after infection by the human immunodeficiency virus (HIV). We report the atypical case of a 38-year-old patient in whom the presenting features of HIV infection were due to a bilateral optic neuropathy associ...... associated with macular subretinal fluid and cystoid macular edema, which responded well to antiretroviral therapy....

  8. Common peroneal neuropathy related to cryotherapy and compression in a footballer.

    Science.gov (United States)

    Babwah, Terence

    2011-01-01

    This report describes the effect of excessive cooling with ice, and compression with a plastic wrap on the common peroneal nerve (CPN) for 90 minutes in a professional footballer, which led to a common peroneal nerve palsy and a resulting footdrop. It highlights the need to be cautious with regards to the duration and frequency of icing as well as the choice of anchoring material when applying ice to injured areas that have superficial nerves passing nearby. Full recovery of the CPN function occurred in this athlete after five weeks. The major causes of footdrop and common causes of common peroneal neuropathy are discussed.

  9. Optic neuropathies: the tip of the neurodegeneration iceberg

    Science.gov (United States)

    Carelli, Valerio; La Morgia, Chiara; Ross-Cisneros, Fred N.; Sadun, Alfredo A.

    2017-01-01

    Abstract The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure. PMID:28977448

  10. Genes for hereditary sensory and autonomic neuropathies : a genotype-phenotype correlation

    NARCIS (Netherlands)

    Rotthier, Annelies; Baets, Jonathan; De Vriendt, Els; Jacobs, An; Auer-Grumbach, Michaela; Levy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andres; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter; Timmerman, Vincent

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven

  11. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Hana Starobova

    2017-05-01

    Full Text Available Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle—leading to cell death and tumor degradation—and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.

  12. Effect of dietary oils on peripheral neuropathy-related endpoints in dietary obese rats

    Directory of Open Access Journals (Sweden)

    Coppey L

    2018-04-01

    Full Text Available Lawrence Coppey,1 Eric Davidson,1 Hanna Shevalye,1 Michael E Torres,1 Mark A Yorek1–4 1Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; 2Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, USA; 3Department of Veterans Affairs, Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA; 4Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA Purpose: This study aimed to determine the effect of dietary oils (olive, safflower, evening primrose, flaxseed, or menhaden enriched in different mono unsaturated fatty acids or polyunsaturated fatty acids on peripheral neuropathies in diet-induced obese Sprague-Dawley rats.Materials and methods: Rats at 12 weeks of age were fed a high-fat diet (45% kcal for 16 weeks. Afterward, the rats were fed diets with 50% of the kilocalories of fat derived from lard replaced by the different dietary oils. In addition, a control group fed a standard diet (4% kcal fat and a high fat fed group (45% kcal were maintained. The treatment period was 32 weeks. The endpoints evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and vascular relaxation by epineurial arterioles.Results: Menhaden oil provided the greatest benefit for improving peripheral nerve damage caused by dietary obesity. Similar results were obtained when we examined acetylcholine-mediated vascular relaxation of epineurial arterioles of the sciatic nerve. Enriching the diets with fatty acids derived from the other oils provided minimal to partial improvements.Conclusion: These studies suggest that omega-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for neural and vascular complications associated with obesity. Keywords: peripheral neuropathy, fish oil, omega-3 polyunsaturated fatty acids, omega-6 polyunsaturated fatty

  13. ALS5/SPG11/ KIAA1840 mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L.; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H.; Barsottini, Orlando G. P.; Kawarai, Toshitaka

    2016-01-01

    Abstract Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and

  14. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  15. Autosomal recessive Charcot-Marie-Tooth neuropathy.

    Science.gov (United States)

    Espinós, Carmen; Calpena, Eduardo; Martínez-Rubio, Dolores; Lupo, Vincenzo

    2012-01-01

    Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

  16. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T

    1984-01-01

    (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree......The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... comprise not only the peripheral sensory and motor nerve fibres, but also the thin pseudomotor and vasomotor nerves....

  17. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Bech, Sara; Hjermind, Lena E; Salvesen, Lisette

    2012-01-01

    Clinical differentiation between parkinsonian syndromes (PS) remains a challenge despite well-established clinical diagnostic criteria. Specific diagnostic biomarkers have yet to be identified, though in recent years, studies have been published on the aid of certain brain related proteins (BRP) ...

  18. Chemotherapy-induced peripheral neuropathy and its impact on health-related quality of life among ovarian cancer survivors : Results from the population-based PROFILES registry

    NARCIS (Netherlands)

    Ezendam, N.P.M.; Pijlman, B.M.; Bhugwandass, C.; Pruijt, J.F.; Mols, F.; Vos, M.C.; Pijnenborg, J.M.; van de Poll-Franse, L.

    2014-01-01

    Objective This study assessed the prevalence and risk factors of chemotherapy-induced peripheral neuropathy, and its impact on health-related quality of life among ovarian cancer survivors, 2–12 years after diagnosis. Methods Women (n = 348) diagnosed with ovarian cancer between 2000 and 2010, as

  19. Chronic obstructive pulmonary disease and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2006-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is the fourth leading cause of death world-wide and a further increase in the prevalence as well as mortality of the disease is predicted for coming decades. There is now an increased appreciation for the need to build awareness regarding COPD and to help the thousands of people who suffer from this disease and die prematurely from COPD or its associated complication(s. Peripheral neuropathy in COPD has received scanty attention despite the fact that very often clinicians come across COPD patients having clinical features suggestive of peripheral neuropathy. Electrophysiological tests like nerve conduction studies are required to distinguish between axonal and demyelinating type of disorder that cannot be analyzed by clinical examination alone. However, various studies addressing peripheral neuropathy in COPD carried out so far have included patients with COPD having markedly varying baseline characteristics like severe hypoxemia, elderly patients, those with long duration of illness, etc. that are not uniform across the studies and make it difficult to interpret the results to a consistent conclusion. Almost one-third of COPD patients have clinical evidence of peripheral neuropathy and two-thirds have electrophysiological abnormalities. Some patients with no clinical indication of peripheral neuropathy do have electrophysiological deficit suggestive of peripheral neuropathy. The more frequent presentation consists of a polyneuropathy that is subclinical or with predominantly sensory signs, and the neurophysiological and pathological features of predominantly axonal neuropathy. The presumed etiopathogenic factors are multiple: chronic hypoxia, tobacco smoke, alcoholism, malnutrition and adverse effects of certain drugs.

  20. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    OpenAIRE

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expressio...

  1. Herpes Zoster Optic Neuropathy.

    Science.gov (United States)

    Kaufman, Aaron R; Myers, Eileen M; Moster, Mark L; Stanley, Jordan; Kline, Lanning B; Golnik, Karl C

    2018-06-01

    Herpes zoster optic neuropathy (HZON) is a rare manifestation of herpes zoster ophthalmicus (HZO). The aim of our study was to better characterize the clinical features, therapeutic choices, and visual outcomes in HZON. A retrospective chart review was performed at multiple academic eye centers with the inclusion criteria of all eyes presenting with optic neuropathy within 1 month of cutaneous zoster of the ipsilateral trigeminal dermatome. Data were collected regarding presenting features, treatment regimen, and visual acuity outcomes. Six patients meeting the HZON inclusion criteria were identified. Mean follow-up was 2.75 months (range 0.5-4 months). Herpes zoster optic neuropathy developed at a mean of 14.1 days after initial rash (range 6-30 days). Optic neuropathy was anterior in 2 eyes and retrobulbar in 4 eyes. Other manifestations of HZO included keratoconjunctivitis (3 eyes) and iritis (4 eyes). All patients were treated with systemic antiviral therapy in addition to topical and/or systemic corticosteroids. At the last follow-up, visual acuity in 3 eyes had improved relative to presentation, 2 eyes had worsened, and 1 eye remained the same. The 2 eyes that did not receive systemic corticosteroids had the best observed final visual acuity. Herpes zoster optic neuropathy is an unusual but distinctive complication of HZO. Visual recovery after HZON is variable. Identification of an optimal treatment regiment for HZON could not be identified from our patient cohort. Systemic antiviral agents are a component of HZON treatment regimens. Efficacy of systemic corticosteroids for HZON remains unclear and should be considered on a case-by-case basis.

  2. The Variant p.(Arg183Trp) in SPTLC2 Causes Late-Onset Hereditary Sensory Neuropathy.

    Science.gov (United States)

    Suriyanarayanan, Saranya; Auranen, Mari; Toppila, Jussi; Paetau, Anders; Shcherbii, Maria; Palin, Eino; Wei, Yu; Lohioja, Tarja; Schlotter-Weigel, Beate; Schön, Ulrike; Abicht, Angela; Rautenstrauss, Bernd; Tyynismaa, Henna; Walter, Maggie C; Hornemann, Thorsten; Ylikallio, Emil

    2016-03-01

    Hereditary sensory and autonomic neuropathy 1 (HSAN1) is an autosomal dominant disorder that can be caused by variants in SPTLC1 or SPTLC2, encoding subunits of serine palmitoyl-CoA transferase. Disease variants alter the enzyme's substrate specificity and lead to accumulation of neurotoxic 1-deoxysphingolipids. We describe two families with autosomal dominant HSAN1C caused by a new variant in SPTLC2, c.547C>T, p.(Arg183Trp). The variant changed a conserved amino acid and was not found in public variant databases. All patients had a relatively mild progressive distal sensory impairment, with onset after age 50. Small fibers were affected early, leading to abnormalities on quantitative sensory testing. Sural biopsy revealed a severe chronic axonal neuropathy with subtotal loss of myelinated axons, relatively preserved number of non-myelinated fibers and no signs for regeneration. Skin biopsy with PGP9.5 labeling showed lack of intraepidermal nerve endings early in the disease. Motor manifestations developed later in the disease course, but there was no evidence of autonomic involvement. Patients had elevated serum 1-deoxysphingolipids, and the variant protein produced elevated amounts of 1-deoxysphingolipids in vitro, which proved the pathogenicity of the variant. Our results expand the genetic spectrum of HSAN1C and provide further detail about the clinical characteristics. Sequencing of SPTLC2 should be considered in all patients presenting with mild late-onset sensory-predominant small or large fiber neuropathy.

  3. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience.

    Science.gov (United States)

    Luigetti, M; Sauchelli, D; Primiano, G; Cuccagna, C; Bernardo, D; Lo Monaco, M; Servidei, S

    2016-06-01

    Peripheral neuropathy in mitochondrial diseases (MDs) may vary from a subclinical finding in a multisystem syndrome to a severe, even isolated, manifestation in some patients. To investigate the involvement of the peripheral nervous system in MDs extensive electrophysiological studies were performed in 109 patients with morphological, biochemical and genetic diagnosis of MD [12 A3243G progressive external ophthalmoplegia (PEO)/mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 16 myoclonic epilepsy with ragged-red fibres (MERRF), four mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), 67 PEO with single or multiple deletions of mitochondrial DNA, 10 others]. A neuropathy was found in 49 patients (45%). The incidence was very high in MNGIE (100%), MELAS (92%) and MERRF (69%), whilst 28% of PEO patients had evidence of peripheral involvement. The most frequent abnormality was a sensory axonal neuropathy found in 32/49 patients (65%). A sensory-motor axonal neuropathy was instead detected in 16% of the patients and sensory-motor axonal demyelinating neuropathy in 16%. Finally one Leigh patient had a motor axonal neuropathy. It is interesting to note that the great majority had preserved tendon reflexes and no sensory disturbances. In conclusion, peripheral involvement in MD is frequent even if often mild or asymptomatic. The correct identification and characterization of peripheral neuropathy through electrophysiological studies represents another tile in the challenge of MD diagnosis. © 2016 EAN.

  4. Continuous subcutaneous insulin infusion preserves axonal function in type 1 diabetes mellitus.

    Science.gov (United States)

    Kwai, Natalie; Arnold, Ria; Poynten, Ann M; Lin, Cindy S-Y; Kiernan, Matthew C; Krishnan, Arun V

    2015-02-01

    Diabetic peripheral neuropathy is a common and debilitating complication of diabetes mellitus. Although strict glycaemic control may reduce the risk of developing diabetic peripheral neuropathy, the neurological benefits of different insulin regimens remain relatively unknown. In the present study, 55 consecutive patients with type 1 diabetes mellitus underwent clinical neurological assessment. Subsequently, 41 non-neuropathic patients, 24 of whom were receiving multiple daily insulin injections (MDII) and 17 receiving continuous subcutaneous insulin infusion (CSII), underwent nerve excitability testing, a technique that assesses axonal ion channel function and membrane potential in human nerves. Treatment groups were matched for glycaemic control, body mass index, disease duration and gender. Neurophysiological parameters were compared between treatment groups and those taken from age and sex-matched normal controls. Prominent differences in axonal function were noted between MDII-treated and CSII-treated patients. Specifically, MDII patients manifested prominent abnormalities when compared with normal controls in threshold electrotonus (TE) parameters including depolarizing TE(10-20ms), undershoot and hyperpolarizing TE (90-100 ms) (P type 1 diabetes is maintained within normal limits in patients treated with continuous subcutaneous insulin infusion and not with multiple daily insulin injections. This raises the possibility that CSII therapy may have neuroprotective potential in patients with type 1 diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Peripheral neuropathies associated with antibodies directed to intracellular neural antigens.

    Science.gov (United States)

    Antoine, J-C

    2014-10-01

    Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Proximal Neuropathy and Associated Skeletal Muscle Changes Resembling Denervation Atrophy in Hindlimbs of Chronic Hypoglycaemic Rats

    DEFF Research Database (Denmark)

    Jensen, Vivi F.H.; Molck, Anne Marie; Soeborg, Henrik

    2017-01-01

    Peripheral neuropathy is one of the most common complications of diabetic hyperglycaemia. Insulin-induced hypoglycaemia (IIH) might potentially exacerbate or contribute to neuropathy as hypoglycaemia also causes peripheral neuropathy. In rats, IIH induces neuropathy associated with skeletal muscle......, and severity of the myofibre atrophy correlated with severity of axonal degeneration in sciatic nerve. Both neuropathy and myopathy were still present after four weeks of recovery, although the neuropathy was less severe. In conclusion, the results suggest that peripheral neuropathy induced by IIH progresses...... changes. Aims of this study were to investigate the progression and sequence of histopathologic changes caused by chronic IIH in rat peripheral nerves and skeletal muscle, and whether such changes were reversible. Chronic IIH was induced by infusion of human insulin, followed by an infusion-free recovery...

  7. Proximal Neuropathy and Associated Skeletal Muscle Changes Resembling Denervation Atrophy in Hindlimbs of Chronic Hypoglycaemic Rats

    DEFF Research Database (Denmark)

    Jensen, Vivi F.H.; Molck, Anne Marie; Soeborg, Henrik

    2018-01-01

    Peripheral neuropathy is one of the most common complications of diabetic hyperglycaemia. Insulin-induced hypoglycaemia (IIH) might potentially exacerbate or contribute to neuropathy as hypoglycaemia also causes peripheral neuropathy. In rats, IIH induces neuropathy associated with skeletal muscle......, and severity of the myofibre atrophy correlated with severity of axonal degeneration in sciatic nerve. Both neuropathy and myopathy were still present after four weeks of recovery, although the neuropathy was less severe. In conclusion, the results suggest that peripheral neuropathy induced by IIH progresses...... changes. Aims of this study were to investigate the progression and sequence of histopathologic changes caused by chronic IIH in rat peripheral nerves and skeletal muscle, and whether such changes were reversible. Chronic IIH was induced by infusion of human insulin, followed by an infusion-free recovery...

  8. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  9. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  10. The effects of progressive-resisted exercises on muscle strength and health-related quality of life in persons with HIV-related poly-neuropathy in Zimbabwe.

    Science.gov (United States)

    Mkandla, Khumbula; Myezwa, Hellen; Musenge, Eustasius

    2016-01-01

    Distal symmetrical poly-neuropathy (DSP) is a neurological complication associated with HIV/AIDS and stavudine (d4T) containing antiretroviral therapy. People with DSP experience pain, numbness and muscle weakness, which affect their quality of life (QOL). The purpose of this study was to establish the effect of a progressive-resisted exercise (PRE) intervention on health-related quality of life (HR-QOL) in people living with HIV/AIDS-related DSP. An assessor-blinded randomised controlled trial was conducted, with participants sourced from 10 clinics with HIV services, the family care clinic at Wilkins Hospital and 2 large hospitals in Harare, Zimbabwe. A 12-week PRE intervention was conducted twice weekly for 80 participants, while the control group with 80 participants continued with usual daily activities. The main outcome variable was HR-QOL for which we controlled for demographic and clinical measures in generalised estimating equation population-averaged models. Data were summarised and analysed using an intention to treat analysis approach using the Stata v10 program. Mean age of participants was 42.2 years (SD = 8.5). While d4T was used by 59% (n = 94), an equal proportion of the participants also had moderate to severe neuropathy. PRE was found to significantly improve HR-QOL in the intervention group based on the mean difference between the intervention group mean change and the mean change in the control group (F ratio 4.24; p = .04). This study established that PREs have positive effects on HR-QOL for people living with HIV/AIDS-related DSP.

  11. Dynamics of target recognition by interstitial axon branching along developing cortical axons.

    Science.gov (United States)

    Bastmeyer, M; O'Leary, D D

    1996-02-15

    Corticospinal axons innervate their midbrain, hindbrain, and spinal targets by extending collateral branches interstitially along their length. To establish that the axon shaft rather than the axonal growth cone is responsible for target recognition in this system, and to characterize the dynamics of interstitial branch formation, we have studied this process in an in vivo-like setting using slice cultures from neonatal mice containing the entire pathway of corticospinal axons. Corticospinal axons labeled with the dye 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (or Dil) were imaged using time-lapse video microscopy of their pathway overlying the basilar pons, their major hindbrain target. The axon shaft millimeters behind the growth cone exhibits several dynamic behaviors, including the de novo formation of varicosities and filopodia-like extensions, and a behavior that we term "pulsation," which is characterized by a variable thickening and thining of short segments of the axon. An individual axon can have multiple sites of branching activity, with many of the branches being transient. These dynamic behaviors occur along the portion of the axon shaft overlying the basilar pons, but not just caudal to it. Once the collaterals extend into the pontine neuropil, they branch further in the neuropil, while the parent axon becomes quiescent. Thus, the branching activity is spatially restricted to specific portions of the axon, as well as temporally restricted to a relatively brief time window. These findings provide definitive evidence that collateral branches form de novo along corticospinal axons and establish that the process of target recognition in this system is a property of the axon shaft rather than the leading growth cone.

  12. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Pitceathly, Robert D S

    2012-09-11

    Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN).

  13. Reflex control of heart rate in normal subjects in relation to age: a data base for cardiac vagal neuropathy

    NARCIS (Netherlands)

    Wieling, W.; van Brederode, J. F.; de Rijk, L. G.; Borst, C.; Dunning, A. J.

    1982-01-01

    We examined the heart rate changes induced by forced breathing and by standing up in 133 healthy subjects in the age range 10-65 years in order to establish a data base for studies on parasympathetic heart rate control in autonomic neuropathy. Test results declined with age. Log-transformation was

  14. Lifestyle related factors in the self management of chemotherapy induced peripheral neuropathy in colorectal cancer: : A systematic review

    NARCIS (Netherlands)

    Derksen, T.; Bours, M.J.; Mols, F.; Weijenberg, M.P.

    2017-01-01

    Background. Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect of chemotherapy treatment in colorectal cancer (CRC), negatively affecting the daily functioning and quality of life of CRC patients. Currently, there are no established treatments to prevent or reduce CIPN. The

  15. Clinicopathological study of vasculitic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Rong-fang DONG

    2014-06-01

    Full Text Available Objective To summarize the clinical features and neuropathological characteristics in patients with vasculitic peripheral neuropathy (VPN. Methods Clinical manifestations, laboratory examination and neuromuscular biopsy characteristics of 11 patients with VPN were retrospectively analyzed. The lesion of nerve, muscle and skin was observed under optical and electron microscope. Immunohistochemical analyses were carried out to detect neurofilament (NF, myelin basic protein (MBP, peripheral myelin protein 22 (PMP22 and S-100 protein (S-100 and further observing the neuropathy of neuraxon, myelin sheath and Schwann cells, and to detect human leukocyte antigen DR (HLA-DR, CD68, CD3 and CD20 to observe inflammatory cell infiltration. Immunofluorescent staining was used to detect the deposition of IgA, IgM, IgG and addiment C3 on vascular wall. The staining of periodic acid-Schiff (PAS, NADH-tetrazolium reductase (NADH-TR and modified Gomori trichrome (MGT were used to judge the myopathy. Results 1 Angiopathies were mainly manifested by small vessels of epineurium and perineurium, and infiltrated inflammatory cells were mainly CD3 + T cells. Three patients had active vasculitis, and 8 patients had non-active vasculitis. Among these 8 patients, 4 patients mainly presented fibrous obliteration of blood vessel, with slight inflammatroy cell infiltration, and the other 4 patients mainly showed perivascular inflammation. 2 Neuropathy: 6 patients had axon degeneration, and 5 patients had axon degeneration associated with demyelination. All of them demonstrated a reduction in myelinated fibers, mainly large diameter myelinated fibers, even on end-stage. 3 Muscle biopsy showed neurogenic atrophy. 4 Clinicopathologic diagnosis: among these 11 patients, 8 patients were diagnosed as systemic vasculitic peripheral neuropathy (SVPN, among whom 5 patients were diagnosed as primary systemic vasculitis [including 1 patient as Churg-Strauss syndrome (CSS, 2 patients as

  16. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy

    OpenAIRE

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J.

    2011-01-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicati...

  17. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  18. Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants

    International Nuclear Information System (INIS)

    Wisnowski, Jessica L.; Panigrahy, Ashok; Schmithorst, Vincent J.; Rosser, Tena; Paquette, Lisa; Nelson, Marvin D.; Haynes, Robin L.; Painter, Michael J.; Blueml, Stefan

    2014-01-01

    Punctate white matter lesions (pWMLs) and diffuse excessive high signal intensity (DEHSI) are commonly observed signal abnormalities on MRI scans of high-risk preterm infants near term-equivalent age. To establish whether these features are indicative abnormalities in axonal development or astroglia, we compared pWMLs and DEHSI to markers of axons and astrogliosis, derived from magnetic resonance spectroscopy (MRS). Data from 108 preterm infants (gestational age at birth 31.0 weeks ± 4.3; age at scan 41.2 weeks ± 6.0) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses were used to test the effects of pWMLs and DEHSI on N-acetyl-aspartate (NAA) and myoinositol concentrations, respectively. Across the full sample, pWMLs were associated with a reduction in NAA whereas moderate to severe DEHSI altered the normal age-dependent changes in myoinositol such that myoinositol levels were lower at younger ages with no change during the perinatal period. Subgroup analyses indicated that the above associations were driven by the subgroup of neonates with both pWMLs and moderate to severe DEHSI. Overall, these findings suggest that pWMLs in conjunction with moderate/severe DEHSI may signify a population of infants at risk for long-term adverse neurodevelopmental outcome due to white matter injury and associated axonopathy. The loss of normal age-associated changes in myoinositol further suggests disrupted astroglial function and/or osmotic dysregulation. (orig.)

  19. Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L.; Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Rosser, Tena [Children' s Hospital Los Angeles, Department of Pediatrics, Division of Neurology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Department of Pediatrics, Division of Neonatology, Los Angeles, CA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Haynes, Robin L. [Boston Children' s Hospital, Department of Pathology, Boston, MA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2014-09-15

    Punctate white matter lesions (pWMLs) and diffuse excessive high signal intensity (DEHSI) are commonly observed signal abnormalities on MRI scans of high-risk preterm infants near term-equivalent age. To establish whether these features are indicative abnormalities in axonal development or astroglia, we compared pWMLs and DEHSI to markers of axons and astrogliosis, derived from magnetic resonance spectroscopy (MRS). Data from 108 preterm infants (gestational age at birth 31.0 weeks ± 4.3; age at scan 41.2 weeks ± 6.0) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses were used to test the effects of pWMLs and DEHSI on N-acetyl-aspartate (NAA) and myoinositol concentrations, respectively. Across the full sample, pWMLs were associated with a reduction in NAA whereas moderate to severe DEHSI altered the normal age-dependent changes in myoinositol such that myoinositol levels were lower at younger ages with no change during the perinatal period. Subgroup analyses indicated that the above associations were driven by the subgroup of neonates with both pWMLs and moderate to severe DEHSI. Overall, these findings suggest that pWMLs in conjunction with moderate/severe DEHSI may signify a population of infants at risk for long-term adverse neurodevelopmental outcome due to white matter injury and associated axonopathy. The loss of normal age-associated changes in myoinositol further suggests disrupted astroglial function and/or osmotic dysregulation. (orig.)

  20. Meninges-derived cues control axon guidance.

    Science.gov (United States)

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells.

    Science.gov (United States)

    Ferreira, Rafaela Scalco; Dos Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Fernandes, Laís Silva; Dos Santos, Antonio Cardozo

    2016-11-01

    Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.

  2. Sympathetic neuropathy in diabetes mellitus patients does not elicit Charcot osteoarthropathy

    DEFF Research Database (Denmark)

    Christensen, Tomas M; Simonsen, Lene; Holstein, Per E

    2011-01-01

    AIM: The aim of the study was to determine the degree of neuropathy (autonomic and somatic) in patients with diabetes mellitus with or without Charcot osteoarthropathy (CA). METHODS: Forty-nine patients with diabetes mellitus type 1 or 2 were investigated. The patient population of interest...... with first toe amputation (n=5), a high-risk group for development of CA, and two control groups consisting of diabetes patients with (n=9) or without somatic neuropathy (n=11) were investigated. Regional blood flow in the feet was measured by venous occlusion plethysmography. Quantitation of somatic...... neuropathy was done by the Neuropathy Disability Score and modified Neuropathy Symptom Score. Quantitation of autonomic neuropathy was done by measurements of local venoarteriolar sympathetic axon reflex in the feet and of heart rate variability during deep breathing and orthostatic challenge. RESULTS...

  3. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  4. Optic neuropathies--importance of spatial distribution of mitochondria as well as function.

    Science.gov (United States)

    Yu Wai Man, C Y; Chinnery, P F; Griffiths, P G

    2005-01-01

    Optic neuropathies such as Leber's hereditary optic neuropathy, dominant optic atrophy and toxic amblyopia are an important cause of irreversible visual failure. Although they are associated with a defect of mitochondrial energy production, their pathogenesis is poorly understood. A common feature to all these disorders is relatively selective degeneration of the papillomacular bundle of retinal ganglion cells resulting central or caecocentral visual field defects. The striking similarity in the pattern of clinical involvement seen with these disparate disorders suggests a common pathway in their aetiology. The existing hypothesis that the optic nerve head has higher energy demands than other tissues making it uniquely dependent on oxidative phosporylation is not satisfactory. First, other ocular tissues such as photoreceptors, which are more dependent on oxidative phosporylation are not affected. Second, other mitochondrial disorders, which have a greater impact on mitochondrial energy function, do not affect the optic nerve. The optic nerve head has certain unique ultra structural features. Ganglion cell axons exit the eye through a perforated collagen plate, the lamina cribrosa. There is a sharp discontinuity in the density of mitochondria at the optic nerve head, with a very high concentration in the prelaminar nerve fibre layer and low concentration behind the lamina. This has previously been attributed to a mechanical hold up of axoplasmic flow, which has itself been proposed as a factor in the pathogenesis of a number of optic neuropathies. More recent evidence shows that mitochondrial distribution reflects the different energy requirements of the unmyelinated prelaminar axons in comparison to the myelinated retrolaminar axons. The heterogeous distribution of mitochondria is actively maintained to support conduction through the optic nerve head. We propose that factors that disrupt the heterogeneous distribution of mitochondria can result in ganglion cell

  5. Peripheral neuropathy in patients with myotonic dystrophy type 2.

    Science.gov (United States)

    Leonardis, L

    2017-05-01

    Myotonic dystrophy type 2 (dystrophia myotonica type 2-DM2) is an autosomal dominant multi-organ disorder. The involvement of the peripheral nervous system was found in 25%-45% of patients with myotonic dystrophy type 1, although limited data are available concerning polyneuropathy in patients with DM2, which was the aim of this study with a thorough presentation of the cases with peripheral neuropathy. Patients with genetically confirmed DM2 underwent motor nerve conduction studies of the median, ulnar, tibial and fibular nerves and sensory nerve conduction studies of the median (second finger), ulnar (fifth finger), radial (forearm) and sural nerves. Seventeen adult patients with DM2 participated in the study. Fifty-three percent (9/17) of our patients had abnormality of one or more attributes (latency, amplitude or conduction velocity) in two or more separate nerves. Four types of neuropathies were found: (i) predominantly axonal motor and sensory polyneuropathy, (ii) motor polyneuropathy, (iii) predominantly demyelinating motor and sensory polyneuropathy and (iv) mutilating polyneuropathy with ulcers. The most common forms are axonal motor and sensory polyneuropathy (29%) and motor neuropathy (18% of all examined patients). No correlations were found between the presence of neuropathy and age, CCTG repeats, blood glucose or HbA1C. Peripheral neuropathy is common in patients with DM2 and presents one of the multisystemic manifestations of DM2. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Axons take a dive

    Science.gov (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  7. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  8. Clinical diagnosis of diabetic polyneuropathy with the diabetic neuropathy symptom and diabetic neuropathy examination scores

    NARCIS (Netherlands)

    Meijer, J.W.; Lefrandt, J.D.; Links, T.P.; Smit, J.A.; Stewart, R.E.; van der Hoeven, J.H.; Hoogenberg, K.

    OBJECTIVE - To evaluate the discriminative power of the Diabetic Neuropathy Symptom (DNS) and Diabetic Neuropathy Examination (DNE) scores for diagnosing diabetic polyneuropathy (PNP), as well as their relation with cardiovascular autonomic function testing (cAFT) and electro-diagnostic studies

  9. Structure-Function Analysis of Nonarteritic Anterior Ischemic Optic Neuropathy and Age-Related Differences in Outcome.

    Science.gov (United States)

    Sun, Ming-Hui; Liao, Yaping Joyce

    2017-09-01

    The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 μm or macular GCC thickness >55 μm significantly correlated with good visual field outcome. We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 μm and mean macular ganglion cell complex thickness >55 μm had better visual outcomes.

  10. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    Science.gov (United States)

    ... intolerance) and can lead to an unusual walking style (gait), frequent falls, and joint deformities (contractures) in ... pediatrneurol.2013.08.028. Epub 2013 Oct 13. Citation on PubMed Zhao H, Race V, Matthijs G, ...

  11. Clinical spectrum of Castleman disease-associated neuropathy.

    Science.gov (United States)

    Naddaf, Elie; Dispenzieri, Angela; Mandrekar, Jay; Mauermann, Michelle L

    2016-12-06

    To define the peripheral neuropathy phenotypes associated with Castleman disease. We conducted a retrospective chart review for patients with biopsy-proven Castleman disease evaluated between January 2003 and December 2014. Patients with associated peripheral neuropathy were identified and divided into 2 groups: those with Castleman disease without POEMS syndrome (CD-PN) and those with Castleman disease with POEMS syndrome (CD-POEMS). We used a cohort of patients with POEMS as controls. Clinical, electrodiagnostic, and laboratory characteristics were collected and compared among patient subgroups. There were 7 patients with CD-PN, 20 with CD-POEMS, and 122 with POEMS. Patients with CD-PN had the mildest neuropathy characterized by predominant sensory symptoms with no pain and mild distal sensory deficits (median Neuropathy Impairment Score of 7 points). Although both patients with CD-POEMS and patients with POEMS had a severe sensory and motor neuropathy, patients with CD-POEMS were less affected (median Neuropathy Impairment Score of 33 and 66 points, respectively). The degree of severity was also reflected on electrodiagnostic testing in which patients with CD-PN demonstrated a mild degree of axonal loss, followed by patients with CD-POEMS and then those with POEMS. Demyelinating features, defined by European Federation of Neurologic Societies/Peripheral Nerve Society criteria, were present in 43% of the CD-PN, 78% of the CD-POEMS, and 86% of the POEMS group. There is a spectrum of demyelinating peripheral neuropathies associated with Castleman disease. CD-PN is sensory predominant and is the mildest phenotype, whereas CD-POEMS is a more severe sensory and motor neuropathy. Compared to the POEMS cohort, those with CD-POEMS neuropathy have a similar but less severe phenotype. Whether these patients respond differently to treatment deserves further study. © 2016 American Academy of Neurology.

  12. Clinical spectrum of Castleman disease–associated neuropathy

    Science.gov (United States)

    Naddaf, Elie; Dispenzieri, Angela; Mandrekar, Jay

    2016-01-01

    Objective: To define the peripheral neuropathy phenotypes associated with Castleman disease. Methods: We conducted a retrospective chart review for patients with biopsy-proven Castleman disease evaluated between January 2003 and December 2014. Patients with associated peripheral neuropathy were identified and divided into 2 groups: those with Castleman disease without POEMS syndrome (CD-PN) and those with Castleman disease with POEMS syndrome (CD-POEMS). We used a cohort of patients with POEMS as controls. Clinical, electrodiagnostic, and laboratory characteristics were collected and compared among patient subgroups. Results: There were 7 patients with CD-PN, 20 with CD-POEMS, and 122 with POEMS. Patients with CD-PN had the mildest neuropathy characterized by predominant sensory symptoms with no pain and mild distal sensory deficits (median Neuropathy Impairment Score of 7 points). Although both patients with CD-POEMS and patients with POEMS had a severe sensory and motor neuropathy, patients with CD-POEMS were less affected (median Neuropathy Impairment Score of 33 and 66 points, respectively). The degree of severity was also reflected on electrodiagnostic testing in which patients with CD-PN demonstrated a mild degree of axonal loss, followed by patients with CD-POEMS and then those with POEMS. Demyelinating features, defined by European Federation of Neurologic Societies/Peripheral Nerve Society criteria, were present in 43% of the CD-PN, 78% of the CD-POEMS, and 86% of the POEMS group. Conclusion: There is a spectrum of demyelinating peripheral neuropathies associated with Castleman disease. CD-PN is sensory predominant and is the mildest phenotype, whereas CD-POEMS is a more severe sensory and motor neuropathy. Compared to the POEMS cohort, those with CD-POEMS neuropathy have a similar but less severe phenotype. Whether these patients respond differently to treatment deserves further study. PMID:27807187

  13. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    Science.gov (United States)

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic

  14. Peripheral Neuropathy: Symptoms and Signs

    Science.gov (United States)

    ... Utah Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... more slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  15. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... 10 percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  16. Fatigue, psychosocial adaptation and quality of life one year after traumatic brain injury and suspected traumatic axonal injury; evaluations of patients and relatives: a pilot study.

    Science.gov (United States)

    Esbjörnsson, Eva; Skoglund, Thomas; Sunnerhagen, Katharina S

    2013-09-01

    To describe fatigue and its relationship to cognition, psychosocial adjustment, quality of life (QoL), work status and relative's experiences 12 months after suspected traumatic axonal injury (TAI). Eighteen patients were assessed with the Daily Fatigue Impact Scale (D-FIS), the Barrow Neurological Institute Screen for Higher Cerebral Functions (BNIS), the European Questionnaire 5 Dimensions health-related quality of life, the Glasgow Coma Outcome Scale Extended, and the European Brain Injury Questionnaire (EBIQ) (patient and relative). Return to work was registered. At 1 year, fatigue still caused great problems in daily life. Although fatigue and cognition (BNIS) did not correlate, the more fatigued patients subjectively experienced significantly more cognitive dysfunction. Although D-FIS and QoL did not correlate, most patients reported that feelings of tiredness and dullness related to having lower QoL. However, lower QoL was associated with cognitive and attention disability (BNIS), subjective perception of executive dysfunction, lack of motivation, and mood disturbances (EBIQ). Neither fatigue nor cognition associated with return to work. The general consequences of TAI showed good agreement between patients' and relatives' experiences. The patient's subjective experience of the impact of TAI seems to be most essential, as it is the objective reality that the patient responds to, and this should therefore be assessed and treated.

  17. The morphological difference between glaucoma and other optic neuropathies

    Science.gov (United States)

    Burgoyne, Claude

    2016-01-01

    The clinical phenomenon of cupping has two principal pathophysiologic components in all optic neuropathies: prelaminar thinning and laminar deformation. We define prelaminar thinning to be the portion of cup enlargement that results from thinning of the prelaminar tissues due to physical compression and/or loss of Retinal Ganglion Cell axons. We define laminar deformation or laminar cupping to be the portion of cup enlargement that results from permanent, intraocular pressure-(IOP) induced deformation of the lamina cribrosa and peripapillary scleral connective tissues following damage and/or remodeling. We propose that the defining phenomenon of glaucomatous cupping is deformation and/or remodeling of the neural and connective tissues of the optic nerve head (ONH), which is governed by the distribution of IOP-related connective tissue stress and strain, regardless of the mechanism of insult or the level of IOP at which that deformation and/or remodeling occurs. Said in another way, “glaucomatous cupping” is the term clinicians use to describe the clinical appearance and behavior the ONH assumes as its neural and connective tissues deform, remodel or mechanically fail: 1) in a pattern and 2) by the several pathophysiologic processes governed by IOP-related connective tissue stress and strain. ONH Biomechanics explains why a given optic nerve head will demonstrate a certain form of “cupping” and at what level of IOP that might happen. Animal models are allowing us to tease apart the important components of cupping in IOP-related and non-IOP-related forms of optic neuropathy. A paradigm change in spectral domain optical coherence tomography ONH, retinal nerve fiber layer and Macular imaging should improve our ability to phenotype all forms of damage to the visual system including glaucoma. PMID:26274837

  18. Anterior ischemic optic neuropathy precipitated by acute primary angle closure

    Directory of Open Access Journals (Sweden)

    Choudhari Nikhil

    2010-01-01

    Full Text Available A 59-year-old man with a history of longstanding systemic hypotension developed asymmetric non-arteritic anterior ischemic optic neuropathy (NAION apparently precipitated by bilateral sequential acute primary angle closure. NAION is very rarely reported in association with raised intraocular pressure. In contrast to optical coherence tomography, the failure of scanning laser polarimetry to detect axonal swelling was another interesting finding. Possible reasoning for these observations is discussed.

  19. Sulfatide levels correlate with severity of neuropathy in metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Dali, Christine I; Barton, Norman W; Farah, Mohamed H

    2015-01-01

    OBJECTIVE: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disorder due to deficient activity of arylsulfatase A (ASA) that causes accumulation of sulfatide and lysosulfatide. The disorder is associated with demyelination and axonal loss in the central and peripheral...... had a sensory-motor demyelinating neuropathy on electrophysiological testing, whereas two patients had normal studies. Sural nerve and CSF (lyso)sulfatide levels strongly correlated with abnormalities in electrophysiological parameters and large myelinated fiber loss in the sural nerve, but there were...

  20. Nerve excitability changes related to axonal degeneration in amyotrophic lateral sclerosis: Insights from the transgenic SOD1(G127X) mouse model

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2012-01-01

    Motor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism...

  1. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  2. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  3. Ophthalmople gic cranial neuropathy: clinical case

    OpenAIRE

    N. S. Dozorova; A. S. Kotov; E. V. Mukhina

    2018-01-01

    Ophthalmoplegic cranial neuropathy (OCN) is a disease with unknown etiology, which manifests itself by episodes of intense headache, accompanied by completely or partially reversible dysfunction of the oculomotor nerve: ptosis, mydriasis and ophthalmoplegia. It is assumed that the pathology is demyelinating in nature, therefore in the International classification of headaches OCN excluded from rubric migraine and related to the painful cranial neuropathies. The question of the prevention and ...

  4. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  5. Propylthiouracil and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Valentina Van Boekel

    1992-06-01

    Full Text Available Peripheral neuropathy is a rare manifestation in hyperthyroidism. We describe the neurological manifestations of a 38 year old female with Graves' disease who developed peripheral neuropathy in the course of her treatment with propylthiouracil. After the drug was tapered off, the neurological signs disappeared. Therefore, we call attention for a possible toxic effect on peripheral nervous system caused by this drug.

  6. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  7. Toxic neuropathies: Mechanistic insights based on a chemical perspective.

    Science.gov (United States)

    LoPachin, Richard M; Gavin, Terrence

    2015-06-02

    2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Genes for Hereditary Sensory and Autonomic Neuropathies: A Genotype-Phenotype Correlation

    Science.gov (United States)

    Rotthier, Annelies; Baets, Jonathan; De Vriendt, Els; Jacobs, An; Auer-Grumbach, Michaela; Levy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andres; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter; Timmerman, Vincent

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant ("SPTLC1"…

  9. Characteristics of Chemotherapy-induced Neuropathy: Clinical Studies on Cisplatin and Docetaxel

    NARCIS (Netherlands)

    P.H.E. Hilkens

    1998-01-01

    textabstractPeripheral neurotoxicity is an important side-effect of several chemotherapeutic agents. These agents may cause a usually axonal neuropathy, which may ultimately lead to severe and disabling symptoms and signs. Besides describing in this review the pathogenesis, the

  10. Increased Mortality and Comorbidity Associated With Leber's Hereditary Optic Neuropathy

    DEFF Research Database (Denmark)

    Vestergaard, Nanna; Rosenberg, Thomas; Torp-Pedersen, Christian

    2017-01-01

    Purpose: Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease in which optic neuropathy is considered a key feature. Several other manifestations of LHON have been reported; however, only little is known of their incidence and the life expectancy in LHON patients. Methods...... patients (RR: 4.26, 95% CI: 1.91-9.48; P neuropathy, and alcohol-related disorders. Conclusions: The manifestation of LHON was associated...

  11. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  12. Cutaneous manifestations of diabetic peripheral neuropathy.

    Science.gov (United States)

    Dogiparthi, S N; Muralidhar, K; Seshadri, K G; Rangarajan, S

    2017-01-01

    There is a rise in number of people diagnosed with Diabetes Mellitus. The incidence is rising in modern Indian society because of Industrial development and drastically changing lifestyles. Diabetic neuropathies are microvascular disorders that are usually associated with the duration of Diabetes. Among the various forms, the most common is Diabetic Peripheral Neuropathy. The disease if neglected leads to chronic ulcer formation leading to amputations frequently. Hence the aim of this study is to document the early cutaneous changes and create an early awareness in the importance of controlling Diabetes. The study consisted of 205 patients with Type 2 DM. Participant's neuropathy status was determined based on Neuropathy Disability Score and Diabetic Neuropathy Symptom Score. Among the Skin changes documented, the common changes seen were: Peripheral hair loss in 185 (90.2%), Xerosis in 168 (82%), Anhydrosis in 162 (79%), Plantar Fissures in 136 (66.3%), Plantar Ulcer in 80 (39%), common nail changes documented were Onychomycosis in 165 (80.5%) and Onychauxis in 53 (25.8%) patients in relation to the occupation and duration of Diabetes mellitus. In conclusion, it is important to control glycemic levels in the all stages of Diabetes and institute foot care measures to prevent the complications of neuropathy.

  13. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    Science.gov (United States)

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA’s effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes. PMID:23119107

  14. The protection of acetylcholinesterase inhibitor on β-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells.

    Science.gov (United States)

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA's effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes.

  15. Peripheral Neuropathy and Nerve Compression Syndromes in Burns.

    Science.gov (United States)

    Strong, Amy L; Agarwal, Shailesh; Cederna, Paul S; Levi, Benjamin

    2017-10-01

    Peripheral neuropathy and nerve compression syndromes lead to substantial morbidity following burn injury. Patients present with pain, paresthesias, or weakness along a specific nerve distribution or experience generalized peripheral neuropathy. The symptoms manifest at various times from within one week of hospitalization to many months after wound closure. Peripheral neuropathy may be caused by vascular occlusion of vasa nervorum, inflammation, neurotoxin production leading to apoptosis, and direct destruction of nerves from the burn injury. This article discusses the natural history, diagnosis, current treatments, and future directions for potential interventions for peripheral neuropathy and nerve compression syndromes related to burn injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Upper Extremity Multifocal Neuropathy in a 10-Year-Old Boy Associated With NS6S Disaccharide Antibodies.

    Science.gov (United States)

    Edelman, Frederick; Naddaf, Elie; Waclawik, Andrew J

    2015-06-01

    We present a 10-year-old boy with a predominantly motor multifocal neuropathy with demyelinating and axonal changes with sensory involvement, affecting only one upper extremity. Laboratory studies revealed an elevated titer of immunoglobulin M (IgM) antibodies against the NS6S antigen. He responded to treatment with high dose intravenous immunoglobulins. Focal or multifocal immune-mediated neuropathies are not common in children and may be underdiagnosed. © The Author(s) 2014.

  17. Prevalence and predictors of peripheral neuropathy in nondiabetic children with chronic kidney disease.

    Science.gov (United States)

    Yoganathan, Sangeetha; Bagga, Arvind; Gulati, Sheffali; Toteja, G S; Hari, Pankaj; Sinha, Aditi; Pandey, Ravindra Mohan; Irshad, Mohammad

    2018-05-01

    This study sought to determine the prevalence and predictors of peripheral neuropathy in nondiabetic children with chronic kidney disease (CKD). Fifty-one consecutive normally nourished children, 3-18 years of age, with CKD stages IV and V of nondiabetic etiology were enrolled from May to December 2012. Nerve conduction studies were performed in 50 children. Blood samples were analyzed for the biochemical parameters, trace elements, and micronutrients. The prevalence of peripheral neuropathy in our cohort was 52% (95% confidence interval 37.65, 66.34). The majority (80.8%) of the children had axonal neuropathy, and 11.5% had demyelinating neuropathy. Isolated motor neuropathy was identified in 92.3% of the children, and sensorimotor neuropathy was identified in 7.6%. The significant risk factors associated with peripheral neuropathy were older age, low serum copper, and dialysis therapy. Electrodiagnostic studies should be performed in children with CKD to assess for peripheral neuropathy for the purpose of optimizing medical care. Muscle Nerve 57: 792-798, 2018. © 2017 Wiley Periodicals, Inc.

  18. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Lifestyle-Related Factors in the Self-Management of Chemotherapy-Induced Peripheral Neuropathy in Colorectal Cancer: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Tess M. E. Derksen

    2017-01-01

    Full Text Available Background. Chemotherapy-induced peripheral neuropathy (CIPN is a common adverse effect of chemotherapy treatment in colorectal cancer (CRC, negatively affecting the daily functioning and quality of life of CRC patients. Currently, there are no established treatments to prevent or reduce CIPN. The purpose of this systematic review was to identify lifestyle-related factors that can aid in preventing or reducing CIPN, as such factors may promote self-management options for CRC patients suffering from CIPN. Methods. A literature search was conducted through PubMed, Embase, and Google Scholar. Original research articles investigating oxaliplatin-related CIPN in CRC were eligible for inclusion. Results. In total, 22 articles were included, which suggested that dietary supplements, such as antioxidants and herbal extracts, as well as physical exercise and complementary therapies, such as acupuncture, may have beneficial effects on preventing or reducing CIPN symptoms. However, many of the reviewed articles presented various limitations, including small sample sizes and heterogeneity in study design and measurements of CIPN. Conclusions. No strong conclusions can be drawn regarding the role of lifestyle-related factors in the management of CIPN in CRC patients. Certain dietary supplements and physical exercise may be beneficial for the management of CIPN, but further research is warranted.

  20. Only male matrilineal relatives with Leber's hereditary optic neuropathy in a large Chinese family carrying the mitochondrial DNA G11778A mutation

    International Nuclear Information System (INIS)

    Qu Jia; Li Ronghua; Tong Yi; Hu Yongwu; Zhou Xiangtian; Qian Yaping; Lu Fan; Guan Minxin

    2005-01-01

    We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation

  1. Spectrum of peripheral neuropathies associated with surgical interventions; A neurophysiological assessment

    LENUS (Irish Health Repository)

    Saidha, Shiv

    2010-04-19

    Abstract Background We hypothesized that a wide range of surgical procedures may be complicated by neuropathies, not just in close proximity but also remote from procedural sites. The aim of this study was to classify post-operative neuropathies and the procedures associated with them. Methods We retrospectively identified 66 patients diagnosed with post-procedure neuropathies between January 2005 and June 2008. We reviewed their referral cards and medical records for patient demographics, information on procedures, symptoms, as well as clinical and neurophysiological findings. Results Thirty patients (45.4%) had neuropathies remote from procedural sites and 36 patients (54.5%) had neuropathies in close proximity to procedural sites. Half of the remote neuropathies (15\\/30) developed following relatively short procedures. In 27% of cases (8\\/30) remote neuropathies were bilateral. Seven patients developed neuropathies remote from operative sites following hip arthroplasties (7\\/30: 23.3%), making hip arthroplasty the most common procedure associated with remote neuropathies. Sciatic neuropathies due to hip arthroplasty (12\\/36, 33.3%) accounted for the majority of neuropathies occurring in close proximity to operative sites. Five medial cutaneous nerve of forearm neuropathies occurred following arterio-venous fistula (AVF) formation. Conclusions An array of surgical procedures may be complicated by neuropathy. Almost half of post-procedure neuropathies occur remote from the site of procedure, emphasizing the need to try to prevent not just local, but also remote neuropathies. Mechanical factors and patient positioning should be considered in the prevention of post-operative neuropathies. There is a possible association between AVF formation and medial cutaneous nerve of forearm neuropathy, which requires further study for validation.

  2. The Ultrasound pattern sum score - UPSS. A new method to differentiate acute and subacute neuropathies using ultrasound of the peripheral nerves.

    Science.gov (United States)

    Grimm, Alexander; Décard, Bernhard F; Axer, Hubertus; Fuhr, Peter

    2015-11-01

    Ultrasound differentiation of neuropathies is a great challenge. We, therefore, suggest a standardized score to operationalize differentiation between several acute and subacute onset neuropathies. We retrospectively analyzed the ultrasound data of 61 patients with acute or subacute neuropathies, e.g. chronic immune-mediated neuropathies, Guillain-Barré syndrome (GBS), and axonal/vasculitic neuropathies. We compared these data to 28 healthy controls. Based on these results an ultrasound pattern sum score (UPSS) with three sub-scores (UPS-A for the sensorimotor nerves, UPS-B for the cervical roots and the vagal nerve and UPS-C for the sural nerve) was developed. Afterwards, the applicability of the score was prospectively validated in 10 patients with chronic neuropathies and in 14 patients with unknown acute and subacute PNP before performing additional tests. UPS-A and UPSS were significantly higher in CIDP than in other neuropathies and controls (p85%. Vasculitic neuropathies showed an intermediate type of UPSS compared to other axonal neuropathies (ppower to the method of the peripheral nerve ultrasound. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. [A rare cause of optic neuropathy: Cassava].

    Science.gov (United States)

    Zeboulon, P; Vignal-Clermont, C; Baudouin, C; Labbé, A

    2016-06-01

    Cassava root is a staple food for almost 500 million people worldwide. Excessive consumption of it is a rare cause of optic neuropathy. Ten patients diagnosed with cassava root related optic neuropathy were included in this retrospective study. Diagnostic criteria were a bilateral optic neuropathy preceded by significant cassava root consumption. Differential diagnoses were excluded through a neuro-ophthalmic examination, blood tests and a brain MRI. All patients had visual field examination and OCT retinal nerve fiber layer (RNFL) analysis as well as an evaluation of their cassava consumption. All patients had a bilateral optic nerve head atrophy or pallor predominantly located into the temporal sector. Visual field defects consisted of a central or cecocentral scotoma for all patients. RNFL showed lower values only in the temporal sector. Mean duration of cassava consumption prior to the appearance of visual symptoms was 22.7±11.2 years with a mean of 2.57±0.53 cassava-based meals per week. Cassava related optic neuropathy is possibly due to its high cyanide content and enabled by a specific amino-acid deficiency. Cassava root chronic consumption is a rare, underappreciated cause of optic neuropathy and its exact mechanism is still uncertain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Docetaxel-induced neuropathy

    DEFF Research Database (Denmark)

    Eckhoff, Lise; Feddersen, Søren; Knoop, Ann

    2015-01-01

    Background. Docetaxel is a highly effective treatment of a wide range of malignancies but is often associated with peripheral neuropathy. The genetic variability of genes involved in the transportation or metabolism of docetaxel may be responsible for the variation in docetaxel-induced peripheral...... neuropathy (DIPN). The main purpose of this study was to investigate the impact of genetic variants in GSTP1 and ABCB1 on DIPN. Material and methods. DNA was extracted from whole blood from 150 patients with early-stage breast cancer who had received adjuvant docetaxel from February 2011 to May 2012. Two...

  5. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course of the di......Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course...

  6. Inherited focal, episodic neuropathies: hereditary neuropathy with liability to pressure palsies and hereditary neuralgic amyotrophy.

    Science.gov (United States)

    Chance, Phillip F

    2006-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP; also called tomaculous neuropathy) is an autosomal-dominant disorder that produces a painless episodic, recurrent, focal demyelinating neuropathy. HNPP generally develops during adolescence, and may cause attacks of numbness, muscular weakness, and atrophy. Peroneal palsies, carpal tunnel syndrome, and other entrapment neuropathies may be frequent manifestations of HNPP. Motor and sensory nerve conduction velocities may be reduced in clinically affected patients, as well as in asymptomatic gene carriers. The histopathological changes observed in peripheral nerves of HNPP patients include segmental demyelination and tomaculous or "sausage-like" formations. Mild overlap of clinical features with Charcot-Marie-Tooth (CMT) disease type 1 (CMT1) may lead patients with HNPP to be misdiagnosed as having CMT1. HNPP and CMT1 are both demyelinating neuropathies, however, their clinical, pathological, and electrophysiological features are quite distinct. HNPP is most frequently associated with a 1.4-Mb pair deletion on chromosome 17p12. A duplication of the identical region leads to CMT1A. Both HNPP and CMT1A result from a dosage effect of the PMP22 gene, which is contained within the deleted/duplicated region. This is reflected in reduced mRNA and protein levels in sural nerve biopsy samples from HNPP patients. Treatment for HNPP consists of preventative and symptom-easing measures. Hereditary neuralgic amyotrophy (HNA; also called familial brachial plexus neuropathy) is an autosomal-dominant disorder causing episodes of paralysis and muscle weakness initiated by severe pain. Individuals with HNA may suffer repeated episodes of intense pain, paralysis, and sensory disturbances in an affected limb. The onset of HNA is at birth or later in childhood with prognosis for recovery usually favorable; however, persons with HNA may have permanent residual neurological dysfunction following attack(s). Episodes are often

  7. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  8. Quality assessment of online patient education resources for peripheral neuropathy.

    Science.gov (United States)

    Hansberry, David R; Suresh, Ragha; Agarwal, Nitin; Heary, Robert F; Goldstein, Ira M

    2013-03-01

    Given its practicality, the internet is a primary resource for patients afflicted with diseases like peripheral neuropathy. Therefore, it is important that the readily available online resources on peripheral neuropathy are tailored to the general public, particularly concerning readability. Patient education resources were downloaded from the US National Library of Medicine, Mayo Clinic, National Institute of Neurological Disorders and Stroke, Neuropathy.org, GBS/CIDP Foundation International, Hereditary Neuropathy Foundation, Charcot-Marie-Tooth Association, Foundation for Peripheral Neuropathy, and Neuropathy Action Foundation websites. All patient education material related to peripheral neuropathy was evaluated for its level of readability using the Flesch Reading Ease (FRE) and Flesch-Kincaid Grade Level. The FRE scores averaged 43.4 with only the US National Library of Medicine scoring above 60 (76.5). The Flesch-Kincaid Grade Level scores averaged 11.0. All scores were above a seventh-grade level except the US National Library of Medicine, which had a score of a fifth-grade reading level. Most Americans may not fully benefit from patient education resources concerning peripheral neuropathy education on many of the websites. Only the US National Library of Medicine, which is written at a fifth-grade level, is likely to benefit the average American. © 2013 Peripheral Nerve Society.

  9. Investigation of depression in Greek patients with diabetic peripheral neuropathy.

    Science.gov (United States)

    Rekleiti, Maria; Sarafis, Pavlos; Saridi, Maria; Toska, Aikaterini; Melos, Chrysovaladis; Souliotis, Kyriakos; Tsironi, Maria

    2013-06-16

    Considerable studies directly connect the complications in diabetic patients, and especially peripheral neuropathy, with the emergence of depression. Neuropathetic pain may deteriorate the general health status of the diabetic patient and glycaemic regulation. The purpose of this study was to investigate the appearance and degree of diabetic peripheral neuropathy and its correlation with depression, with other parameters of the disease and also duration. 57 diabetic patients participated with diagnosed diabetic peripheral neuropathy (male n=27, female n= 30, mean of age 72.7±6.35 years). The first part of Michigan Neuropathy Screening Instrument and the Zung Depression Rating Scale were used as tools for our study. Data was analysed with the SPSS 18.0 statistic program. 57.9% of the patients were overweight, 35.1% were obese and only 7% were within normal weight range. The BMI findings between the two genders indicate that male participants are more often obese than females. Women surpassed men in the category of overweight patients (p depression, it derives that a high degree of diabetic neuropathy is related with high score of depression [F(3.160)=9.821, p=0.001]. Moderate and severe neuropathy was found with almost the same levels of depression. The correlation between diabetic neuropathy and depression is confirmed, while a very high depression rate was found in patients with severe neuropathy. The issue needs further study by using common instruments to obtain comparative results from the scientific community.

  10. Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Magnowska, Magdalena; Iżycka, Natalia; Kapoła-Czyż, Joanna; Romała, Anna; Lorek, Jakub; Spaczyński, Marek; Nowak-Markwitz, Ewa

    2018-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common chemotherapy side effect, but its prevention and treatment remains a challenge. Neurotoxicity may lead to dose limitation or even treatment discontinuation, and therefore potentially affect the efficacy of anticancer treatment and long term outcomes. The practice to administer gabapentin for neuropathy may be applicable, but is limited by insufficient studies. The aim of our study was to assess the presence of chemotherapy-induced peripheral neuropathy in ovarian cancer patients treated with first-line paclitaxel and carboplatin chemotherapy and evaluate the effectiveness of gabapentin in treatment of this condition. 61 ovarian cancer patients treated with first line chemotherapy were included in the study. The first phase of the study was to assess neurological condition of each patient by: neuropathy symptoms scale, McGill's scale, neurological deficit and quality of life, during the chemotherapy. In the second phase of the study we evaluated the response to gabapentin treatment in a group of patients who developed neuropathy. 78.7% of the patients developed chemotherapy related neuropathy. During the course of chemotherapy these patients experienced significant exacerbation of neuropathy symptoms (p peripheral neuropathy.

  11. Peripheral neuropathy in HIV-infected and uninfected patients in Rakai, Uganda.

    Science.gov (United States)

    Saylor, Deanna; Nakigozi, Gertrude; Nakasujja, Noeline; Robertson, Kevin; Gray, Ronald H; Wawer, Maria J; Sacktor, Ned

    2017-08-01

    To determine the prevalence, risk factors, and functional impairment associated with peripheral neuropathy in a prospective cohort of adults in rural Uganda. Eight hundred participants (400 HIV- and 400 antiretroviral-naive HIV+) in the Rakai Community Cohort Study underwent detailed neurologic evaluations including assessment of neuropathy symptoms, functional measures (Patient Assessment of Own Functioning Inventory and Karnofsky Performance Status scores), and neurologic evaluation by a trained medical officer. Neuropathy was defined as ≥1 subjective symptom and ≥1 sign of neuropathy on examination. Neuropathy risk factors were assessed using log binomial regression. Fifty-three percent of participants were men, with a mean (SD) age of 35 (8) years. Neuropathy was present in 13% of the cohort and was more common in HIV+ vs HIV- participants (19% vs 7%, p neuropathy in the overall cohort. Only older age was associated with neuropathy risk in the HIV+ (RR 1.03, 95% CI 1.01-1.05) and HIV- (RR 1.06, 95% CI 1.02-1.10) cohorts. Neuropathy was associated with impaired functional status on multiple measures across all participant groups. Peripheral neuropathy is relatively common and associated with impaired functional status among adults in rural Uganda. Older age, female sex, and HIV infection significantly increase the risk of neuropathy. Neuropathy may be an underrecognized but important condition in rural Uganda and warrants further study. © 2017 American Academy of Neurology.

  12. Sensory and motor neuropathy in a Border Collie.

    Science.gov (United States)

    Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane

    2005-10-15

    A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.

  13. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  14. Clinical, physiological and pathological characterisation of the sensory predominant peripheral neuropathy in copper deficiency.

    Science.gov (United States)

    Taylor, Sean W; Laughlin, Ruple S; Kumar, Neeraj; Goodman, Brent; Klein, Christopher J; Dyck, Peter J; Dyck, P James B

    2017-10-01

    Myelopathy is considered the most common neurological complication of copper deficiency. Concurrent peripheral neuropathy has been recognised in association with copper deficiency but has not been well characterised. To characterise the clinical, physiological and pathological features of copper-deficient peripheral neuropathy. Patients with simultaneous copper deficiency (peripheral neuropathy seen at the Mayo Clinic from 1985 to 2005 were identified. 34 patients were identified (median age 55 years, range 36-78) including 24 women and 10 men. Myelopathy was found in 21 patients. Median serum copper level was 0.11 μg/mL (range 0-0.58). The most frequent clinical and electrophysiological pattern of neuropathy was a sensory predominant length-dependent peripheral neuropathy (71%). Somatosensory evoked potentials demonstrated central slowing supporting myelopathy (96%). Quantitative sensory testing demonstrated both small and large fibre involvement (100%). Autonomic reflex screens (77%) and thermoregulatory sweat test (67%) confirmed sudomotor dysfunction. 14 cutaneous nerve biopsies revealed loss of myelinated nerve fibres (86%), increased regenerative clusters (50%), increased rates of axonal degeneration (91%) and increased numbers of empty nerve strands (73%). 71% of biopsies demonstrated epineurial perivascular inflammation. An axonal, length-dependent sensory predominant peripheral neuropathy causing sensory ataxia is characteristic of copper deficiency usually co-occurring with myelopathy. Neurophysiological testing confirms involvement of large, greater than small fibres. The pathological findings suggest axonal degeneration and repair. Inflammatory infiltrates are common but are small and of doubtful pathological significance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.

    Science.gov (United States)

    Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M

    2007-08-01

    The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.

  16. A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers

    Directory of Open Access Journals (Sweden)

    Elham eRostami

    2012-07-01

    Full Text Available Mild traumatic brain injury (mTBI is one of the most common neuronal insults and can lead to long-term disabilities. mTBI occurs when the head is exposed to a rapid acceleration-deceleration movement triggering axonal injuries. Our limited understanding of the underlying pathological changes makes it difficult to predict the outcome of mTBI. In this study we used a scalable rat model for rotational acceleration TBI, previously characterized for the threshold of axonal pathology. We have analyzed whether a TBI just above the defined threshold would induce any detectable behavioral changes and/or changes in serum biomarkers. The effect of injury on sensory motor functions, memory and anxiety were assessed by beam walking, radial arms maze and elevated plus maze at 3 to 7 days following TBI. The only behavioral deficits found were transient impairments in working and reference memory. Blood serum was analyzed at 1, 3 and 14 days after injury for changes in selected protein biomarkers. Serum levels of neurofilament heavy chain (NF-H and Tau, as well as S100B and myelin basic protein (MBP showed significant increases in the injured animals at all time points. No signs of macroscopic injuries such as intracerebral hematomas or contusions were found. Amyloid precursor protein (APP immunostaining indicated axonal injuries at all time points analyzed. In summary, this model mimics some of the key symptoms of mTBI, such as transient memory impairment, which is paralleled by an increase in serum biomarkers. Our findings suggest that serum biomarkers may be used to detect mTBI. The model provides a suitable foundation for further investigation of the underlying pathology of mTBI.

  17. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom

    NARCIS (Netherlands)

    Kalaydjieva, L.; Gresham, D.; Gooding, R.; Heather, L.; Baas, F.; de Jonge, R.; Blechschmidt, K.; Angelicheva, D.; Chandler, D.; Worsley, P.; Rosenthal, A.; King, R. H.; Thomas, P. K.

    2000-01-01

    Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused

  18. Activity-Dependent Excitability Changes Suggest Na[superscript +]/K[superscript +] Pump Dysfunction in Diabetic Neuropathy

    Science.gov (United States)

    Krishnan, Arun V.; Lin, Cindy S.-Y.; Kiernan, Matthew C.

    2008-01-01

    The present study was undertaken to evaluate the role of Na[superscript +]/K[superscript +] pump dysfunction in the development of diabetic neuropathy (DN). Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were undertaken in 15 patients with established DN and in 10 patients with…

  19. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome.

    Science.gov (United States)

    Sung, Eun Jung; Kim, Dae Yul; Chang, Min Cheol; Ko, Eun Jae

    2016-06-01

    To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS.

  20. Habitual Physical Activity, Peripheral Neuropathy, Foot Deformities ...

    African Journals Online (AJOL)

    Results: Habitual physical activity index (3.2 ± 0.83) was highest in work-related activities; 69 (26.1 %) patients presented with peripheral neuropathy and 52 (19. 7%) had the lowest limb function. Pes planus was the most prevalent foot deformity (20.1%). Significant differences existed in physical activity indices across ...

  1. Neuropathies optiques héréditaires

    DEFF Research Database (Denmark)

    Milea, D; Verny, C

    2012-01-01

    Hereditary optic neuropathies are a group of heterogeneous conditions affecting both optic nerves, with an autosomal dominant, autosomal recessive, X-related or mitochondrial transmission. The two most common non-syndromic hereditary optic neuropathies (Leber's hereditary optic neuropathy...... and autosomal dominant optic atrophy) are very different in their clinical presentation and their genetic transmission, leading however to a common, non-specific optic nerve atrophy. Beyond the optic atrophy-related visual loss, which is the clinical hallmark of this group of diseases, other associated...

  2. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana

    2013-01-01

    and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration......, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...... disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss...

  3. Hereditary sensory ataxic neuropathy associated with proximal muscle weakness in the lower extremities.

    Science.gov (United States)

    Murakami, Tatsufumi; Fukai, Yuta; Rikimaru, Mitsue; Henmi, Shoji; Ohsawa, Yutaka; Sunada, Yoshihide

    2010-04-15

    We describe three patients from the same family with hereditary sensory ataxic neuropathy followed by proximal muscle weakness in the lower extremities. Sensory ataxic gait began as an initial symptom when patients were in their 50s. Mild proximal weakness in the lower extremities appeared several years later. Serum creatine kinase was mildly elevated. Nerve conduction studies revealed sensory dominant axonal neuropathy, and short sensory evoked potentials showed involvement of the sensory nerve axon, dorsal root ganglia and posterior funiculus of the spinal cord. Needle electromyography showed fibrillation, positive sharp waves, and multiple giant motor unit potentials, suggesting the involvement of anterior horn motor neurons or the anterior root. Autosomal recessive inheritance was considered, because of consanguinity. The disorder described here may be a new clinical entity with unique clinical manifestations. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Peripheral neuropathy in thalassemia

    International Nuclear Information System (INIS)

    Sawaya, Raja A.; Tahir, A.; Zahad, L.

    2006-01-01

    Patients with thalassemia may complain of numbness and weakness of lower extremities. The aim of the study was to determine whether these patients suffer from a polyneuropathy and to determine any contributing factors for the development of neuropathy. We examined 30 patients with thalasemia major and intermedia, clinically and electrophysiologically. We correlated these findings with demographics, blood status and treatment and compared electrophysiologic data with 30 age and sex matched normal subjects or historical controls. We found that 78% of thalassemia patients suffer from a mild sensory polyneuropathy. The neuropathy seemed to be worse in the intermedia type. Thalassemia patients who received blood transfusions and deferoaximine had better nerve faction than those who did not, irrespective of the dose of the deferoxamine. The neuropathy was worse for the older patients, irrespective of the sex. The hemoglobin level, and the fact that some patients underwent spleenctomy, did not affect the status of the patient's nerves. Patients with thalassemia may suffer from a sensor polyneuropathy especially as they grow older and they are not optimally treated. (author)

  5. Drug-induced peripheral neuropathy

    DEFF Research Database (Denmark)

    Vilholm, Ole Jakob; Christensen, Alex Alban; Zedan, Ahmed

    2014-01-01

    Peripheral neuropathy can be caused by medication, and various descriptions have been applied for this condition. In this MiniReview, the term 'drug-induced peripheral neuropathy' (DIPN) is used with the suggested definition: Damage to nerves of the peripheral nervous system caused by a chemical...... substance used in the treatment, cure, prevention or diagnosis of a disease. Optic neuropathy is included in this definition. A distinction between DIPN and other aetiologies of peripheral neuropathy is often quite difficult and thus, the aim of this MiniReview is to discuss the major agents associated...

  6. Peripheral neuropathy in prediabetes and the metabolic syndrome.

    Science.gov (United States)

    Stino, Amro M; Smith, Albert G

    2017-09-01

    Peripheral neuropathy is a major cause of disability worldwide. Diabetes is the most common cause of neuropathy, accounting for 50% of cases. Over half of people with diabetes develop neuropathy, and diabetic peripheral neuropathy (DPN) is a major cause of reduced quality of life due to pain, sensory loss, gait instability, fall-related injury, and foot ulceration and amputation. Most patients with non-diabetic neuropathy have cryptogenic sensory peripheral neuropathy (CSPN). A growing body of literature links prediabetes, obesity and metabolic syndrome to the risk of both DPN and CSPN. This association might be particularly strong in type 2 diabetes patients. There are no effective medical treatments for CSPN or DPN, and aggressive glycemic control is an effective approach to neuropathy risk reduction only in type 1 diabetes. Several studies suggest lifestyle-based treatments that integrate dietary counseling with exercise might be a promising therapeutic approach to early DPN in type 2 diabetes and CSPN associated with prediabetes, obesity and metabolic syndrome. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  7. Unipedal stance testing in the assessment of peripheral neuropathy.

    Science.gov (United States)

    Hurvitz, E A; Richardson, J K; Werner, R A

    2001-02-01

    To define further the relation between unipedal stance testing and peripheral neuropathy. Prospective cohort. Electroneuromyography laboratory of a Veterans Affairs medical center and a university hospital. Ninety-two patients referred for lower extremity electrodiagnostic studies. A standardized history and physical examination designed to detect peripheral neuropathy, 3 trials of unipedal stance, and electrodiagnostic studies. Peripheral neuropathy was identified by electrodiagnostic testing in 32%. These subjects had a significantly shorter (p unipedal stance time (15.7s, longest of 3 trials) than the patients without peripheral neuropathy (37.1s). Abnormal unipedal stance time (unipedal stance time had a negative predictive value of 90%. Abnormal unipedal stance time was associated with an increased risk of having peripheral neuropathy on univariate analysis (odds ratio = 8.8, 95% confidence interval = 2.5--31), and was the only significant predictor of peripheral neuropathy in the regression model. Aspects of the neurologic examination did not add to the regression model compared with abnormal unipedal stance time. Unipedal stance testing is useful in the clinical setting both to identify and to exclude the presence of peripheral neuropathy.

  8. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    Science.gov (United States)

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  9. [Experience in molecular diagnostic in hereditary neuropathies in a pediatric tertiary hospital].

    Science.gov (United States)

    Fernández-Ramos, Joaquín A; López-Laso, Eduardo; Camino-León, Rafael; Gascón-Jiménez, Francisco J; Jiménez-González, M Dolores

    2015-12-01

    Charcot-Marie-Tooth (CMT) is the most common hereditary sensory motor neuropathy. Advances in molecular diagnosis have increased the diagnostic possibilities of these patients. Retrospective study of 36 pediatric patients diagnosed with CMT in a tertiary center in 2003-2015. We found 16 patients were diagnosed by a duplication in PMP22; two cases were diagnosed of hereditary neuropathy with liability to pressure palsies, one with a point mutation in PMP22; a male with a mild demyelinating phenotype, without family history, was diagnosed with GJB1 mutation; in a patient with a peripheral hypotonia at birth and axonal pattern in EMG by mutation in MFN2; a gypsy patient, with consanguineous family, CMT4D, was identified by a mutation in the gene NDRG1; a patient with multiplex congenital arthrogryposis and vocal cord paralysis, whose mother had a scapular-peroneal syndrome, had a congenital spinal muscular atrophy with mild distal axonal neuropathy by mutation in gene TRPV4; three girls, from a gypsy consanguineous family, with axonal CMT with neuromyotonic discharges were diagnosed by a mutation in the gene HINT1; twelve patients haven't molecular diagnosis currently. CMT1A predominated in our series (44%), as previous studies. We emphasize the description of a patient with a mutation in TRPV4 recently described as a cause of CMT2C and three cases, of gypsy consanguineous family, with the same mutation in HINT1 gene, recently described as a cause of axonal neuropathy with neuromyotonia, autosomal recessive (AR-CMT2). The proportion of patients without molecular diagnosis is similar to main European series.

  10. Profound and persistent painful paclitaxel peripheral neuropathy in a premenopausal patient.

    LENUS (Irish Health Repository)

    Quintyne, K I

    2011-01-01

    The authors herein report the case of a 35-year-old woman undergoing adjuvant therapy for node positive breast cancer, who presented with short and rapidly progressive history of bilateral lower limb symptoms of peripheral neuropathy following therapy with paclitaxel. MRI of her neural axis revealed no leptomeningeal enhancement or focal metastatic lesions. Neurophysiological tests favoured toxic sensory axonal polyneuropathy. She remains symptomatic following discontinuation of therapy 20 months ago, and is under review with pain management.

  11. Profound and persistent painful paclitaxel peripheral neuropathy in a premenopausal patient

    OpenAIRE

    Quintyne, K I; Mainstone, P; McNamara, B; Boers, P; Wallis, F; Gupta, R K

    2011-01-01

    The authors herein report the case of a 35-year-old woman undergoing adjuvant therapy for node positive breast cancer, who presented with short and rapidly progressive history of bilateral lower limb symptoms of peripheral neuropathy following therapy with paclitaxel. MRI of her neural axis revealed no leptomeningeal enhancement or focal metastatic lesions. Neurophysiological tests favoured toxic sensory axonal polyneuropathy. She remains symptomatic following discontinuation of therapy 20 mo...

  12. Topiramate induced peripheral neuropathy: A case report and review of literature.

    Science.gov (United States)

    Hamed, Sherifa Ahmed

    2017-12-16

    Drug-induced peripheral neuropathy had been rarely reported as an adverse effect of some antiepileptic drugs (AEDs) at high cumulative doses or even within the therapeutic drug doses or levels. We describe clinical and diagnostic features of a patient with peripheral neuropathy as an adverse effect of chronic topiramate (TPM) therapy. A 37-year-old woman was presented for the control of active epilepsy (2010). She was resistant to some AEDs as mono- or combined therapies (carbamazepine, sodium valproate, levetiracetam, oxcarbazepine and lamotrigine). She has the diagnosis of frontal lobe epilepsy with secondary generalization and has a brother, sister and son with active epilepsies. She became seizure free on TPM (2013-2017) but is complaining of persistent distal lower extremities paresthesia in a stocking distribution. Neurological examination revealed presence of diminished Achilles tendon reflexes, stocking hypesthesia and delayed distal latencies, reduced conduction velocities and amplitudes of action potentials of posterior tibial and sural nerves, indicating demyelinating and axonal peripheral neuropathy of the lower extremities. After exclusion of the possible causes of peripheral neuropathy, chronic TPM therapy is suggested as the most probable cause of patient's neuropathy. This is the first case report of topiramate induced peripheral neuropathy in the literature.

  13. Peripheral neuropathy in a copper-deficient goat

    Directory of Open Access Journals (Sweden)

    Valdir Morais de Almeida

    2017-09-01

    Full Text Available ABSTRACT: This report aimed to describe a case of peripheral neuropathy in a copper-deficient goat, and highlights the clinical, and pathological features of the disease. The goat had low body score, hyporexia, alopecia, achromotrichia, left hindlimb protraction, paralysis with dragging of digit and difficulty to stand up and microcytic normochromic anemia. Copper concentration in serum was markedly lower (2.0µmol L-1 whereas the iron serum content was significantly increased (51.0µmol L-1. The main gross alteration was the reduction of the quadriceps vastus laterallis muscle volume. Histologically, there was atrophy of the quadriceps vastus laterallis muscle and presence of satellite cells, infiltration of lymphocytes, macrophages and replacement of the fibers by connective tissue. In the femoral nerve, there was axonal degeneration with myelin sheath expansion and presence of vacuoles, usually in chains and containing axonal debris or macrophages. Clinical, laboratorial and pathologic findings are consistent with peripheral neuropathy due to a severy copper deficiency.

  14. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    Science.gov (United States)

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  15. Clinical and neurophysiologic characterization of an European family with hereditary sensory neuropathy, paroxysmal cough and gastroesophageal reflux

    Directory of Open Access Journals (Sweden)

    Pedro Barros

    2014-04-01

    Full Text Available In 2002, Spring et al reported a family with an autosomal dominant form of hereditary sensory neuropathy; patients also presented adult onset of gastroesophageal reflux and cough. Since then, no further families have been described. Objective: To study a new Portuguese family with these characteristics. Method: To describe the clinical and neurophysiologic characteristics of one family with features of sensory neuropathy associated with cough and gastroesophageal erflux. Results: Three of five siblings presented a similar history of paroxysmal cough (5th decade. About a decade later they experienced numbness and paraesthesia in the feets and in all cases there was evidence of an axonal sensory neuropathy. A history of gastroesophageal reflux of variable severity and age of onset was also present. Discussion: Molecular genetic studies have demonstrated genetic heterogeneity between the hereditary sensory neuropathy type 1 subtypes. The identification of these families is of major importance because further work is required to identify the underlying genetic defect.

  16. Clinical and neurophysiologic characterization of an European family with hereditary sensory neuropathy, paroxysmal cough and gastroesophageal reflux.

    Science.gov (United States)

    Barros, Pedro; Morais, Hugo; Santos, Catarina; Roriz, José; Coutinho, Paula

    2014-04-01

    In 2002, Spring et al reported a family with an autosomal dominant form of hereditary sensory neuropathy; patients also presented adult onset of gastroesophageal reflux and cough. Since then, no further families have been described. To study a new Portuguese family with these characteristics. To describe the clinical and neurophysiologic characteristics of one family with features of sensory neuropathy associated with cough and gastroesophageal erflux. Three of five siblings presented a similar history of paroxysmal cough (5th decade). About a decade later they experienced numbness and paraesthesia in the feet and in all cases there was evidence of an axonal sensory neuropathy. A history of gastroesophageal reflux of variable severity and age of onset was also present. Molecular genetic studies have demonstrated genetic heterogeneity between the hereditary sensory neuropathy type 1 subtypes. The identification of these families is of major importance because further work is required to identify the underlying genetic defect.

  17. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy

    Science.gov (United States)

    Jayaraman, Manju; Gandhi, Rashmin Anilkumar; Ravi, Priya; Sen, Parveen

    2014-01-01

    Purpose: To investigate the effect of optic neuritis (ON), ischemic optic neuropathy (ION) and compressive optic neuropathy (CON) on multifocal visual evoked potential (mfVEP) amplitudes and latencies, and to compare the parameters among three optic nerve disorders. Materials and Methods: mfVEP was recorded for 71 eyes of controls and 48 eyes of optic nerve disorders with subgroups of optic neuritis (ON, n = 21 eyes), ischemic optic neuropathy (ION, n = 14 eyes), and compressive optic neuropathy (CON, n = 13 eyes). The size of defect in mfVEP amplitude probability plots and relative latency plots were analyzed. The pattern of the defect in amplitude probability plot was classified according to the visual field profile of optic neuritis treatment trail (ONTT). Results: Median of mfVEP amplitude (log SNR) averaged across 60 sectors were reduced in ON (0.17 (0.13-0.33)), ION (0.14 (0.12-0.21)) and CON (0.21 (0.14-0.30)) when compared to controls. The median mfVEP relative latencies compared to controls were significantly prolonged in ON and CON group of 10.53 (2.62-15.50) ms and 5.73 (2.67-14.14) ms respectively compared to ION group (2.06 (-4.09-13.02)). The common mfVEP amplitude defects observed in probability plots were diffuse pattern in ON, inferior altitudinal defect in ION and temporal hemianopia in CON eyes. Conclusions: Optic nerve disorders cause reduction in mfVEP amplitudes. The extent of delayed latency noted in ischemic optic neuropathy was significantly lesser compared to subjects with optic neuritis and compressive optic neuropathy. mfVEP amplitudes can be used to objectively assess the topography of the visual field defect. PMID:24088641

  18. Hyperacute peripheral neuropathy is a predictor of oxaliplatin-induced persistent peripheral neuropathy.

    Science.gov (United States)

    Tanishima, Hiroyuki; Tominaga, Toshiji; Kimura, Masamichi; Maeda, Tsunehiro; Shirai, Yasutsugu; Horiuchi, Tetsuya

    2017-05-01

    Chronic peripheral neuropathy is a major adverse response to oxaliplatin-containing chemotherapy regimens, but there are no established risk factors pertaining to it. We investigated the efficacy of hyperacute peripheral neuropathy (HAPN) as a predictor of oxaliplatin-induced persistent peripheral neuropathy (PPN). Forty-seven cases of stage III colorectal cancer who received adjuvant chemotherapy with oxaliplatin after curative surgery between January 2010 and August 2014 were retrospectively reviewed. HAPN was defined as acute peripheral neuropathy (APN) occurring on day 1 (≤24 h after oxaliplatin infusion) of the first cycle. PPN was defined as neuropathy lasting >1 year after oxaliplatin discontinuation. The average total dose of oxaliplatin was 625.8 mg/m 2 , and the average relative dose intensity was 66.7%. Twenty-two of the 47 patients (46.8%) had PPN and 13 (27.7%) had HAPN. Male sex, treatment for neuropathy, HAPN, and APN were significantly more frequent in patients with PPN (p = 0.013, 0.02, <0.001, and 0.023, respectively). There was no significant difference in the total oxaliplatin dose between patients with and without PPN (p = 0.061). Multivariate analyses revealed total dose of oxaliplatin and HAPN as independent predictors of PPN [p = 0.015; odds ratio (OR) = 1.005, 95% confidence interval (CI), 1.001-1.009 and p = 0.001; OR = 75.307, 5.3-1070.123, respectively]. The total dose of oxaliplatin was relatively lower in patients with HAPN than that in those without HAPN in the PPN-positive group (not significant, p = 0.068). HAPN was found to be a predictor of oxaliplatin-induced PPN.

  19. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  20. Neuropathy in a petrol sniffer.

    Science.gov (United States)

    Hall, D M; Ramsey, J; Schwartz, M S; Dookun, D

    1986-09-01

    A 4 year old boy developed a profound motor neuropathy after repeated deliberate inhalation of petroleum vapour. The condition was characterised by extreme slowing of the nerve conduction velocity. He made a gradual recovery over six months. The neuropathy was attributed to the N-hexane component of petroleum.

  1. "Mitochondrial neuropathies": A survey from the large cohort of the Italian Network.

    Science.gov (United States)

    Mancuso, Michelangelo; Orsucci, Daniele; Angelini, Corrado; Bertini, Enrico; Carelli, Valerio; Comi, Giacomo Pietro; Federico, Antonio; Minetti, Carlo; Moggio, Maurizio; Mongini, Tiziana; Tonin, Paola; Toscano, Antonio; Bruno, Claudio; Ienco, Elena Caldarazzo; Filosto, Massimiliano; Lamperti, Costanza; Diodato, Daria; Moroni, Isabella; Musumeci, Olimpia; Pegoraro, Elena; Spinazzi, Marco; Ahmed, Naghia; Sciacco, Monica; Vercelli, Liliana; Ardissone, Anna; Zeviani, Massimo; Siciliano, Gabriele

    2016-01-01

    Involvement of the peripheral nervous system in mitochondrial disorders has been previously reported. However, the prevalence of peripheral neuropathy in mitochondrial disorders is still unclear. Based on the large database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases", we reviewed the clinical data of 1200 patients, with special regard to peripheral neuropathy (mean age at onset 24.3 ± 20.1 years; age at last evaluation 39.8 ± 22.3 years; females 52.7%; childhood onset [before age 16 years] 43.1%). Peripheral neuropathy was present in 143/1156 patients (12.4%), being one of the ten most common signs and symptoms. POLG mutations cause a potentially painful, axonal/mixed, mainly sensory polyneuropathy; TYMP mutations lead to a demyelinating sensory-motor polyneuropathy; SURF1 mutations are associated with a demyelinating/mixed sensory-motor polyneuropathy. The only mtDNA mutation consistently associated with peripheral neuropathy (although less severely than in the above-considered nuclear genes) was the m.8993T > G (or the rarer T > C) changes, which lead to an axonal, mainly sensory polyneuropathy. In conclusion, peripheral neuropathy is one of the most common features of a mitochondrial disorder, and may negatively impact on the quality of life of these patients. Furthermore, the presence or absence of peripheral neuropathy, as well as its specific forms and the association with neuropathic pain (indicative of a POLG-associated disease) can guide the molecular analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  3. Delayed radiation neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, T.; Miyamoto, K.; Beppu, H.; Hirose, K.; Yamada, K. (Tokyo Metropolitan Neurological Hospital (Japan))

    1981-07-01

    A case of cervical plexus neuropathy was reported in association with chronic radio-dermatitis, myxedema with thyroid adenoma and epiglottic tumor. A 38-year-old man has noticed muscle weakness and wasting of the right shoulder girdle since age 33. A detailed history taking revealed a previous irradiation to the neck because of the cervical lymphadenopathy at age 10 (X-ray 3,000 rads), keroid skin change at age 19, obesity and edema since 26, and hoarseness at 34. Laryngoscopic examination revealed a tumor on the right vocal cord, diagnosed as benign papilloma by histological study. In addition, there were chronic radio-dermatitis around the neck, primary hypothyroidism with a benign functioning adenoma on the right lobe of the thyroid, the right phrenic nerve palsy and the right recurrent nerve palsy. All these lesions were considered to be the late sequellae of radiation to the neck in childhood. Other neurological signs were weakness and amyotrophy of the right shoulder girdle with patchy sensory loss, and areflexia of the right arm. Gross power was fairly well preserved in the right hand. EMG showed neurogenic changes in the tested muscles, suggesting a peripheral nerve lesion. Nerve conduction velocities were normal. No abnormal findings were revealed by myelography and spinal CT. The neurological findings of the patient were compatible with the diagnosis of middle cervical plexus palsy apparently due to late radiation effect. In the literature eight cases of post-radiation neuropathy with a long latency have been reported. The present case with the longest latency after the radiation should be included in the series of the reported cases of ''delayed radiation neuropathy.'' (author).

  4. Delayed radiation neuropathy

    International Nuclear Information System (INIS)

    Nagashima, Toshiko; Miyamoto, Kazuto; Beppu, Hirokuni; Hirose, Kazuhiko; Yamada, Katsuhiro

    1981-01-01

    A case of cervical plexus neuropathy was reported in association with chronic radio-dermatitis, myxedema with thyroid adenoma and epiglottic tumor. A 38-year-old man has noticed muscle weakness and wasting of the right shoulder girdle since age 33. A detailed history taking revealed a previous irradiation to the neck because of the cervical lymphadenopathy at age 10 (X-ray 3,000 rads), keroid skin change at age 19, obesity and edema since 26, and hoarseness at 34. Laryngoscopic examination revealed a tumor on the right vocal cord, diagnosed as benign papilloma by histological study. In addition, there were chronic radio-dermatitis around the neck, primary hypothyroidism with a benign functioning adenoma on the right lobe of the thyroid, the right phrenic nerve palsy and the right recurrent nerve palsy. All these lesions were considered to be the late sequellae of radiation to the neck in childhood. Other neurological signs were weakness and amyotrophy of the right shoulder girdle with patchy sensory loss, and areflexia of the right arm. Gross power was fairly well preserved in the right hand. EMG showed neurogenic changes in the tested muscles, suggesting a peripheral nerve lesion. Nerve conduction velocities were normal. No abnormal findings were revealed by myelography and spinal CT. The neurological findings of the patient were compatible with the diagnosis of middle cervical plexus palsy apparently due to late radiation effect. In the literature eight cases of post-radiation neuropathy with a long latency have been reported. The present case with the longest latency after the radiation should be included in the series of the reported cases of ''delayed radiation neuropathy.'' (author)

  5. Daspsone Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    P A Sarojini

    1988-01-01

    Full Text Available A 24 year old lady being treated with 300 mg of dapsone daily for dermatitits herpetiformis, developed weakness and wasting of muscles of feet with claw hand deformity and t drop, 2 months tater. Neurological examination and nerve conduction studies conformed the presence of a peripheral motor neuropathy. Dapsone was discontinued and the patient was treated with cotrimatoxazole, gluten-free diet and supportive therapy. This satisfactorily controlled the dermatological lesion without adversely affecting the resolution of her neuropthy. Symptomatic improvement reported by the patient was confirmed by EMG and nerve conduction studies.

  6. Medial arterial calcification in diabetes and its relationship to neuropathy

    DEFF Research Database (Denmark)

    Jeffcoate, W J; Rasmussen, Lars Melholt; Hofbauer, L C

    2009-01-01

    Calcification of the media of arterial walls is common in diabetes and is particularly associated with distal symmetrical neuropathy. Arterial calcification also complicates chronic kidney disease and is an independent risk factor for cardiovascular and all-cause mortality. The term calcification......, such as calcitonin gene-related peptide, which are inherently protective. The association between distal symmetrical neuropathy and calcification of the arterial wall highlights the fact that neuropathy may be an independent risk factor for cardiovascular mortality.......Calcification of the media of arterial walls is common in diabetes and is particularly associated with distal symmetrical neuropathy. Arterial calcification also complicates chronic kidney disease and is an independent risk factor for cardiovascular and all-cause mortality. The term calcification...

  7. Familial Idiopathic Cranial Neuropathy in a Chinese Family.

    Science.gov (United States)

    Zhang, Li; Liang, Jianfeng; Yu, Yanbing

    Cranial neuropathy is usually idiopathic and familial cases are uncommon. We describe a family with 5 members with cranial neuropathy over 3 generations. All affected patients were women, indicating an X-linked dominant or an autosomal dominant mode of inheritance. Our cases and a review of the literature suggest that familial idiopathic cranial neuropathy is a rare condition which may be related to autosomal dominant vascular disorders (e.g. vascular tortuosity, sclerosis, elongation or extension), small posterior cranial fossas, anatomical variations of the posterior circulation, hypersensitivity of cranial nerves and other abnormalities. Moreover, microvascular decompression is the treatment of choice because vascular compression is the main factor in the pathogenesis. To the best of our knowledge, this is the first report of familial cranial neuropathy in China.

  8. Optofluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.

    2013-03-01

    Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.

  9. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T; Hoogenraad, Casper C

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  10. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Directory of Open Access Journals (Sweden)

    Heidemann Steven R

    2010-10-01

    Full Text Available Abstract Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour. To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.

  11. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    International Nuclear Information System (INIS)

    Kannan, Anusha; Srinivasan, Sivasubramanian

    2012-01-01

    We read with great interest, the case report on ischemic optic neuropathy (1). We would like to add a few points concerning the blood supply of the optic nerve and the correlation with the development of post-operative ischemic neuropathy. Actually, the perioperative or post-operative vision loss (postoperative ischemic neuropathy) is most likely due to ischemic optic neuropathy. Ischemic optic neuropathy (2) is classified as an anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). This classification is based on the fact that blood supply (2) to the anterior segment of the optic nerve (part of the optic nerve in the scleral canal and the optic disc) is supplied by short posterior ciliary vessels or anastamotic ring branches around the optic nerve. The posterior part of the optic canal is relatively less perfused, and is supplied by ophthalmic artery and central fibres are perfused by a central retinal artery. So, in the post-operative period, the posterior part of the optic nerve is more vulnerable for ischemia, especially, after major surgeries (3), one of the theories being hypotension or anaemia (2) and resultant decreased perfusion. The onset of PION is slower than the anterior ischemic optic neuropathy. AION on the other hand, is usually spontaneous (idiopathic) or due to arteritis, and is usually sudden in its onset. The reported case is most likely a case of PION. The role of imaging, especially the diffusion weighted magnetic resonance imaging, is very important because the ophthalmoscopic findings in early stages of PION is normal, and it may delay the diagnosis. On the other hand, edema of the disc is usually seen in the early stages of AION.

  12. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Anusha; Srinivasan, Sivasubramanian [Khoo Teck Puat Hospital, Singapore (Singapore)

    2012-09-15

    We read with great interest, the case report on ischemic optic neuropathy (1). We would like to add a few points concerning the blood supply of the optic nerve and the correlation with the development of post-operative ischemic neuropathy. Actually, the perioperative or post-operative vision loss (postoperative ischemic neuropathy) is most likely due to ischemic optic neuropathy. Ischemic optic neuropathy (2) is classified as an anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). This classification is based on the fact that blood supply (2) to the anterior segment of the optic nerve (part of the optic nerve in the scleral canal and the optic disc) is supplied by short posterior ciliary vessels or anastamotic ring branches around the optic nerve. The posterior part of the optic canal is relatively less perfused, and is supplied by ophthalmic artery and central fibres are perfused by a central retinal artery. So, in the post-operative period, the posterior part of the optic nerve is more vulnerable for ischemia, especially, after major surgeries (3), one of the theories being hypotension or anaemia (2) and resultant decreased perfusion. The onset of PION is slower than the anterior ischemic optic neuropathy. AION on the other hand, is usually spontaneous (idiopathic) or due to arteritis, and is usually sudden in its onset. The reported case is most likely a case of PION. The role of imaging, especially the diffusion weighted magnetic resonance imaging, is very important because the ophthalmoscopic findings in early stages of PION is normal, and it may delay the diagnosis. On the other hand, edema of the disc is usually seen in the early stages of AION.

  13. The clinical identification of peripheral neuropathy among older persons.

    Science.gov (United States)

    Richardson, James K

    2002-11-01

    To identify simple clinical rules for the detection of a diffuse peripheral neuropathy among older outpatients. Observational, blinded, controlled study. A tertiary-care electrodiagnostic laboratory and biomechanics laboratory. One hundred research subjects, 68 with electrodiagnostic evidence of peripheral neuropathy, between the ages of 50 and 80 years. Not applicable. One examiner, unaware of the results of electrodiagnostic testing, evaluated Achilles' and patellar reflexes, Romberg testing, semiquantified vibration, and position sense at the toe and ankle in all subjects, and unipedal stance time and the Michigan Diabetes Neuropathy Score in a subset of subjects. Significant group differences were present in all clinical measures tested. Three signs, Achilles' reflex (absent despite facilitation), vibration (128Hz tuning fork perceived for <10s), and position sense (<8/10 1-cm trials) at the toe, were the best predictors of peripheral neuropathy on both univariate and logistic regression (pseudo R(2)=.744) analyses. The presence of 2 or 3 signs versus 0 or 1 sign identified peripheral neuropathy with sensitivity, specificity, and positive and negative predictive values of 94.1%, 84.4%, 92.8%, and 87.1%, respectively. Values were similar among subgroups of subjects with and without diabetes mellitus. When other clinicians applied the technique to 12 more subjects, excellent interrater reliability regarding the presence of peripheral neuropathy (kappa=.833) and good to excellent interrater reliability for each sign (kappa range,.667-1.00) were shown. Among older persons, the presence of 2 or 3 of the 3 clinical signs strongly suggested electrodiagnostic evidence of a peripheral neuropathy, regardless of etiology. Age-related decline in peripheral nerve function need not be a barrier to the clinical recognition of a diffuse peripheral neuropathy among older persons. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of

  14. Unilateral Acute Anterior Ischemic Optic Neuropathy in a Patient with an Already Established Diagnosis of Bilateral Optic Disc Drusen

    Directory of Open Access Journals (Sweden)

    Ziya Ayhan

    2015-01-01

    Full Text Available Optic disc drusen (ODD are calcific deposits that form in the optic nerve head secondary to abnormalities in axonal metabolism and degeneration. Anterior ischemic optic neuropathy, central retinal artery, and vein occlusion are among the rare vascular complications of disc drusen. We reported the clinical course of a 51-year-old patient with a unilateral acute nonarteritic anterior ischemic optic neuropathy (NAION who received the diagnosis of bilateral optic disc drusen five years earlier and thereby reiterated the association of ODD and acute NAION.

  15. Diagnosing ulnar neuropathy at the elbow using magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Nayela N.; Chin, Cynthia T.; Saloner, David; Steinbach, Lynne S. [University of California San Francisco, Dept of Radiology and Biomedical Imaging, San Francisco, CA (United States); Engstrom, John W. [University of California San Francisco, Department of Neurology, San Francisco, CA (United States)

    2012-04-15

    Early diagnosis of ulnar neuropathy at the elbow is important. Magnetic resonance neurography (MRN) images peripheral nerves. We evaluated the usefulness of elbow MRN in diagnosing ulnar neuropathy at the elbow. The MR neurograms of 21 patients with ulnar neuropathy were reviewed retrospectively. MRN was performed prospectively on 10 normal volunteers. The MR neurograms included axial T1 and axial T2 fat-saturated and/or axial STIR sequences. The sensitivity and specificity of MRN in detecting ulnar neuropathy were determined. The mean ulnar nerve size in the symptomatic and normal groups was 0.12 and 0.06 cm{sup 2} (P < 0.001). The mean relative signal intensity in the symptomatic and normal groups was 2.7 and 1.4 (P < 0.01). When using a size of 0.08 cm{sup 2}, sensitivity was 95% and specificity was 80%. Ulnar nerve size and signal intensity were greater in patients with ulnar neuropathy. MRN is a useful test in evaluating ulnar neuropathy at the elbow. (orig.)

  16. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  17. Subacute peripheral and optic neuropathy syndrome with no evidence of a toxic or nutritional cause.

    Science.gov (United States)

    Allen, D; Riordan-Eva, P; Paterson, R W; Hadden, R D M

    2013-08-01

    The syndrome of subacute simultaneous peripheral neuropathy and bilateral optic neuropathy is known to occur in tropical countries, probably due to malnutrition or toxicity, but not often seen in developed countries. We report seven patients in London who were not malnourished or alcoholic, and in whom no clear cause was found. We retrospectively reviewed the case notes and arranged some further investigations. All patients developed peripheral and bilateral optic neuropathy within 6 months. Patients were aged 30-52, and all of Jamaican birth and race but lived in the UK. Most had subacute, painful ataxic sensory axonal neuropathy or neuronopathy, some with myelopathy. Nerve conduction studies revealed minor demyelinating features in two cases. The optic neuropathy was symmetrical, subacute and monophasic, usually with marked reduction in visual acuity. CSF protein concentration was usually elevated but other laboratory investigations were normal. Patients showed only modest improvement at follow-up. These patients share a common clinical and electrophysiological phenotype, age, ethnicity and elevated CSF protein, but otherwise normal laboratory investigations. The syndrome is a cause of significant morbidity in young people. The cause remains uncertain despite thorough investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Radiation optic neuropathy

    International Nuclear Information System (INIS)

    Kline, L.B.; Kim, J.Y.; Ceballos, R.

    1985-01-01

    Following surgery for pituitary adenoma, radiation therapy is an accepted treatment in reducing tumor recurrence. However, a potential therapeutic complication is delayed radionecrosis of perisellar neural structures, including the optic nerves and chiasm. This particular cause of visual loss, radiation optic neuropathy (RON), has not been emphasized in the ophthalmologic literature. Four cases of RON seen in the past five years are reported. Diagnostic criteria include: (1) acute visual loss (monocular or binocular), (2) visual field defects indicating optic nerve or chiasmal dysfunction, (3) absence of optic disc edema, (4) onset usually within three years of therapy (peak: 1-1 1/2 years), and (5) no computed tomographic evidence of visual pathway compression. Pathologic findings, differential diagnosis and therapy will be discussed in outlining the clinical profile of RON

  19. Autonomic Neuropathy in Diabetes Mellitus

    OpenAIRE

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent ...

  20. Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: The relation with changes in aging rats

    International Nuclear Information System (INIS)

    Kogel, A.J. van der

    1977-01-01

    Three-month-old WAG Rij rats were irradiated with 300 kV X-rays on the lumbar region of the spinal column with doses below the level for causing paralysis due to radiation radiculomyelopathy. 8-9 months after irradiation. degeneration of predominantly the ventral nerve roots of the cauda equina was observed. Three stages were distinguishable: I) Demyelination and proliferation of Schwann cells: II) Local swelling of ventral nerve roots, with concentric layers of Schwann cells resembling hypertrophic neuropathy: III) Malignant Schwannoma, invading roots and spinal cord. It is concluded that the degenerative and proliferative lesions represent a continuous series of stages of slowly progressive lesions. The ventral nerve root degeneration (Ist stage) is similar to that observed in aging, unirradiated rats, normally developing at the age of 18-20 months. (orig.) [de

  1. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea?

    Science.gov (United States)

    Aptel, Florent; Aryal-Charles, Nischal; Tamisier, Renaud; Pépin, Jean-Louis; Lesoin, Antoine; Chiquet, Christophe

    2017-06-01

    To evaluate whether obstructive sleep apnea (OSA) is responsible for the visual field defects found in the fellow eyes of patients with non-arteritic ischemic optic neuropathy (NAION). Prospective cross-sectional study. The visual fields of the fellow eyes of NAION subjects with OSA were compared to the visual fields of control OSA patients matched for OSA severity. All patients underwent comprehensive ophthalmological and general examination including Humphrey 24.2 SITA-Standard visual field and polysomnography. Visual field defects were classified according the Ischemic Optic Neuropathy Decompression Trial (IONDT) classification. From a cohort of 78 consecutive subjects with NAION, 34 unaffected fellow eyes were compared to 34 control eyes of subjects matched for OSA severity (apnea-hypopnea index [AHI] 35.5 ± 11.6 vs 35.4 ± 9.4 events per hour, respectively, p = 0.63). After adjustment for age and body mass index, all visual field parameters were significantly different between the NAION fellow eyes and those of the control OSA groups, including mean deviation (-4.5 ± 3.7 vs -1.3 ± 1.8 dB, respectively, p < 0.05), visual field index (91.6 ± 10 vs 97.4 ± 3.5%, respectively, p = 0.002), pattern standard deviation (3.7 ± 2.3 vs 2.5 ± 2 dB, respectively, p = 0.015), and number of subjects with at least one defect on the IONDT classification (20 vs 10, respectively, p < 0.05). OSA alone does not explain the visual field defects frequently found in the fellow eyes of NAION patients.

  2. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    Directory of Open Access Journals (Sweden)

    Chrysanthi eSamara

    2013-11-01

    Full Text Available The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs. SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

  3. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.

    Science.gov (United States)

    Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin

    2011-07-21

    Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Giriraja Vrushabaiah Kanakapura

    2017-09-01

    Full Text Available BACKGROUND Diabetic neuropathy, retinopathy and nephropathy are the chronic complications of diabetes mellitus. Neuropathy, retinopathy and nephropathy are microvascular complication of diabetes mellitus. Antioxidant status is reduced in DM-induced retinopathy and nephropathy. Present study is undertaken to evaluate the degree of oxidative stress in diabetic neuropathy patients. The aim of the study is to study on oxidative stress as measured by lipid peroxidation marker, malondialdehyde and antienzyme status in type II DM patients with neuropathy and compared them with a controlled nondiabetic group. MATERIALS AND METHODS The study included 100 subjects from Sapthagiri Medical College, Bangalore, from January 1, 2015, to December 31, 2015, of age group 50 to 70 yrs. out of which 50 patients were non-insulin-dependent DM with neuropathy and rest 50 age and sex matched apparently healthy individuals (control group. Antioxidant status was assessed by measuring superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GR, Catalase and Reduced Glutathione (GSH. RESULTS It showed a significant increase p<0.001 in FBS, PPBS, TC, TG, LDL, VLDL, CAT, MDA, while HDL, GSH, GPX, GR and SOD were found to be decreased significantly (p 0.001. CONCLUSION MDA was significantly elevated in diabetic group, whereas antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase and reduced glutathione were significantly decreased, which might be helpful in risk assessment of various complications of DM. The data suggests that alteration in antioxidant status and MDA may help to predict the risk of diabetic neuropathy.

  5. Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6.

    Science.gov (United States)

    Linnemann, Christoph; Tezenas du Montcel, Sophie; Rakowicz, Maryla; Schmitz-Hübsch, Tanja; Szymanski, Sandra; Berciano, Jose; van de Warrenburg, Bart P; Pedersen, Karine; Depondt, Chantal; Rola, Rafal; Klockgether, Thomas; García, Antonio; Mutlu, Gurkan; Schöls, Ludger

    2016-04-01

    Spinocerebellar ataxias (SCAs) are characterized by autosomal dominantly inherited progressive ataxia but are clinically heterogeneous due to variable involvement of non-cerebellar parts of the nervous system. Non-cerebellar symptoms contribute significantly to the burden of SCAs, may guide the clinician to the underlying genetic subtype, and might be useful markers to monitor disease. Peripheral neuropathy is frequently observed in SCA, but subtype-specific features and subclinical manifestations have rarely been evaluated. We performed a multicenter nerve conduction study with 162 patients with genetically confirmed SCA1, SCA2, SCA3, and SCA6. The study proved peripheral nerves to be involved in the neurodegenerative process in 82 % of SCA1, 63 % of SCA2, 55 % of SCA3, and 22 % of SCA6 patients. Most patients of all subtypes revealed affection of both sensory and motor fibers. Neuropathy was most frequently of mixed type with axonal and demyelinating characteristics in all SCA subtypes. However, nerve conduction velocities of SCA1 patients were slower compared to other genotypes. SCA6 patients revealed less axonal damage than patients with other subtypes. No influence of CAG repeat length or biometric determinants on peripheral neuropathy could be identified in SCA1, SCA3, and SCA6. In SCA2, earlier onset and more severe ataxia were associated with peripheral neuropathy. We proved peripheral neuropathy to be a frequent site of the neurodegenerative process in all common SCA subtypes. Since damage to peripheral nerves is readily assessable by electrophysiological means, nerve conduction studies should be performed in a longitudinal approach to assess these parameters as potential progression markers.

  6. Neuron-glia signaling and the protection of axon function by Schwann cells.

    Science.gov (United States)

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.

  7. Evolution of optic nerve and retina alterations in a child with indirect traumatic neuropathy as assessed by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Julia Dutra Rossetto

    Full Text Available ABSTRACT Herein, we describe the case of a 4-year-old child with indirect traumatic optic neuropathy and serial changes of the optic nerve head and retinal nerve fiber layer (RNFL documented using optical coherence tomography (OCT. Visual acuity improved despite progressive RNFL thinning and optic disc pallor. We concluded that OCT may be useful for monitoring axonal loss but may not predict the final visual outcome.

  8. Peripheral neuropathy of dietary riboflavin deficiency in racing pigeons.

    Science.gov (United States)

    Wada, Y; Kondo, H; Itakura, C

    1996-02-01

    An occurrence of peripheral neuropathy in nine 14- to 55-day-old racing pigeons was documented. The predominant clinical signs were diarrhea, and leg and wing paralysis. Grossly, there was discoloration and swelling of all the peripheral nerve trunks. Microscopic lesions comprising swelling, fragmentation and demyelination of myelin sheaths, and proliferation of Schwann cells, were seen in the peripheral nerves of all birds examined. These changes were associated with moderate to severe swelling, fragmentation, atrophy and loss of axons. The peripheral nerve lesions in these cases were similar to those of dietary riboflavin deficiency in chickens. An analysis of the diet given to the pigeons indicated that the riboflavin concentration was only 0.9 mg/kg feed.

  9. Autoimmune reactions in patients with M-component and peripheral neuropathy

    DEFF Research Database (Denmark)

    Jønsson, V; Schrøder, H D; Trojaborg, W

    1992-01-01

    A study of 17 patients with autoimmune axonal or demyelinating peripheral neuropathy in combination with M-component is described. The M-component was associated with MGUS (monoclonal gammopathy of undetermined significance) in 12 patients, CLL in one patient, Waldenström's disease in one patient......, and myeloma in three patients. Immunohistological examination with direct and indirect fluorescence showed binding of antibodies to nerve structures of the same class and light chain as seen in the M-component. In five cases of IgM M-component, the demyelinating neuropathy was caused by binding of the IgM M......-protein and complement C3b to myelin-associated glycoproteins (MAG). In 12 cases with axonal neuropathy, binding of IgG to the connective tissue of the peri- and endoneurium was found in 50% of cases, IgM in five cases, and IgD in one case. None of the patients had central nervous system (CNS) symptoms. The clinical...

  10. Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Shota Yamamoto

    2015-09-01

    Full Text Available Bortezomib, an effective anticancer drug for multiple myeloma, often causes peripheral neuropathy which is mainly characterized by numbness and painful paresthesia. Nevertheless, there is no effective strategy to escape or treat bortezomib-induced peripheral neuropathy (BIPN, because we have understood few mechanism of this side effect. In this study, we evaluated behavioral and pathological characteristics of BIPN, and investigated pharmacological efficacy of various analgesic drugs and adjuvants on mechanical allodynia induced by bortezomib treatment in rats. The repeated administration of bortezomib induced mechanical and cold allodynia. There was axonal degeneration of sciatic nerve behind these neuropathic symptoms. Furthermore, the exposure to bortezomib shortened neurite length in PC12 cells. Finally, the result of evaluation of anti-allodynic potency, oral administration of tramadol (10 mg/kg, pregabalin (3 mg/kg, duloxetine (30 mg/kg or mexiletine (100 mg/kg, but not amitriptyline or diclofenac, transiently relieved the mechanical allodynia induced by bortezomib. These results suggest that axonal degeneration of the sciatic nerve is involved in BIPN and that some analgesic drugs and adjuvants are effective in the relief of painful neuropathy.

  11. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  12. In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.

    Science.gov (United States)

    Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C

    2007-02-01

    Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.

  13. Detection of asymptomatic cranial neuropathies in patients with systemic lupus erythematosus and their relation to antiribosomal P antibody levels and disease activity.

    Science.gov (United States)

    Gaber, Wafaa; Ezzat, Yasser; El Fayoumy, Neveen M; Helmy, Hanan; Mohey, Abeer M

    2014-01-01

    The objectives of this study are to assess the risk of asymptomatic cranial neuropathy among patients with systemic lupus erythematosus (SLE) and find any association with disease activity and antiribosomal P antibodies. This study is a case-control study including 60 female patients and 30 healthy female controls. Disease activity was measured with the SLE disease activity index (SLEDAI). All patients were evaluated using evoked potentials, blink reflex, and levels of antiribosomal P antibodies. Patients with abnormal electrophysiological parameters had significantly higher levels of antiribosomal P antibodies (P = 0.034) and secondary antiphospholipid syndrome (P = 0.044). Antiribosomal P antibodies (odds ratio 5.4, 95 % confidence interval 1.002-1.03, P = 0.002) and presence of anti-DNA antibodies (odds ratio 1.01, 95 % confidence interval 1.2-24.8, P = 0.032) were independent risk factors for the presence of the abnormal electrophysiological parameters. Disease duration was positively correlated with wave 1 of the auditory brain reflex (P < 0.001) and a latency of the evoked blink reflex (component R1, P = 0.013). SLEDAI scores were positively correlated with latencies of the visually evoked potential (P100, P = 0.02), wave 1 of the auditory brain reflex (P < 0.001), and a latency of the evoked blink reflex (R2c, P = 0.005). Steroid dosage was negatively correlated with P100 latencies (P = 0.042) and components of the evoked blink reflex (R1, P = 0.042; R2i, P = 0.041; R2c, P < 0.001). Because abnormalities in the visually evoked potential and blink reflex were associated with antiribosomal P antibodies, they can be useful for detecting asymptomatic cranial neuropathy. Further studies on large number of patients should be done to determine any association.

  14. Cisplatin neuropathy. Risk factors, prognosis, and protection by WR-2721

    International Nuclear Information System (INIS)

    Mollman, J.E.; Glover, D.J.; Hogan, W.M.; Furman, R.E.

    1988-01-01

    A prospective study of patients receiving cis-diaminedichloroplatin II (DDP) was carried out to determine if risk factors could be identified related to the patient's living habits or past medical history that would predict in which patients DDP neuropathy might develop. Sixty-nine patients receiving six different combinations of chemotherapeutic agents, including DDP were examined. Twenty-eight of these patients received DDP in combination with the radioprotective agent S-2-(3-aminopropylamino)-ethylphosporothioic acid (WR 2721). No risk factors were identified relating to personal habits or past medical history of the patients. However, patients receiving DDP (40 mg/m2) on 5 consecutive days had a significantly higher incidence of neuropathy. Patients receiving DDP in combination with WR 2721 had a significantly lower incidence of neuropathy, and the mean dose at onset was significantly higher than the mean dose at onset of neuropathy for all other groups. In addition, five of six patients who were available for long-term follow-up demonstrated nearly complete reversal of the signs and symptoms of neuropathy

  15. Peripheral Neuropathy in Chlamydia Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    O.V. Syniachenko

    2016-09-01

    Full Text Available Relevance. Peripheral neuropathy (PNP in urogenital chlamydia reactive arthritis (CRA is described as single observations, and many clinical and pathogenetic aspects of this lesion of the nervous system remain unclear. Objective of the study: to evaluate the incidence and nature of the clinical course of PNP in CRA, the connection of the nerve and joint injuries, to explore the questions of pathogenetic constructions of this neuropathy, to identify risk factors. Material and methods. We observed 101 patients with CRA, mean age of them was 32 years, disease duration — 4 years, and the male to female ratio — 1 : 1. In 90 % of CRA cases, Chlamydia trochamatis was found in prostatic secretions, in scraps from the urethra, the cervix, the vaginal wall, in 83 % — positive serologic tests for chlamydia infection. Results. Signs of PNP in CRA were in 19 % of patients in the ratio of mononeuropathy to polyneuropathy as 1 : 1, with motor, sensory and mixed disorders in a ratio of 1 : 3 : 6, the presence of autonomic changes in every second patient and more frequent distal localization of the process in the hands, which is influenced by the severity of the articular syndrome, high levels of antichlamydia antibodies in the blood, and the axonal and demyelinating indicators of electroneuromyography — by the severity of urogenital lesions and the presence of Guillain-Barre syndrome. A high rate of arthritis progression is a prognosis-negative sign of PNP course in patients with CRA. The pathogenic constructions of PNP involve the inflammatory immune proteins, disturbances of vascular endothelial function and physicochemical surface rheological pro­perties of the serum. Conclusion. PNP takes place in every fifth patient with CRA, correlates with clinical and laboratory signs of joint disease, and in the future will be useful to identify actively this pathology of the nervous system for the subsequent timely rehabilitation, and CRA

  16. Diabetic cachectic neuropathy: An uncommon neurological ...

    African Journals Online (AJOL)

    Diabetic cachectic neuropathy, also called diabetic neuropathic cachexia, is a very rare ... type 1 and type 2 diabetics and occurs irrespective of the duration of diabetes. .... distal symmetrical peripheral neuropathy in pregnancy. However,.

  17. Hypothyroidism: Can It Cause Peripheral Neuropathy?

    Science.gov (United States)

    Hypothyroidism: Can it cause peripheral neuropathy? Can hypothyroidism cause peripheral neuropathy and, if so, how is it treated? Answers from Todd B. Nippoldt, M.D. Hypothyroidism — a condition in which your ...

  18. Elucidation of axonal transport by radioautography

    International Nuclear Information System (INIS)

    Droz, Bernard.

    1979-01-01

    Radioautography permits to distinguish various pathways within the axons: the axoplasm which includes soluble enzymes and constituents of the cytoskeleton moving with slow axoplasmic flow; the mitochondria which are conveyed as organelles; the smooth endoplasmic reticulum which ensures the fast axonal transport of membrane constituents delivered to axolemma, synaptic vesicles, presynaptic membranes or mitochondria. Furthermore radioautography makes it possible to visualize intercellular exchanges of molecules between axon and glia

  19. Early-onset osteoarthritis, Charcot-Marie-Tooth like neuropathy, autoimmune features, multiple arterial aneurysms and dissections: an unrecognized and life threatening condition.

    Directory of Open Access Journals (Sweden)

    Mélodie Aubart

    Full Text Available BACKGROUND: Severe osteoarthritis and thoracic aortic aneurysms have recently been associated with mutations in the SMAD3 gene, but the full clinical spectrum is incompletely defined. METHODS: All SMAD3 gene mutation carriers coming to our centre and their families were investigated prospectively with a structured panel including standardized clinical workup, blood tests, total body computed tomography, joint X-rays. Electroneuromyography was performed in selected cases. RESULTS: Thirty-four SMAD3 gene mutation carriers coming to our centre were identified and 16 relatives were considered affected because of aortic surgery or sudden death (total 50 subjects. Aortic disease was present in 72%, complicated with aortic dissection, surgery or sudden death in 56% at a mean age of 45 years. Aneurysm or tortuosity of the neck arteries was present in 78%, other arteries were affected in 44%, including dissection of coronary artery. Overall, 95% of mutation carriers displayed either aortic or extra-aortic arterial disease. Acrocyanosis was also present in the majority of patients. Osteoarticular manifestations were recorded in all patients. Joint involvement could be severe requiring surgery in young patients, of unusual localization such as tarsus or shoulder, or mimicking crystalline arthropathy with fibrocartilage calcifications. Sixty eight percent of patients displayed neurological symptoms, and 9 suffered peripheral neuropathy. Electroneuromyography revealed an axonal motor and sensory neuropathy in 3 different families, very evocative of type II Charcot-Marie-Tooth (CMT2 disease, although none had mutations in the known CMT2 genes. Autoimmune features including Sjogren's disease, rheumatoid arthritis, Hashimoto's disease, or isolated autoantibodies- were found in 36% of patients. INTERPRETATION: SMAD3 gene mutations are associated with aortic dilatation and osteoarthritis, but also autoimmunity and peripheral neuropathy which mimics type II

  20. An update on electrophysiological studies in neuropathy

    DEFF Research Database (Denmark)

    Krarup, Christian

    2003-01-01

    The review concentrates on the use of clinical neurophysiology in peripheral nerve disorders covered in the present issue. It is pertinent to distinguish different types of involvement of fibers in diabetic neuropathy, including the involvement of small and large fibers, to outline the diagnostic...... criteria of inflammatory neuropathies, and to describe the spectrum of peripheral nerve pathophysiology in inherited neuropathies. Painful neuropathies represent a particular challenge to clinical neurophysiology since it is mainly small fibers, which are difficult to study, that are affected....

  1. Treatment options in painful diabetic neuropathy.

    Science.gov (United States)

    Nash, T P

    1999-01-01

    Diabetic neuropathy is common in patients with diabetes mellitus, and 7.5% of diabetics experience pain from diabetic neuropathy. Complications of diabetes mellitus are more common where control of the disease is not optimal. By improving the control of the disease, both the neuropathy and the pain it can produce may be improved. The pain of diabetic neuropathy can frequently be controlled using analgesics, antidepressants, anticonvulsants, topical capsaicin, and neuromodulation, either alone or in any combination.

  2. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  3. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  4. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  5. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  6. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  7. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  8. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  9. Baseline demographics, clinical features, and treatment protocols of 240 patients with optic neuropathy: experiences from a neuro-ophthalmological clinic in the Aegean region of Turkey.

    Science.gov (United States)

    Karti, Omer; Karti, Dilek Top; Kilic, İlay Hilal; Gokcay, Figen; Celebisoy, Nese

    2017-12-19

    To analyze the demographic patterns, clinical characteristics, and treatment protocols of optic neuropathies. The hospital data of patients with optic neuropathy admitted to the Department of Neuro-ophthalmology in a tertiary referral center in Turkey between January 2010 to January 2017 were retrospectively analyzed. Demographic patterns, clinical features, treatment protocols, and the natural disease courses were assessed. The total number of patients with optic neuropathy seen over this period was 240, which consist of 43 with idiopathic optic neuritis (17.9%), 40 with multiple sclerosis-related optic neuritis (16.7%), 12 with chronic relapsing inflammatory optic neuritis (5.0%), 12 with atypical optic neuritis (5.0%), 11 with neuromyelitis optica spectrum disorders-related optic neuritis (4.6%), 90 with non-arteritic ischemic optic neuropathy (37.5%), 4 with arteritic ischemic optic neuropathy (1.7%), 10 with traumatic optic neuropathy (4.1%), 6 with compressive optic neuropathy (2.5%), and 12 with mitochondrial optic neuropathy [9 with toxic optic neuropathy (3.7%) and 3 with Leber's hereditary optic neuropathy (1.2%)]. There were 101 males (42%) and 139 females (58%). The mean age was 43.34 ± 15.86 years. This study reported the demographics, clinical characteristics, and treatment protocols of optic neuropathies in a neuro-ophthalmology specialty clinic at a tertiary referral center in Turkey during the past decade. The data may be useful in assessing the global status of optic neuropathies.

  10. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  11. Peripheral Glial Cells in the Development of Diabetic Neuropathy

    Science.gov (United States)

    Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener

    2018-01-01

    The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy. PMID:29770116

  12. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  13. Bilateral optic neuropathy in a patient with familial amyloidotic polyneuropathy

    DEFF Research Database (Denmark)

    Hamann, Steffen; Jensen, Peter Koch; Fledelius, Hans Callø

    2013-01-01

    Amyloidogenic transthyretin (ATTR)-related familial amyloidotic polyneuropathy (FAP) is an autosomal-dominant hereditary disease characterised by slowly progressive peripheral sensorimotor and autonomic neuropathy and tissue involvement of the heart, kidneys and central nervous system. Secondary...... ATTR Val30Met mutation. After 11 years of ophthalmic follow-up best-corrected visual acuity was 20/100 in his seeing eye, which further had visual field findings suggestive of optic neuropathy. This was also the diagnosis underlying the preceding insidious full loss of vision in the fellow eye......, with colour Doppler imaging to support an ischaemic aetiology. To our knowledge, this is the first report of ischaemic optic neuropathy in this familial amyloid disorder....

  14. Differential effects of myostatin deficiency on motor and sensory axons.

    Science.gov (United States)

    Jones, Maria R; Villalón, Eric; Northcutt, Adam J; Calcutt, Nigel A; Garcia, Michael L

    2017-12-01

    Deletion of myostatin in mice (MSTN -/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. Using the MSTN -/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. Axon diameter and myelin thickness were increased in motor axons of MSTN -/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017. © 2017 Wiley Periodicals, Inc.

  15. Phenotyping animal models of diabetic neuropathy

    DEFF Research Database (Denmark)

    Biessels, G J; Bril, V; Calcutt, N A

    2014-01-01

    NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy...... with a discussion on the merits and limitations of a unified approach to phenotyping rodent models of diabetic neuropathy and a consensus formed on the definition of the minimum criteria required for establishing the presence of the disease. A neuropathy phenotype in rodents was defined as the presence...

  16. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Wang, Zhaoxia; Hong, Daojun; Zhang, Wei; Li, Wurong; Shi, Xin; Zhao, Danhua; Yang, Xu; Lv, He; Yuan, Yun

    2016-02-01

    Multiple Acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid oxidation. Most patients with late-onset MADD are clinically characterized by lipid storage myopathy with dramatic responsiveness to riboflavin treatment. Abnormalities of peripheral neuropathy have rarely been reported in patients with late-onset MADD. We describe six patients who presented with proximal limb weakness and loss of sensation in the distal limbs. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of multiple acylcarnitines supporting the diagnosis of MADD. However, nerve conduction investigations and sural nerve biopsies in these patients indicated severe axonal sensory neuropathy. Causative ETFDH gene mutations were found in all six cases. No other causative gene mutations were identified in mitochondrial DNA and genes associated with hereditary neuropathies through next-generation-sequencing panel. Late-onset patients with ETFDH mutations can present with proximal muscle weakness and distal sensory neuropathy, which might be a new phenotypic variation, but the precise underlying pathogenesis remains to be elucidated. Copyright © 2015. Published by Elsevier B.V.

  17. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy.

    Science.gov (United States)

    Bobylev, Ilja; Maru, Helina; Joshi, Abhijeet R; Lehmann, Helmar C

    2016-03-01

    Peripheral neuropathy is a common side effect of prolonged treatment with linezolid. This study aimed to explore injurious effects of linezolid on cells of the peripheral nervous system and to establish in vivo and in vitro models of linezolid-induced peripheral neuropathy. C57BL/6 mice were treated with linezolid or vehicle over a total period of 4 weeks. Animals were monitored by weight, nerve conduction studies and behavioural tests. Neuropathic changes were assessed by morphometry on sciatic nerves and epidermal nerve fibre density in skin sections. Rodent sensory neuron and Schwann cell cultures were exposed to linezolid in vitro and assessed for mitochondrial dysfunction. Prolonged treatment with linezolid induced a mild, predominantly small sensory fibre neuropathy in vivo. Exposure of Schwann cells and sensory neurons to linezolid in vitro caused mitochondrial dysfunction primarily in neurons (and less prominently in Schwann cells). Sensory axonopathy could be partially prevented by co-administration of the Na(+)/Ca(2+) exchanger blocker KB-R7943. Clinical and pathological features of linezolid-induced peripheral neuropathy can be replicated in in vivo and in vitro models. Mitochondrial dysfunction may contribute to the axonal damage to sensory neurons that occurs after linezolid exposure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  20. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  2. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  3. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  4. Computed tomography in diagnosis of diffuse axonal injury

    International Nuclear Information System (INIS)

    Iwadate, Yasuo; Ono, Juniti; Okimura, Yoshitaka; Suda, Sumio; Isobe, Katsumi; Yamaura, Akira.

    1990-01-01

    Diffuse axonal injury (DAI) has been described in instances of prolonged traumatic coma on the basis of the neuropathological findings, but the same findings are also found in patients with cerebral concussion. Experimental studies confirm that the quality of survivors following trauma is directly proportional to the amount of primarily injured-axon. When the injured axon lies in a widespread area of the brain, outcome for the patient is always poor. In a series of 260 severely head-injured patients, based on their poor outcome, 69 (27%) were diagnosed as DAI. Because of their relatively good outcome, eighty-two patients (32%) were classified into non-DAI group. The predominant CT finding of DAI patients was intraparenchymal deep-seated hemorrhagic lesion. This was observed in 28 patients (41%). Normal CT was also observed in 11 patients (16%). On the other hand, 8 of the non-DAI group (10%) manifested deep-seated lesions. Diffuse cerebral swelling (DCS) appeared in both groups in the same incidence. Subarachnoid hematoma in the perimesencephalic cistern (SAH (PMC)) and intraventricular hematoma (IVH) were observed in 64% of the DAI group, and in 23% of the non-DAI group. The available evidence indicates that various types of hematoma seen in the deep-seated structures of the brain do not have an absolute diagnostic value, but the frequency of hematoma is thought to increase in proportion to the amount of injured-axon. (author)

  5. DNA testing in hereditary neuropathies.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2013-01-01

    The inherited neuropathies are a clinically and genetically heterogeneous group of disorders in which there have been rapid advances in the last two decades. Molecular genetic testing is now an integral part of the evaluation of patients with inherited neuropathies. In this chapter we describe the genes responsible for the primary inherited neuropathies. We briefly discuss the clinical phenotype of each of the known inherited neuropathy subgroups, describe algorithms for molecular genetic testing of affected patients and discuss genetic counseling. The basic principles of careful phenotyping, documenting an accurate family history, and testing the available genes in an appropriate manner should identify the vast majority of individuals with CMT1 and many of those with CMT2. In this chapter we also describe the current methods of genetic testing. As advances are made in molecular genetic technologies and improvements are made in bioinformatics, it is likely that the current time-consuming methods of DNA sequencing will give way to quicker and more efficient high-throughput methods, which are briefly discussed here.

  6. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Unilateral anterior ischemic optic neuropathy

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2013-01-01

    of this study was to investigate the ipRGC mediated pupil response in patients with a unilateral non-arteritic anterior ischemic optic neuropathy (NAION). Consensual pupil responses during and after exposure to continuous 20 s blue (470 nm) or red (660 nm) light of high intensity (300 cd/m(2)) were recorded...

  8. Corneal markers of diabetic neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  9. Hereditary sensory neuropathy type I

    Directory of Open Access Journals (Sweden)

    Auer-Grumbach Michaela

    2008-03-01

    Full Text Available Abstract Hereditary sensory neuropathy type I (HSN I is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7 identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN, especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra

  10. Hereditary sensory neuropathy type I.

    Science.gov (United States)

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  11. Reduction of peak plantar pressure in people with diabetes-related peripheral neuropathy: an evaluation of the DH Pressure Relief Shoe™

    Directory of Open Access Journals (Sweden)

    Raspovic Anita

    2012-10-01

    Full Text Available Abstract Background Offloading plantar pressure is a key strategy for the prevention or healing of neuropathic plantar ulcers in diabetes. Non-removable walking casts, such as total contact casts, are currently considered the gold-standard for offloading this type of wound. However, alternative methods for offloading that are more cost effective and easier to use are continually being sought. The aim of this study was to evaluate the capacity of the DH Pressure Relief Shoe™ to offload high pressure areas under the neuropathic foot in diabetes. Methods A within-subjects, repeated measures design was used. Sixteen participants with diabetic peripheral neuropathy were recruited and three footwear conditions were evaluated in a randomised order: a canvas shoe (the control, the participants’ own standard shoe, and the DH Pressure Relief Shoe™. The primary outcome was peak plantar pressure, measured using the pedar-X® mobile in-shoe system between the three conditions. Results Data analysis was conducted on 14 out of the 16 participants because two participants could not complete data collection. The mean peak pressure values in kPa (±SD for each condition were: control shoe 315.9 (±140.7, participants’ standard shoe 273.0 (±127.1 and DH Pressure Relief Shoe™ 155.4 (±89.9. There was a statistically significant difference in peak plantar pressure between the DH Pressure Relief Shoe™ compared to both the control shoe (p = 0.002 and participants’ standard shoe (p = 0.001. The DH Pressure Relief Shoe™ decreased plantar pressures by 51% compared to the control shoe and by 43% compared to participants’ standard shoe. Importantly, for a couple of study participants, the DH Pressure Relief Shoe™ appeared unsuitable for day-to-day wearing. Conclusions The DH Pressure Relief Shoe™ reduced plantar pressures more than the other two shoe conditions. The DH Pressure Relief Shoe™ may be a useful alternative to current offloading

  12. Optic nerve histopathology in a case of Wolfram Syndrome: a mitochondrial pattern of axonal loss.

    Science.gov (United States)

    Ross-Cisneros, Fred N; Pan, Billy X; Silva, Ruwan A; Miller, Neil R; Albini, Thomas A; Tranebjaerg, Lisbeth; Rendtorff, Nanna D; Lodahl, Marianne; Moraes-Filho, Milton N; Moraes, Milton N; Salomao, Solange R; Berezovsky, Adriana; Belfort, Rubens; Carelli, Valerio; Sadun, Alfredo A

    2013-11-01

    Mitochondrial dysfunction in Wolfram Syndrome (WS) is controversial and optic neuropathy, a cardinal clinical manifestation, is poorly characterized. We here describe the histopathological features in postmortem retinas and optic nerves (ONs) from one patient with WS, testing the hypothesis that mitochondrial dysfunction underlies the pathology. Eyes and retrobulbar ONs were obtained at autopsy from a WS patient, and compared with those of a Leber hereditary optic neuropathy (LHON) patient and one healthy control. Retinas were stained with hematoxylin & eosin for general morphology and ONs were immunostained for myelin basic protein (MBP). Immunostained ONs were examined in four "quadrants": superior, inferior, nasal, and temporal. The WS retinas displayed a severe loss of retinal ganglion cells in the macular region similar to the LHON retina, but not in the control. The WS ONs, immunostained for MBP, revealed a zone of degeneration in the temporal and inferior quadrants. This pattern was similar to that seen in the LHON ONs but not in the control. Thus, the WS patient displayed a distinct pattern of optic atrophy observed bilaterally in the temporal and inferior quadrants of the ONs. This arrangement of axonal degeneration, involving primarily the papillomacular bundle, closely resembled LHON and other mitochondrial optic neuropathies, supporting that mitochondrial dysfunction underlies its pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    Science.gov (United States)

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  14. Evaluation and Prevention of Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Pajouhi M

    2007-07-01

    Full Text Available Background: Diabetic neuropathy is an incapacitating disease that afflicts almost 50 percent of patients with diabetes. A late finding in type 1 diabetes, diabetic neuropathy can be an early finding in non insulin-dependent diabetes. Diabetic neuropathies are divided primarily into two groups, sensorimotor and autonomic. Patients may acquire only one type of diabetic neuropathy or may present with combinations of neuropathies, such as autonomic neuropathy or distal symmetric polyneuropathy, the latter of which the most common form. Motor deficits, orthostatic hypotension, silent cardiac ischemia, hyperhidrosis, vasomotor instability, gastroparesis, bladder dysfunction, and sexual dysfunction can also result from diabetic neuropathy. Strict control of blood sugar, combined with proper daily foot care, is essential to avoid the complications of this disorder. With the potential to afflict any part of the nervous system, diabetic neuropathy should be suspected in all patients with type 2 diabetes as well as patients who have had type 1 diabetes for over five years. Although some patients with diabetic neuropathy notice few symptoms, upon physical examination mild to moderately severe sensory loss may be noted by the physician. Idiopathic neuropathy has been known to precede the onset of type 2 diabetes.

  15. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Axonal inclusions in the crab Hemigrapsus nudus.

    Science.gov (United States)

    Smith, R S

    1978-10-01

    Light microscopic examination of living giant axons from the walking legs of Hemigrapsus nudus revealed intra-axonal inclusions which were usually several tens of micrometers long and about 5 micron wide. The inclusions were filled with small light-scattering particles. The inclusions were shown, by thin section electron microscopy, to be composed largely 68% by volume) of mitochondria. Each inclusion was surrounded by membrane bounded spaces which are presumed to represent a part of the smooth endoplasmic reticulum. Similar inclusions were not found in the leg axons of a variety of other decapod crustaceans.

  17. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...... as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from...... aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P₀+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may...

  18. Ophthalmople gic cranial neuropathy: clinical case

    Directory of Open Access Journals (Sweden)

    N. S. Dozorova

    2018-01-01

    Full Text Available Ophthalmoplegic cranial neuropathy (OCN is a disease with unknown etiology, which manifests itself by episodes of intense headache, accompanied by completely or partially reversible dysfunction of the oculomotor nerve: ptosis, mydriasis and ophthalmoplegia. It is assumed that the pathology is demyelinating in nature, therefore in the International classification of headaches OCN excluded from rubric migraine and related to the painful cranial neuropathies. The question of the prevention and treatment of this disease is still controversial, the issue of the appointment of corticosteroids, calcium channel blockers and β-blockers, methods of surgical correction of strabismus and botulin therapy.The article describes OCN in an 11-year-old boy. In the clinical picture headache attacks were observed. These attacks were with signs of selective lesions of the oculomotor nerve on one side. These functional changes are recurrent, and fully regress between attacks. Laboratory and instrumental examinations revealed no pathology that could cause this symptom, including myasthenia. The described case demonstrates the classical picture of OCN with a favorable course and the partial damage of the oculomotor nerve on one side.

  19. Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation.

    Science.gov (United States)

    Osmani, Karima; Vignes, Stéphane; Aissi, Mouna; Wade, Fatou; Milani, Paolo; Lévy, Bernard I; Kubis, Nathalie

    2012-09-01

    Taxane-induced neuropathy is a frequent complication, in particular in women with breast cancer. The incidence can be variable and ranges from 11 to 87%, depending on the taxane used and identified risk factors, such as cumulative dose, additional neurotoxic chemotherapy agents and previous nerve fragility. However, little is known about long-term outcome and interference with daily life activities. The objective of this study was to assess clinical and electrophysiological neurological evaluation (ENMG) in a cohort of patients, 1-13 years (median 3 years) after the end of the last cure. Sixty-nine women were enrolled in the lymphology unit of Cognacq-Jay's Hospital. They were 58 ± 9 years old (mean age ± SD) and had been treated by docetexel (n = 56), paclitaxel (n = 10) or both (n = 3), 1-13 years before. Sensory neuropathy occurred in 64% and totally disappeared within months for only 14% after cessation of treatment. However, if symptoms were still present at the time of examination, they were considered as minor by almost all patients, with no interference with daily life activities (grade 2 CTCAE v.3.0). ENMG was accepted by 14 patients; it was normal in 7, and showed sensory axonal neuropathy in 5 and sensory-motor neuropathy in 2. The incidence of taxane-induced neuropathy is high, more frequent with paclitaxel than docetaxel, and is characterized by minor or moderate axonal sensory polyneuropathy. When persistent, it is extremely well tolerated by the patient. When clinical motor signs occur, the patient should be referred to a neurologist.

  20. Genetics Home Reference: hereditary sensory neuropathy type IA

    Science.gov (United States)

    ... sensory neuropathy type IA Hereditary sensory neuropathy type IA Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Hereditary sensory neuropathy type IA is a condition characterized by nerve abnormalities in ...

  1. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy.

    Science.gov (United States)

    Feng, Chengcheng; Xu, Lijuan; Guo, Shiyun; Chen, Qian; Shen, Yuguo; Zang, Deng; Ma, Li

    2018-01-01

    WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC- β 3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC- β 3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC- β 3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC- β 3 mRNA and protein expression in the diabetic DRG of DPN rats.

  2. Cardiovascular autonomic neuropathy in diabetes

    DEFF Research Database (Denmark)

    Spallone, Vincenza; Ziegler, Dan; Freeman, Roy

    2011-01-01

    Cardiovascular Autonomic Neuropathy (CAN) Subcommittee of Toronto Consensus Panel on Diabetic Neuropathy worked to update CAN guidelines, with regard to epidemiology, clinical impact, diagnosis, usefulness of CAN testing, and management. CAN is the impairment of cardiovascular autonomic control...... in type 2 diabetes. CAN is a risk marker of mortality and cardiovascular morbidity, and possibly a progression promoter of diabetic nephropathy. Criteria for CAN diagnosis and staging are: 1. one abnormal cardio-vagal test identifies possible or early CAN; 2. at least two abnormal cardio-vagal tests....... diagnosis of CAN clinical forms, 2. detection and tailored treatment of CAN clinical correlates (e.g. tachycardia, OH, nondipping, QT interval prolongation), 3. risk stratification for diabetic complications and cardiovascular morbidity and mortality, and 4. modulation of targets of diabetes therapy...

  3. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  4. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors

    DEFF Research Database (Denmark)

    Eckhoff, L.; Knoop, A.; Jensen, M. B.

    2015-01-01

    BACKGROUND: This study evaluates persistence and severity of docetaxel-induced neuropathy (peripheral neuropathy (PN)) and impact on health related quality of life in survivors from early-stage breast cancer. METHODS: One thousand and thirty-one patients with early-stage breast cancer, who received...... at least one cycle of docetaxel and provided information on PN during treatment, completed questionnaires on PN as an outcome (Common Toxicity Criteria (CTC) scores, European Organisation for Research and Treatment of Cancer Chemotherapy-Induced Peripheral Neuropathy 20 (EORTC CIPN20) and EORTC Quality...

  5. The Association between Serum Cytokines and Damage to Large and Small Nerve Fibers in Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Francesca Magrinelli

    2015-01-01

    Full Text Available Diabetic peripheral neuropathy (DPN is a frequent complication of type 2 diabetes mellitus (DM and may involve small and large peripheral nerve fibers. Recent evidence suggests a role of cytokines in DPN. The paper is aimed at exploring whether the serum concentration of cytokines is associated with small and large nerve fiber function and with neuropathic pain (NP. We recruited a group of 32 type 2 DM patients who underwent serum cytokines (TNF-α, IL-2, IL-4, IL-6, and IL-10 dosage as well as electrodiagnostic and quantitative sensory testing (QST assessment to explore damage to large and small nerve fibers. Raised serum levels of IL-6 and IL-10 correlated with markers of large nerve fiber sensory and motor axonal damage. Raised IL-10 serum level was associated with signs of motor nerve demyelination. No differences were found in pain characteristics and electrodiagnostic and QST markers of small nerve fiber function in relation to cytokines serum levels. IL-6 and IL-10 serum levels were associated with large nerve fiber damage but not to small fibers function or NP. IL-6 and IL-10 cytokines might play a role in the pathogenesis of nerve fiber damage or represent a compensatory or neuroprotective mechanism.

  6. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  7. Imaging of neuropathies about the hip

    Energy Technology Data Exchange (ETDEWEB)

    Martinoli, Carlo, E-mail: carlo.martinoli@unige.it [Radiologia – DISC, Università di Genova, Largo Rosanna Benzi 8, I-16132 Genoa (Italy); Miguel-Perez, Maribel [Unit of Human Anatomy and Embryology, Department of Pathology and Experimental Therapy, Faculty of Medicine (C Bellvitge), University of Barcelona, Barcelona (Spain); Padua, Luca [Fondazione Don Gnocchi Onlus and Department of Neurology, Policlinico “A. Gemelli”, Università Cattolica del Sacro Cuore, Rome (Italy); Gandolfo, Nicola [IM2S – Institut Monégasque de Médecine and Chirurgie Sportive, Montecarlo (Monaco); Zicca, Anna [Radiologia – DISC, Università di Genova, Largo Rosanna Benzi 8, I-16132 Genoa (Italy); Tagliafico, Alberto [Radiologia – National Institute for Cancer Research, Genoa (Italy)

    2013-01-15

    Neuropathies about the hip may be cause of chronic pain and disability. In most cases, these conditions derive from mechanical or dynamic compression of a segment of a nerve within a narrow osteofibrous tunnel, an opening in a fibrous structure, or a passageway close to a ligament or a muscle. Although the evaluation of nerve disorders primarily relies on neurological examination and electrophysiology, diagnostic imaging is currently used as a complement to help define the site and aetiology of nerve compression and exclude other disease possibly underlying the patient’ symptoms. Diagnosis of entrapment neuropathies about the hip with US and MR imaging requires an in-depth knowledge of the normal imaging anatomy and awareness of the anatomic and pathologic factors that may predispose or cause a nerve injury. Accordingly, the aim of this article is to provide a comprehensive review of hip neuropathies with an emphasis on the relevant anatomy, aetiology, clinical presentation, and their imaging appearance. The lateral femoral cutaneous neuropathy (meiralgia paresthetica), femoral neuropathy, sciatic neuropathy, obturator neuropathy, superior and inferior gluteal neuropathies and pudendal neuropathy will be discussed.

  8. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  9. Novel High-Throughput Drug Screening Platform for Chemotherapy-Induced Axonal Neuropathy

    Science.gov (United States)

    2014-05-01

    from anti-cancer drug therapy [1,2]. Platinum drugs, taxanes, proteasome inhibitors, vinca alkaloids, epothilones, and immunomodulators are the...and immunomodulators are the standard of anti-cancer therapies for the six most cancers. An estimated 2010 incidence of 994, 680 cases for these

  10. Clinical Significance of the Presence of Autonomic and Vestibular Dysfunction in Diabetic Patients with Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Soo Kyoung Kim

    2012-02-01

    Full Text Available BackgroundWe investigated the prevalence of diabetic autonomic neuropathy (DAN and vestibular dysfunction (VD in diabetic patients with peripheral neuropathy.MethodsThirty-five diabetic patients with peripheral neuropathy were enrolled from August 2008 to July 2009. All subjects underwent autonomic function tests. Nineteen of the patients (54.3% underwent videonystagmography.ResultsDiabetic autonomic neuropathy was observed in 28 patients (80%. A mild degree of autonomic failure was observed in 18 patients (64.3%, and a moderate degree of autonomic failure was observed in ten patients (35.7%. Factors related to DAN included diabetic nephropathy (P=0.032, degree of chronic kidney disease (P=0.003, and duration of diabetes (P=0.044. Vestibular dysfunction was observed in 11 of 19 patients (57.9%. There was no significant association between DAN and VD.ConclusionDiabetic autonomic neuropathy was observed in 28 diabetic patients (80% with peripheral neuropathy. Vestibular dysfunction was observed in nearly 60% of diabetic patients with peripheral neuropathy who complained of dizziness but showed no significant association with DAN. Diabetic patients who complained of dizziness need to examine both autonomic function and vestibular function.

  11. Altered joint moment strategy during stair walking in diabetes patients with and without peripheral neuropathy.

    Science.gov (United States)

    Brown, Steven J; Handsaker, Joseph C; Maganaris, Constantinos N; Bowling, Frank L; Boulton, Andrew J M; Reeves, Neil D

    2016-05-01

    To investigate lower limb biomechanical strategy during stair walking in patients with diabetes and patients with diabetic peripheral neuropathy, a population known to exhibit lower limb muscular weakness. The peak lower limb joint moments of twenty-two patients with diabetic peripheral neuropathy and thirty-nine patients with diabetes and no neuropathy were compared during ascent and descent of a staircase to thirty-two healthy controls. Fifty-nine of the ninety-four participants also performed assessment of their maximum isokinetic ankle and knee joint moment (muscle strength) to assess the level of peak joint moments during the stair task relative to their maximal joint moment-generating capabilities (operating strengths). Both patient groups ascended and descended stairs slower than controls (pperipheral neuropathy were lower (pperipheral neuropathy compared to controls, and lower at knee only in patients without neuropathy. Operating strengths were higher (pneuropathy during stair descent compared to the controls, but not during stair ascent. Patients with diabetic peripheral neuropathy walk slower to alter gait strategy during stair walking and account for lower-limb muscular weakness, but still exhibit heightened operating strengths during stair descent, which may impact upon fatigue and the ability to recover a safe stance following postural instability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Genetics of hereditary motor and sensory neuropathy and the Costa Rican contribution

    Directory of Open Access Journals (Sweden)

    Alejandro Leal

    2004-09-01

    Full Text Available Hereditary motor and sensory neuropathy (HMSN or Charcot-Marie-Tooth disease (CMT is the most common hereditary illness of the peripheral nervous system. The genetics and the physiopathological aspects of the disease clarified until know, are here summarized. More than twenty genes and ten additional loci have been related with HMSN. These findings contribute to understand the metabolism of peripheral nerves and give the basis for molecular diagnostics and future therapy. Several Costa Rican families with CMT have been identified, specially with axonal forms. Two families present mutations in the myelin protein zero gene (MPZ. In addition, linkage have been found between the disease and locus 19q13.3 in an extended family, and a mutation segregating with the disease is present in a candidate gene of the critical interval. Costa Rica has several advantages for genetical studies, that can contribute importantly in the generation of knowledge in the neurogenetical field. Rev. Biol. Trop. 52(3: 475-483. Epub 2004 Dic 15.El grupo de neuropatías motoras y sensoriales hereditarias (HMSN o enfermedad de Charcot-Marie-Tooth (CMT es el padecimiento hereditario más común del sistema nervioso periférico. El propósito de este trabajo es resumir los aspectos genéticos y fisiopatológicos más actuales de esta enfermedad. Más de veinte genes y diez loci adicionales han sido relacionados con HMSN. Estos hallazgos han contribuido con la comprensión del metabolismo de los nervios periféricos y sirven de base para el diagnóstico molecular y el diseño de terapias. Diversas familias costarricenses con CMT han sido identificadas: dos de ellas presentan mutaciones en el gen que codifica por la mielina proteína cero (MPZ. Además, un análisis de ligamiento localizó el gen que causa una forma axonal de la enfermedad en el cromosoma 19q13.3 en una extensa familia; también se detectó en esa región una mutación que co-segrega con la enfermedad y que

  13. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    Directory of Open Access Journals (Sweden)

    Harry Liu

    2017-02-01

    Full Text Available Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A “gain of toxicity” model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s causes a “loss of function”, resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons of CMT2B are needed to precisely define the disease mechanisms.

  14. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    Science.gov (United States)

    Liu, Harry; Wu, Chengbiao

    2017-02-04

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.

  15. In vivo electrophysiological measurement of the rat ulnar nerve with axonal excitability testing

    DEFF Research Database (Denmark)

    Wild, Brandon M.; Morris, Renée; Moldovan, Mihai

    2018-01-01

    Electrophysiology enables the objective assessment of peripheral nerve function in vivo. Traditional nerve conduction measures such as amplitude and latency detect chronic axon loss and demyelination, respectively. Axonal excitability techniques "by threshold tracking" expand upon these measures...... by providing information regarding the activity of ion channels, pumps and exchangers that relate to acute function and may precede degenerative events. As such, the use of axonal excitability in animal models of neurological disorders may provide a useful in vivo measure to assess novel therapeutic...... interventions. Here we describe an experimental setup for multiple measures of motor axonal excitability techniques in the rat ulnar nerve. The animals are anesthetized with isoflurane and carefully monitored to ensure constant and adequate depth of anesthesia. Body temperature, respiration rate, heart rate...

  16. [Clinical report of hereditary motor and sensory neuropathy with proximal dominance in Shiga prefecture].

    Science.gov (United States)

    Takahashi, Mitsuo; Mitsui, Yoshiyuki; Yorifuji, Shiro; Nakamura, Yuusaku; Tsukamoto, Yoshihumi; Nishimoto, Kazuhiro

    2007-09-01

    We followed eight hereditary motor and sensory neuropathy patients with proximal dominance (HMSN-P) in Shiga prefecture from 1984 to 2007. There were 4 men and 4 women from two families showing autosomal and dominant prepotency. These families were related by marriage. The average onset of disease was at 53.4 +/- 8.9 (40-68) years-old. Initial symptoms were difficulty of standing up, difficulty elevating their arms, limping, or numbness. The main feature was neurogenic muscular atrophy with proximal dominance. All deep tendon reflexes were decreased or nonexistent. Paresthesia in the hands and feet and/or decreased vibratory sense in the legs were found in six patients. High CK blood levels were recognized in three patients. EMG in four patients revealed neurogenic pattern. Nerve conduction study was conducted in two patients. MCV of the median nerve and of the tibial posterior nerve, also SCV of the median nerve and of the sural nerve were within normal range in all nerves. Amplitudes of sensory action potential or of M wave were decreased or nonexistent in five of eight nerves, and distal latency of M waves was delayed in three of four nerves. These data suggests dysfunction of distal parts of the peripheral nerve fibers and axonal degeneration of the nerve trunk. Seven patients have died, and their average death age was 69.1 +/- 8.2 (52-77) years-old. Their average affected period was 16.6 (4-30) years. Their clinical history resembles Okinawa-type HMSN-P, but without the painful muscle cramps which are distinctive Okinawa-type signs.

  17. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  18. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

    Czech Academy of Sciences Publication Activity Database

    Eva, R.; Koseki, H.; Kanamarlapudi, V.; Fawcett, James

    2017-01-01

    Roč. 130, č. 21 (2017), s. 3663-3675 ISSN 0021-9533 Institutional support: RVO:68378041 Keywords : axon regeneration * axon transport * neuronal polarisation Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 4.431, year: 2016

  19. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  20. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy.

    Science.gov (United States)

    Chowdhury, Subir K Roy; Smith, Darrell R; Fernyhough, Paul

    2013-03-01

    Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich

  1. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy

    DEFF Research Database (Denmark)

    Østergaard, Leif; Finnerup, Nanna B.; Terkelsen, Astrid J.

    2015-01-01

    Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the dev...... inflammation and glucose clearance from blood. We discuss the implications of these predictions in relation to the prevention and management of diabetic complications in type 1 and type 2 diabetes, and suggest ways of testing these hypotheses in experimental and clinical settings....

  2. Meta-analysis of incidence and risk of peripheral neuropathy associated with intravenous bortezomib.

    Science.gov (United States)

    Peng, Ling; Ye, Xianghua; Zhou, Yun; Zhang, Junyan; Zhao, Qiong

    2015-09-01

    Bortezomib is a proteasome inhibitor which has demonstrated activity against recurrent or newly diagnosed multiple myeloma (MM) and mantle cell lymphoma. Peripheral neuropathy has been described with this agent, although the overall incidence and relative risk remain unclear. We performed a meta-analysis to calculate the incidence of peripheral neuropathy associated with the use of intravenous bortezomib in MM and lymphoma and to compare the relative risk compared with placebo. We searched PubMed, Embase, Cochrane databases, and meeting proceedings from the American Society of Clinical Oncology (ASCO) for relevant clinical trials. Eligible studies included prospective phase 2 and 3 clinical trials with toxicity profile on peripheral neuropathy associated with intravenous bortezomib in patients with MM and lymphoma. Statistical analyses were done to calculate summary incidences, relative risks (RRs), and 95 % confidence intervals (CIs), employing fixed- or random-effects models depending on the heterogeneity of the included studies. Altogether, 34 clinical trials were selected for the meta-analysis, yielding a total of 6492 patients. The incidence of peripheral neuropathy (all grades) was 33.9 % (95 % CI, 29.9-38.5 %) and that of high-grade events was 8.1 % (95 % CI, 6.9-9.4 %). The relative risks of bortezomib-induced peripheral neuropathy compared to placebo were increased for all-grade (RR = 4.89; 95 % CI, 2.52-9.51) and high-grade (RR = 4.53; 95 % CI, 2.04-10.07) peripheral neuropathy (for randomized controlled trials only). Our analysis was also stratified by different underlying diseases, and patients with lymphoma had an increased incidence of all-grade peripheral neuropathy than those with MM when treated with intravenous bortezomib. Treatment with intravenous bortezomib is associated with an increased risk of developing peripheral neuropathy.

  3. Penicillamin-induced neuropathy in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Pedersen, P B; Hogenhaven, H

    1990-01-01

    A case of penicillamin-induced severe polyradiculopathy in rheumatoid arthritis is presented. The neuropathy was of demyelinating type, purely motor, proximal and clinically fully reversible when the drug ceased. In case of a progressive neuropathy, during penicillamin treatment, this adverse eff...... effect should be born in mind, and discontinuation of the drug considered....

  4. Penicillamin-induced neuropathy in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Pedersen, P B; Hogenhaven, H

    1990-01-01

    A case of penicillamin-induced severe polyradiculopathy in rheumatoid arthritis is presented. The neuropathy was of demyelinating type, purely motor, proximal and clinically fully reversible when the drug ceased. In case of a progressive neuropathy, during penicillamin treatment, this adverse...

  5. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    Science.gov (United States)

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312

  6. Sensory neuropathy in two Border collie puppies.

    Science.gov (United States)

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected.

  7. Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    Science.gov (United States)

    Rotthier, Annelies; Baets, Jonathan; Vriendt, Els De; Jacobs, An; Auer-Grumbach, Michaela; Lévy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andrés; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis. PMID:19651702

  8. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models

    Science.gov (United States)

    Bernstein, Steven L.; Johnson, Mary A.; Miller, Neil R.

    2011-01-01

    Anterior ischemic optic neuropathy (AION) can be divided into nonarteritic (NAION) and arteritic (AAION) forms. NAION makes up ~85% of all cases of AION, and until recently was poorly understood. There is no treatment for NAION, and its initiating causes are poorly understood, in part because NAION is not lethal, making it difficult to obtain fresh, newly affected tissue for study. In-vivo electrophysiology and post-mortem studies reveal specific responses that are associated with NAION. New models of NAION have been developed which enable insights into the pathophysiological events surrounding this disease. These models include both rodent and primate species, and the power of a `vertically integrated' multi-species approach can help in understanding the common cellular mechanisms and physiological responses to clinical NAION, and to identify potential approaches to treatment. The models utilize laser light to activate intravascular photoactive dye to induce capillary vascular thrombosis, while sparing the larger vessels. The observable optic nerve changes associated with rodent models of AION (rAION) and primate NAION (pNAION) are indistinguishable from that seen in clinical disease, including sectoral axonal involvement, and in-vivo electrophysiological data from these models are consistent with clinical data. Early post-infarct events reveal an unexpected inflammatory response, and changes in intraretinal gene expression for both stress response, while sparing outer retinal function, which occurs in AAION models. Histologically, the NAION models reveal an isolated loss of retinal ganglion cells by apoptosis. There are changes detectable by immunohistochemistry suggesting that other retinal cells mount a brisk response to retinal ganglion cell distress without themselves dying. The optic nerve ultimately shows axonal loss and scarring. Inflammation is a prominent early histological feature. This suggests that clinically, specific modulation of inflammation may

  9. Leber's Hereditary Optic Neuropathy: A Case Report

    Directory of Open Access Journals (Sweden)

    Chi-Wu Chang

    2003-10-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited mitochondrial disease that primarily affects the optic nerve, causing bilateral vision loss in juveniles and young adults. A 12-year-old boy had complained of blurred vision in both eyes for more than 1 year. His best-corrected visual acuity was 0.08 in the right eye and 0.1 in the left. Ophthalmologic examination showed bilateral optic disc hyperemia and margin blurring, peripapillary telangiectasis, and a relative afferent pupil defect in his right eye. Fluorescein angiography showed no stain or leakage around the optic disc in the late phase. Visual field analysis showed central scotoma in the left eye and a near-total defect in the right. Upon examination of the patient's mitochondrial DNA, a point mutation at nucleotide position 11778 was found, and the diagnosis of LHON was confirmed. Coenzyme Q10 was used to treat the patient.

  10. A case of presumed radiation optic neuropathy

    International Nuclear Information System (INIS)

    Atsumi, Osamu; Sakuraba, Tomoki; Kimura, Satoru; Narita, Kiyoharu; Maeda, Syuji

    1991-01-01

    A case of a 37-year-old woman with radiation optic neuropathy was reported. She had undergone subtotal removal of the right orbital tumor (adenoid cystic carcinoma) by frontal craniotomy, followed by radiation therapy (64 Gy). She had been quite well until she noticed a gradual loss of vision in her right eye 18 months later. Her visual acuity was 0.2 in the right eye and 1.5 in the left eye with right relative afferent pupillary defect and dense central scotoma. Funduscopy revealed optic disc swelling with surrounding retinal edema and small hemorrhage in the right eye. Fluorescein angiography revealed a hypoperfusion area and obstruction of the small retinal vessels in the posterior pole, but this was not large enough to explain the dense central scotoma. Although prednisolone therapy gave temporary improvement, the visual function gradually deteriorated. (author)

  11. A case of presumed radiation optic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Osamu; Sakuraba, Tomoki; Kimura, Satoru; Narita, Kiyoharu; Maeda, Syuji (Hirosaki Univ., Aomori (Japan). School of Medicine)

    1991-05-01

    A case of a 37-year-old woman with radiation optic neuropathy was reported. She had undergone subtotal removal of the right orbital tumor (adenoid cystic carcinoma) by frontal craniotomy, followed by radiation therapy (64 Gy). She had been quite well until she noticed a gradual loss of vision in her right eye 18 months later. Her visual acuity was 0.2 in the right eye and 1.5 in the left eye with right relative afferent pupillary defect and dense central scotoma. Funduscopy revealed optic disc swelling with surrounding retinal edema and small hemorrhage in the right eye. Fluorescein angiography revealed a hypoperfusion area and obstruction of the small retinal vessels in the posterior pole, but this was not large enough to explain the dense central scotoma. Although prednisolone therapy gave temporary improvement, the visual function gradually deteriorated. (author).

  12. Inspection methods progression of diabetic optic neuropathy

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-06-01

    Full Text Available Increasing incidence of diabetes, diet restructuring with excessive intake of high-calorie foods closely related with this. Currently diabetes prevalence rate increased from 7% in 2003 to 14% in 2010. Diabetes can cause a variety of eye diseases, such as corneal ulcers, glaucoma, vitreous hemorrhage and so on. Diabetic retinopathy and cataract are the most common and greater impact on patients. At present, study for diabetic retinopathy(DRis wider than diabetes optic neuropathy(DON. Clinical manifestations of DON are not specific, but DON occurred extensively, also contributed to an important cause of blindness.In this paper, we collected a variety of inspection and early diagnosis methods, try to achieve early detection, interventional therapy and good treatment for this disease. Here to make a presentation on the various types of inspection methods.

  13. The effect of Ginkgo extract EGb761 in cisplatin-induced peripheral neuropathy in mice

    International Nuclear Information System (INIS)

    Oeztuerk, Guerkan; Anlar, Oemer; Erdogan, Ender; Koesem, Mustafa; Oezbek, Hanefi; Tuerker, Aybars

    2004-01-01

    Neuroprotective effect of Ginkgo biloba extract EGb761 in cisplatin (cis-diamminedi-chloroplatinum, or CDDP)-induced peripheral neuropathy was investigated. Swiss albino mice were treated with CDDP, 2 mg/kg ip twice a week for nine times. One group of the animals also received EGb761 in the drinking water at an estimated dosage of 100 mg/kg per day. Two other groups received vehicle (control) or EGb761 only. Development of neuropathy was evaluated with changes in sensory nerve conduction velocity (NCV). Following the treatments, dorsal root ganglia (DRGs) were microscopically examined and some were cultured for 3 days. EGb761 proved effective in preventing the reduction in NCV (P < 0.0001) caused by CDDP. CDDP caused a decrease in the number of migrating cells (P < 0.01) and in the length of outgrowing axons (P < 0.01) while EGb761 treatment prevented the latter. CDDP led to smaller nuclear and somatic sizes in neurons (P < 0.01), while with EGb761 co-administration, both were close to control values. Animals having EGb761 only had similar results with controls. In conclusion, EGb761 was found to be effective in preventing some functional and morphological deteriorations in CDDP-induced peripheral neuropathy

  14. Pathophysiologic insights into motor axonal function in Kennedy disease.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2007-11-06

    Kennedy disease (KD), or spinobulbomuscular atrophy, is a slowly progressive inherited neurodegenerative disorder, marked by prominent fasciculations that typically precede the development of other symptoms. Although the genetic basis of KD relates to triplet (CAG) repeat expansion in the androgen receptor (AR) gene on the X chromosome, the mechanisms underlying the clinical presentation in KD have yet to be established. Consequently, the present study applied axonal excitability techniques to investigate the pathophysiologic mechanisms associated with KD. Peripheral nerve excitability studies were undertaken in 7 patients with KD with compound muscle action potentials (CMAP) recorded from the right abductor pollicis brevis. Strength-duration time constant (KD 0.54 +/- 0.03 msec; controls, 0.41 +/- 0.02 msec, p TEd [90 to 100 msec], 50.75 +/- 1.98%; controls TEd [90 to 100 msec], 45.67 +/- 0.67%, p < 0.01) and hyperpolarizing (KD TEh [90 to 100 msec], 128.5 +/- 6.9%; controls TEh [90 to 100 msec], 120.5 +/- 2.4%) conditioning pulses. Measurements of refractoriness, superexcitability, and late subexcitability changed appropriately for axonal hyperpolarization, perhaps reflecting the effects of increased ectopic activity. In total, the increase in the strength-duration time constant may be the primary event, occurring early in course of the disease, contributing to the development of axonal hyperexcitability in Kennedy disease, and thereby to the generation of fasciculations, a characteristic hallmark of the disease.

  15. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss.

    Directory of Open Access Journals (Sweden)

    Andrea Calixto

    Full Text Available Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS pathway protects neurons from degenerating in a DAF-16/FOXO-dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment.

  16. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    Science.gov (United States)

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  17. Muscular atrophy in diabetic neuropathy

    DEFF Research Database (Denmark)

    Andersen, H; Gadeberg, P C; Brock, B

    1997-01-01

    Diabetic patients with polyneuropathy develop motor dysfunction. To establish whether motor dysfunction is associated with muscular atrophy the ankle dorsal and plantar flexors of the non-dominant leg were evaluated with magnetic resonance imaging in 8 patients with symptomatic neuropathy, in 8 non...... confirmed that the atrophy predominated distally. We conclude that muscular atrophy underlies motor weakness at the ankle in diabetic patients with polyneuropathy and that the atrophy is most pronounced in distal muscles of the lower leg indicating that a length dependent neuropathic process explains...

  18. MR imaging of trigeminal neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Yeon; Yoon, Pyeong Ho; Chung, Jin Il; Lee, Seung Ik; Kim, Dong Ik [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-03-01

    The trigeminal nerve is the largest of the cranial nerves and has both sensory and motor functions. It can be divided into proximal (brainstem, preganglionic, gasserian ganglion, and cavernous sinus) and distal (extracranial opthalmic, maxillary, and mandibular) segments. Patients with trigeminal neuropathy present with a wide variety of symptoms, and lesions producing those symptoms may occur anywhere along the protracted course of the trigeminal nerve, from its distal facial branches to its nuclear columns in the brainstem. The purpose of this article is to illustrate the normal anatomy of the trigeminal nerve and associated various pathologic conditions. These are arranged anatomically according to their site of interaction with it.

  19. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    of large dorsal root ganglion cells. Motor conduction studies, autonomic function and warm and cold temperature sensation remained unchanged at all doses of cisplatin treatment. The results of these studies are consistent with degeneration of large sensory neurons whereas there was no evidence of distal......Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...

  20. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... of the foot evoked by a tactile probe showed similar changes to those observed in SNAPs evoked by electrical stimulation. At these doses, somatosensory evoked potentials (SEPs) from the tibial nerve had increased latencies of peripheral, spinal and central responses suggesting loss of central processes...

  1. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  2. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Chengcheng Feng

    2018-01-01

    Full Text Available WenTong HuoXue Cream (WTHX-Cream has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN. This study investigated the gene and protein expression of the pain-related molecule PLC-β3 in the dorsal root ganglion (DRG of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats and DPN model (78 rats groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC-β3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC-β3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC-β3 mRNA and protein expression in the diabetic DRG of DPN rats.

  4. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    Science.gov (United States)

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  6. Effects of Dioscoreae Rhizoma (SanYak on Peripheral Neuropathy and its Safety

    Directory of Open Access Journals (Sweden)

    Kim Min-jung

    2013-09-01

    Full Text Available Objectives: This study aimed to evaluate the evidence available in the literature for the safety and efficacy of Dioscoreae Rhizoma (DR for the treatment of peripheral neuropathy. Methods: Literature searches were performed in MEDLINE and three Korean medical databases up to April 2013. All studies evaluating the effects on peripheral neuropathy or the safety of DR monopreparations were considered. Results: Three studies - DR extract per os (po on diabetic neuropathy in mice, DR extract injection on the peripheral sciatic nerve after crush injury in rats and DR extract injection to patients with peripheral facial paralysis proved that DR treatments were effective for the treatment of nerve injuries. Conclusions: In conclusion, we found the DR has a strong positive potential for the treatment of peripheral neuropathy, but studies addressing direct factors related to the nerve still remain insufficient.

  7. Muscle magnetic resonance imaging sensitivity does not decrease in chronic, mild, or proximal lower limb neuropathies.

    Science.gov (United States)

    Deroide, Nicolas; Bousson, Valérie; Daguet, Edouard; Dumurgier, Julien; Tin, Sophie Ng Wing; Hannouche, Didier; Richette, Pascal; Beaudreuil, Johann; Lioté, Frédéric; Lévy, Bernard; Vicaut, Eric; Laredo, Jean Denis; Kubis, Nathalie

    2012-05-01

    Muscle magnetic resonance imaging (MRI) is an innovative tool for exploring focal neuropathies. However, its usefulness in mild, proximal, or chronic lesions, when electromyography (EMG), the current "gold standard" sensitivity is inadequate, has yet to be studied. Clinical, MRI, and EMG examinations were performed in 113 muscles of 17 consecutive patients with clinically diagnosed lower limb focal neuropathies. The sensitivity and specificity of MRI and EMG were evaluated in relation to disease duration, severity, and anatomical location. Muscle MRI was highly sensitive for the detection of denervated muscle, and, unlike EMG, its sensitivity did not decrease regardless of the anatomical location, duration, or severity of the neuropathy. Five MRI false positives were noted, including three in the thigh muscles. Muscle MRI is an alternative tool to EMG in proximal, mild, or chronic clinical diagnoses of lower limb focal neuropathies. However, it also seems prone to false-positive results, particularly in proximal muscles. Copyright © 2012 Wiley Periodicals, Inc.

  8. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease-related

  9. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Directory of Open Access Journals (Sweden)

    Nikki A McLean

    Full Text Available Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  10. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Science.gov (United States)

    McLean, Nikki A; Popescu, Bogdan F; Gordon, Tessa; Zochodne, Douglas W; Verge, Valerie M K

    2014-01-01

    Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  11. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: a meta-analysis.

    Science.gov (United States)

    Peng, L; Bu, Z; Ye, X; Zhou, Y; Zhao, Q

    2017-09-01

    Nab-paclitaxel, a Cremophor EL-free formulation of paclitaxel, is used to treat various malignancies. Peripheral neuropathy is one of its major toxicities, although the overall incidence remains unclear. We performed a meta-analysis to calculate the incidence of peripheral neuropathy in cancer patients treated with nab-paclitaxel and to compare the relative risk (RR) with conventional taxanes. The electronic databases were searched for relevant clinical trials. Eligible studies included phase II and III prospective clinical trials of cancer patients treated with nab-paclitaxel with toxicity profile on peripheral neuropathy. Statistical analyses were done to calculate summary incidences, RRs and 95% confidence intervals (CI), using fixed-effects or random-effects models based on the heterogeneity of the included studies. Nineteen trials were selected for the meta-analysis, yielding a total of 2878 cancer patients. The overall incidences of peripheral neuropathy (all-grade) was 51.0% (95% CI: 45.1-57.6%), and that of high-grade peripheral neuropathy was 12.4% (9.8-15.7%). The RRs of peripheral neuropathy of nab-paclitaxel compared to taxanes were not increased for all-grade and high-grade peripheral neuropathy. Nab-paclitaxel is associated with an increased risk of developing peripheral neuropathy. Future clinical studies are still needed to investigate the risk reduction and possible use of nab-paclitaxel. © 2015 John Wiley & Sons Ltd.

  12. Hereditary sensory and autonomic neuropathy type I in a Chinese family: British C133W mutation exists in the Chinese.

    Science.gov (United States)

    Bi, Hongyan; Gao, Yunying; Yao, Sheng; Dong, Mingrui; Headley, Alexander Peter; Yuan, Yun

    2007-10-01

    Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disorder of the peripheral nervous system characterized by marked progressive sensory loss, with variable autonomic and motor involvement. The HSAN I locus maps to chromosome 9q22.1-22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long chain base subunit 1 (SPTLC1). Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. Here we report the clinical, electrophysiological and pathological findings of a proband in a Chinese family with HSAN I. The affected members showed almost typical clinical features. Electrophysiological findings showed an axonal, predominantly sensory, neuropathy with motor and autonomic involvement. Sural nerve biopsy showed loss of myelinated and unmyelinated fibers. SPTLC1 mutational analysis revealed the C133W mutation, a mutation common in British HSAN I families.

  13. Autonomic neuropathy in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Alberto eVerrotti

    2014-12-01

    Full Text Available Diabetic autonomic neuropathy (DAN is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy (CAN defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis and management of DAN, with some mention to childhood and adolescent population.

  14. Creatine pretreatment protects cortical axons from energy depletion in vitro

    Science.gov (United States)

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  15. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy.

    Science.gov (United States)

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K

    2014-01-01

    Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Injured subjects demonstrated greater extreme step length changes after medial perturbation than non-injured subjects (percent change = 18.5 ± 9.2 vs. 11.3 ± 4.57; p = .01). The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter which distinguishes between subjects sustaining a fall-related injury and those who did not. © 2014.

  16. Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Sangeetha Srinivasan

    2017-10-01

    Conclusions: The GCC FLV can differentiate individuals with diabetic neuropathy from healthy controls, while the inferior RNFL thickness is able to differentiate those with greater degrees of neuropathy from those with mild or no neuropathy, both with an acceptable level of accuracy. Optical coherence tomography represents a non-invasive technology that aids in detection of retinal structural changes in patients with established diabetic neuropathy. Further refinement of the technique and the analytical approaches may be required to identify patients with minimal neuropathy.

  17. Sustained maximal voluntary contraction produces independent changes in human motor axons and the muscle they innervate.

    Directory of Open Access Journals (Sweden)

    David A Milder

    Full Text Available The repetitive discharges required to produce a sustained muscle contraction results in activity-dependent hyperpolarization of the motor axons and a reduction in the force-generating capacity of the muscle. We investigated the relationship between these changes in the adductor pollicis muscle and the motor axons of its ulnar nerve supply, and the reproducibility of these changes. Ten subjects performed a 1-min maximal voluntary contraction. Activity-dependent changes in axonal excitability were measured using threshold tracking with electrical stimulation at the wrist; changes in the muscle were assessed as evoked and voluntary electromyography (EMG and isometric force. Separate components of axonal excitability and muscle properties were tested at 5 min intervals after the sustained contraction in 5 separate sessions. The current threshold required to produce the target muscle action potential increased immediately after the contraction by 14.8% (p<0.05, reflecting decreased axonal excitability secondary to hyperpolarization. This was not correlated with the decline in amplitude of muscle force or evoked EMG. A late reversal in threshold current after the initial recovery from hyperpolarization peaked at -5.9% at ∼35 min (p<0.05. This pattern was mirrored by other indices of axonal excitability revealing a previously unreported depolarization of motor axons in the late recovery period. Measures of axonal excitability were relatively stable at rest but less so after sustained activity. The coefficient of variation (CoV for threshold current increase was higher after activity (CoV 0.54, p<0.05 whereas changes in voluntary (CoV 0.12 and evoked twitch (CoV 0.15 force were relatively stable. These results demonstrate that activity-dependent changes in motor axon excitability are unlikely to contribute to concomitant changes in the muscle after sustained activity in healthy people. The variability in axonal excitability after sustained activity

  18. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy

    Science.gov (United States)

    Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK

    2013-01-01

    Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899

  19. Optic Neuropathy Associated with Primary Sjögren's Syndrome: A Case Series.

    Science.gov (United States)

    Bak, Eunoo; Yang, Hee Kyung; Hwang, Jeong-Min

    2017-04-01

    To determine the diverse clinical features of optic neuropathy associated with primary Sjögren's syndrome in Korean patients. Five women with acute and/or chronic optic neuropathy who were diagnosed as primary Sjögren's syndrome were retrospectively evaluated. Primary Sjögren's syndrome was diagnosed by signs and symptoms of keratoconjunctivitis sicca, positive serum anti-Ro/SSA and/or anti-La/SSB antibodies, and/or minor salivary gland biopsy. All patients underwent a complete ophthalmologic examination. Among the five patients diagnosed as optic neuropathy related to primary Sjögren's syndrome, four patients had bilateral optic neuropathy and one patient was unilateral. The clinical course was chronic in three patients and one of them showed acute exacerbation and was finally diagnosed with neuromyelitis optica spectrum disorder. The other two patients presented as acute optic neuritis and one was diagnosed with neuromyelitis optica spectrum disorder. Sicca symptoms were present in four patients, but only two patients reported these symptoms before the onset of optic neuropathy. Patients showed minimal response to systemic corticosteroids or steroid dependence, requiring plasmapheresis in the acute phase and immunosuppressive agents for maintenance therapy. Optic neuropathy associated with primary Sjögren's syndrome may show variable clinical courses, including acute optic neuritis, insidious progression of chronic optic atrophy, or in the context of neuromyelitis optica spectrum disorders. Optic neuropathy may be the initial manifestation of primary Sjögren's syndrome without apparent sicca symptoms, which makes the diagnosis often difficult. The presence of specific antibodies including anti-Ro/SSA, anti-La/SSB, and anti-aquaporin-4 antibodies are supportive for the diagnosis and treatment in atypical cases of optic neuropathy.

  20. Newer anti-epileptic drugs, vitamin status and neuropathy: A cross-sectional analysis.

    Science.gov (United States)

    Cahill, V; McCorry, D; Soryal, I; Rajabally, Y A

    Whether new antiepileptic drugs (AEDs) may result in neuropathy is unknown but possible given their effects on vitamin metabolism. This analysis aimed to determine frequency and correlates of neuropathy in subjects treated with new AEDs in relation to drug used, length of exposure and serum vitamin B12 and folate levels. We performed a cross-sectional study of 52 consecutive epileptic subjects. Presence of neuropathy was determined using the Utah Early Neuropathy Score (UENS). Exposure to anti-epileptic drugs was quantified. Serum vitamin B12 and folate levels were measured. Commonly used AEDs were levetiracetam (28/52), carbamazepine (20/52), lamotrigine (20/52), sodium valproate (10/52) and zonisamide (10/52). Eight of 52 (15.4%) patients had neuropathy. There was no association with any particular AED. Neuropathy correlated with age (P=0.038) and total exposure to AEDs (P=0.032). UENS correlated with age (P=0.001), total AED exposure (P=0.001) and serum vitamin B12L (P=0.018). Independent association of neuropathy was found with total AED exposure (P=0.032), but not age. UENS was independently associated with total exposure to AEDs (Pvitamin B12L (P=0.002), but not age. Serum vitamin B12 and folate levels were highly inter-correlated (Pvitamin B12 and folate metabolism. Although further research from controlled studies is needed and despite the presence of other possible confounding factors, monitoring for neuropathy and vitamin B12 and folate levels merits consideration in patients on long-term treatment with new AEDs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Peripheral neuropathy is associated with more frequent falls in Parkinson's disease.

    Science.gov (United States)

    Beaulieu, Mélanie L; Müller, Martijn L T M; Bohnen, Nicolaas I

    2018-04-03

    Peripheral neuropathy is a common condition in the elderly that can affect balance and gait. Postural imbalance and gait difficulties in Parkinson's disease (PD), therefore, may stem not only from the primary neurodegenerative process but also from age-related medical comorbidities. Elucidation of the effects of peripheral neuropathy on these difficulties in PD is important to provide more targeted and effective therapy. The purpose of this study was to investigate the association between lower-limb peripheral neuropathy and falls and gait performance in PD while accounting for disease-specific factors. From a total of 140 individuals with PD, 14 male participants met the criteria for peripheral neuropathy and were matched 1:1 for Hoehn & Yahr stage and duration of disease with 14 male participants without peripheral neuropathy. All participants underwent fall (retrospectively) and gait assessment, a clinical evaluation, and [ 11 C]dihydrotetrabenazine and [ 11 C]methylpiperidin-4-yl propionate PET imaging to assess dopaminergic and cholinergic denervation, respectively. The presence of peripheral neuropathy was significantly associated with more falls (50% vs. 14%, p = 0.043), as well as a shorter stride length (p = 0.011) and greater stride length variability (p = 0.004), which resulted in slower gait speed (p = 0.016) during level walking. There was no significant difference in nigrostriatal dopaminergic denervation, cortical and thalamic cholinergic denervation, and MDS-UPDRS motor examination scores between groups. Lower-limb peripheral neuropathy is significantly associated with more falls and gait difficulties in PD. Thus, treating such neuropathy may reduce falls and/or improve gait performance in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The development and validation of a neuropathy- and foot ulcer-specific quality of life instrument.

    Science.gov (United States)

    Vileikyte, Loretta; Peyrot, Mark; Bundy, Christine; Rubin, Richard R; Leventhal, Howard; Mora, Pablo; Shaw, Jonathan E; Baker, Paul; Boulton, Andrew J M

    2003-09-01

    The purpose of this study was to develop a questionnaire that measures patients' perceptions of the impact of diabetic peripheral neuropathy and foot ulcers on their quality of life and to assess the psychometric properties of this instrument in a sample of patients with varying severity and symptomatology of diabetic peripheral neuropathy. The neuropathy- and foot ulcer-specific quality of life instrument (NeuroQoL), generated from interviews with patients with (n = 47) and without (n = 15) diabetic peripheral neuropathy, was administered to 418 consecutive patients with diabetic peripheral neuropathy (35% with foot ulcer history) attending either U.K. (n = 290) or U.S. (n = 128) diabetes centers. Psychometric tests of NeuroQoL included factor analyses and internal consistency of scales; a series of multivariate analyses were performed to establish its criterion, construct, and incremental validity. Results were compared with those obtained using the Short Form (SF)-12 measure of health-related functioning. Factor analyses of NeuroQoL revealed three physical symptom measures and two psychosocial functioning measures with good reliability (alpha = 0.86-0.95). NeuroQoL was more strongly associated with measures of neuropathic severity than SF-12, more fully mediated the relationship of diabetic peripheral neuropathy with overall quality of life, and significantly increased explained variance in overall quality of life over SF-12. NeuroQoL reliably captures the key dimensions of the patients' experience of diabetic peripheral neuropathy and is a valid tool for studying the impact of neuropathy and foot ulceration on quality of life.

  3. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1 expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these

  4. Hyperhomocysteinemia in bilateral anterior ischemic optic neuropathy after conventional coronary artery bypass graft: a case report.

    Science.gov (United States)

    Niro, A; Sborgia, G; Sborgia, A; Alessio, G

    2018-01-17

    The incidence of anterior ischemic optic neuropathy after coronary artery bypass graft procedures ranges from 1.3 to 0.25%. The mechanisms of anterior ischemic optic neuropathy after cardiovascular procedures remain undefined but many systemic and related-to-surgery risk factors could underlie anterior ischemic optic neuropathy. In this case, we report a rare presentation of a bilateral anterior ischemic optic neuropathy after coronary artery bypass graft and speculate on the preoperative hyperhomocysteinemia as an independent risk factor for anterior ischemic optic neuropathy. A 56-year-old white man, a tobacco smoker with type 2 diabetes and coronary artery disease, underwent a conventional coronary artery bypass graft with extracorporeal circulation. In spite of ongoing anti-aggregation, antithrombotic, and vasodilator therapy, 10 days after the surgery he complained of severe bilateral visual loss. Funduscopy and fluorescein angiography revealed a bilateral anterior ischemic optic neuropathy. Analysis of preoperative laboratory tests revealed hyperhomocysteinemia. Hyperhomocysteinemia could increase the risk of ocular vascular damage and bilateral ocular involvement in patients who have undergone conventional coronary artery bypass graft.

  5. Reflexology in the management of chemotherapy induced peripheral neuropathy: A pilot randomized controlled trial.

    Science.gov (United States)

    Kurt, Seda; Can, Gulbeyaz

    2018-02-01

    The current experimental study aimed to evaluate the effectiveness of reflexology on the management of symptoms and functions of chemotherapy-induced peripheral neuropathy (CIPN) in cancer patients. This study was conducted as a randomized controlled trial in 60 patients (30 experimental and 30 control patients) who had chemotherapy-induced Grade II-IV peripheral neuropathy complaints from July 2013 to November 2015. Data were collected using the patient identification form, European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy (EORTC-CIPN-20) form, and BPI (used for related chemotherapy-induced peripheral neuropathy symptoms). The majority of the patients were being treated for gastrointestinal or breast cancer and were primarily receiving Eloxatine- or taxane-based treatment. It was found that reflexology applications did not lead to differences in either group in terms of peripheral neuropathy severity and incidence (p > 0.05) and only led to improvement in sensory functions in the experimental group (p Peripheral neuropathy, reflexology, chemotherapy, EORTC QLQ-CIPN-20, BPI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cranial Neuropathy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mine Hayriye Sorgun

    2011-09-01

    Full Text Available OBJECTIVE: It has been reported that cranial neuropathy findings could be seen in the neurologic examination of multiple sclerosis (MS patients, although brain magnetic resonance imaging (MRI may not reveal any lesion responsible for the cranial nerve involvement. The aim of this study was to determine the frequency of brainstem and cranial nerve involvement, except for olfactory and optic nerves, during MS attacks, and to investigate the rate of an available explanation for the cranial neuropathy findings by lesion localization on brain MRI. METHODS: Ninety-five attacks of 86 MS patients were included in the study. The patients underwent a complete neurological examination, and cranial nerve palsies (CNP were determined during MS attacks. RESULTS: CNP were found as follows: 3rd CNP in 7 (7.4%, 4th CNP in 1 (1.1%, 5th CNP in 6 (6.3%, 6th CNP in 12 (12.6%, 7th CNP in 5 (5.3%, 8th CNP in 4 (4.2%, and 9th and 10th CNP in 2 (2.1% out of 95 attacks. Internuclear ophthalmoplegia (INO was detected in 5 (5.4%, nystagmus in 37 (38.9%, vertigo in 9 (6.3%, and diplopia in 14 (14.7% out of 95 attacks. Pons, mesencephalon and bulbus lesions were detected in 58.7%, 41.5% and 21.1% of the patients, respectively, on the brain MRI. Cranial nerve palsy findings could not be explained by the localization of the lesions on brainstem MRI in 5 attacks; 2 of them were 3rd CNP (1 with INO, 2 were 6th CNP and 1 was a combination of 6th, 7th and 8th CNP. CONCLUSION: The most frequently affected cranial nerve and brainstem region in MS patients is the 6th cranial nerve and pons, respectively. A few of the MS patients have normal brainstem MRI, although they have cranial neuropathy findings in the neurologic examination.

  7. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  8. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F.J.E.; van Schaik, Ivo N.; Hughes, Richard A.C.; Notermans, Nicolette C.

    2017-01-01

    Background: Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for

  9. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F. J. E.; van Schaik, Ivo N.; Hughes, Richard A. C.; Notermans, Nicolette C.

    2017-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of

  10. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  11. Side Effects: Nerve Problems (Peripheral Neuropathy)

    Science.gov (United States)

    Nerve problems, such as peripheral neuropathy, can be caused by cancer treatment. Learn about signs and symptoms of nerve changes. Find out how to prevent or manage nerve problems during cancer treatment.

  12. Insights into the management of diabetic neuropathy

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    dynamic interaction between insulin secretion and tissue sensitivity to ... impairment in the way glucose, lipids, protein metabolism, and ... neuropathy have not yet been fully elucidated, ... Brownlee M. Biochemistry and molecular cell biology of ...

  13. Vitamin B supplementation for diabetic peripheral neuropathy.

    Science.gov (United States)

    Jayabalan, Bhavani; Low, Lian Leng

    2016-02-01

    Vitamin B12 deficiency has been associated with significant neurological pathology, especially peripheral neuropathy. This review aims to examine the existing evidence on the effectiveness of vitamin B12 supplementation for the treatment of diabetic peripheral neuropathy. A search of PubMed and the Cochrane Central Register of Controlled Trials for all relevant randomised controlled trials was conducted in December 2014. Any type of therapy using vitamin B12 or its coenzyme forms was assessed for efficacy and safety in diabetics with peripheral neuropathy. Changes in vibration perception thresholds, neuropathic symptoms and nerve conduction velocities, as well as the adverse effects of vitamin B12 therapy, were assessed. Four studies comprising 363 patients met the inclusion criteria. This review found no evidence that the use of oral vitamin B12 supplements is associated with improvement in the clinical symptoms of diabetic neuropathy. Furthermore, the majority of studies reported no improvement in the electrophysiological markers of nerve conduction. Copyright © Singapore Medical Association.

  14. Persisting nutritional neuropathy amongst former war prisoners.

    OpenAIRE

    Gill, G V; Bell, D R

    1982-01-01

    Of 898 former Far East prisoners of war, assessed between 1968 and 1981, 49 (5.5%) had evidence of persisting symptomatic neurological disease dating back to their periods of malnutrition in captivity. The commonest syndromes were peripheral neuropathy (often of "burning foot" type), optic atrophy, and sensori-neural deafness. Though nutritional neuropathies disappeared soon after release in most ex-Far East prisoners of war, in some they have persisted up to 36 years since exposure to the nu...

  15. Chronic inorganic mercury induced peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.-C.; Huang, C.-C.; Ryu, S.-J. [Chang Gung Memorial Hospital and Chang Gung University, Dept. of Neurology, Tapei (Taiwan, Province of China); Wu, T.-N. [Executive Yuan, Dept. of Health, Surveillance and Quarantine Service, Taipei (Taiwan, Province of China)

    1998-12-01

    We report the clinical features, electrophysiological studies, and morphometric analysis of sural nerve pathology in a patient with polyneuropathy due to inorganic mercury intoxication. He developed slowly progressive generalized paralysis of all limbs after 3 months ingestion of herb drugs which contained mercuric sulfate. Electrophysiologic studies revealed axonal polyneuropathy involving both motor and sensory fibers. Sural nerve biopsy demonstrated axonal degeneration with demyelination and a predominant loss of large myelinated fibers. His muscle strength showed only mild improvement after 2 years` follow-up. We concluded that inorganic mercury exposure may induce severe axonal sensorimotor polyneuropathy in humans and that neurological deficits may persist in severe cases. (au) 21 refs.

  16. Treatment of painful diabetic peripheral neuropathy.

    Science.gov (United States)

    Rosenberg, Casandra J; Watson, James C

    2015-02-01

    Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. To discuss current treatment recommendations for painful diabetic peripheral neuropathy. Literature review. Systematic review of the literature discussing treatment of painful diabetic peripheral neuropathy. Existing treatment guidelines were studied and compared. Painful diabetic peripheral neuropathy occurs in about one in six people with diabetes. This condition impairs quality of life and increases healthcare costs. Treatment recommendations exist, but individual patient therapy can require a trial-and-error approach. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. Adequate medication titration and a reasonable trial period should be allowed. The treatment of painful diabetic peripheral neuropathy can be challenging, but effective management can improve patient's quality of life. Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. © The International Society for Prosthetics and Orthotics 2014.

  17. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  18. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Shabeeb, Dheyauldeen; Najafi, Masoud; Hasanzadeh, Gholamreza; Hadian, Mohammed Reza; Musa, Ahmed Eleojio; Shirazi, Alireza

    2018-03-28

    Peripheral neuropathy is one of the main complications of diabetes mellitus. One of the features of diabetic nerve damage is abnormality of sensory and motor nerve conduction study. An electrophysiological examination can be reproduced and is also a non-invasive approach in the assessment of peripheral nerve function. Population-based and clinical studies have been conducted to validate the sensitivity of these methods. When the diagnosis was based on clinical electrophysiological examination, abnormalities were observed in all patients. In this research, using a review design, we reviewed the issue of clinical electrophysiological examination of diabetic peripheral neuropathy in articles from 2008 to 2017. For this purpose, PubMed, Scopus and Embase databases of journals were used for searching articles. The researchers indicated that diabetes (both types) is a very disturbing health issue in the modern world and should be given serious attention. Based on conducted studies, it was demonstrated that there are different procedures for prevention and treatment of diabetes-related health problems such as diabetic polyneuropathy (DPN). The first objective quantitative indication of the peripheral neuropathy is abnormality of sensory and motor nerve conduction tests. Electrophysiology is accurate, reliable and sensitive. It can be reproduced and also is a noninvasive approach in the assessment of peripheral nerve function. The methodological review has found that the best method for quantitative indication of the peripheral neuropathy compared with all other methods is clinical electrophysiological examination. For best results, standard protocols such as temperature control and equipment calibration are recommended. Copyright © 2018. Published by Elsevier Ltd.

  19. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  20. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    Science.gov (United States)

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly

  1. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  2. Distinctions between critical illness polyneuropathy and axonal Guillain-Barre sybdrome

    NARCIS (Netherlands)

    Letter, de M.A.; Visser, L.H.; Meche, van der F.G.; Ang, W.; Savelkoul, H.F.J.

    2000-01-01

    In this letter we comment on the publication of Yuki and Hirata who postulate a possible relation between critical illness polyneuropathy and axonal Guillain-Barré syndrome.1 The authors mentioned a nosological relation, which at that time still had to be demonstrated by the presence of

  3. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    Huang Jialing; Lazear, Helen M.; Friedman, Harvey M.

    2011-01-01

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  4. Assessing the direct effects of deep brain stimulation using embedded axon models

    Science.gov (United States)

    Sotiropoulos, Stamatios N.; Steinmetz, Peter N.

    2007-06-01

    To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.

  5. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    Science.gov (United States)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  6. Axon-Schwann cell interaction in the squid nerve fibre.

    Science.gov (United States)

    Villegas, J

    1972-09-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid.1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 10(3) Omega cm(2).2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes.3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects.4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation.5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin.6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells.

  7. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  8. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  9. Vincristine-induced neuropathy in pediatric patients with acute lymphoblastic leukemia in Oman: Frequent autonomic and more severe cranial nerve involvement.

    Science.gov (United States)

    Nazir, Hanan F; AlFutaisi, Amna; Zacharia, Mathew; Elshinawy, Mohamed; Mevada, Surekha T; Alrawas, Abdulhakim; Khater, Doaa; Jaju, Deepali; Wali, Yasser

    2017-12-01

    Vincristine (VCR) induced peripheral neuropathy is a common complication in children with acute lymphoblastic leukemia (ALL). A retrospective data analysis over an interval of 10 years (2006-2016) of all children with ALL seen at Sultan Qaboos University Hospital was carried out. Electronic medical records of eligible patients were reviewed. Patients with clinical evidence of neuropathy and abnormal nerve conduction studies (NCSs) were included in the study. Nineteen (nine females and 10 males) out of 103 pediatric patients developed VCR-related neuropathy, and their age ranged between 2.5 and 14 years. Symptoms started after 2-11 doses of VCR. All 19 patients had documented peripheral neuropathy on NCSs. The autonomic nervous system and cranial nerves affection was relatively common in our patients; two presented with bradycardia, two patients with unexplained tachycardia, and five had abdominal pain and constipation, complicated by typhlitis in two patients. One patient developed unilateral hearing loss. Two patients developed severe life-threatening cranial nerve involvement with bilateral ptosis and recurrent laryngeal nerve involvement presented as vocal cord paralysis, hoarseness of voice, frequent chocking, and aspiration episodes. Peripheral neuropathy was the commonest form of VCR-related neuropathy. Autonomic neuropathy was relatively common in our patients. Cranial neuropathy is a serious side effect of VCR that can be severe, involving multiple cranial nerves and needs prompt recognition and management. Concomitant administration of pyridoxine and pyridostigmine does not seem to protect against further neurological damage in some patients. © 2017 Wiley Periodicals, Inc.

  10. Axonal excitability properties in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2006-07-01

    To investigate axolemmal ion channel function in patients diagnosed with sporadic amyotrophic lateral sclerosis (ALS). A recently described threshold tracking protocol was implemented to measure multiple indices of axonal excitability in 26 ALS patients by stimulating the median motor nerve at the wrist. The excitability indices studied included: stimulus-response curve (SR); strength-duration time constant (tauSD); current/threshold relationship; threshold electrotonus to a 100 ms polarizing current; and recovery curves to a supramaximal stimulus. Compound muscle action potential (CMAP) amplitudes were significantly reduced in ALS patients (ALS, 2.84+/-1.17 mV; controls, 8.27+/-1.09 mV, P<0.0005) and the SR curves for both 0.2 and 1 ms pulse widths were shifted in a hyperpolarized direction. Threshold electrotonus revealed a greater threshold change to both depolarizing and hyperpolarizing conditioning stimuli, similar to the 'fanned out' appearance that occurs with membrane hyperpolarization. The tauSD was significantly increased in ALS patients (ALS, 0.50+/-0.03 ms; controls, 0.42+/-0.02 ms, P<0.05). The recovery cycle of excitability following a conditioning supramaximal stimulus revealed increased superexcitability in ALS patients (ALS, 29.63+/-1.25%; controls, 25.11+/-1.01%, P<0.01). Threshold tracking studies revealed changes indicative of widespread dysfunction in axonal ion channel conduction, including increased persistent Na+ channel conduction, and abnormalities of fast paranodal K+ and internodal slow K+ channel function, in ALS patients. An increase in persistent Na+ conductances coupled with reduction in K+ currents would predispose axons of ALS patients to generation of fasciculations and cramps. Axonal excitability studies may provide insight into mechanisms responsible for motor neuron loss in ALS.

  11. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  12. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  13. IMPACT OF GLYCEMIC CONTROL ON OXIDATIVE STRESS AND ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Shilpashree

    2015-01-01

    Full Text Available INTRODUCTION: Oxidative stress due to enhanced free - radical generation and/or a decrease in antioxidant defense mechanisms has been implicated in the pathogenesis of diabetic neuropathy. This study was conducted to study the impact of glycemic control on oxidative stress and antioxidant balance in diab etic neuropathy. METHOD S : fifty patients with diabetic neuropathy and fifty age matched healthy controls were included in the study. Glycosylated hemoglobin (HbA1c was estimated to assess the severity of diabetes and the glycemic control. Serum malondiaal dehyde (MDA levels were assessed as a marker of lipid peroxidation and hence oxidative stress. Superoxide Dismutase (SOD levels were assessed for antioxidant status. RESULTS: Significant positive correlation was found between serum MDA levels and hba1c ( r = 0.276, p < 0.0001 in patients with diabetic neuropathy. There was statistically significant reduction in the Glutathione peroxidase levels. Further, SOD levels were inversely correlated with HbA1c (r= - 0.603, p<0.0001 levels. CONCLUSION AND SUMMARY: oxidative stress is greatly increased in patients suffering from diabetic neuropathy and is inversely related to glycemic control. This may be due to depressed antioxidant enzyme levels and may also be responsible for further depletion of antioxidant enzym e GPx. This worsens the oxidative stress and creates a vicious cycle of imbalance of free radical generation and deficit of antioxidant status in these patients which may lead to nervous system damage causing diabetic neuropathy. A good glycemic control is essential for prevention of diabetic neuropathy.

  14. Assessing the Risk for Peripheral Neuropathy in Patients Treated With Dronedarone Compared With That in Other Antiarrhythmics.

    Science.gov (United States)

    Wu, Chuntao; Tcherny-Lessenot, Stephanie; Dai, Wanju; Wang, Yunxun; Kechemir, Hayet; Gandhi, Sampada; Lin, Stephen; Juhaeri, Juhaeri

    2018-03-01

    There are few data on the risk for peripheral neuropathy associated with dronedarone, a newer antiarrhythmic medicine. The objective of this study was to assess whether dronedarone is potentially associated with an increased risk for peripheral neuropathy compared with other antiarrhythmics, including amiodarone, sotalol, flecainide, and propafenone. The MarketScan database was used for identifying patients who were at least 18 years of age, had atrial fibrillation or flutter, and had not been diagnosed with peripheral neuropathy in the 180-day period prior to or on the date of the first prescription of an antiarrhythmic between July 20, 2009, and December 31, 2011. Peripheral neuropathy that occurred during the treatment period for a study drug was ascertained using ICD-9-CM diagnostic codes. For each antiarrhythmic, the incidence rate of peripheral neuropathy was calculated. The adjusted hazard ratio (aHR) for peripheral neuropathy for dronedarone compared with another antiarrhythmic was obtained, with control for age, sex, diabetes mellitus status, and the presence of other comorbidities. The study population included 106,933 patients treated with dronedarone (n = 12,989), amiodarone (n = 45,173), sotalol (n = 22,036), flecainide (n = 14,244), or propafenone (n = 12,491). The incidence rates (per 1000 person-years) of peripheral neuropathy were 1.33 for dronedarone, 2.38 for amiodarone, 1.20 for sotalol, 1.08 for flecainide, and 1.97 for propafenone. The aHRs for peripheral neuropathy for dronedarone relative to other drugs ranged from 0.53 (95% CI, 0.21-1.34) compared with propafenone, to 0.94 (95% CI, 0.38-2.30) compared with sotalol. A new-user analysis showed similar results. The risks for peripheral neuropathy were not significantly different between dronedarone and other antiarrhythmics. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  15. Treatment of painful diabetic neuropathy

    Science.gov (United States)

    Petropoulos, Ioannis N.; Alam, Uazman; Malik, Rayaz A.

    2015-01-01

    Painful diabetic neuropathy (PDN) is a debilitating consequence of diabetes that may be present in as many as one in five patients with diabetes. The objective assessment of PDN is difficult, making it challenging to diagnose and assess in both clinical practice and clinical trials. No single treatment exists to prevent or reverse neuropathic changes or to provide total pain relief. Treatment of PDN is based on three major approaches: intensive glycaemic control and risk factor management, treatments based on pathogenetic mechanisms, and symptomatic pain management. Clinical guidelines recommend pain relief in PDN through the use of antidepressants such as amitriptyline and duloxetine, the γ-aminobutyric acid analogues gabapentin and pregabalin, opioids and topical agents such as capsaicin. Of these medications, duloxetine and pregabalin were approved by the US Food and Drug Administration (FDA) in 2004 and tapentadol extended release was approved in 2012 for the treatment of PDN. Proposed pathogenetic treatments include α-lipoic acid (stems reactive oxygen species formation), benfotiamine (prevents vascular damage in diabetes) and aldose-reductase inhibitors (reduces flux through the polyol pathway). There is a growing need for studies to evaluate the most potent drugs or combinations for the management of PDN to maximize pain relief and improve quality of life. A number of agents are potential candidates for future use in PDN therapy, including Nav 1.7 antagonists, N-type calcium channel blockers, NGF antibodies and angiotensin II type 2 receptor antagonists. PMID:25553239

  16. Nonarteritic anterior ischemic optic neuropathy associated with interferon and ribavirin in a patient with hepatitis C.

    Science.gov (United States)

    Sharif, Walid; Sheikh, Khayam; De Silva, Ian; Elsherbiny, Samer

    2017-04-01

    To report a case of a temporal artery biopsy negative anterior ischemic optic neuropathy associated with a recently completed course of pegylated interferon 2 α with ribavirin for chronic hepatitis C. Despite the early presentation with symptoms and prompt treatment with systemic intravenous steroids the patient experienced deterioration of their optic neuropathy over the following few days. Although nonarteritic anterior ischemic optic neuropathy is a common disorder with known risk factors, the timing of onset of symptoms in our patient was suggestive of a possible etiology related to treatment with ribavirin and interferon 2 α, as found in the previously reported cases. There have been a few reported cases of the association between the use of interferon/ribavirin for treatment of chronic hepatitis with nonarteritic anterior ischemic optic neuropathy. In these cases stopping the drug caused some improvement of symptoms or halting the progression of optic neuropathy. Having reviewed the literature on previous cases, we postulate that there may be a dose related reaction to explain the delay and deterioration of vision in some cases despite stopping the drugs. We also advise that any person who is started on this treatment for chronic hepatitis are appropriately counselled as to the potential optic nerve side effect of the drug, based on the evidence reported in the literature.

  17. Pediatric sciatic neuropathies due to unusual vascular causes

    NARCIS (Netherlands)

    Srinivasan, Jayashri; Escolar, Diane; Ryan, Monique; Darras, Basil; Jones, H. Royden

    Four cases of pediatric sciatic neuropathies due to unusual vascular mechanisms are reported. Pediatric sciatic neuropathies were seen after umbilical artery catheterization, embolization of arteriovenous malformation, meningococcemia, and hypereosinophilic vasculitis. Electrophysiologic studies

  18. Genetics Home Reference: neuropathy, ataxia, and retinitis pigmentosa

    Science.gov (United States)

    ... Twitter Home Health Conditions NARP Neuropathy, ataxia, and retinitis pigmentosa Printable PDF Open All Close All Enable Javascript ... the expand/collapse boxes. Description Neuropathy, ataxia, and retinitis pigmentosa ( NARP ) is a condition that causes a variety ...

  19. Ischemic neuropathy and rhabdomyolysis as presenting symptoms of postpartum cardiomyopathy

    NARCIS (Netherlands)

    Helmich, Rick C. G.; van Laarhoven, Hanneke W. M.; Schoonderwaldt, Hennie C.; Janssen, Mirian C. H.

    2009-01-01

    Rhabdomyolysis and peripheral neuropathy are two distinct disease entities which are rarely encountered in combination. We present a woman with rhabdomyolysis and peripheral neuropathy 3 weeks postpartum. Her symptoms were caused by bilateral femoral artery thrombosis due to postpartum

  20. Anterior ischemic optic neuropathy in patients undergoing hemodialysis

    NARCIS (Netherlands)

    DoorenbosBot, ACC; Geerlings, W; Houtman, IA

    Four patients are discussed who underwent hemodialysis and developed anterior ischemic optic neuropathy (AION). Three patients had been treated by hemodialysis for several years. One patient developed bilateral optic neuropathy after the first hemodialysis session, So far, only four hemodialysis

  1. F wave index: A diagnostic tool for peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    G R Sathya

    2017-01-01

    Interpretation & conclusions: Our results showed that F wave index in upper limb was significantly lower in patients with peripheral neuropathy than the healthy controls, and could be used for early detection of peripheral neuropathy.

  2. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging.

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    Full Text Available BACKGROUND AND PURPOSE: The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography, to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model. MATERIALS AND METHODS: Mice (n = 8/group were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL in the left calf muscles, and in vivo fluorescent imaging performed (0-60 min at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks. Tissues were harvested for immunohistochemical analysis. RESULTS: With sham treatment, TTc transport causes fluorescent signal intensity over the thoracic spine to increase from 0 to 60 minutes after injection. On average, fluorescence signal increased 722%+/-117% (Mean+/-SD from 0 to 60 minutes. Oxaliplatin treated animals had comparable transport at baseline (787%+/-140%, but transport rapidly decreased through the course of the study, falling to 363%+/-88%, 269%+/-96%, 191%+/-58%, 121%+/-39%, 75%+/-21% with each successive week and stabilizing around 57% (+/-15% at 7 weeks. Statistically significant divergence occurred at approximately 3 weeks (p≤0.05, linear mixed-effects regression model. Quantitative immuno-fluorescence histology with a constant cutoff threshold showed reduced TTc in the spinal cord at 7 weeks for treated animals versus controls (5.2 Arbitrary Units +/-0.52 vs 7.1 AU +/-1.38, p0.56, T-test. CONCLUSION: We show-for the first time to our knowledge-that neurographic in vivo molecular imaging can demonstrate imaging changes in a model of oxaliplatin-induced neuropathy. Impaired retrograde neural transport is suggested to be an important part of the pathophysiology of oxaliplatin-induced neuropathy.

  3. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    Science.gov (United States)

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  4. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  5. Sustained neuroprotection from a single intravitreal injection of PGJ2 in a rodent model of anterior ischemic optic neuropathy.

    Science.gov (United States)

    Touitou, Valerie; Johnson, Mary A; Guo, Yan; Miller, Neil R; Bernstein, Steven L

    2013-11-11

    Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of sudden optic nerve-related vision loss in persons older than 50 in the United States. There currently is no treatment for this disorder. We previously showed that systemic administration of 15-deoxy, delta (12, 14) prostaglandin J2 (PGJ2) is neuroprotective in our rodent model of AION (rAION). In this study, we determined if a single intravitreal (IVT) injection of PGJ2 is neuroprotective after rAION, and if this method of administration is toxic to the retina, optic nerve, or both. TOXICITY was assessed after a single IVT injection of PGJ2 in one eye and PBS in the contralateral eye of normal, adult Long-Evans rats. EFFICACY was assessed by inducing rAION in one eye and injecting either PGJ2 or vehicle immediately following induction, with the fellow eye serving as naïve control. Visual evoked potentials (VEPs) and ERGs were performed before induction and at specific intervals thereafter. Animals were euthanized 30 days after induction, after which immunohistochemistry, transmission electron microscopy, and quantitative stereology of retinal ganglion cell (RGC) numbers were performed. IVT PGJ2 did not alter the VEP or ERG compared with PBS-injected control eyes, and neither IVT PGJ2 nor PBS reduced overall RGC numbers. IVT PGJ2 preserved VEP amplitude, reduced optic nerve edema, and resulted in significant preservation of RGCs and axons in eyes with rAION. A single IVT injection of PGJ2 is nontoxic to the retina and optic nerve and neuroprotective when given immediately after rAION induction.

  6. New Treatments for Nonarteritic Anterior Ischemic Optic Neuropathy.

    Science.gov (United States)

    Foroozan, Rod

    2017-02-01

    Despite increasing knowledge about the risk factors and clinical findings of nonarteritic anterior ischemic optic neuropathy (NAION), the treatment of this optic neuropathy has remained limited and without clear evidence-based benefit. Historical treatments of NAION are reviewed, beginning with the Ischemic Optic Neuropathy Decompression Trial. More recent treatments are placed within the historical context and illustrate the need for evidence-based therapy for ischemic optic neuropathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chemotherapy-induced peripheral neuropathies: an integrative review of the literature

    Directory of Open Access Journals (Sweden)

    Talita Cassanta Costa

    2015-04-01

    Full Text Available OBJECTIVE: To identify scientific studies and to deepen the knowledge of peripheral neuropathies induced by chemotherapy antineoplastic, seeking evidence for assistance to cancer patients. METHOD: Integrative review of the literature conducted in the databases Latin American and Caribbean Health Sciences (LILACS, Scientific Electronic Library Online (SciELO, Medical Literature Analysis (PubMed/MEDLINE, the Cochrane Library and the Spanish Bibliographic Index Health Sciences (IBECS. RESULTS: The sample consisted of 15 studies published between 2005-2014 that met the inclusion criteria. Studies showed aspects related to advanced age, main symptoms of neuropathy and chemotherapy agents as important adverse effect of neuropathy. CONCLUSION: We identified a small number of studies that addressed the topic, as well as low production of evidence related to interventions with positive results. It is considered important to develop new studies proposed for the prevention and/or treatment, enabling adjustment of the patient's cancer chemotherapy and consequently better service.

  8. [Chemotherapy-induced peripheral neuropathies: an integrative review of the literature].

    Science.gov (United States)

    Costa, Talita Cassanta; Lopes, Miriam; Anjos, Anna Cláudia Yokoyama Dos; Zago, Marcia Maria Fontão

    2015-04-01

    To identify scientific studies and to deepen the knowledge of peripheral neuropathies induced by chemotherapy antineoplastic, seeking evidence for assistance to cancer patients. Integrative review of the literature conducted in the databases Latin American and Caribbean Health Sciences (LILACS), Scientific Electronic Library Online (SciELO), Medical Literature Analysis (PubMed/MEDLINE), the Cochrane Library and the Spanish Bibliographic Index Health Sciences (IBECS). The sample consisted of 15 studies published between 2005-2014 that met the inclusion criteria. Studies showed aspects related to advanced age, main symptoms of neuropathy and chemotherapy agents as important adverse effect of neuropathy. We identified a small number of studies that addressed the topic, as well as low production of evidence related to interventions with positive results. It is considered important to develop new studies proposed for the prevention and/or treatment, enabling adjustment of the patient's cancer chemotherapy and consequently better service.

  9. Ambulatory screening of diabetic neuropathy and predictors of its severity in outpatient settings.

    Science.gov (United States)

    Qureshi, M S; Iqbal, M; Zahoor, S; Ali, J; Javed, M U

    2017-04-01

    Diabetic neuropathy is one of the most common causes of chronic neuropathic symptomatology and the most disabling and difficult-to-treat diabetic microangiopathic complication. The neuropathies associated with diabetes are typically classified into generalized, focal and multifocal varieties. There exists a scarcity of literature studying the correlation of different patient- and disease-related variables with severity of neuropathy. This study aims to delineate the prevalence of diabetic neuropathy in type 2 diabetes, describe its characteristics and find out predictors of its severity. Eight hundred consecutive diabetic patients presenting to outpatient department (OPD) of Khan Research Labs (KRL) General Hospital and Centre for Diabetes and Liver diseases, Islamabad, during March-June, 2015 were made to complete a self-administered questionnaire (Michigan Neuropathy Screening Instrument-MNSI) and underwent a thorough physical examination according to MNSI protocols. A score of >2 was considered to be diagnostic for DPN. Patient and disease variables were noted. MNSI score was used as an index of severity of diabetic peripheral neuropathy (DPN). Correlation of several patient- and disease-related variables with the severity of DPN was determined using multivariate regression. Out of a total 800 patients screened, 90 (11.25%) were found to have diabetic neuropathy. Of these 90, 45.5% were males, the median age was 54.47 ± 10.87 years and the median duration of diabetes was 11.12 ± 9.8 years. The most common symptom was found to be numbness (63.6%) followed by generalized body weakness (61.5%). The common findings on physical examination were dry skin/callus (38.7%) and deformities (14.7%). Duration of diabetes was found to be the strongest predictor for development and severity of diabetic neuropathy followed by glycemic controls (HbA1c values) and age. Duration of diabetes rather than diabetic controls predicts better the development and severity of

  10. Peripheral neuropathy in patients with HIV infection: consider dual pathology.

    Science.gov (United States)

    Miller, R F; Bunting, S; Sadiq, S T; Manji, H

    2002-12-01

    Two HIV infected patients presented with peripheral neuropathy, in one patient this was originally ascribed to HIV associated mononeuritis multiplex and in the other to stavudine. Investigations confirmed these diagnoses and in both cases genetic analysis identified a second hereditary aetiology: in the first patient hereditary neuropathy with liability to pressure palsies and in the second hereditary motor and sensory neuropathy.

  11. Diabetic peripheral neuropathy, is it an autoimmune disease?

    Science.gov (United States)

    Janahi, Noor M; Santos, Derek; Blyth, Christine; Bakhiet, Moiz; Ellis, Mairghread

    2015-11-01

    Autoimmunity has been identified in a significant number of neuropathies, such as, proximal neuropathies, and autonomic neuropathies associated with diabetes mellitus. However, possible correlations between diabetic peripheral neuropathy and autoimmunity have not yet been fully investigated. This study was conducted to investigate whether autoimmunity is associated with the pathogenesis of human diabetic peripheral neuropathy. A case-control analysis included three groups: 30 patients with diabetic peripheral neuropathy, 30 diabetic control patients without neuropathy, and 30 healthy controls. Blood analysis was conducted to compare the percentages of positive antinuclear antibodies (ANA) between the three groups. Secondary analysis investigated the correlations between the presence of autoimmune antibodies and sample demographics and neurological manifestations. This research was considered as a pilot study encouraging further investigations to take place in the near future. Antinuclear antibodies were significantly present in the blood serum of patients with diabetic peripheral neuropathy in comparison to the control groups (pneuropathy group were 50 times higher when compared to control groups. Secondary analysis showed a significant correlation between the presence of ANA and the neurological manifestation of neuropathy (Neuropathy symptom score, Neuropathy disability score and Vibration Perception Threshold). The study demonstrated for the first time that human peripheral diabetic neuropathy may have an autoimmune aetiology. The new pathogenic factors may lead to the consideration of new management plans involving new therapeutic approaches and disease markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multiple cranial neuropathies without limb involvements: guillain-barre syndrome variant?

    Science.gov (United States)

    Yu, Ju Young; Jung, Han Young; Kim, Chang Hwan; Kim, Hyo Sang; Kim, Myeong Ok

    2013-10-01

    Acute multiple cranial neuropathies are considered as variant of Guillain-Barre syndrome, which are immune-mediated diseases triggered by various cases. It is a rare disease which is related to infectious, inflammatory or systemic diseases. According to previous case reports, those affected can exhibit almost bilateral facial nerve palsy, then followed by bulbar dysfunctions (cranial nerves IX and X) accompanied by limb weakness and walking difficulties due to motor and/or sensory dysfunctions. Furthermore, reported cases of the acute multiple cranial neuropathies show electrophysiological abnormalities compatible with the typical Guillain-Barre syndromes (GBS). We recently experienced a patient with a benign infectious disease who subsequently developed symptoms of variant GBS. Here, we describe the case of a 48-year-old male patient who developed multiple symptoms of cranial neuropathy without limb weakness. His laboratory findings showed a positive result for anti-GQ1b IgG antibody. As compared with previously described variants of GBS, the patient exhibited widespread cranial neuropathy, which included neuropathies of cranial nerves III-XII, without limb involvement or ataxia.

  13. Peripheral Neuropathy and Tear Film Dysfunction in Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Stuti L. Misra

    2014-01-01

    Full Text Available Purpose. To compare tear film metrics in patients with type 1 diabetes mellitus (DM and healthy controls and investigate the association between peripheral neuropathy and ocular surface quality. Methods. Dry eye symptoms were quantified in 53 patients with type 1 DM and 40 age-matched controls. Ocular examination included tear film lipid layer thickness grading, tear film stability and quantity measurement, and retinal photography. DM individuals additionally underwent a detailed neuropathy assessment. Results. Neither mean age nor dry eye symptom scores differed significantly between the DM and control groups (P=0.12 and P=0.33, resp.. Tear lipid thickness (P=0.02, stability (P<0.0001, and quantity (P=0.01 were significantly lower in the DM group. Corneal sensitivity was also reduced in the DM group (P<0.001 and tear film stability was inversely associated with total neuropathy score (r=-0.29, P=0.03. Conclusion. The DM group exhibited significantly reduced tear film stability, secretion, and lipid layer quality relative to the age-matched control group. The negative correlation between tear film parameters and total neuropathy score suggests that ocular surface abnormalities occur in parallel with diabetic peripheral neuropathy.

  14. Blood pressure regulation in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1985-01-01

    Defective blood pressure responses to standing, exercise and epinephrine infusions have been demonstrated in diabetic patients with autonomic neuropathy. The circulatory mechanisms underlying blood pressure responses to exercise and standing up in these patients are well characterized: In both...... which may contribute to exercise hypotension in these patients. During hypoglycemia, blood pressure regulation seems intact in patients with autonomic neuropathy. This is probably due to release of substantial amounts of catecholamines during these experiments. During epinephrine infusions a substantial...... blood pressure fall ensues in patients with autonomic neuropathy, probably due to excessive muscular vasodilation. It is unresolved why blood pressure regulation is intact during hypoglycemia and severely impaired--at similar catecholamine concentrations--during epinephrine infusions....

  15. Infectious optic neuropathies: a clinical update

    Science.gov (United States)

    Kahloun, Rim; Abroug, Nesrine; Ksiaa, Imen; Mahmoud, Anis; Zeghidi, Hatem; Zaouali, Sonia; Khairallah, Moncef

    2015-01-01

    Different forms of optic neuropathy causing visual impairment of varying severity have been reported in association with a wide variety of infectious agents. Proper clinical diagnosis of any of these infectious conditions is based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular findings. Diagnosis is confirmed by serologic testing and polymerase chain reaction in selected cases. Treatment of infectious optic neuropathies involves the use of specific anti-infectious drugs and corticosteroids to suppress the associated inflammatory reaction. The visual prognosis is generally good, but persistent severe vision loss with optic atrophy can occur. This review presents optic neuropathies caused by specific viral, bacterial, parasitic, and fungal diseases. PMID:28539795

  16. Chronic Pain and Neuropathy Following Adjuvant Chemotherapy

    DEFF Research Database (Denmark)

    Ventzel, Lise; Madsen, Caspar S; Karlsson, Páll

    2017-01-01

    Objective: To determine symptoms and characteristics of chronic sensory neuropathy in patients treated with oxaliplatin and docetaxel, including patterns of somatosensory abnormalities, pain descriptors, and psychological functioning. Design: A retrospective cross-sectional study. Setting: A chro...... mechanisms useful for future studies in the tailored treatment of prevention of chemotherapy-induced peripheral neuropathy and pain.......Objective: To determine symptoms and characteristics of chronic sensory neuropathy in patients treated with oxaliplatin and docetaxel, including patterns of somatosensory abnormalities, pain descriptors, and psychological functioning. Design: A retrospective cross-sectional study. Setting......: A chronic pain research center. Subjects: Thirty-eight patients with chronic peripheral pain and/or dysesthesia following chemotherapy. Methods:  Sensory profiles, psychological functioning, and quality of life were assessed using standardized questionnaires. In addition, standardized quantitative sensory...

  17. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  18. Hereditary motor and sensory neuropathy Lom type in a Serbian family.

    Science.gov (United States)

    Dacković, J; Keckarević-Marković, M; Komazec, Z; Rakocević-Stojanović, V; Lavrnić, D; Stević, Z; Ribarić, K; Romac, S; Apostolski, S

    2008-10-01

    Hereditary motor and sensory neuropathy Lom type (HMSNL), also called CMT 4D, a hereditary autosomal recessive neuropathy, caused by mutation in N-Myc downstream regulated gene 1 (NDRG1 gene), was first described in a Bulgarian Gypsy population near Lom and later has been found in Gypsy communities in Italy, Spain, Slovenia and Hungary. We present two siblings with HMSNL, female and male, aged 30 and 26, respectively in a Serbian non-consanguineous family of Gypsy ethnic origin. They had normal developmental milestones. Both had symptoms of lower limb muscle weakness and walking difficulties with frequent falls, which began at the age of seven. At the age of 12, they developed hearing problems and at the age of 15 hand muscle weakness. Neurological examination revealed sensorineural hearing loss, dysarthria, severe distal and mild proximal muscle wasting and weakness, areflexia and impairment of all sensory modalities of distal distribution. Electrophysiological study revealed denervation with severe and early axonal loss. Sensorineural hearing loss was confirmed on electrocochleography and brainstem evoked potentials. Molecular genetic testing confirmed homozygote C564t (R148X) mutation in NDRG1 gene.

  19. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-09-10

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  20. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun

    2015-01-01

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  1. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    Science.gov (United States)

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  2. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.S.; Lyerly, D.P. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  3. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Padilla, S.S.; Lyerly, D.P.

    1989-01-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  4. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  5. The Central Bright Spot Sign: A Potential New MR Imaging Sign for the Early Diagnosis of Anterior Ischemic Optic Neuropathy due to Giant Cell Arteritis.

    Science.gov (United States)

    Remond, P; Attyé, A; Lecler, A; Lamalle, L; Boudiaf, N; Aptel, F; Krainik, A; Chiquet, C

    2017-07-01

    A rapid identification of the etiology of anterior ischemic optic neuropathy is crucial because it determines therapeutic management. Our aim was to assess MR imaging to study the optic nerve head in patients referred with anterior ischemic optic neuropathy, due to either giant cell arteritis or the nonarteritic form of the disease, compared with healthy subjects. Fifteen patients with giant cell arteritis-related anterior ischemic optic neuropathy and 15 patients with nonarteritic anterior ischemic optic neuropathy from 2 medical centers were prospectively included in our study between August 2015 and May 2016. Fifteen healthy subjects and patients had undergone contrast-enhanced, flow-compensated, 3D T1-weighted MR imaging. The bright spot sign was defined as optic nerve head enhancement with a 3-grade ranking system. Two radiologists and 1 ophthalmologist independently performed blinded evaluations of MR imaging sequences with this scale. Statistical analysis included interobserver agreement. MR imaging scores were significantly higher in patients with giant cell arteritis-related anterior ischemic optic neuropathy than in patients with nonarteritic anterior ischemic optic neuropathy ( P ≤ .05). All patients with giant cell arteritis-related anterior ischemic optic neuropathy (15/15) and 7/15 patients with nonarteritic anterior ischemic optic neuropathy presented with the bright spot sign. No healthy subjects exhibited enhancement of the anterior part of the optic nerve. There was a significant relationship between the side of the bright spot and the side of the anterior ischemic optic neuropathy ( P ≤ .001). Interreader agreement was good for observers (κ = 0.815). Here, we provide evidence of a new MR imaging sign that identifies the acute stage of giant cell arteritis-related anterior ischemic optic neuropathy; patients without this central bright spot sign always had a nonarteritic pathophysiology and therefore did not require emergency corticosteroid

  6. Neurosteroid 3α-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms.

    Directory of Open Access Journals (Sweden)

    Laurence Meyer

    Full Text Available Painful peripheral neuropathy belongs to major side-effects limiting cancer chemotherapy. Paclitaxel, widely used to treat several cancers, induces neurological symptoms including burning pain, allodynia, hyperalgesia and numbness. Therefore, identification of drugs that may effectively counteract paclitaxel-induced neuropathic symptoms is crucial. Here, we combined histopathological, neurochemical, behavioral and electrophysiological methods to investigate the natural neurosteroid 3α-androstanediol (3α-DIOL ability to counteract paclitaxel-evoked peripheral nerve tissue damages and neurological symptoms. Prophylactic or corrective 3α-DIOL treatment (4 mg/kg/2 days prevented or suppressed PAC-evoked heat-thermal hyperalgesia, cold-allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased thermal and mechanical pain thresholds of PAC-treated rats. Electrophysiological studies demonstrated that 3α-DIOL restored control values of nerve conduction velocity and action potential peak amplitude significantly altered by PAC-treatment. 3α-DIOL also repaired PAC-induced nerve damages by restoring normal neurofilament-200 level in peripheral axons and control amount of 2',3'-cyclic-nucleotide-3'-phosphodiesterase in myelin sheaths. Decreased density of intraepidermal nerve fibers evoked by PAC-therapy was also counteracted by 3α-DIOL treatment. More importantly, 3α-DIOL beneficial effects were not sedation-dependent but resulted from its neuroprotective ability, nerve tissue repairing capacity and long-term analgesic action. Altogether, our results showing that 3α-DIOL efficiently counteracted PAC-evoked painful symptoms, also offer interesting possibilities to develop neurosteroid-based strategies against chemotherapy-induced peripheral neuropathy. This article shows that the prophylactic or corrective treatment with 3α-androstanediol prevents or suppresses PAC-evoked painful symptoms and peripheral nerve dysfunctions in

  7. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-01-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  8. Persisting nutritional neuropathy amongst former war prisoners.

    Science.gov (United States)

    Gill, G V; Bell, D R

    1982-01-01

    Of 898 former Far East prisoners of war, assessed between 1968 and 1981, 49 (5.5%) had evidence of persisting symptomatic neurological disease dating back to their periods of malnutrition in captivity. The commonest syndromes were peripheral neuropathy (often of "burning foot" type), optic atrophy, and sensori-neural deafness. Though nutritional neuropathies disappeared soon after release in most ex-Far East prisoners of war, in some they have persisted up to 36 years since exposure to the nutritional insult. PMID:6292369

  9. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...... at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein...

  10. Color Doppler imaging of the retrobulbar circulation in progressive glaucoma optic neuropathy.

    Science.gov (United States)

    Magureanu, Marineta; Stanila, Adriana; Bunescu, Liviu Valentin; Armeanu, Cristina

    2016-01-01

    It is known that elevated intraocular pressure (IOP) is the primary risk factor for glaucoma. Recently, more and more evidences have shown that the vascular deficit also plays an important role in the pathogenesis and progressions of glaucomatous optic neuropathy. This issue is backed up by glaucomatous optic neuropathy (GON) cases drug compensated in which the progression of the disease in one or both eyes is ascertained despite a normal and relatively constant IOP. The present study evaluated the hemodynamic parameters in the retrobulbar circulation in patients with progressive glaucomatous optic neuropathy in one eye, who received compensated medication. The hemodynamic parameters (PSV, EDV, IR) were measured by using color Doppler ultrasound and progression was evaluated by a repeated automated perimetry. The obtained values were statistically analyzed and compared with those obtained for the stable eye.

  11. Cardiovascular autonomic neuropathy is associated with macrovascular risk factors in type 2 diabetes

    DEFF Research Database (Denmark)

    Fleischer, Jesper; Yderstræde, Knud Bonnet; Gulichsen, Elisabeth

    2014-01-01

    peripheral neuropathy (P = .041). Among type 2 diabetes patients CAN was independently associated with high pulse pressure (P ...The objective was to identify the presence of cardiovascular autonomic neuropathy (CAN) in a cohort of individuals with diabetes in outpatient clinics from 4 different parts of Denmark and to explore the difference between type 1 and type 2 diabetes in relation to CAN. The DAN-Study is a Danish...... multicenter study focusing on diabetic autonomic neuropathy. Over a period of 12 months, 382 type 1 and 271 type 2 individuals with diabetes were tested for CAN. Patients were randomly recruited and tested during normal visits to outpatient clinics at 4 Danish hospitals. The presence of CAN was quantified...

  12. Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives

    DEFF Research Database (Denmark)

    Ewertz, Marianne; Qvortrup, Camilla; Eckhoff, Lise

    2015-01-01

    BACKGROUND: Chemotherapy with taxanes and platinum compounds has resulted in substantial survival benefits both in adjuvant and metastatic settings. However, as a side effect, such chemotherapy may cause peripheral neuropathy (CIPN) which may result in discontinuation of treatment...... or shortly after the infusion triggered by exposure to cold. Risks factors for CIPN include preexisting neuropathy, either from treatment with other neurotoxic agents, or from comorbid conditions. The incidence of CIPN is related to dose per cycle, cumulative dose, and duration of infusion. While cisplatin......-induced neuropathy is irreversible, CIPN induced by taxanes may persist for several years in about 30% of patients. Evidence from the literature is suggestive that CIPN is likely to be negatively associated with QoL. No agents have been identified to be recommended for the prevention of CIPN. For treatment of CIPN...

  13. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    La Morgia, C; Ross-Cisneros, F.N.; Sadun, A.A.

    2010-01-01

    Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal...... ganglion cells containing the photopigment melanopsin. These cells give origin to the retinohypothalamic tract and support the non-image-forming visual functions of the eye, which include the photoentrainment of circadian rhythms, light-induced suppression of melatonin secretion and pupillary light reflex...... subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case...

  14. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Knowlton, Wendy M; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo , we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1 . Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7 , and isp-1 , and the putative oxidoreductase rad-8 . In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1 . Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the

  15. Diagnosis and therapeutic options for peripheral vasculitic neuropathy

    Science.gov (United States)

    2015-01-01

    Vasculitis can affect the peripheral nervous system alone (nonsystemic vasculitic neuropathy) or can be a part of primary or secondary systemic vasculitis. In cases of pre-existing systemic vasculitis, the diagnosis can easily be made, whereas suspected vasculitic neuropathy as initial or only manifestation of vasculitis requires careful clinical, neurophysiological, laboratory and histopathological workout. The typical clinical syndrome is mononeuropathia multiplex or asymmetric neuropathy, but distal-symmetric neuropathy can frequently be seen. Standard treatments include steroids, azathioprine, methotrexate and cyclophosphamide. More recently the B-cell antibody rituximab and intravenous immunoglobulins have shown to be effective in some vasculitic neuropathy types. PMID:25829955

  16. Reversal of diabetic peripheral neuropathy with phototherapy (MIRE) decreases falls and the fear of falling and improves activities of daily living in seniors.

    Science.gov (United States)

    Powell, Mark W; Carnegie, Dale H; Burke, Thomas J

    2006-01-01

    to determine whether restoration of sensation, impaired due to diabetic peripheral neuropathy (DPN), would reduce the number of falls and the fear of falling and improve activities of daily living (ADL) in a Medicare-aged population. retrospective cohort study of patients with documented, monochromatic near-infrared phototherapy (MIRE)-mediated, symptomatic reversal of DPN. responses to a health status questionnaire following symptomatic reversal of DPN. 252 patients (mean age 76 years) provided health information following symptomatic reversal of diabetic neuropathy (mean duration 8.6 months). incidence of falls and fear of falling decreased within 1 month after reversal of peripheral neuropathy and remained low after 1 year. Likewise, improved ADL were evident soon after reversal of peripheral neuropathy and showed further improvement after 1 year. Overall, reversal of peripheral neuropathy in a clinician's office and subsequent use of MIRE at home was associated with a 78% reduction in falls, a 79% decrease in balance-related fear of falling and a 72% increase in ADL (P < 0.0002 for all results). reversal of peripheral neuropathy is associated with an immediate reduction in the absolute number of falls, a reduced fear of falling and improved ADL. These results suggest that symptomatic reversal of diabetic neuropathy will have a substantial favourable, long-term socioeconomic impact on patients with DPN and the Medicare system, and improve the quality of life for elderly patients with diabetes and peripheral neuropathy.

  17. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  18. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Directory of Open Access Journals (Sweden)

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  19. Hereditary neuropathy with liability to pressure palsies presenting with sciatic neuropathy.

    Science.gov (United States)

    Topakian, Raffi; Wimmer, Sibylle; Pischinger, Barbara; Pichler, Robert

    2014-10-17

    Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal-dominant disorder associated with recurrent mononeuropathies following compression or trivial trauma. Reports on sciatic neuropathy as the presenting manifestation of HNPP are very scarce. We report on a 21-year-old previously healthy man who was admitted with sensorimotor deficits in his left leg. He had no history of preceding transient episodes of weakness or sensory loss. Clinical and electrophysiological examinations were consistent with sciatic neuropathy. Cerebrospinal fluid investigation and MRI of the nerve roots, plexus, and sciatic nerve did not indicate the underlying aetiology. When extended electrophysiological tests revealed multiple subclinical compression neuropathies in the upper limbs, HNPP was contemplated and eventually confirmed by genetic testing. 2014 BMJ Publishing Group Ltd.

  20. Investigating the Slow Axonal Transport of Neurofilaments: A Precursor for Optimal Neuronal Signaling

    Science.gov (United States)

    Johnson, Christopher M.

    systematically vary the number of motors in the model and attempt to identify those combinations of motors that show an agreement with the motility characteristic found from the above mentioned kymographs. By pruning the modeled data in accordance with the experimental results, our model can render an estimate of how many motors are attached to the cargo during transport. The model predicts that, on average, the total number of active motors on each neurofilament is relatively small and relatively independent of polymer length, which suggests that the motors may not be distributed uniformly along the filaments. Finally, we develop a model to explore the physiological function of axon morphology sculpted by neurofilament kinetics. Specifically, nodal constrictions are generated by slowing of neurofilaments in the internodal domain (Monsma et al., 2014), but the physiological function of these constrictions is unknown. To address this, we develop a computational model to investigate the effect of nodal constrictions on the axonal conduction velocity. For a fixed number of ion channels, we find that there is an optimal extent of nodal constriction which minimizes the internodal axon caliber that is required to achieve a given target conduction velocity, and we show that this is sensitive to the precise geometry of the axon and myelin sheath in the flanking paranodal regions. Thus axonal constrictions appear to be a biological adaptation that serves to minimize axonal volume, thereby maximizing the spatial and metabolic efficiency of these processes.

  1. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Idiopathic trigeminal neuropathy in a poodle

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Aparicio

    2010-12-01

    Full Text Available A seven years old, male poodle is examined presenting acute mandible paralysis (dropped jaw, drooling and difficulty for the apprehension and chewing; not evidence of an other alteration of cranial nerves. The muscular biopsy rules out a myositisof masticatory muscles. The disorder is resolved completely in 3 weeks confirming diagnosis of idiopathic trigeminal neuropathy.

  3. Genetics Home Reference: small fiber neuropathy

    Science.gov (United States)

    ... IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19444-9. doi: 10.1073/pnas.1216080109. Epub ...

  4. MRI in Leber's hereditary optic neuropathy

    DEFF Research Database (Denmark)

    Matthews, Lucy; Enzinger, Christian; Fazekas, Franz

    2015-01-01

    BACKGROUND: Leber's hereditary optic neuropathy (LHON) and a multiple sclerosis (MS)-like illness appear to coexist 50 times more frequently than would be expected by chance. This association of LHON and MS (LMS) raises an important question about whether there could be a common pathophysiological...

  5. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  6. Trigeminal Neuropathy in Sjogren′s Syndrome

    Directory of Open Access Journals (Sweden)

    Pinheiro L

    1999-01-01

    Full Text Available Trigeminal neuropathy is the most common CNS disorder in Sjogren′s syndrome. It is believed to be caused by vasculitis. Unless this is recognised, a diagnosis of trigeminal neuralgia is often made. The therapeutic response to steroids is unpredictable. There are two subgroups - those with associated collagen disorders and those only with the sicca syndrome.

  7. Suboccipital neuropathy after bone conduction device placement

    NARCIS (Netherlands)

    Faber, H.T.; Ru, J.A. de

    2013-01-01

    OBJECTIVE: To describe the clinical characteristics of a 70-year-old female with occipital neuropathy following bone conduction device surgery. DESCRIPTION: A 65-year-old woman underwent bone conduction device placement surgery on the left temporal bone. Postoperatively she progressively developed

  8. Habitual physical activity, peripheral neuropathy, foot deformities ...

    African Journals Online (AJOL)

    joint or leg pain), lack of equipment, and exercise partner(s).20. Yet, many of these ... peripheral neuropathy and lower limb functions among a group of Nigerian .... scale for inpatients of an orthopaedic rehabilitation ward found that interclass ...

  9. Axon guidance molecules in vascular patterning.

    Science.gov (United States)

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  10. Syringomyelia presenting with unilateral optic neuropathy: a case report

    Directory of Open Access Journals (Sweden)

    Ngoo QZ

    2017-03-01

    Full Text Available Qi Zhe Ngoo, Evelyn Li Min Tai, Wan Hazabbah Wan Hitam Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Purpose: In this case report, we present two cases of syringomyelia with optic neuropathy.Findings: In Case 1, a 36-year-old Malay lady presented to our clinic with acute onset of blurring of vision in her left eye that she experienced since past 1 month. She was diagnosed with syringomyelia 12 years ago and was on conservative management. Her visual acuity was 6/6 in the right eye and counting fingers at 1 m in the left. There was a positive relative afferent pupillary defect in her left eye. Optic nerve functions of her left eye were reduced. Visual field showed a left inferior field defect. Her extraocular muscle movements were full. Magnetic resonance imaging of the brain and spine showed syringomyelia at the level of C2–C6 and T2–T9. Both of her optic nerves were normal. Her condition improved with intravenous and oral corticosteroids. In Case 2, a 44-year-old Malay lady presented to our clinic with a progressive central scotoma in her right eye that she experienced since past 1 month. She had previous history of recurrent episodes of weakness in both of her lower limbs from past 8 months. Visual acuity in her right and left eye was 6/9 and 6/6, respectively. The relative afferent pupillary defect in her right eye was positive. Optic nerve functions of her right eye were affected. Visual field showed a central scotoma in her right eye. Her extraocular muscle movements were full. Fundoscopy of her right eye showed a pale optic disc. Her left eye fundus was normal. Magnetic resonance imaging of the brain and spine showed syringomyelia at T3–T6. Both of her optic nerves were normal. A diagnosis of syringomyelia with right optic atrophy was performed. Her condition improved with intravenous and oral corticosteroids.Conclusion: Optic neuropathy is a rare neuro

  11. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  12. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  13. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

    Science.gov (United States)

    Kornak, Uwe; Mademan, Inès; Schinke, Marte; Voigt, Martin; Krawitz, Peter; Hecht, Jochen; Barvencik, Florian; Schinke, Thorsten; Gießelmann, Sebastian; Beil, F Timo; Pou-Serradell, Adolf; Vílchez, Juan J; Beetz, Christian; Deconinck, Tine; Timmerman, Vincent; Kaether, Christoph; De Jonghe, Peter; Hübner, Christian A; Gal, Andreas; Amling, Michael; Mundlos, Stefan; Baets, Jonathan; Kurth, Ingo

    2014-03-01

    Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies.

  14. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Ghoreishi Zohreh

    2012-08-01

    Full Text Available Abstract Background Axonal sensory peripheral neuropathy is the major dose-limiting side effect of paclitaxel.Omega-3 fatty acids have beneficial effects on neurological disorders from their effects on neurons cells and inhibition of the formation of proinflammatory cytokines involved in peripheral neuropathy. Methods This study was a randomized double blind placebo controlled trial to investigate the efficacy of omega-3 fatty acids in reducing incidence and severity of paclitaxel-induced peripheral neuropathy (PIPN. Eligible patients with breast cancer randomly assigned to take omega-3 fatty acid pearls, 640 mg t.i.d during chemotherapy with paclitaxel and one month after the end of the treatment or placebo. Clinical and electrophysiological studies were performed before the onset of chemotherapy and one month after cessation of therapy to evaluate PIPN based on "reduced Total Neuropathy Score". Results Twenty one patients (70% of the group taking omega-3 fatty acid supplement (n = 30 did not develop PN while it was 40.7%( 11 patients in the placebo group(n = 27. A significant difference was seen in PN incidence (OR = 0.3, .95% CI = (0.10-0.88, p = 0.029. There was a non-significant trend for differences of PIPN severity between the two study groups but the frequencies of PN in all scoring categories were higher in the placebo group (0.95% CI = (−2.06 -0.02, p = 0.054. Conclusions Omega-3 fatty acids may be an efficient neuroprotective agent for prophylaxis against PIPN. Patients with breast cancer have a longer disease free survival rate with the aid of therapeutical agents. Finding a way to solve the disabling effects of PIPN would significantly improve the patients’ quality of life. Trial registration This trial was registered at ClinicalTrials.gov (NCT01049295

  15. Ethambutol/Linezolid Toxic Optic Neuropathy.

    Science.gov (United States)

    Libershteyn, Yevgeniya

    2016-02-01

    To report a rare toxic optic neuropathy after long-term use of two medications: ethambutol and linezolid. A 65-year-old man presented to the Miami Veterans Affairs Medical Center in December 2014 for evaluation of progressive vision decrease in both eyes. The patient presented with best-corrected visual acuities of 20/400 in the right eye and counting fingers at 5 feet in the left eye. Color vision was significantly reduced in both eyes. Visual fields revealed a cecocentral defect in both eyes. His fundus and optic nerve examination was unremarkable. Because vision continued to decline after discontinuation of ethambutol, linezolid was also discontinued, after which vision, color vision, and visual fields improved. Because of these findings, the final diagnosis was toxic optic neuropathy. Final visual outcome was 20/30 in the right eye and 20/40 in the left eye. Drug-associated toxic optic neuropathy is a rare but vision-threatening condition. Diagnosis is made based on an extensive case history and careful clinical examination. The examination findings include varying decrease in vision, normal pupils and extraocular muscles, and unremarkable fundoscopy, with the possibility of swollen optic discs in the acute stage of the optic neuropathy. Other important findings descriptive of toxic optic neuropathy include decreased color vision and cecocentral visual field defects. This case illustrates the importance of knowledge of all medications and/or substances a patient consumes that may cause a toxic reaction and discontinuing them immediately if the visual functions are worsening or not improving.

  16. Erythropoietin in Treatment of Methanol Optic Neuropathy.

    Science.gov (United States)

    Pakdel, Farzad; Sanjari, Mostafa S; Naderi, Asieh; Pirmarzdashti, Niloofar; Haghighi, Anousheh; Kashkouli, Mohsen B

    2018-06-01

    Methanol poisoning can cause an optic neuropathy that is usually severe and irreversible and often occurs after ingestion of illicit or homemade alcoholic beverages. In this study, we evaluated the potential neuroprotective effect of erythropoietin (EPO) on visual acuity (VA) in patients with methanol optic neuropathy. In a prospective, noncomparative interventional case series, consecutive patients with methanol optic neuropathy after alcoholic beverage ingestion were included. All patients initially received systemic therapy including metabolic stabilization and detoxification. Treatment with intravenous recombinant human EPO consisted of 20,000 units/day for 3 successive days. Depending on clinical response, some patients received a second course of EPO. VA, funduscopy, and spectral domain optical coherence tomography were assessed during the study. Main outcome measure was VA. Thirty-two eyes of 16 patients with methanol optic neuropathy were included. Mean age was 34.2 years (±13.3 years). The mean time interval between methanol ingestion and treatment with intravenous EPO was 9.1 days (±5.56 days). Mean follow-up after treatment was 7.5 months (±5.88 months). Median VA in the better eye of each patient before treatment was light perception (range: 3.90-0.60 logMAR). Median last acuity after treatment in the best eye was 1.00 logMAR (range: 3.90-0.00 logMAR). VA significantly increased in the last follow-up examination (P optic neuropathy and may represent a promising treatment for this disorder.

  17. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Amati-Bonneau, Patrizia; Safiedeen, Zainab; Prunier-Mirebeau, Delphine; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Gueguen, Naïg; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Ferré, Marc; Bris, Céline; Kouassi Nzoughet, Judith; Bocca, Cinzia; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Lenaers, Guy; Martinez, M Carmen; Procaccio, Vincent; Reynier, Pascal

    2016-11-01

    Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as

  18. Parallel simulation of axon growth in the nervous system

    NARCIS (Netherlands)

    J. Wensch; B.P. Sommeijer (Ben)

    2002-01-01

    textabstractIn this paper we discuss a model from neurobiology, which describes theoutgrowth of axons from neurons in the nervous system. The model combines ordinary differential equations, defining the movement of the axons, with parabolic partial differential equations. The parabolic equations

  19. A dam for retrograde axonal degeneration in multiple sclerosis?

    NARCIS (Netherlands)

    Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A.F.S.

    2014-01-01

    Objective: Trans-synaptic axonal degeneration is a mechanism by which neurodegeneration can spread from a sick to a healthy neuron in the central nervous system. This study investigated to what extent trans-synaptic axonal degeneration takes place within the visual pathway in multiple sclerosis

  20. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  1. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  2. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  3. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  4. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... model to enable axon diameter mapping in voxels with crossing fibers. We show in simulation that the technique can provide robust axon diameter estimates in a two-fiber crossing with the crossing angle as small as 45 degrees. Using ex vivo imaging data, we further demonstrate the feasibility...

  5. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    Science.gov (United States)

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Axonal loss in the multiple sclerosis spinal cord revisited.

    Science.gov (United States)

    Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus

    2018-05-01

    Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area

  7. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    Science.gov (United States)

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  8. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, T D; Ingoglia, N A; Gould, R M [Departments of Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA

    1982-12-28

    Experiments were designed to determine if following injection of (/sup 3/H)uridine into the lumbar spinal cord of the rat, (/sup 3/H)RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons.

  9. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  10. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  11. A case of anterior ischemic optic neuropathy associated with uveitis

    Directory of Open Access Journals (Sweden)

    Sugahara M

    2013-05-01

    Full Text Available Michitaka Sugahara, Takayuki Fujimoto, Kyoko Shidara, Kenji Inoue, Masato Wakakura Inouye Eye Hospital, Tokyo, Japan Introduction: Here, we describe a patient who presented with anterior ischemic optic neuropathy (AION and subsequently developed uveitis. Case: A 69-year-old man was referred to our hospital and initially presented with best-corrected visual acuities (BCVA of 20/40 (right eye and 20/1000 (left eye and relative afferent pupillary defect. Slit-lamp examination revealed no signs of ocular inflammation in either eye. Fundus examination revealed left-eye swelling and a pale superior optic disc, and Goldmann perimetry revealed left-eye inferior hemianopia. The patient was diagnosed with nonarteritic AION in the left eye. One week later, the patient returned to the hospital because of vision loss. The BCVA of the left eye was so poor that the patient could only count fingers. Slit-lamp examination revealed 1+ cells in the anterior chamber and the anterior vitreous in both eyes. Funduscopic examination revealed vasculitis and exudates in both eyes. The patient was diagnosed with bilateral panuveitis, and treatment with topical betamethasone was started. No other physical findings resulting from other autoimmune or infectious diseases were found. No additional treatments were administered, and optic disc edema in the left eye improved, and the retinal exudates disappeared in 3 months. The patient's BCVA improved after cataract surgery was performed. Conclusion: Panuveitis most likely manifests after the development of AION. Keywords: anterior ischemic optic neuropathy, uveitis

  12. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Kokona, Despina; Häner, Nathanael U; Ebneter, Andreas; Zinkernagel, Martin S

    2017-01-01

    Anterior ischemic optic neuropathy (AION) is a relatively common cause of visual loss and results from hypoperfusion of the small arteries of the anterior portion of the optic nerve. AION is the leading cause of sudden optic nerve related vision loss with approximately 10 cases per 100'000 in the population over 50 years. To date there is no established treatment for AION and therefore a better understanding of the events occurring at the level of the optic nerve head (ONH) would be important to design future therapeutic strategies. The optical properties of the eye allow imaging of the optic nerve in vivo, which is a part of the CNS, during ischemia. Experimentally laser induced optic neuropathy (eLiON) displays similar anatomical features as anterior ischemic optic neuropathy in humans. After laser induced optic neuropathy we show that hyperreflective dots in optical coherence tomography correspond to mononuclear cells in histology. Using fluorescence-activated flow cytometry (FACS) we found these cells to peak one week after eLiON. These observations were translated to OCT findings in patients with AION, where similar dynamics of hyperreflective dots at the ONH were identified. Our data suggests that activated macrophages can be identified as hyperreflective dots in OCT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Impaired axonal Na+ current by hindlimb unloading: implication for disuse neuromuscular atrophy

    Directory of Open Access Journals (Sweden)

    Chimeglkham eBanzrai

    2016-02-01

    Full Text Available This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading, which is a model of disuse neuromuscular atrophy. Hindlimb unloading was performed in normal 6-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal’s cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes (2.2 ± 1.3 mV [HLU] vs. 4.3 ± 1.2 mV [Control], P = 0.03. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC and late subexcitability (recovery cycle than the controls (0.075 ± 0.01 [HLU] vs. 0.12 ± 0.01 [Control], P < 0.01; 5.4 ± 1.0 [HLU] vs. 10.0 ± 1.3 % [Control], P = 0.01, respectively. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by hindlimb unloading. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.

  14. Approach to Peripheral Neuropathy for the Primary Care Clinician.

    Science.gov (United States)

    Doughty, Christopher T; Seyedsadjadi, Reza

    2018-02-02

    Peripheral neuropathy is commonly encountered in the primary care setting and is associated with significant morbidity, including neuropathic pain, falls, and disability. The clinical presentation of neuropathy is diverse, with possible symptoms including weakness, sensory abnormalities, and autonomic dysfunction. Accordingly, the primary care clinician must be comfortable using the neurologic examination-including the assessment of motor function, multiple sensory modalities, and deep tendon reflexes-to recognize and characterize neuropathy. Although the causes of peripheral neuropathy are numerous and diverse, careful review of the medical and family history coupled with limited, select laboratory testing can often efficiently lead to an etiologic diagnosis. This review offers an approach for evaluating suspected neuropathy in the primary care setting. It will describe the most common causes, suggest an evidence-based workup to aid in diagnosis, and highlight recent evidence that allows for selection of symptomatic treatment of patients with neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Diagnosing ulnar neuropathy at the elbow using magnetic resonance neurography

    International Nuclear Information System (INIS)

    Keen, Nayela N.; Chin, Cynthia T.; Saloner, David; Steinbach, Lynne S.; Engstrom, John W.

    2012-01-01

    Early diagnosis of ulnar neuropathy at the elbow is important. Magnetic resonance neurography (MRN) images peripheral nerves. We evaluated the usefulness of elbow MRN in diagnosing ulnar neuropathy at the elbow. The MR neurograms of 21 patients with ulnar neuropathy were reviewed retrospectively. MRN was performed prospectively on 10 normal volunteers. The MR neurograms included axial T1 and axial T2 fat-saturated and/or axial STIR sequences. The sensitivity and specificity of MRN in detecting ulnar neuropathy were determined. The mean ulnar nerve size in the symptomatic and normal groups was 0.12 and 0.06 cm 2 (P 2 , sensitivity was 95% and specificity was 80%. Ulnar nerve size and signal intensity were greater in patients with ulnar neuropathy. MRN is a useful test in evaluating ulnar neuropathy at the elbow. (orig.)

  16. Fast axonal transport of 3H-leucin-labelled proteins in the unhurt and isolated optical nerve of rats

    International Nuclear Information System (INIS)

    Wagner, H.E.

    1981-01-01

    The distribution of radioactivity of amino acid molecules incorporated in protein after injection of 3 H-Leucin into the right bulb was investigated and determined along optical nerve after 1, 2, and 4 h. A slightly increased radioactivity at the point of entrance of the optical nerves into the optical duct was found. A slightly reduced axon diameter was discussed as a possible cause. The radioactivity brought into the optical nerve via the vascular system was determined by measuring the contralateral optical nerve. In relation to the axonally transported activity, it was low. The speed of the fast axonal transport is 168 mm/d. If the processes ruling the amino acids in the perikaryon are taken into consideration, the transport speed is 240 mm/d. The application of the protein synthesis prohibitor, Cycloheximide, 5 minutes after the injection of Leucinin completely prevented the appearance of axonally transported labelled proteins. When cycloheximide was administered 2 h after Leucin, a significantly loner radioactivity than in the nerve could be determined after another 2 h; i.e. the incorporation of Leucin was not completed yet after 2 h. The profile of active compounds was the same as in the control group. In other experiments, the axonal transport of labelled proteins in isolated optical nerve fibres was tested. If the separation was carried out 2 h after the injection of Leucin an extreme reduction in activity could be determined after 1 or 2 h. The continued distribution of activity after cycloheximide treatment and removal of perikarya in comparison with the control indicate the continuation of the transport, also after separation of the axon from the perikaryon. This means that, during the time of the experiment, the mechanism of the fast axonal transport functions independently of the perikaryon. (orig./MG) [de

  17. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

    Directory of Open Access Journals (Sweden)

    Laurent P. Bogdanik

    2013-05-01

    Charcot-Marie-Tooth disease (CMT is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P. Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  18. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Bogdanik, Laurent P; Sleigh, James N; Tian, Cong; Samuels, Mark E; Bedard, Karen; Seburn, Kevin L; Burgess, Robert W

    2013-05-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  19. Optic neuropathy following an altitude exposure.

    Science.gov (United States)

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case.

  20. Herbal Remedies: A Boon for Diabetic Neuropathy.

    Science.gov (United States)

    Tiwari, Reshu; Siddiqui, Mohd Haris; Mahmood, Tarique; Bagga, Paramdeep; Ahsan, Farogh; Shamim, Arshiya

    2018-03-26

    Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.

  1. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  2. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  3. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management.

    Science.gov (United States)

    Berry, Shauna; Lin, Weijie V; Sadaka, Ama; Lee, Andrew G

    2017-01-01

    Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common form of ischemic optic neuropathy and the second most common optic neuropathy. Patients are generally over the age of 50 years with vasculopathic risk factors (eg, diabetes mellitus, hypertension, and obstructive sleep apnea). The exact mechanism of NAION is not fully understood. In addition, several treatment options have been proposed. This article summarizes the current literature on the diagnosis, treatment, and management of NAION.

  4. Intravenous Lidocaine Infusion to Treat Chemotherapy-Induced Peripheral Neuropathy.

    Science.gov (United States)

    Papapetrou, Peter; Kumar, Aashish J; Muppuri, Rudram; Chakrabortty, Shushovan

    2015-11-01

    Chemotherapy-induced peripheral neuropathy is a debilitating side effect of chemotherapy, which manifests as paresthesias, dysesthesias, and numbness in the hands and feet. Numerous chemoprotective agents and treatments have been used with limited success to treat chemotherapy-induced peripheral neuropathy. We report a case in which a patient presenting with chemotherapy-induced peripheral neuropathy received an IV lidocaine infusion over the course of 60 minutes with complete symptomatic pain relief for a prolonged period of 2 weeks.

  5. Peripheral neuropathy in HIV: prevalence and risk factors

    Science.gov (United States)

    Evans, Scott R.; Ellis, Ronald J.; Chen, Huichao; Yeh, Tzu-min; Lee, Anthony J.; Schifitto, Giovanni; Wu, Kunling; Bosch, Ronald J.; McArthur, Justin C.; Simpson, David M.; Clifford, David B.

    2011-01-01

    Objectives To estimate neuropathic sign/symptom rates with initiation of combination antiretroviral therapy (cART) in HIV-infected ART-naive patients, and to investigate risk factors for: peripheral neuropathy and symptomatic peripheral neuropathy (SPN), recovery from peripheral neuropathy/SPN after neurotoxic ART (nART) discontinuation, and the absence of peripheral neuropathy/SPN while on nART. Design AIDS Clinical Trials Group (ACTG) Longitudinal Linked Randomized Trial participants who initiated cART in randomized trials for ART-naive patients were annually screened for symptoms/signs of peripheral neuropathy. ART use and disease characteristics were collected longitudinally. Methods Peripheral neuropathy was defined as at least mild loss of vibration sensation in both great toes or absent/hypoactive ankle reflexes bilaterally. SPN was defined as peripheral neuropathy and bilateral symptoms. Generalized estimating equation logistic regression was used to estimate associations. Results Two thousand, one hundred and forty-one participants were followed from January 2000 to June 2007. Rates of peripheral neuropathy/SPN at 3 years were 32.1/8.6% despite 87.1% with HIV-1RNA 400 copies/ml or less and 70.3% with CD4 greater than 350 cells/µl. Associations with higher odds of peripheral neuropathy included older patient age and current nART use. Associations with higher odds of SPN included older patient age, nART use, and history of diabetes mellitus. Associations with lower odds of recovery after nART discontinuation included older patient age. Associations with higher odds of peripheral neuropathy while on nART included older patient age and current protease inhibitor use. Associations with higher odds of SPN while on nART included older patient age, history of diabetes, taller height, and protease inhibitor use. Conclusion Signs of peripheral neuropathy remain despite virologic/immunologic control but frequently occurs without symptoms. Aging is a risk factor for

  6. Recurrent painful ophthalmoplegic neuropathy; A case report

    OpenAIRE

    Semra Saygi; Tulun Savas; ilknur Erol

    2014-01-01

    Recurrent painful ophthalmoplegic neuropathy, typically seen as a serious childhood migraine attack which is followed by ptosis and diplopia due to oculomotor nerve palsy. This is regarded as a form of migraine in the previous classifications but according to the latest classification of the International Headache Society has been recognized as cranial neuralgia. Due to the poor pathological and radiological findings of oculomotor nerve during attack, it is difficult to make differential diag...

  7. Postirradiation optic neuropathy in antral carcinoma

    International Nuclear Information System (INIS)

    Singh, J.; Vashist, S.

    1984-01-01

    A case is described of a patient who developed radiation-induced optic neuropathy 18 months following cobalt-60 irradiation for carcinoma of the left maxillary antrum and ethmoid sinus. This case is unusual because of the early onset of the optic nerve damage following radiation therapy and the ultimate emergence of the eye involved by tumor compression as the better eye in terms of visual acuity

  8. Phrenic neuropathy in chronic renal failure.

    OpenAIRE

    Zifko, U.; Auinger, M.; Albrecht, G.; Kästenbauer, T.; Lahrmann, H.; Grisold, W.; Wanke, T.

    1995-01-01

    BACKGROUND--Peripheral neuropathy and alterations in diaphragmatic muscle function are frequently caused by uraemia. Phrenic nerve function in patients with end stage renal failure, however, has not been examined to date. METHODS--An electrophysiological study of the phrenic nerve was performed to determine its possible involvement in 32 nondiabetic patients with end stage renal disease undergoing chronic haemodialysis. RESULTS--Seventeen patients had electrophysiological signs of peripheral ...

  9. AUTOSOMAL RECESSIVE PERIPHERAL NEUROPATHY WITH NEUROMYOTONIA (ARAN-NM: DESCRIPTION OF A CLINICAL CASE CONFIRMED BY A MUTATION IN THE HINT1 GENE

    Directory of Open Access Journals (Sweden)

    Olga A. Klochkova

    2017-01-01

    Full Text Available Autosomal recessive  peripheral neuropathy with neuromyotonia  (ARAN-NM  is a relatively newly described  disease associated  with mutations  in the HINT1 gene.  It accounts  for a significant  part of the poorly  differentiated  forms  of axonal polyneuropathies.  We present the first in Russia description of the genetically confirmed case of ARAN-NM in a boy aged 14 years and 11 months without the hereditary-tainted anamnesis. On presentation,  the patient experienced  progressive  distal muscular weakness, asymmetric foot deformity,  gait disorders  and minimal manifestations  of neuromyotonia  (stiffness  in the fingers.  During examination,  we detected an increase in the level of creatine phosphokinase up to 635 U/l, a disturbance of conduction of motor and, to a lesser extent, sensory fibers  of  the  peripheral  nerves  (according  to  the  stimulation  electromyography,  EMG,  denervation-reinnervation  changes,  single positive acute waves, fibrillation potentials, complex repeated discharge (according to the data of needle EMG. In the study of exome, a homozygous mutation c.110G>C, p.R37P was determined in exon 01 of the HINT1 gene, which confirmed the presence of ARAN-NM. A molecular-genetic  examination of the patient's immediate relatives was carried out. The described case is compared with literature data. An overview of currently available information on ARAN-NM is provided. Diagnostic criteria of the disease are presented.

  10. Bilateral optic neuropathy in acute cryptococcal meningitis

    Institute of Scientific and Technical Information of China (English)

    Qi Zhe Ngoo; Li Min Evelyn Tai; Wan Hazabbah Wan Hitam; John Tharakan

    2016-01-01

    We reported a case of cryptococcal meningitis presenting with bilateral optic neuropathy in an immunocompetent patient. A 64-year-old Malay gentleman with no medical comorbidities presented with acute bilateral blurring of vision for a week, which was associated with generalised throbbing headache and low grade fever. He also had som-nolence and altered consciousness. Visual acuity in both eyes was no perception of light with poor pupillary reflexes. Extraocular muscle movements were normal. Anterior segments were unremarkable bilaterally. Fundoscopy revealed bilateral optic disc swelling. CT scan of the brain showed multifocal infarct, but no meningeal enhancement or mass. Cerebrospinal fluid opening pressure was normal, while its culture grew Cryptococcus neoformans. A diagnosis of cryptococcal meningitis with bilateral optic neuropathy was made. Patient was treated with a six-week course of intravenous flu-conazole and started concomitantly on a fortnight's course of intravenous amphotericin B. After that, his general condition improved, but there was still no improvement in his visual acuity. On reviewing at two months post-initiation of treatment, fundi showed bilateral optic atrophy. Bilateral optic neuropathy secondary to cryptococcal meningitis was rare. The prognosis was guarded due to the sequelae of optic atrophy. Anti-fungal medication alone may not be sufficient to manage this condition. However, evidence for other treatment modalities is still lacking and further clinical studies are required.

  11. Genetics Home Reference: congenital cataracts, facial dysmorphism, and neuropathy

    Science.gov (United States)

    ... Eye Institute: Facts About Cataracts National Institute of Neurological Disorders and Stroke: Hereditary Neuropathies Educational Resources (5 links) Boston Children's Hospital: Cataracts in Children Centers for Disease Control ...

  12. Peripheral Neuropathy: A Practical Approach to Diagnosis and Symptom Management.

    Science.gov (United States)

    Watson, James C; Dyck, P James B

    2015-07-01

    Peripheral neuropathy is one of the most prevalent neurologic conditions encountered by physicians of all specialties. Physicians are faced with 3 distinct challenges in caring for patients with peripheral neuropathy: (1) how to efficiently and effectively screen (in less than 2 minutes) an asymptomatic patient for peripheral neuropathy when they have a disorder in which peripheral neuropathy is highly prevalent (eg, diabetes mellitus), (2) how to clinically stratify patients presenting with symptoms of neuropathy to determine who would benefit from specialty consultation and what testing is appropriate for those who do not need consultation, and (3) how to treat the symptoms of painful peripheral neuropathy. In this concise review, we address these 3 common clinical scenarios. Easily defined clinical patterns of involvement are used to identify patients in need of neurologic consultation, the yield of laboratory and other diagnostic testing is reviewed for the evaluation of length-dependent, sensorimotor peripheral neuropathies (the most common form of neuropathy), and an algorithmic approach with dosing recommendations is provided for the treatment of neuropathic pain associated with peripheral neuropathy. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  13. Unilateral Optic Neuropathy and Acute Angle-Closure Glaucoma following Snake Envenomation

    Directory of Open Access Journals (Sweden)

    Osman Okan Olcaysu

    2015-01-01

    Full Text Available Purpose. We aimed to describe a unique case in which a patient developed unilateral optic neuritis and angle-closure glaucoma as a result of snake envenomation. Case Report. Approximately 18 hours after envenomation, a 67-year-old female patient described visual impairment and severe pain in her left eye (LE. The patient’s best corrected visual acuity was 10/10 in the RE and hand motion in the LE. Cranial magnetic resonance imaging showed signs of neuropathy in the left optic nerve. In the LE, corneal haziness, closure of the iridocorneal angle, and mild mydriasis were observed and pupillary light reflex was absent. Intraocular pressure was 25 mmHg and 57 mmHg in the RE and LE, respectively. The patient was diagnosed with acute angle-closure glaucoma in the LE. Optic neuropathy was treated with intravenous pulse methylprednisolone. Left intraocular pressure was within normal range starting on the fourth day. One month after the incident, there was no sign of optic neuropathy; relative afferent pupillary defect and optic nerve swelling disappeared. Conclusions. Patients with severe headache and visual loss after snake envenomation must be carefully examined for possible optic neuropathy and angle-closure glaucoma. Early diagnosis and treatment of these cases are necessary to prevent permanent damage to optic nerves.

  14. Single Sensor Gait Analysis to Detect Diabetic Peripheral Neuropathy: A Proof of Principle Study

    Directory of Open Access Journals (Sweden)

    Patrick Esser

    2018-01-01

    Full Text Available This study explored the potential utility of gait analysis using a single sensor unit (inertial measurement unit [IMU] as a simple tool to detect peripheral neuropathy in people with diabetes. Seventeen people (14 men aged 63±9 years (mean±SD with diabetic peripheral neuropathy performed a 10-m walk test instrumented with an IMU on the lower back. Compared to a reference healthy control data set (matched by gender, age, and body mass index both spatiotemporal and gait control variables were different between groups, with walking speed, step time, and SDa (gait control parameter demonstrating good discriminatory power (receiver operating characteristic area under the curve >0.8. These results provide a proof of principle of this relatively simple approach which, when applied in clinical practice, can detect a signal from those with known diabetes peripheral neuropathy. The technology has the potential to be used both routinely in the clinic and for tele-health applications. Further research should focus on investigating its efficacy as an early indicator of or effectiveness of the management of peripheral neuropathy. This could support the development of interventions to prevent complications such as foot ulceration or Charcot's foot.

  15. Single Sensor Gait Analysis to Detect Diabetic Peripheral Neuropathy: A Proof of Principle Study.

    Science.gov (United States)

    Esser, Patrick; Collett, Johnny; Maynard, Kevin; Steins, Dax; Hillier, Angela; Buckingham, Jodie; Tan, Garry D; King, Laurie; Dawes, Helen

    2018-02-01

    This study explored the potential utility of gait analysis using a single sensor unit (inertial measurement unit [IMU]) as a simple tool to detect peripheral neuropathy in people with diabetes. Seventeen people (14 men) aged 63±9 years (mean±SD) with diabetic peripheral neuropathy performed a 10-m walk test instrumented with an IMU on the lower back. Compared to a reference healthy control data set (matched by gender, age, and body mass index) both spatiotemporal and gait control variables were different between groups, with walking speed, step time, and SDa (gait control parameter) demonstrating good discriminatory power (receiver operating characteristic area under the curve >0.8). These results provide a proof of principle of this relatively simple approach which, when applied in clinical practice, can detect a signal from those with known diabetes peripheral neuropathy. The technology has the potential to be used both routinely in the clinic and for tele-health applications. Further research should focus on investigating its efficacy as an early indicator of or effectiveness of the management of peripheral neuropathy. This could support the development of interventions to prevent complications such as foot ulceration or Charcot's foot. Copyright © 2018 Korean Diabetes Association.

  16. Tocilizumab for giant cell arteritis with corticosteroid-resistant progressive anterior ischemic optic neuropathy.

    Science.gov (United States)

    Vionnet, Julien; Buss, Guillaume; Mayer, Cédric; Sokolov, Arseny A; Borruat, François-Xavier; Spertini, François

    2017-10-01

    Giant cell arteritis is an inflammatory disorder of the medium- and large-size arteries. Permanent visual loss related to arteritic anterior ischemic optic neuropathy is among the most serious complications of this disease and initial treatment usually consists of high dose corticosteroids. There is no consensus in the literature concerning the optimal therapeutic approach in giant cell arteritis patients with corticosteroid-resistant arteritic anterior ischemic optic neuropathy. A 73-year-old Caucasian female with biopsy-proven giant cell arteritis developed an acute visual loss of the right eye due to arteritic anterior ischemic optic neuropathy. Despite 5 daily methylprednisolone pulses, systemic symptoms persisted and rapid involvement of the controlateral eye was documented. Therefore, tocilizumab (humanised monoclonal antibody binding the human interleukin-6 receptor) was introduced as a potential salvage therapy with a swift consecutive resolution of the systemic symptoms and stabilization of the ophthalmic lesions. Although a late effect of steroids pulses cannot be formally ruled out in this dramatic situation, tocilizumab likely offered a decisive effect in preventing bilateral blindness and may have contributed to steroid tapering. Tocilizumab may represent a new early effective second-line treatment option in corticosteroid-resistant anterior ischemic optic neuropathy. More data are needed to confirm this observation and to evaluate the safety profile of this treatment. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  17. Role of blink reflex in diagnosis of subclinical cranial neuropathy in diabetic mellitus type II.

    Science.gov (United States)

    Kazem, Shakouri S; Behzad, Davoudi

    2006-05-01

    Peripheral neuropathy (PN) is one of the late complications of diabetes mellitus. Cranial nerves III, VII, and V are among the most commonly affected in diabetic patients. Traditional electrodiagnosis (Edx) studies are a useful method for diagnosis of PN and symptomatic cranial neuropathy, and may not be useful for detecting subclinical involvement of cranial nerves. The main objective of this study is to evaluate the role of blink reflex (BR) for early diagnosis of cranial neuropathy in diabetic patients with PN. A prospective study was performed on NIDDM patients with PN. One hundred eighty-eight subjects were included in our study in which 142 acted as healthy subjects and 46 as diabetic patients. Patients were excluded with prior history of cranial nerve lesions, stroke, or any other disease with polyneuropathy or drug-induced neuropathy. Routine nerve conduction studies were performed, and only patients with PN were included in this study. Abnormalities were found in 54.4% of patients. R1, IR2, and CR2 were prolonged relative to the healthy group. Statistically there was no significant difference in R/D ratio of patients (P=0.201). Also, there was a positive correlation between R1, IR2, and CR2 latencies with duration of diabetes and severity of polyneuropathy, but not for R/D. The greatest correlation was shown in R1 latency (69.9% abnormality). BR is a noninvasive and very useful method for the evaluation and diagnosis of subclinical cranial nerve involvement in diabetic patients.

  18. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  19. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  20. Chinese herbal medicine for diabetic peripheral neuropathy.

    Science.gov (United States)

    Chen, Wei; Zhang, Yin; Li, Xinxue; Yang, Guoyan; Liu, Jian Ping

    2013-10-06

    Chinese herbal medicine is frequently used for treating diabetic peripheral neuropathy in China. Many controlled trials have been undertaken to investigate its efficacy.This is an update of a Cochrane review that was first published in the year 2011. To assess the beneficial effects and harms of Chinese herbal medicine for people with diabetic peripheral neuropathy. On 14 May 2012, we searched the Cochrane Neuromuscular Disease Group Specialized Register CENTRAL (2012, Issue 4 in The Cochrane Library), MEDLINE (January 1966 to May 2012), EMBASE (January 1980 to May 2012), AMED (January 1985 to May 2012) and in October 2012, the Chinese Biomedical Database (CBM) (1979 to October 2012), Chinese National Knowledge Infrastructure Database (CNKI) (1979 to October 2012), and VIP Chinese Science and Technique Journals Database (1989 to October 2012). We searched for unpublished literature in the Chinese Conference Papers Database, and Chinese Dissertation Database (from inception to October 2012). There were no language or publication restrictions. We included randomised controlled trials of Chinese herbal medicine (with a minimum of four weeks treatment duration) for people with diabetic peripheral neuropathy compared with placebo, no intervention, or conventional interventions. Trials of herbal medicine plus a conventional drug versus the drug alone were also included. Two authors independently extracted data and evaluated trial quality. We contacted study authors for additional information. Forty-nine randomised trials involving 3639 participants were included. All trials were conducted and published in China. Thirty-eight different herbal medicines were tested in these trials, including four single herbs (extracts from a single herb), eight traditional Chinese patent medicines, and 26 self concocted Chinese herbal compound prescriptions. The trials reported on global symptom improvement (including improvement in numbness or pain) and changes in nerve conduction

  1. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Directory of Open Access Journals (Sweden)

    Shu Tang

    2016-01-01

    Full Text Available c-Jun NH2-terminal kinase (JNK-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  2. Foot Kinetics and Kinematics Profile in Type 2 Diabetes Mellitus with Peripheral Neuropathy: A Hospital Based Study from South India.

    Science.gov (United States)

    Hazari, Animesh; Maiya, Arun G; N, Shivashankara K

    2018-02-01

    A kinetic change in thefoot like altered plantar pressure is the most common etiological risk factor for causing foot ulcers among people with diabetes mellitus. Kinematic alterations in joint angle and spatiotemporal parameters of the gait have also been frequently observed in participants with diabetes peripheral neuropathy. Diabetes peripheral neuropathy is the most common long-term standing complication of type 2 diabetes mellitus. It leads to various micro and macrovascular related complication of the foot. There is a gap in theliteraturefor biomechanical evaluation and assessment in type 2 diabetes mellitus with peripheral neuropathy in Indian population. The aim of the study was to assess and determine the biomechanical changes including kinetics and kinematics of foot among diabetic peripheral neuropathy. The cross-sectional study was conducted at Diabetic Foot Clinic, Kasturba Hospital, Manipal University, Manipal, Karnataka, India. A total of 120 participants with type 2 diabetes mellitus and peripheral neuropathywere recruited under the purposive sampling method. Participants with any active ulceration or amputation were excluded from the study. The mean age, height, weight, body mass index, duration of diabetes was 57±14 year, 164±11cm, 61±18kg, 24± 3, 12±7 year respectively. There were significant changes in overall biomechanical profile along with clinical manifestations of diabetes peripheral neuropathy.The regression analysis showed statistical significance for dynamic maximum plantar pressure at forefoot with age, weight, height, duration of diabetes, body mass index, knee & ankle joint angle at toe-off phase of gait cycle,pinprick sensation and ankle reflex (R=.71,R =.55, F (12, 108)=521.9 kPa, p=.002) Conclusions: From the present study, we conclude that people with type 2 diabetes mellitus and peripheral neuropathy have significant changes in their foot kinetics and kinematicsparameters. Therefore, they could be at higher risk of foot

  3. Neurotrophin Signaling via Long-Distance Axonal Transport

    Science.gov (United States)

    Chowdary, Praveen D.; Che, Dung L.; Cui, Bianxiao

    2012-05-01

    Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.

  4. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  5. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  6. Functional characterization and axonal transport of quantum dot labeled BDNF

    OpenAIRE

    Xie, Wenjun; Zhang, Kai; Cui, Bianxiao

    2012-01-01

    Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...

  7. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  8. Self-amplifying autocrine actions of BDNF in axon development

    OpenAIRE

    Cheng, Pei-Lin; Song, Ai-Hong; Wong, Yu-Hui; Wang, Sheng; Zhang, Xiang; Poo, Mu-Ming

    2011-01-01

    A critical step in neuronal development is the formation of axon/dendrite polarity, a process involving symmetry breaking in the newborn neuron. Local self-amplifying processes could enhance and stabilize the initial asymmetry in the distribution of axon/dendrite determinants, but the identity of these processes remains elusive. We here report that BDNF, a secreted neurotrophin essential for the survival and differentiation of many neuronal populations, serves as a self-amplifying autocrine f...

  9. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  10. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  11. Paclitaxel Plasma Concentration after the First Infusion Predicts Treatment-Limiting Peripheral Neuropathy.

    Science.gov (United States)

    Hertz, Daniel L; Kidwell, Kelley M; Vangipuram, Kiran; Li, Feng; Pai, Manjunath P; Burness, Monika; Griggs, Jennifer J; Schott, Anne F; Van Poznak, Catherine; Hayes, Daniel F; Lavoie Smith, Ellen M; Henry, N Lynn

    2018-04-27

    Purpose: Paclitaxel exposure, specifically the maximum concentration ( C max ) and amount of time the concentration remains above 0.05 μmol/L ( T c >0.05 ), has been associated with the occurrence of paclitaxel-induced peripheral neuropathy. The objective of this study was to validate the relationship between paclitaxel exposure and peripheral neuropathy. Experimental Design: Patients with breast cancer receiving paclitaxel 80 mg/m 2 × 12 weekly doses were enrolled in an observational clinical study (NCT02338115). Paclitaxel plasma concentration was measured at the end of and 16-26 hours after the first infusion to estimate C max and T c >0.05 Patient-reported peripheral neuropathy was collected via CIPN20 at each dose, and an 8-item sensory subscale (CIPN8) was used in the primary analysis to test for an association with T c >0.05 Secondary analyses were conducted using C max as an alternative exposure parameter and testing each parameter with a secondary endpoint of the occurrence of peripheral neuropathy-induced treatment disruption. Results: In 60 subjects included in the analysis, the increase in CIPN8 during treatment was associated with baseline CIPN8, cumulative dose, and relative dose intensity ( P 0.05 ( P = 0.27) nor C max ( P = 0.99). In analyses of the secondary endpoint, cumulative dose (OR = 1.46; 95% confidence interval (CI), 1.18-1.80; P = 0.0008) and T c >0.05 (OR = 1.79; 95% CI, 1.06-3.01; P = 0.029) or C max (OR = 2.74; 95% CI, 1.45-5.20; P = 0.002) were associated with peripheral neuropathy-induced treatment disruption. Conclusions: Paclitaxel exposure is predictive of the occurrence of treatment-limiting peripheral neuropathy in patients receiving weekly paclitaxel for breast cancer. Studies are warranted to determine whether exposure-guided dosing enhances treatment effectiveness and/or prevents peripheral neuropathy in these patients. Clin Cancer Res; 1-9. ©2018 AACR. ©2018 American Association for Cancer Research.

  12. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  13. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  14. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  15. Syringomyelia presenting with unilateral optic neuropathy: a case report.

    Science.gov (United States)

    Ngoo, Qi Zhe; Tai, Evelyn Li Min; Wan Hitam, Wan Hazabbah

    2017-01-01

    In this case report, we present two cases of syringomyelia with optic neuropathy. In Case 1, a 36-year-old Malay lady presented to our clinic with acute onset of blurring of vision in her left eye that she experienced since past 1 month. She was diagnosed with syringomyelia 12 years ago and was on conservative management. Her visual acuity was 6/6 in the right eye and counting fingers at 1 m in the left. There was a positive relative afferent pupillary defect in her left eye. Optic nerve functions of her left eye were reduced. Visual field showed a left inferior field defect. Her extraocular muscle movements were full. Magnetic resonance imaging of the brain and spine showed syringomyelia at the level of C2-C6 and T2-T9. Both of her optic nerves were normal. Her condition improved with intravenous and oral corticosteroids. In Case 2, a 44-year-old Malay lady presented to our clinic with a progressive central scotoma in her right eye that she experienced since past 1 month. She had previous history of recurrent episodes of weakness in both of her lower limbs from past 8 months. Visual acuity in her right and left eye was 6/9 and 6/6, respectively. The relative afferent pupillary defect in her right eye was positive. Optic nerve functions of her right eye were affected. Visual field showed a central scotoma in her right eye. Her extraocular muscle movements were full. Fundoscopy of her right eye showed a pale optic disc. Her left eye fundus was normal. Magnetic resonance imaging of the brain and spine showed syringomyelia at T3-T6. Both of her optic nerves were normal. A diagnosis of syringomyelia with right optic atrophy was performed. Her condition improved with intravenous and oral corticosteroids. Optic neuropathy is a rare neuro-ophthalmic manifestation in patients with syringomyelia. Prompt diagnosis and timely management are essential to avoid a poor visual outcome. Intravenous corticosteroids are beneficial in the treatment of early optic neuropathy in

  16. NRP-1 Receptor Expression Mismatch in Skin of Subjects with Experimental and Diabetic Small Fiber Neuropathy.

    Directory of Open Access Journals (Sweden)

    Nathalie Van Acker

    Full Text Available The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN. Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes.

  17. Susceptibility of various areas of the nervous system of hens to TOCP-induced delayed neuropathy.

    Science.gov (United States)

    Classen, W; Gretener, P; Rauch, M; Weber, E; Krinke, G J

    1996-01-01

    Sensitivity of in-life parameters, biochemical endpoints, and susceptibility of various areas of the chicken nervous system to delayed neuropathy induced by tri-orthocresyl phosphate (TOCP) was assessed. Groups of hens were exposed to a single oral dose of TOCP of 0, 50, 200 or 500 mg/kg and the animals observed for 21 days. Perfusion fixed, paraffin embedded tissue sections were stained with Bodian's silver and Luxol blue and semi-thin epoxy sections with toluidine blue. Sciatic and tibial nerves, lumbosacral, midthoracic, and upper cervical spinal cord, medulla oblongata and cerebellum were examined using a semiquantitative scoring system. In pair-dosed hens inhibition of brain and spinal cord neurotoxic esterase (NTE) and cholinesterase and of plasma and erythrocyte cholinesterases was determined 24 hr and 48 hr after administration. At all dose levels NTE in brain and spinal cord and plasma cholinesterase was inhibited markedly. Quantitative inhibition of NTE was seen also in absence of neuropathy. Ataxia and body weight loss occurred in high-dose animals only, while dose-related neuropathy was seen in the distal tibial nerve, medulla oblongata and cerebellum. Ataxia was correlated best with neuropathy in peripheral nerves while degeneration of nerve fibers in the cerebellum, seen best in mid-longitudinal sections, was the most sensitive histological indicator of TOCP-induced delayed neuropathy. The particular susceptibility of spinocerebellar neurons was recognized long ago, but often has been neglected in delayed neurotoxicity studies and respective guidelines. Optimal sensitivity of toxicity tests is a prerequisite for risk assessment, can be cost efficient, and nowadays should be a main interest of animal welfare in order to reduce animals' suffering. Based on these data, determination of NTE inhibition together with histopathological examination of longitudinal sections of distal tibial nerves, mid-longitudinal sections of rostral cerebellum and cross

  18. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient

    Directory of Open Access Journals (Sweden)

    Sonia Emperador

    2018-02-01

    Full Text Available The onset of Leber hereditary optic neuropathy is relatively rare in childhood and, interestingly, the rate of spontaneous visual recovery is very high in this group of patients. Here, we report a child harboring a rare pathological mitochondrial DNA mutation, present in heteroplasmy, associated with the disease. A patient follow-up showed a rapid recovery of the vision accompanied by a decrease of the percentage of mutated mtDNA. A retrospective study on the age of recovery of all childhood-onset Leber hereditary optic neuropathy patients reported in the literature suggested that this process was probably related with pubertal changes.

  19. [A family with autosomal dominant