WorldWideScience

Sample records for related acetal benzoic

  1. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  2. High Performance Liquid Chromatography Determination of Urinary Hippuric Acid and Benzoic Acid as Indices for Glue Sniffer Urine

    OpenAIRE

    Abdul Rahim Yacob; Mohamad Raizul Zinalibdin

    2010-01-01

    A simple method for the simultaneous determination of hippuric acid and benzoic acid in urine using reversed-phase high performance liquid chromatography was described. Chromatography was performed on a Nova-Pak C18 (3.9 x 150 mm) column with a mobile phase of mixed solution methanol: water: acetic acid (20:80:0.2) and UV detection at 254 nm. The calibration curve was linear within concentration range at 0.125 to 6.0 mg/ml of hippuric acid and benzoic acid. The recovery, ...

  3. 21 CFR 184.1021 - Benzoic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid occurs...

  4. 21 CFR 582.3021 - Benzoic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe for...

  5. Comparison of some aqueous chemical dosimeters for absorbed doses of less than 1000 rads. [Benzoic--salicylic acid, terephtalic--2-hydroxyterephtabe acid, ferrous sulfate--benzoic acid--xylenol orange, and standard Fricke dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R W [Australian Atomic Energy Commission Research Establishment, Lucas Heights; Barker, N T; Sangster, D F

    1978-01-01

    This report gives the results of an investigation into the relative merits of the systems: benzoic-salicylic acid, terephthalic-2-hydroxyterephthalic acid, the more recent ferrous sulphate-benzoic acid-xylenol orange (FBX), and the standard Fricke dosimeter, for the measurement of absorbed doses under identical irradiation conditions, in the range 10 to 1000 rads.

  6. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    Science.gov (United States)

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  7. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali...

  8. An Optical Test Strip for the Detection of Benzoic Acid in Food

    Directory of Open Access Journals (Sweden)

    Fatimah Abu Bakar

    2011-07-01

    Full Text Available Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10. The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (Ki is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.

  9. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  10. Synthesis and Antiradical/Antioxidant Activities of Caffeic Acid Phenethyl Ester and Its Related Propionic, Acetic, and Benzoic Acid Analoguesc

    Directory of Open Access Journals (Sweden)

    Mohamed Touaibia

    2012-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is a bioactive component isolated from propolis. A series of CAPE analogues was synthesized and their antiradical/antioxidant effects analyzed. The effect of the presence of the double bond and of the conjugated system on the antioxidant effect is evaluated with the analogues obtained from 3-(3,4-dihydroxyphenyl propanoic acid. Those obtained from 2-(3,4-dihydroxyphenyl acetic acid and 3,4-dihydroxybenzoic acid allow the evaluation of the effect of the presence of two carbons between the carbonyl and aromatic system.

  11. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    Science.gov (United States)

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  12. Estimated intake of benzoic and sorbic acids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Christensen, Tue; Larsen, I. K.

    2010-01-01

    limits, illegal use or declaration faults were found in about 3% of samples. From repeated investigations on fat-based foods (salads and dressings), marmalade and stewed fruit, it is concluded that the amounts used in industry have been relatively stable throughout the whole period, although limited data...... for marmalade show some variation. Most foods in the categories soft drinks, dressings, fat-based salads, pickled herrings, and marmalade contain benzoic and sorbic acid, and sliced bread also contains in some cases sorbic acid. The median daily intake and intake distribution of benzoic and sorbic acids were......-old age group. Based on the average of all samples, the 95th percentile is over the acceptable daily intake for men up to 34 years and for women up to 24 years, and the 90th percentile for men up to 18 years and for women up to 10 years. Soft drinks, salads and dressings are the main contributors...

  13. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  14. Megestrol acetate in patients with AIDS-related cachexia.

    Science.gov (United States)

    Von Roenn, J H; Armstrong, D; Kotler, D P; Cohn, D L; Klimas, N G; Tchekmedyian, N S; Cone, L; Brennan, P J; Weitzman, S A

    1994-09-15

    To compare the effects of oral suspensions of megestrol acetate, 800 mg/d, and placebo on body weight in patients with acquired immunodeficiency syndrome (AIDS)-related weight loss. Randomized, double-blind, placebo-controlled trial. Outpatient community and university patient care setting. Consecutive patients with AIDS who had substantial weight loss and anorexia were enrolled. Of 271 patients, 270 and 195 were evaluable for safety and efficacy, respectively. Patients were randomly assigned to receive placebo or megestrol acetate (100 mg, 400 mg, or 800 mg) daily for 12 weeks. The primary efficacy criterion was weight gain. Patients were evaluated at 4-week intervals for changes in weight and body composition, caloric intake, sense of well-being, toxic effects, and appetite. For evaluable patients receiving 800 mg of megestrol acetate per day, 64.2% gained 2.27 kg (5 pounds) or more compared with 21.4% of patients receiving placebo (P < 0.001). An intent-to-treat analysis showed significant differences (P = 0.002) between those receiving placebo and those receiving 800 mg of megestrol acetate for the number of patients who gained 2.27 kg (5 pounds) or more (8 of 32 [25%] compared with 38 of 61 [62.3%], respectively). Compared with patients receiving placebo at the time of maximum weight change, evaluable patients receiving megestrol acetate, 800 mg/d, reported improvement in overall well-being and had an increase in mean weight gain (-0.725 compared with 3.54 kg [-1.6 compared with +7.8 pounds]; P < 0.001), lean body mass (-0.772 compared with +1.14 kg [-1.7 compared with +2.5 pounds]; P < 0.001), appetite grade (P < 0.001), and caloric intake (-107 compared with +645.6 calories/d; P = 0.001). In patients with AIDS-related weight loss, megestrol acetate can stimulate appetite, food intake, and statistically significant weight gain that is associated with a patient-reported improvement in an overall sense of well-being.

  15. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids

    International Nuclear Information System (INIS)

    Mandic, Zoran; Nigovic, Biljana; Simunic, Branimir

    2004-01-01

    The electrochemical reduction of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(3-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(2-sulfophenyl)azo]benzoic acid and 2-hydroxy-5-azo-benzoic acid has been carried out in aqueous solutions at glassy carbon electrode using cyclic voltammetry and chronoamperometry. The position of sulfo substituent relative to azo bridge as well as pH of the solution have significant impact on the electrochemical behavior of these compounds. It has been proposed that these compounds are reduced predominantly as hydrazone tautomers resulting in corresponding hydrazo compounds. The overall electrochemical reduction follows DISP2 mechanism, ultimately leading to the 5-amino salicylic acid and sulfanilic acid. The rate determining step is the homogenous redox reaction between intermediate hydrazo compound and 5-amino salicylic acid quinoneimine. The mechanism is proposed in which activated complex of 5-amino salicylic acid quinoneimine and intermediate hydrazo compound is formed with the simultaneous loss of one proton

  16. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  17. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  18. Preliminary Study on Benzoic Acid Adsorption from Crude Active Coals and Bentonite

    Directory of Open Access Journals (Sweden)

    Abbes Boucheta

    2016-04-01

    Full Text Available We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria, and coal (Coal from the mines, southwest of Algeria, Bechar area under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended in the field of remediation of water contaminated with organic pollutants

  19. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  20. Validated HPLC method for identification and quantification of p-hydroxy benzoic acid and agnuside in Vitex negundo and Vitex trifolia

    Directory of Open Access Journals (Sweden)

    Sonal Shah

    2013-12-01

    Full Text Available A high performance liquid chromatography coupled with photodiode array detection method was developed for the identification and quantification of p-hydroxy benzoic acid and agnuside in the extracts of Vitex negundo and Vitex trifolia. The separation was achieved using acetonitrile and O-phosphoric acid–water (0.5%, v/v as the mobile phase in an isocratic elution mode. Mean retention times of standard p-hydroxy benzoic acid and agnuside were 6.14 and 11.90 min respectively. The developed method was validated as per the ICH guidelines for limit of detection, limit of quantification, linearity, accuracy and precision. Good linearity (r2≥0.999 was observed for both the compounds in wide concentration range. Relative standard deviation values for intra-day and inter-day precision studies were less than 2%. The analytical recoveries of p-hydroxy benzoic acid and agnuside by the developed HPLC method were 93.07% and 106.11% respectively. Two compounds were identified and quantified in leaves and bar extracts of V. negundo and V. trifolia using the developed HPLC method. Keywords: Vitex negundo, Vitex trifolia, HPLC-PDA, p-Hydroxy benzoic acid, Agnuside

  1. 2-[(1-Benzamido-2-methoxy-2-oxoethylamino]benzoic Acid

    Directory of Open Access Journals (Sweden)

    Alami Anouar

    2013-01-01

    Full Text Available The carboxylic α,α-diaminoester 2-[(1-benzamido-2-methoxy-2-oxoethyl amino]benzoic acid is obtained by N-alkylation of methyl α-azido glycinate N-benzoylated with 2-aminobenzoic acid.

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider in this revision 3 of Flavouring Group Evaluation 20, the SCF Opinion on benzoic acid. Furthermore information on stereoisomeric composition for two...... Regulation (EC) No 1565/2000. None of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern...

  3. Comparison of the effect of benzoic acid addition on the fermentation process quality with untreated silages

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2004-01-01

    Full Text Available The influence of benzoic acid and formic acid (positive control of ensilaged maize and pressed sugar beet pulp on quality fermentation processes was studied in a laboratory experiment. The effect of additive on the quality of fermentation process during maize ensiling was studied in a first model experiment. Preservatives such as formic acid and benzoic acid were added to ensiled maize at the concentration of 1L/t and 1 kg/t, respectively. When benzoic acid was used as a preservative, the pH and the N-NH3/ N total ratio decreased statistically (PSugar beet pulp silages with benzoic acid or formic acid after 32 days of storage had a better sensuous evaluation than the control silage. The most intensive decrease of pH value was observed after formic acid addition as compared with control silage. The statistically significantly (P<0.05 highest lactic acid content (49.64 ± 0.28 as well as the highest ratio of LA/VFA were found in the sugar beet pulp silage with benzoic acid. Lactic acid constituted the highest percentage (P<0.05 of all fermentation acids in the silage with benzoic acid additive (65.12 ± 0.80. Undesirable butyric acid (BA was not found in any variant of silages. The positive correlation between the titration acidity and acids sum in dry matter of silage conserved with formic acid was found. The additive of organic acids reduced significantly TA and fermentation acids content. Between the pH value and lactic acid content, no correlation was found.

  4. EXTRACTION AND SORPTION BENZOIC ACID FROM AQUEOUS SOLUTIONS OF POLYMERS BASED ON N-VINYLAMIDES

    Directory of Open Access Journals (Sweden)

    A. G. Savvina

    2015-01-01

    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  5. Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers

    Science.gov (United States)

    Smedarchina, Zorka; Fernández-Ramos, Antonio; Siebrand, Willem

    2005-04-01

    Direct dynamics calculations based on instanton techniques are reported of tunneling splittings due to double proton transfer in formic and benzoic acid dimers. The results are used to assign the observed splittings to levels for which the authors of the high-resolution spectra could not provide a definitive assignment. In both cases the splitting is shown to be due mainly to the zero-point level rather than to the vibrationally or electronically excited level whose spectrum was investigated. This leads to zero-point splittings of 375MHz for (DCOOH)2 and 1107MHz for the benzoic acid dimer. Thus, contrary to earlier calculations, it is found that the splitting is considerably larger in the benzoic than in the formic acid dimer. The calculations are extended to solid benzoic acid where the asymmetry of the proton-transfer potential induced by the crystal can be overcome by suitable doping. This has allowed direct measurement of the interactions responsible for double proton transfer, which were found to be much larger than those in the isolated dimer. To account for this observation both static and dynamic effects of the crystal forces on the intradimer hydrogen bonds are included in the calculations. The same methodology, extended to higher temperatures, is used to calculate rate constants for HH, HD, and DD transfers in neat benzoic acid crystals. The results are in good agreement with reported experimental rate constants measured by NMR relaxometry and, if allowance is made for small structural changes induced by doping, with the transfer matrix elements observed in doped crystals. Hence the method used allows a unified description of tunneling splittings in the gas phase and in doped crystals as well as of transfer rates in neat crystals.

  6. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    Science.gov (United States)

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  7. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  8. Detection of Benzoic Acid by an Amperometric Inhibitor Biosensor Based on Mushroom Tissue Homogenate

    Directory of Open Access Journals (Sweden)

    Mustafa Kemal Sezgintürk

    2005-01-01

    Full Text Available An amperometric benzoic acid-sensing inhibitor biosensor was prepared by immobilizing mushroom (Agaricus bisporus tissue homogenate on a Clark-type oxygen electrode. The effects of the quantity of mushroom tissue homogenate, the quantity of gelatin and the effect of the crosslinking agent glutaraldehyde percent on the biosensor were studied. The optimum concentration of phenol used as substrate was 200 μM. The bioanalytical properties of the proposed biosensor, such as dependence of the biosensor response on the pH value and the temperature, were investigated. The biosensor responded linearly to benzoic acid in a concentration range of 25–100 μM. Standard deviation (s.d. was ±0.49 μM for 7 successive determinations at a concentration of 75 μM. The inhibitor biosensor based on mushroom tissue homogenate was applied for the determination of benzoic acid in fizzy lemonade, some fruits and groundwater samples. Results were compared to those obtained using AOAC method, showing a good agreement.

  9. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  10. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  11. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Kjaerstad, Mia Birkhoej; Mathiesen, Line

    2008-01-01

    group of compounds. Benzoic acid, caffeine, and glyphosate were chosen as model compounds because they are small molecules with large differences in physiochemical properties. Caffeine crossed the placenta by passive diffusion. The initial transfer rate of benzoic acid was more limited in the first part...... of the perfusion compared to caffeine, but reached the same steady-state level by the end of perfusion. The transfer of glyphosate was restricted throughout perfusion, with a lower permeation rate, and only around 15% glyphosate in maternal circulation crossed to the fetal circulation during the study period....

  12. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  13. Deoxygenation of benzoic acid on metal oxides. 2. Formation of byproducts.

    NARCIS (Netherlands)

    de Lange, M.W.; van Ommen, J.G.; Lefferts, Leonardus

    2002-01-01

    Benzene, benzophenone, toluene and benzylalcohol are byproducts in the selective deoxygenation of benzoic acid to benzaldehyde on ZnO and ZrO2. In this paper, the pathways to the byproducts are discussed and a complete overview of the reaction network is presented. Benzene and benzophenone are

  14. Analysis of the ortho effect: acidity of 2-substituted benzoic acids

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Fiedler, Pavel; Exner, Otto

    2004-01-01

    Roč. 28, - (2004), s. 67-74 ISSN 1144-0546 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : 2-substituted benzoic acids * steric effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.735, year: 2004

  15. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  16. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  17. Thermometric titration of acids in pyridine.

    Science.gov (United States)

    Vidal, R; Mukherjee, L M

    1974-04-01

    Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.

  18. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    Science.gov (United States)

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  19. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  20. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  1. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  2. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    Science.gov (United States)

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  3. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  4. Dietary Supplementation of Benzoic Acid and Essential Oil Compounds Affects Buffering Capacity of the Feeds, Performance of Turkey Poults and Their Antioxidant Status, pH in the Digestive Tract, Intestinal Microbiota and Morphology

    Directory of Open Access Journals (Sweden)

    I. Giannenas

    2014-02-01

    Full Text Available Three trials were conducted to evaluate the effect of supplementation of a basal diet with benzoic acid or thymol or a mixture of essential oil blends (MEO or a combination of benzoic acid with MEO (BMEO on growth performance of turkey poults. Control groups were fed a basal diet. In trial 1, benzoic acid was supplied at levels of 300 and 1,000 mg/kg. In trial 2, thymol or the MEO were supplied at levels of 30 mg/kg. In trial 3, the combination of benzoic acid with MEO was evaluated. Benzoic acid, MEO and BMEO improved performance, increased lactic acid bacteria populations and decreased coliform bacteria in the caeca. Thymol, MEO and BMEO improved antioxidant status of turkeys. Benzoic acid and BMEO reduced the buffering capacity compared to control feed and the pH values of the caecal content. Benzoic acid and EOs may be suggested as an effective alternative to AGP in turkeys.

  5. Direct quantitation of the preservatives benzoic and sorbic acid in processed foods using derivative spectrophotometry combined with micro dialysis.

    Science.gov (United States)

    Fujiyoshi, Tomoharu; Ikami, Takahito; Kikukawa, Koji; Kobayashi, Masato; Takai, Rina; Kozaki, Daisuke; Yamamoto, Atsushi

    2018-02-01

    The preservatives benzoic acid and sorbic acid are generally quantified with separation techniques, such as HPLC or GC. Here we describe a new method for determining these compounds in processed food samples based on a narrowness of the UV-visible spectral band width with derivative processing. It permits more selective identification and determination of target analytes in matrices. After a sample is purified by micro dialysis, UV spectra of sample solutions were measured and fourth order derivatives of the spectrum were calculated. The amplitude between the maximum and minimum values in a high-order derivative spectrum was used for the determination of benzoic acid and sorbic acid. Benzoic acid and sorbic acid levels in several commercially available processed foods were measured by HPLC and the proposed spectrometry method. The levels obtained by the two methods were highly correlated (r 2 >0.97) for both preservatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. RESEARCH OF THE ADSORPTION OF ORGANIC ACIDS IN SUGARCANE BAGASSE ASH

    Directory of Open Access Journals (Sweden)

    Julio Omar Prieto García

    2017-07-01

    Full Text Available In this research a study of the adsorption of acetic, benzoic, butanoic, fumaric, maleic and succinic acids on sugarcane baggase ash is made. The adsorber material is characterized through physical criteria such as apparent and pictometric density, compressibility, porosity, superficial area and tortuosity. The sample has been examined by X-rays Diffraction, thermal analysis, IR-quality analysis. The isotherm for the sorption process is determined, where it is shown that the Freundlich model is adjusted to benzoic acid, the Langmuir and Toth model to acetic acid, Bunauer- Emmett- Teller (BET model to succinic acid and the butiric, maleic and fumaric acids are adjusted to Langmoir model. It is established that the first-order model is adjusted to the adsorption kinetics of the acetic and benzoic acids; while the rest of the acids are adjusted to a second-order model, in the case of the butanoic, succinic and maleic acids it is possible the occurrence of chemisorption processes.

  7. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  8. Studies on 2-(toluene-4-sulfonylamino)-benzoic acid: structure spectroscopic properties

    International Nuclear Information System (INIS)

    Tarcan, E.; Atalay, Y.; Guenay, N.

    2010-01-01

    The molecular geometry, vibrational (IR) spectrum, vibrational frequencies and 1 H and 1 3C NMR chemical shifts were carried out of 2-(toluene-4-sulfonylamino)-benzoic acid with ab initio and density functional computations. On the basis of the comparison between calculated and experimental results assignments of fundamental vibrational modes are examined. The X-ray geometry, experimental frequencies and chemical shifts are compared with the results of our theoretical calculations

  9. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    de Lange, M.W.; van Ommen, J.G.; Lefferts, Leonardus

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  10. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  11. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution.

    Science.gov (United States)

    Zrinyi, Nick; Pham, Anh Le-Tuan

    2017-09-01

    Heat activates persulfate (S 2 O 8 2- ) into sulfate radical (SO 4 - ), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emeĺyanenko, Vladimir N.; Stepurko, Elena N.; Zherikova, Kseniya V.

    2015-01-01

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  13. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Zaitsau, Dzmitry H. [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Emeĺyanenko, Vladimir N. [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Stepurko, Elena N. [Chemistry Faculty and Research Institute for Physical Chemical Problems, Belarusian State University, 220030 Minsk (Belarus); Zherikova, Kseniya V. [Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-12-20

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  14. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria.

    Science.gov (United States)

    Mischek, Daniela; Krapfenbauer-Cermak, Christine

    2012-01-01

    An exposure assessment was performed to estimate the potential intake of preservatives in the Austrian population. Food consumption data of different population groups, such as preschool children aged 3-6 years, female and male adults aged 19-65 years were used for calculation. Levels of the preservatives in food were derived from analyses conducted from January 2007 to August 2010. Dietary intakes of the preservatives were estimated and compared to the respective acceptable daily intakes (ADIs). In the average-intake scenario, assuming that consumers randomly consume food products that do or do not contain food additives, estimated dietary intakes of all studied preservatives are well below the ADI for all population groups. Sulphite exposure accounted for 34%, 84% and 89% of the ADI in preschool children, females and males, respectively. The mean estimated daily intake of benzoic acid was 32% (preschool children), 31% (males) and 36% (females) of the ADI. Sorbic acid intakes correspond to 7% of the ADI in preschool children and 6% of the ADI in adults. In the high-intake scenario assuming that consumers always consume food products that contain additives and considering a kind of brand loyalty of consumers, the ADI is exceeded for sulphites among adults (119 and 124%, respectively). Major contributors to the total intake of sulphites were wine and dried fruits for adults. Mean estimated dietary intakes of benzoic acid exceeded the ADI in all population groups, 135% in preschool children, 124% in females and 118% of the ADI in males, respectively. Dietary intakes of sorbic acid are well below the ADI, accounting for a maximum of 30% of the ADI in preschool children. The highest contributors to benzoic and sorbic acid exposure were fish and fish products mainly caused by high consumption data of this large food group, including also mayonnaise-containing fish salads. Other important sources of sorbic acid were bread, buns and toast bread and fruit and vegetable

  15. Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Nørregaard, Lasse; Solem, Christian

    2014-01-01

    transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant...... physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.......Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300...

  16. Use of Ulipristal Acetate for the Management of Fibroid-Related Acute Abnormal Uterine Bleeding.

    Science.gov (United States)

    Arendas, Kristina; Leyland, Nicholas A

    2016-01-01

    Episodes of acute abnormal uterine bleeding related to uterine fibroids can cause significant morbidity. Traditional management with high-dose hormonal regimens may not be as effective when used in women with fibroids. A 32-year-old woman with a 12 cm uterine fibroid presented with an episode of acute abnormal uterine bleeding requiring blood transfusion. In lieu of using a hormonal maintenance regimen after the bleeding had stabilized, the patient was treated with ulipristal acetate 5 mg daily for three months. Amenorrhea was induced rapidly and the patient had no further episodes of acute excessive uterine bleeding. She subsequently underwent a laparoscopic myomectomy with a satisfactory outcome. Ulipristal acetate has been shown to induce amenorrhea rapidly in women with uterine fibroids, and it can be a useful treatment in the emergency management of fibroid-related acute abnormal uterine bleeding. Copyright © 2016 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.

  17. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    Science.gov (United States)

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Relative transport of water (H2O) and tritiated water (HTO) across cellulose acetate (CA) membranes

    International Nuclear Information System (INIS)

    Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1986-01-01

    The relative transport characteristics of water (H 2 O) and tritiated water (HTO) were evaluated through cellulose acetate membranes under osmosis, reverse osmosis and pervaporation. The results indicate that the relative transport is independent of the process. The anamolous observations under osmotic conditions are explained. (orig.)

  19. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Science.gov (United States)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  20. Efficacy of fatty acid chemistry : candidate mold and decay fungicides

    Science.gov (United States)

    Robert Coleman; Vina Yang; Bessie Woodward; Patti Lebow; Carol Clausen

    2010-01-01

    Although organic, lipophilic acids, such as acetic, propionic, sorbic and benzoic, have a long history as preservatives in the food industry, relatively high concentrations are required and their bioactivities generally pertain to retarding microbial growth rather than eliminating pathogens. Moreover, exclusive use of organic acids such as lactic or citric acid, alone...

  1. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  2. Inhibition of denitrification and N2O emission by urine-derived benzoic and hippuric acid

    NARCIS (Netherlands)

    Groenigen, van J.W.; Palermo, V.; Kool, D.M.; Kuikman, P.J.

    2006-01-01

    Hippuric acid (HA) in cattle urine acts as a natural inhibitor of soil N2O emissions. As HA concentration varies with diet, we determined critical HA levels. We also tested the hypothesis that the inhibition occurs because the HA breakdown product benzoic acid (BA) inhibits denitrification rates.

  3. Liquid-liquid extraction systems of benzoic acid in water, heptane, methylbenzene or trichloroethylene as co-solvent

    NARCIS (Netherlands)

    Visscher, F.; Gaakeer, W.A.; Granados Mendoza, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2011-01-01

    Equilibrium data at (293 ± 2) K are presented for benzoic acid in water and three different organic phases (heptane, methylbenzene, and trichloroethylene). The monomeric partition constant, KPMON, and the dimerization constant, KD, for the organic phase were determined at 293 K. For the

  4. Natural oils affect the human skin integrity and the percutaneous penetration of benzoic acid dose-dependently

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo

    2006-01-01

    three natural oils (eucalyptus oil, tea tree oil, peppermint oil) would affect the skin integrity and the percutaneous penetration of benzoic acid when applied topically in relevant concentrations. An experimental in vitro model using static diffusion cells mounted with human breast or abdominal skin...

  5. Desmopressin Acetate in Intracranial Haemorrhage

    Directory of Open Access Journals (Sweden)

    Thomas Kapapa

    2014-01-01

    Full Text Available Introduction. The secondary increase in the size of intracranial haematomas as a result of spontaneous haemorrhage or trauma is of particular relevance in the event of prior intake of platelet aggregation inhibitors. We describe the effect of desmopressin acetate as a means of temporarily stabilising the platelet function. Patients and Methods. The platelet function was analysed in 10 patients who had received single (N=4 or multiple (N=6 doses of acetylsalicylic acid and 3 patients (control group who had not taken acetylsalicylic acid. All subjects had suffered intracranial haemorrhage. Analysis was performed before, half an hour and three hours after administration of desmopressin acetate. Statistical analysis was performed by applying a level of significance of P≤0.05. Results. (1 Platelet function returned to normal 30 minutes after administration of desmopressin acetate. (2 The platelet function worsened again after three hours. (3 There were no complications related to electrolytes or fluid balance. Conclusion. Desmopressin acetate can stabilise the platelet function in neurosurgical patients who have received acetylsalicylic acid prior to surgery without causing transfusion-related side effects or a loss of time. The effect is, however, limited and influenced by the frequency of drug intake. Further controls are needed in neurosurgical patients.

  6. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  7. Determination of the limit of quantification of the calorimeter using a mixture of benzoic acid and silicon dioxide

    Directory of Open Access Journals (Sweden)

    Krstić Vesna R.

    2011-01-01

    Full Text Available In recent years quality control has received a great attention in laboratory work. Implementation of the international standard ISO/IEC 17025 is necessary for any laboratory that wishes to establish quality control in its work. One of the important factors for meeting the requirements of this standard is the usage of the certified reference materials (CRM in laboratory work. In order to determine the performance of the calorimeter, benzoic acid as CRM, from AlliedSignal Riedelda Haen, Ref.: 33045 and SiO2, Pro analyze, in various mass ratios was used. The results showed that benzoic acid can be successfully utilized for the control of the entire technical and instrumental measuring range and resolve the problem of determination of the limit of detection and quantification of the calorimeter.

  8. Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC.

    Science.gov (United States)

    Gao, Yuan; Li, Li; Zhang, Jianjun; Shu, Wenjuan; Gao, Liqiong

    2012-04-01

    A simple, rapid, specific and precise reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of triacetin, acetic ether, butyl acetate and amorolfine in marketed pharmaceutical liniment. Chromatographic separation was performed on a Shimadzu VP-ODS C(18) column using the mixture of citric acid-hydrochloric acid-sodium hydrate buffer (pH 3.0), acetonitrile and methanol (32:30:38) as the mobile phase at a flow rate of 1.0 mL/min with UV-detection at 215 nm. The method separated the four components simultaneously in less than 10 min. The validation of the method was performed with respect to specificity, linearity, accuracy, and precision. The calibration curves were linear in the range of 35.1-81.9 μ/mL for triacetin, 431.1-1005.9 μ/mL for acetic ether, 167.0-389.7 μ/mL for butyl acetate and 151.0-352.3 μ/mL for amorolfine. The mean 100% spiked recovery for triacetin, acetic ether, butyl acetate and amorolfine is 99.43 ± 0.42, 101.5 ± 1.09, 101.4 ± 1.02 and 100.8 ± 0.69, respectively. The intra-day and inter-day relative standard deviation values were liniment.

  9. Pharmacological Studies of p, N-(3, 4-Methylenedioxy phenyl Benzoic Acid (RRL-1364 - Part-I

    Directory of Open Access Journals (Sweden)

    Dahanukar Sharadini

    1978-01-01

    Full Text Available Detailed pharmacological investigations of p-N-(3, 4-methylene dioxy phenyl benzoic acid revealed marked hypotensive action which was dose dependent and most marked in cats; it was absent in rats. Atropine could block this hypotensive action, thus suggest-ing cholinomimetic mechanism. Further studies indicated that the hypotension produced was central and possibly medullary in origin.

  10. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    Science.gov (United States)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  11. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    OpenAIRE

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  12. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Energy Technology Data Exchange (ETDEWEB)

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  13. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  14. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  15. Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.

    Science.gov (United States)

    Scholten, J.C.M.; Stams, A.J.M.

    2000-12-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.

  16. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  17. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  18. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  19. Photodissociation spectroscopy of the Mg+-acetic acid complex

    Science.gov (United States)

    Abate, Yohannes; Kleiber, P. D.

    2006-11-01

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p←3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg+, MgOH+, Mg(H2O )+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  20. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    Science.gov (United States)

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  1. The method of quantitative determination of iodine in acetic acid

    International Nuclear Information System (INIS)

    Sukhomlinov, A.B.; Kalinchenko, N.B.

    1988-01-01

    Method for separate determination of J 2 and J - concentrations in acetic acid is suggested. Iodine concentration in acetic acid is determined by measuring potential of iodine-selective electrode first in the initial solution of acetic acid, where molecular iodine dissociation equals 0.5, and then in acetic acid, with alkali (NaOH) addition up to pH > 3, where molecular iodine dissociation equals 1. Determination is conducted in 5x10 -7 -5x10 -6 mol/l concentration range with relative standard deviation not more than 0.1. 1 fig

  2. Syntheses and structures of three heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid

    International Nuclear Information System (INIS)

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-01-01

    Three lanthanide–transition-metal coordination polymers, namely, [Er 2 L 6 (H 2 O)][Cu 2 I 2 ] (1), [ErL 3 ][CuI] (2), and [Dy 2 L 6 (BPDC) 0.5 (H 2 O) 4 ][Cu 3 I 2 ] (3) (HL=4-pyridin-3-yl-benzoic acid, H 2 BPDC=4,4′-biphenyldicarboxylic acid) have been made by reacting Ln 2 O 3 and CuI with HL at different temperatures under hydrothermal conditions. All the complexes are characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction, respectively. 1–3 all construct from dimeric (Ln 2 ) and (Cu 2 ) units and exhibit two types of the structural features: 1 is a two-dimensional layer, 2–3 are three-dimensional frameworks. Interestingly, the in situ formation of the BPDC ligand is found in the structure of 3. The distinct architectures of these complexes indicated that the reaction temperature plays an important role in the formation of higher dimensional coordination polymers. - Graphical abstract: By hydrothermal reaction of lanthanide oxide, copper halide, and 4-pyridin-3-yl-benzoic ligand at different temperatures, a series of 1-D to 3-D 3d–4f coordination polymers, namely [ErL 3 (H 2 O) 2 ][CuI], [Er 2 L 6 (H 2 O)][Cu 2 I 2 ], [ErL 3 ][CuI], and [Dy 2 L 6 (BPDC) 0.5 (H 2 O) 4 ][Cu 3 I 2 ], have been made, respectively. - Highlights: • Three novel heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid have been hydrothermally synthesized. • Mixed dinuclear motifs of (Ln 2 ) and (Cu 2 ) serve as secondary building units to generate 2-D layer and 3-D frameworks. • It is proved that higher temperature is apt to permit construction of high dimensional architectures

  3. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  4. Synthesis, characterization and biological studies of 2-(4-nitro phenylaminocarbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Aqeel Ashraf, M.; Jamil Maah, M.; Yusuf, I.

    2012-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) salts of 2-(4-nitro phenylaminocarbonyl)benzoic acid were characterized by physical, analytical and spectroscopic studies and checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis (Gram +ve), Escherichia coli (Gram -ve), Pseudomonas aeuroginosa (Gram -ve) and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. The antimicrobial activities of the metal complexes - were found to be greater than those of 2-(4-nitro phenylaminocarbonyl)benzoic acid alone.

  5. APMP.QM-S8: determination of mass fraction of benzoic acid, methyl paraben and n-butyl paraben in soy sauce

    Science.gov (United States)

    Teo, Tang Lin; Gui, Ee Mei; Lu, Ting; Sze Cheow, Pui; Giannikopoulou, Panagiota; Kakoulides, Elias; Lampi, Evgenia; Choi, Sik-man; Yip, Yiu-chung; Chan, Pui-kwan; Hui, Sin-kam; Wollinger, Wagner; Carvalho, Lucas J.; Garrido, Bruno C.; Rego, Eliane C. P.; Ahn, Seonghee; Kim, Byungjoo; Li, Xiuqin; Guo, Zhen; Styarini, Dyah; Aristiawan, Yosi; Putri Ramadhaningtyas, Dillani; Aryana, Nurhani; Ebarvia, Benilda S.; Dacuaya, Aaron; Tongson, Alleni; Aganda, Kim Christopher; Junvee Fortune, Thippaya; Tangtrirat, Pradthana; Mungmeechai, Thanarak; Ceyhan Gören, Ahmet; Gündüz, Simay; Yilmaz, Hasibe

    2017-01-01

    The supplementary comparison APMP.QM-S8: determination of mass fraction of benzoic acid, methyl paraben and n-butyl paraben in soy sauce was coordinated by the Health Sciences Authority, Singapore under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Ten national metrology institutes (NMIs) or designated institutes (DIs) participated in the comparison. All the institutes participated in the comparison for benzoic acid, while six NMIs/DIs participated in the comparison for methyl paraben and n-butyl paraben. The comparison was designed to enable participating institutes to demonstrate their measurement capabilities in the determination of common preservatives in soy sauce, using procedure(s) that required simple sample preparation and selective detection in the mass fraction range of 50 to 1000 mg/kg. The demonstrated capabilities can be extended to include other polar food preservatives (e.g. sorbic acid, propionic acid and other alkyl benzoates) in water, aqueous-based beverages (e.g. fruit juices, tea extracts, sodas, sports drinks, etc) and aqueous-based condiments (e.g. vinegar, fish sauce, etc). Liquid--liquid extraction and/or dilution were applied, followed by instrumental analyses using LC-MS/MS, LC-MS, GC-MS (with or without derivatisation) or HPLC-DAD. Isotope dilution mass spectrometry was used for quantification, except in the case of a participating institute, where external calibration method was used for quantification of all three measurands. The assigned Supplementary Comparison Reference Values (SCRVs) were the medians of ten results for benzoic acid, six results for methyl paraben and six results for n-butyl paraben. Benzoic acid was assigned a SCRV of 154.55 mg/kg with a combined standard uncertainty of 0.94 mg/kg, methyl paraben was assigned a SCRV of 100.95 mg/kg with a combined standard uncertainty of 0.40 mg/kg, and n-butyl paraben was assigned a SCRV of 99.05 mg

  6. A case of anaphylactoid reaction to acetate in acetate-containing bicarbonate dialysate.

    Science.gov (United States)

    Misaki, Taro; Suzuki, Yumiko; Naito, Yoshitaka; Shiooka, Tempei; Isozaki, Taisuke

    2015-05-01

    A 35-year-old man with end-stage kidney disease due to chronic glomerulonephritis was admitted to our hospital to start maintenance hemodialysis (HD). One hour after starting the first session of HD, he experienced general pruritus, urticaria, and dyspnea. Signs and symptoms were resolved by discontinuing HD and administrating an antihistamine drug; HD-associated anaphylactoid reactions were therefore suspected. Over the next few HD sessions, we changed the dialysis membrane, anticoagulant, HD circuit and needle, in that order, but general pruritus and urticaria again appeared within 3 h after starting each session of HD. Finally, when we changed the dialysate from acetate-containing bicarbonate dialysate to acetate-free bicarbonate dialysate, urticaria was clearly less than that seen in previous HD sessions, and subsided after discontinuation of HD. Subsequently, 20 mg of oral prednisolone (PSL) was administered 1 h before starting HD, and the patient did not experience general pruritus, urticaria, or dyspnea after starting the session. When administered acetate-containing bicarbonate dialysate after oral PSL pretreatment, the patient again experienced general pruritus, urticaria and dyspnea. Few reports have been published on the occurrence of anaphylactoid reactions during HD using acetate dialysate. We report a rare case of anaphylactoid reactions with acetate in acetate-containing bicarbonate dialysate that were reduced with the use of acetate-free bicarbonate dialysate and oral PSL pretreatment.

  7. Syntrophic acetate oxidation in industrial CSTR biogas digesters.

    Science.gov (United States)

    Sun, Li; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2014-02-10

    The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. In situ N{sub 2}O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D.J., E-mail: dominika.krol@teagasc.ie; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.

    2015-04-01

    Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N{sub 2}O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N{sub 2}O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N{sub 2}O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N{sub 2}O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N{sub 2}O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U + BA) or varying rates of hippuric acid (8 and 82 mM, U + HA1, U + HA2). Soil inorganic nitrogen (N) and N{sub 2}O fluxes were monitored over a 66 day period. Urine application resulted in elevated N{sub 2}O flux for 44 days. The largest N{sub 2}O fluxes accounting for between 13% (U) and 26% (U + HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N{sub 2}O. Cumulative N{sub 2}O loss from the control was 0.3 kg N{sub 2}O–N ha{sup −1} compared with 11, 9, 12, and 10 kg N{sub 2}O–N ha{sup −1} for the U, U + HA1, U + HA2, and U + BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N{sub 2}O emissions. Although simulation of dietary manipulation to reduce N{sub 2}O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation

  9. Greener Friedel-Crafts Acylation using Microwave-enhanced reactivity of Bismuth Triflate in the Friedel-Crafts Benzoylation of Aromatic Compounds with Benzoic Anhydride

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Nguyen, Hai Truong; Hansen, Poul Erik

    2017-01-01

    An efficient and facile bismuth trifluoromethanesulfonate-catalyzed benzoylation of aromatic compounds using benzoic anhydride under solvent-free microwave irradiation has been developed. The microwave-assisted Friedel-Crafts benzoylation results in good yields within short reaction times. Bismuth...

  10. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  11. Quantitative DFT modeling of product concentration in organometallic reactions: Cu-mediated pentafluoroethylation of benzoic acid chlorides as a case study.

    Science.gov (United States)

    Jover, Jesús

    2017-11-08

    DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.

  12. 21 CFR 184.1185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be...

  13. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  14. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  15. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  16. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    Science.gov (United States)

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  17. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  18. Rh(III) -Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant.

    Science.gov (United States)

    Jiang, Quandi; Zhu, Changlei; Zhao, Huaiqing; Su, Weiping

    2016-02-04

    Phthalide skeletons have been synthesized for the first time through a Rh(III) -catalyzed C-H olefination of benzoic acids under mild conditions using oxygen as the sole oxidant. Aromatic acids bearing a variety of functional groups could react with diverse alkenes to afford the desired cyclized lactones or uncyclized alkenylarenes in moderate-to-excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    International Nuclear Information System (INIS)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-01-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C_2–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH_3COOH → CH_3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C_2-oxygenates (CH_3CO + H → CH_3COH, CH_3CHO + H → CH_3CHOH and CH_3CH_2O + H → CH_3CH_2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  20. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  1. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  2. Electrospinning of Nano-Porous Cellulose Acetate Fibers Under Humidified Condition

    Directory of Open Access Journals (Sweden)

    Hamid Fattahi Juybari

    2016-01-01

    Full Text Available Electrospinning as a simple method was used to produce cellulose acetate porous fibers. Motivation for production of fibers with small diameter in the submicron and nano scales was to achieve the material with a large surfacearea with porosity formation in the structure of electrospun fibers. In this study, porous cellulose acetate (CA fibers were produced by electrospinning process from solution of CA/acetone/water. The porosity of the fiber was controlled by adjustment of the temperature and humidity of electrospinning chamber. Scanning electron microscopy (SEM and densitometry were employed to evaluate the morphology and porosity of the samples. The results showed that the morphology and porosity of cellulose acetate fibers depend on the polymer solution concentration and relative humidity of electrospinning atmosphere. Cellulose acetate fibers were electrospun best at the concentrations of 12 to 18 wt% and relative humidity range of 40 to 80%. The highest porosity was obtained at the relative humidity of 80% and concentration of 15 wt%. In addition, by increasing the relative humidity of electrospinning environment and polymer concentration, the average diameter of the fibers was increased. With increasing the polymer concentration, there was less likelihood in thermodynamic instability and phase separation. In contrast, increases in relative humidity led to diffusion of more water into the electrospinning jet, giving rise to phase separation. Our observations revealed that the skin of fibers was formed at the earlier stage of the process and prevented the stretch in electrospinning jet.

  3. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  4. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Chen, Yifei, E-mail: yfchen@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C{sub 2}–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH{sub 3}COOH → CH{sub 3}CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C{sub 2}-oxygenates (CH{sub 3}CO + H → CH{sub 3}COH, CH{sub 3}CHO + H → CH{sub 3}CHOH and CH{sub 3}CH{sub 2}O + H → CH{sub 3}CH{sub 2}OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  5. Calibration of brachytherapy sources using ferrous sulphate-benzoic acid-xylenol orange dosimeter

    International Nuclear Information System (INIS)

    Madhvanath, U.; Kini, U.R.; Gupta, B.L.

    1976-01-01

    A solution containing 0.20 mM of ferrous ammonium sulphate, 5.0 mM benzoic acid and 0.20 mM xylenol orange in 0.05 N sulphuric acid was used for the calibration of 252 Cf, 137 Cs, 226 Ra and 60 Co needle sources. A known volume of this solution contained in a pyrex glass tube was irradiated with the source kept in a glass capillary at the centre of the solution. A few hours of irradiation were required for each needle and the absorbance of the solution was measured at 540 nm against the unirradiated solution. The accuracy of this method was found to be within a few percent and is particularly useful for 252 Cf sources as the neutron component of the source contributes significantly to the absorbance produced. (author)

  6. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    Petit, Gerard

    1972-01-01

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF 3 (CH 3 COOH) 2 . The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF 3 COOH and CH 3 COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation [fr

  7. 11C-acetate PET imaging in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kazushiro Takata

    Full Text Available BACKGROUND: Activation of glial cells is a cardinal feature in multiple sclerosis (MS pathology, and acetate has been reported to be selectively uptaken by astrocytes in the CNS. The aim of this study was to investigate the efficacy of PET with (11C-acetate for MS diagnosis. MATERIALS AND METHODS: Six patients with relapsing-remitting MS and 6 healthy volunteers (HV were enrolled. The (11C-acetate brain uptake on PET was measured in patients with MS and HV. Volume-of-interest analysis of cerebral gray and white matter based on the segmentation technique for co-registered MRI and voxel-based statistical parametric analysis were performed. Correlation between 11C-acetate uptake and the lesion number in T1- and T2- weighted MR images were also assessed. RESULTS: The standardized uptake value (SUV of 11C-acetate was increased in both white and gray matter in MS patients compared to HV. Voxel-based statistical analysis revealed a significantly increased SUV relative to that in the bilateral thalami (SUVt in a broad area of white matter, particularly in the subcortical white matter of MS patients. The numbers of T2 lesions and T1 black holes were significantly correlated with SUV of (11C-acetate in white and gray matter. CONCLUSIONS: The 11C-acetate uptake significantly increased in MS patients and correlated to the number of MRI lesions. These preliminary data suggest that (11C-acetate PET can be a useful clinical examination for MS patients.

  8. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    Science.gov (United States)

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  9. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Abiraterone Acetate: A Review in Metastatic Castration-Resistant Prostrate Cancer.

    Science.gov (United States)

    Scott, Lesley J

    2017-09-01

    Oral abiraterone acetate (Zytiga ® ) is a selective inhibitor of CYP17 and thereby inhibits androgen biosynthesis, with androgen signalling crucial in the progression from primary to metastatic prostate cancer (PC) and subsequently, in the development of metastatic castration-resistant PC (mCRPC). In large phase 3 trials and in the clinical practice setting, oral abiraterone acetate in combination with prednisone was an effective treatment and had an acceptable, manageable tolerability and safety profile in chemotherapy-naive and docetaxel-experienced men with mCRPC. In the pivotal global phase 3 trials, relative to placebo (+prednisone), abiraterone acetate (+prednisone) prolonged overall survival (OS) at data maturity (final analysis) and radiographic progression-free survival (rPFS) at all assessed timepoints. Given its efficacy in prolonging OS and its convenient once-daily oral regimen, in combination with prednisone, abiraterone acetate is an important first-line option for the treatment of mCRPC.

  11. A limited LCA of bio-adipic acid: Manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.; Brehmer, B.; Mars, A.E.; Eggink, G.; Martins Dos Santos, V.A.P.; Sanders, J.P.M.

    2011-01-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics,

  12. 21 CFR 582.6185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is generally...

  14. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  15. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  17. Air-oxidized linalyl acetate - an emerging fragrance allergen?

    Science.gov (United States)

    Hagvall, Lina; Berglund, Victoria; Bråred Christensson, Johanna

    2015-04-01

    Linalyl acetate is a fragrance chemical that is prone to autoxidation. Exposure to linalyl acetate occurs through cosmetic products and essential oils, but is difficult to assess, as linalyl acetate is not labelled in the EU. To investigate the frequencies of contact allergy to oxidized linalyl acetate among dermatitis patients, and to investigate the autoxidation of linalyl acetate in terms of hydroperoxide formation and sensitization potency. Hydroperoxide formation in air-exposed linalyl acetate was determined with high-performance liquid chromatography. The sensitization potencies of hydroperoxides were determined with the local lymph node assay. One thousand seven hundred and seventeen patients were patch tested with oxidized linalyl acetate at 6.0% in petrolatum. Of the patients, 2.2% showed positive reactions to oxidized linalyl acetate. Forty-three per cent of the positive patients also had positive patch test reactions to other fragrance markers. Linalyl acetate hydroperoxides were detected early in the autoxidation process, and accumulated to a concentration of 37% after 42 weeks of air exposure. The linalyl acetate hydroperoxides were classified as moderate sensitizers. The frequency of positive reactions to oxidized linalyl acetate is comparable to that of previously studied oxidized fragrance terpenes. Oxidized linalyl acetate could thus be a common fragrance contact allergen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Microwave-assisted one-step synthesis of acetate-capped NaYF4

    DEFF Research Database (Denmark)

    Reddy, Kumbam Lingeshwar; Prabhakar, Neeraj; Arppe, Riikka

    2017-01-01

    Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods. The nan......Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods...

  19. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  20. Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid

    Directory of Open Access Journals (Sweden)

    Shiqin Yu

    2016-11-01

    Full Text Available para-hydroxy benzoic acid (PHBA is the key component for preparing parabens, a common preservatives in food, drugs and personal care products, as well as high performance bioplastics such as liquid crystal polymers (LCP. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA or competing for the precursor chorismate (pheA and trpE were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose-4- phosphate and NAPH supply. The best strain achieved a maximum titre of 1.73 g L-1 and a carbon yield of 18.1 % (C-mol C-mol-1 in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.

  1. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    Science.gov (United States)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Kavalactones and benzoic acid derivatives from leaves of Piper fuligineum Kunth (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeu, Bruna F.; Felippe, Lidiane G.; Furlan, Maysa, E-mail: maysaf@iq.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil); Cotinguiba, Fernando [Universidade Federal do Rio de Janeiro (IPPN/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pesquisas de Produtos Naturais; Kato, Massuo J. [Universidade de São Paulo (USP), SP (Brazil). Instituto de Química

    2018-05-01

    The known kavalactones (E)-4-methoxy-6-styryl-2H-pyran-2-one, 4-methoxy6-(3-phenyloxiran-2-yl)-2H-pyran-2-one, 6-(1,2-dihydroxy-2-phenylethyl)-4-methoxy-2H-pyran2-one, the three benzoic acid derivatives methyl-4-methoxy-3-(3'-methyl-2'-butenyl)benzoate and methyl 2,2-dimethyl-4-oxochroman-6-carboxylate, and a new methyl 4-methoxy-3-(3-methylbut2-enoyl)benzoate were isolated from the ethanolic extract of Piper fuligineum. The structures of these compounds were determined by using a combination of spectroscopic methods, including 1D- and 2D-nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. This is the first report of the chemical study of P. fuligineum, and the methyl 4-methoxy-3-(3-methylbut2-enoyl)benzoate is described as a new natural product. (author)

  3. Sorbic and benzoic acid in non-preservative-added food products in Turkey.

    Science.gov (United States)

    Cakir, Ruziye; Cagri-Mehmetoglu, Arzu

    2013-01-01

    Sorbic acid (SA) and benzoic acid (BA) were determined in yoghurt, tomato and pepper paste, fruit juices, chocolates, soups and chips in Turkey by using high-pressure liquid chromatography (HPLC). Levels were compared with Turkish Food Codex limits. SA was detected only in 2 of 21 yoghurt samples, contrary to BA, which was found in all yoghurt samples but one, ranging from 10.5 to 159.9 mg/kg. Both SA and BA were detected also in 3 and 6 of 23 paste samples in a range of 18.1-526.4 and 21.7-1933.5 mg/kg, respectively. Only 1 of 23 fruit juices contained BA. SA was not detected in any chips, fruit juice, soup, or chocolate sample. Although 16.51% of the samples was not compliant with the Turkish Food Codex limits, estimated daily intake of BA or SA was below the acceptable daily intake.

  4. Thermal Analysis and Degradation Kinetics of Dextran and Highly Substituted Dextran Acetates

    International Nuclear Information System (INIS)

    Amin, M.; Hussain, M. A.; Shahwar, D.; Hussain, M.

    2015-01-01

    Dextran acetates were synthesized to study their thermal behavior in comparison with pure dextran. The results have indicated that dextran is significantly stabilized after acetylation. Dextran acetates are thermally 65-74 degree C more stable as compared to pure dextran in terms of maximum decomposition temperature (Td/sub m/). Likewise, degradation of dextran acetates also starts and ends later than dextran as shown by relatively higher initial (Td/sub i/) 3-33 degree C and final decomposition temperature (Td/sub f/) 55-69 degree C. The dextran acetates can be arranged in increasing order of thermal stability: dextran acetate DS 2.91 < dextran DS 2.98 < dextran acetate DS 3. The activation energy (Ea) of dextran and dextran acetates was calculated with the help of Friedman, Broido and Chang kinetic models while order of reaction (n) was calculated from thermal data using Chang and Kissinger models. Several other important parameters were also calculated including frequency factor (Z), enthalpy (delta H), Gibbs free energy (delta G) and entropy (delta S). The integral procedural decomposition temperature (IPDT) and comprehensive index of intrinsic thermal stability (ITS) was also drawn from TG curves using Doyle's method. The dependence of IPDT, ITS and Ea on DS of the acetylation of dextran is also discussed. (author)

  5. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds.

    Science.gov (United States)

    Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing

    2017-08-03

    We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.

  6. Acetate metabolism in Methanothrix soehngenii

    NARCIS (Netherlands)

    Jetten, M.S.M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of

  7. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  8. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  9. THE INFLUENCE OF CULTURE MEDIA ON ACETIC FERMENTATION WITH SELECTED Acetobacter STRAINS

    Directory of Open Access Journals (Sweden)

    MARIA CRISTIANA GARNAI

    2012-06-01

    Full Text Available We have systematically followed the efficiency of acetic fermentation, by cultivating 14 Acetobacter strains (previously isolated and identified, within a medium obtain out of ethanol and acetic acid, in various proportions, and utilizing corn extract (CE as a nutrient. The purpose of the research was to determine the resistance of the studied Acetobacter strains related to the composition of the cultivation media (acidity and alcohol content of the medium, as well as following the dynamics of the acetic fermentation by calculating the practical yield. The research led to optimal variants which may be industrially exploited in order to obtain vinegar.

  10. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  11. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    Directory of Open Access Journals (Sweden)

    Noda Shuhei

    2012-04-01

    Full Text Available Abstract Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future.

  12. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    Science.gov (United States)

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  13. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    Science.gov (United States)

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future.

  14. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  15. Radiometric titration of officinal radiopharmaceuticals using radioactive kryptonates as end-point indicators. I. Salicylic, acetylosalicylic, benzoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Toelgyessy, J; Dillinger, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta; Harangozo, M; Jombik, J [Komenskeho Univ., Bratislava (Czechoslovakia). Farmaceuticka Fakulta

    1980-01-01

    A method for the determination of salicylic, acetylsalicylic and benzoic acids in officinal pharmaceutical based on radiometric titration with 0.1 mol.l/sup -1/ NaOH was developed. The end-point was detected with the aid of radioactive glass kryptonate. After the end-point, the excess titrant attacks the glass surface layers and this results in releasing /sup 85/Kr, and consequently, in decreasing the radioactivity of the kryptonate employed. The radioactive kryptonate used as an indicator was prepared by the bombardment of glass with accelerated /sup 85/Kr ions. The developed method is simple, accurate and correct.

  16. Controlled free radical polymerization of vinyl acetate with cobalt ...

    Indian Academy of Sciences (India)

    The high molecular weight of polyvinyl acetate (PVAc) with its relatively low molecular distribution without unreacted monomer ... properties of the polymer indicated a lower glass transition state. The easily ..... vision software). The ease of ...

  17. 21 CFR 182.8892 - α-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...-Tocopherol acetate. (a) Product. α-Tocopherol acetate. (b) Conditions of use. This substance is generally...

  18. Glatiramer Acetate-associated Refractory Immune Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Iftach Sagy

    2016-04-01

    Full Text Available We present a case of glatiramer acetate-associated refractory immune thrombocytopenic purpura (ITP in a female patient with multiple sclerosis. A search of MEDLINE/PubMed did not find any connection between glatiramer acetate and thrombocytopenia, specifically ITP. The autoimmune reaction was resistant to conservative ITP treatment, and was eventually managed only by splenectomy. To the best of our knowledge, this is the first report of glatiramer acetate-associated ITP. Physicians should be aware of this condition, and consider performing routine blood counts at the beginning of glatiramer acetate treatment.

  19. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  20. 21 CFR 582.5892 - a-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false a-Tocopherol acetate. 582.5892 Section 582.5892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  1. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  2. The Influence of Alcohol on the Pharmacokinetics of Antipyrine ...

    African Journals Online (AJOL)

    The filtrate was injected into a high pressure liquid chromatography using reversed phase Bondesil C18 (0.5um) column, with benzoic acid (as internal standard) and acetonitrile: acetic acid (in 1% water) (35:65) as mobile phase. The concentrations of the antipyrine were determined from the chromatographic calibration ...

  3. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the inf......Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal...... of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  4. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  5. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Bangsgaard, N

    2012-01-01

    -2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid...... chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial...... significantly different from each other (p value paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis and the amount of drug sampled following topical penetration ex vivo. The result is of relevance to the in vivo situation, and it can...

  6. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  7. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    Science.gov (United States)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    Science.gov (United States)

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  9. Proton conductivity and relaxation properties of chitosan-acetate films

    International Nuclear Information System (INIS)

    Prokhorov, E.; Luna-Bárcenas, G.; González-Campos, J.B.; Kovalenko, Yu.; García-Carvajal, Z.Y.; Mota-Morales, J.

    2016-01-01

    Graphical abstract: Temperature dependence of conductivity, the number of density and proton mobility in chitosan-acetate film. - Highlights: • DD, conductivity, Vogel temperature dependent on the concentration of acetic acid. • Proton conductivity of CS-acetate films interpreted using two Grotthuss mechanisms. • Transformation between two mechanisms observed at the glass transition temperature. - Abstract: The effect of aqueous acetic acid solution concentration during the preparation of chitosan-acetate (CS-acetate) films on the conductivity and relaxation properties were studied by dielectric and FTIR spectroscopies, TGA measurements and X-Ray diffraction. Analyses of the experimental results on the degree of deacetylation, water absorption, conductivity, Vogel temperature and activation energy demonstrate a strong dependence of these parameters on the concentration of the acid acetic solutions from which the films have been obtained. The proton conductivity and relaxation properties of CS-acetate films have been interpreted using two Grotthuss “structural diffusion” and “pack-acid” mechanisms. The transformation between these two mechanisms observed at temperature higher than CS-acetate glass transition temperature is due to an increase in the thermal motion of CS chains, water evaporation, hydrogen bond between water molecules and side groups of CS breaking and formation of new bonds between NH 3 + and acetate ions. Additionally, application of the Rice and Roth model allowed estimating the temperature dependence of proton number and their mobility in CS-acetate films. A systematic interpretation on the appropriate conductivity mechanism will help trigger the design of smart materials used in flexible electronic, solid polymer electrolytes for fuel cells and solid polymer batteries based on CS-acetate films.

  10. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  11. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    Science.gov (United States)

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  12. Process for the preparation of protected 3-amino-1,2-dihydroxypropane acetal and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.I.; Wang, G.

    2000-03-21

    This application describes a process for producing protected 3-amino-1,2-dihydroxypropane acetal, particularly in chiral forms, for use as an intermediate in the preparation of various 3-carbon compounds which are chiral. In particular, the present invention relates to the process for preparation of 3-amino-1,2-dihydroxypropane isopropylidene acetal. The protected 3-amino-1,2-dihydroxypropane acetal is a key intermediate to the preparation of chiral 3-carbon compounds which in turn are intermediates to various pharmaceuticals.

  13. 21 CFR 522.1881 - Sterile prednisolone acetate aqueous suspension.

    Science.gov (United States)

    2010-04-01

    ... and for various stress conditions when corticosteroids are required while the animal is being treated... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1881 Sterile prednisolone acetate aqueous suspension. (a) Specifications. Each...

  14. Amino propynyl benzoic acid building block in rigid spacers of divalent ligands binding to the Syk SH2 domains with equally high affinity as the natural ligand

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    The construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The

  15. Possible role of vitamins A and/or α-tocopheryl acetate in modulating -radiation-induced disorders on the pituitary-gonadal-adrenal axis hormones and some related minerals in female rats

    International Nuclear Information System (INIS)

    Abou-Safi, H.M.; Hussien, A.H.; El-Sayed, N.M.

    2006-01-01

    The present study aimed to evaluate the role of vitamins A (15000 IU/kg body wt) and α -tocopheryl acetate (100 mg/kg body wt) on repairing the disorders induced by γ -radiation on the pituitary-gonadal adrenal axis hormones in female rats during the estrus phase of estrus cycle. The investigation included the determination of follicle-stimulating hormone (FSH) estradiol (E2) progesterone (P) aldosterone (Ald), Na + , K + and Ca 2+ , levels in serum. Animals were divided into 5 groups: control, whole body -irradiated (6 Gy), injected with vitamin A 2 h before irradiation, subjected to γ -radiation then injected with α-tocopheryl acetate 1 h later and injected with vitamin A pre-irradiation, then injected with α -tocopheryl acetate post-irradiation. Animals were treated at the pro-estrus stage then, serum samples were taken at the estrus stage. Results showed that irradiation induced significant decreases in serum levels of FSH, E2, aldosterone and potassium, whereas, it elevated significantly the serum levels of P4 and sodium but there was in serum calcium levels. Both vitamins A and / orα-tocopheryl acetate succeeded to confront γ -radiation disorders on the estimated hormones and related minerals. The combination of vitamins A and α -tocopheryl acetate was more effective than either one alone

  16. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en solution. La fixation d

  17. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2.

    Science.gov (United States)

    He, Bangxiang; Hou, Lulu; Dong, Manman; Shi, Jiawei; Huang, Xiaoyun; Ding, Yating; Cong, Xiaomei; Zhang, Feng; Zhang, Xuecheng; Zang, Xiaonan

    2018-01-07

    Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe 2+ are reported to be important for astaxanthin accumulation in H. pluvialis . In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL), addition of 25 mM acetate under high light (HA), addition of 20 μM Fe 2+ under high light (HF) and normal green growing cells (HG). Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO). The statistics for DEGs (differentially expressed genes) showed that there were more than 10 thousand DEGs caused by high light and 1800-1900 DEGs caused by acetate or Fe 2+ . The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe 2+ , the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  18. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+

    Directory of Open Access Journals (Sweden)

    Bangxiang He

    2018-01-01

    Full Text Available Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe2+ are reported to be important for astaxanthin accumulation in H. pluvialis. In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL, addition of 25 mM acetate under high light (HA, addition of 20 μM Fe2+ under high light (HF and normal green growing cells (HG. Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO. The statistics for DEGs (differentially expressed genes showed that there were more than 10 thousand DEGs caused by high light and 1800–1900 DEGs caused by acetate or Fe2+. The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe2+, the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  19. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  20. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose ...

  1. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  2. Influence of calcium acetate on rye bread volume

    Directory of Open Access Journals (Sweden)

    Katharina FUCKERER

    2016-01-01

    Full Text Available Abstract The positive accepted savoury taste of rye bread is dependent on acetate concentration in the dough of such breads. In order to study how calcium acetate influences rye bread properties, the pH of rye doughs fortified with calcium acetate and the resulting volume of the breads were measured. Furthermore, CO2 formation of yeast with added calcium acetate and yeast with different pH levels (4, 7, 9 were measured. Thereby, it was determined that the addition of calcium acetate increased the pH of dough from 4.42 to 5.29 and significantly reduced the volume of the breads from 1235.19 mL to 885.52 mL. It could be proven that bread volume was affected by a 30.9% lower CO2 amount production of yeast, although bread volume was not affected by changing pH levels. Due to reduced bread volume, high concentrations of calcium acetate additions are not recommended for improving rye bread taste.

  3. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  4. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  5. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  6. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    International Nuclear Information System (INIS)

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun; Shen Xu; Jiang Hualiang

    2008-01-01

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery

  7. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  8. Cyclo-(trp-phe diketopiperazines from the endophytic fungus Aspergillus versicolor isolated from Piper aduncum

    Directory of Open Access Journals (Sweden)

    Juliana R. Gubiani

    Full Text Available Six known compounds, three peptide derivatives: cyclo-(tryptophyl-phenylalanyl (2, diketopiperazine dimer WIN 64821 (3 and 3-hydroxy-15H-tryptophenaline (4, one adenine derivative: 2-hydroxy-6-N-isopentenyl-adenine (5, one phtalide derivative: 4-methoxyphtalide (1 and one benzoic acid derivative: 3-hydroxy-4-(1-hydroxy-1,5-dimethyl-hexyl benzoic acid (6, were isolated from the ethyl acetate extract of the endophytic fungus Aspergillus versicolor associated with the Piper aduncum plant. Their structures were determined on the basis of detailed interpretation of 1 D and 2D NMR spectra and in comparison with works reported in the literature. This paper, in effect, deals with the first report of these compounds in A. versicolor.

  9. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  10. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  11. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    Science.gov (United States)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  12. Phase Transformation of Hydrothermally Synthesized Nanoparticle ...

    African Journals Online (AJOL)

    Mild hydrothermal hydrolysis of TiCl4 produces nanorods of the rutile phase of titanium dioxide in high yield, while in the presence of organic acids (citric, acetic, D-tartaric and benzoic acids) anatase is the only product. The effect of these organic acids on the products of the hydrolysis reaction as well as the reaction kinetics ...

  13. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200 Section 584.200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  14. Effects of binding metronidazole to a copper-acetate compound on radiosensitizer properties

    International Nuclear Information System (INIS)

    Negron, Ana C. Valderrama; Silva, Denise de Oliveira; Cruz, Aurea S.

    2009-01-01

    Copper compounds exhibit interesting biological properties. Nitroimidazoles show radiosensitizer properties for radiotherapy tumor treatment. In the present work, the effect of binding metronidazole (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole = MTZ) to copper-acetate on the radiosensitizer properties has been investigated. A compound of copper-acetate-MTZ was prepared and characterized. The experiments were carried out by gamma-irradiation of Hep2 (human larynx cancer) cells under hypoxic conditions. The radiation doses for 50% cell survival in the presence of radiosensitizer were about 8.2 Gy for CuAcMTZ or free MTZ. The effect of binding metronidazole to copper acetate on radiosensitizer properties is mainly related to the radiosensitizer process which involves two events for CuAcMTZ in contrast to one event observed for the MTZ free drug. (author)

  15. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  16. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2017-10-01

    Full Text Available Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19 sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50 was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47% on the trans-sialidase enzyme and a binding model similar to DANA (pattern A.

  17. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    Science.gov (United States)

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  18. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample

    Directory of Open Access Journals (Sweden)

    Sam-ang Supharoek

    2018-04-01

    Full Text Available A simple, rapid and environmentally friendly sequential injection analysis system employing natural extract reagents was developed for the determination of acetic acid following an acid–base reaction in the presence of an indicator. Powdered lime and turmeric were utilized as the natural base and indicator, respectively. Mixing lime and turmeric produced an orange to reddish-brown color solution which absorbed the maximum wavelength at 455 nm, with absorbance decreasing with increasing acetic acid concentration. Influential parameters including lime and turmeric concentrations, reagent and sample aspirated volumes, mixing coil length and dispensing flow rate were investigated and optimized. A standard calibration graph was plotted for 0–5.0 mmol/L acetic acid with r2 = 0.9925. Relative standard deviations (RSD at 2.0 and 4.0 mmol/L acetic acid were less than 3% (n = 7, with limit of detection (LOD and limit of quantification (LOQ at 0.12 and 0.24 mmol/L, respectively. The method was successfully applied to assay acetic acid concentration in cooking vinegar samples. Results achieved were not significantly different from those obtained following a batchwise standard AOAC titration method. Keywords: Acetic acid assay, Natural reagent, Turmeric, Lime, Sequential injection analysis

  19. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO/sub 2/, and H/sub 2/ by the enzyme system involved

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, K; Eikmanns, B; Frimmer, U; Thauer, R K

    1987-04-01

    Cell suspensions of Methanosarcina barkeri grown on acetate catalyze the formation of methane and CO/sub 2/ from acetate as well as an isotopic exchange between the carboxyl group of acetate and CO/sub 2/. Here we report that these cells also mediate the synthesis of acetate from methyl iodide, CO/sub 2/, and reducing equivalents (H/sub 2/ or CO), the methyl group of acetate being derived from methyl iodide and the carboxyl group from CO/sub 2/. Methyl chloride and methyltosylate but not methanol can substitute for methyl iodide in this reaction. Acetate formation from methyl iodide, CO/sub 2/, and reducing equivalents is coupled with the phosphorylation of ADP. Evidence is presented that methyl iodide is incorporated into the methyl group of acetate via a methyl corrinoid intermediate (deduced from inhibition experiments with propyl iodide) and that CO/sub 2/ is assimilated into the carboxyl group via a C/sub 1/ intermediate which does not exchange with free formate or free CO. The effects of protonophores, of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and of arsenate on acetate formation are interpreted to indicate that the reduction of CO/sub 2/ to the oxidation level of the carboxyl group of acetate requires the presence of an electrochemical proton potential and that acetyl-CoA or acetyl-phosphate rather than free acetate is the immediate product of the condensation reaction. These results are dicsussed with respect to the mechanism of methanogenesis from acetate.

  20. Ulipristal acetate versus placebo for fibroid treatment before surgery.

    Science.gov (United States)

    Donnez, Jacques; Tatarchuk, Tetyana F; Bouchard, Philippe; Puscasiu, Lucian; Zakharenko, Nataliya F; Ivanova, Tatiana; Ugocsai, Gyula; Mara, Michal; Jilla, Manju P; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and safety of oral ulipristal acetate for the treatment of symptomatic uterine fibroids before surgery are uncertain. We randomly assigned women with symptomatic fibroids, excessive uterine bleeding (a score of >100 on the pictorial blood-loss assessment chart [PBAC, an objective assessment of blood loss, in which monthly scores range from 0 to >500, with higher numbers indicating more bleeding]) and anemia (hemoglobin level of ≤10.2 g per deciliter) to receive treatment for up to 13 weeks with oral ulipristal acetate at a dose of 5 mg per day (96 women) or 10 mg per day (98 women) or to receive placebo (48 women). All patients received iron supplementation. The coprimary efficacy end points were control of uterine bleeding (PBAC score of <75) and reduction of fibroid volume at week 13, after which patients could undergo surgery. At 13 weeks, uterine bleeding was controlled in 91% of the women receiving 5 mg of ulipristal acetate, 92% of those receiving 10 mg of ulipristal acetate, and 19% of those receiving placebo (P<0.001 for the comparison of each dose of ulipristal acetate with placebo). The rates of amenorrhea were 73%, 82%, and 6%, respectively, with amenorrhea occurring within 10 days in the majority of patients receiving ulipristal acetate. The median changes in total fibroid volume were -21%, -12%, and +3% (P=0.002 for the comparison of 5 mg of ulipristal acetate with placebo, and P=0.006 for the comparison of 10 mg of ulipristal acetate with placebo). Ulipristal acetate induced benign histologic endometrial changes that had resolved by 6 months after the end of therapy. Serious adverse events occurred in one patient during treatment with 10 mg of ulipristal acetate (uterine hemorrhage) and in one patient during receipt of placebo (fibroid protruding through the cervix). Headache and breast tenderness were the most common adverse events associated with ulipristal acetate but did not occur significantly more frequently than with placebo

  1. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure.

    Science.gov (United States)

    Zhao, Jing; Westerholm, Maria; Qiao, Wei; Yin, Dongmin; Bi, Shaojie; Jiang, Mengmeng; Dong, Renjie

    2018-05-01

    The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  3. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    Science.gov (United States)

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  4. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Diego, L.F. de; Garcia-Labiano, F. [Instituto de Carboquimica, Zaragoza (Spain). Dept. of Energy and Environment

    1999-04-01

    The calcination process of the calcium acetate (CA) and calcium magnesium acetate (CMA) was investigated as a previous step for coal gas desulfurisation during sorbent injection at high temperatures because the excellent results demonstrated by these sorbents as sulfur removal agents both in combustion and gasification processes. As pore structure developed during calcination is one of the most important characteristics of the sorbent related with the later reaction with the gaseous pollutants, several calcination tests were conducted in a drop tube reactor at temperatures from 700{degree}C to 1100{degree}C, and residence times from 0.8 to 2.4 s. Four different gas atmospheres were used for comparative purposes: inert, oxidising, reducing, and non-calcining (pure CO{sub 2}). Despite the advantage of the high porous cenospheric structure developed by these sorbents during their injection at high temperature, calcination of the CaCO{sub 3} was not complete even at the longest residence time, 2.4 s, and the highest temperature, 1100{degree}C, tested. An important effect of the reacting atmosphere on the calcination conversion and on the sorbent pore structure was detected. The CO{sub 2} concentration around the particle, both that fed in the reacting gases or that generated by organic material combustion, seems to be responsible for the final calcination conversions obtained in each case, also affecting the sintering suffered by the sorbents. 19 refs., 10 figs.

  5. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  6. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    International Nuclear Information System (INIS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-01-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu 0.5 L] n (1), [Cu(HL) 2 Cl 2 ] n (2), [Cu(HL) 2 Cl 2 (H 2 O)] (3), [Cu(L) 2 (H 2 O)] n (4) and [Cu(L)(phen)(HCO 2 )] n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl - , and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity

  7. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  8. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.

    Science.gov (United States)

    Peebo, Karl; Valgepea, Kaspar; Nahku, Ranno; Riis, Gethe; Oun, Mikk; Adamberg, Kaarel; Vilu, Raivo

    2014-06-01

    Elimination of acetate overflow in aerobic cultivation of Escherichia coli would improve many bioprocesses as acetate accumulation in the growth environment leads to numerous negative effects, e.g. loss of carbon, inhibition of growth, target product synthesis, etc. Despite many years of studies, the mechanism and regulation of acetate overflow are still not completely understood. Therefore, we studied the growth of E. coli K-12 BW25113 and several of its mutant strains affecting acetate-related pathways using the continuous culture method accelerostat (A-stat) at various specific glucose consumption rates with the aim of diminishing acetate overflow. Absolute quantitative exo-metabolome and proteome analyses coupled to metabolic flux analysis enabled us to demonstrate that onset of acetate overflow can be postponed and acetate excretion strongly reduced in E. coli by coordinated activation of phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) and tricarboxylic acid (TCA) cycles. Fourfold reduction of acetate excretion (2 vs. 8 % from total carbon) at fastest growth compared to wild type was achieved by deleting the genes responsible for inactivation of acetyl-CoA synthetase protein (pka) and TCA cycle regulator arcA. The Δpka ΔarcA strain did not accumulate any other detrimental by-product besides acetate and showed identical μ max and only ~5 % lower biomass yield compared to wild type. We conclude that a fine-tuned coordination between increasing the recycling capabilities of acetate in the PTA-ACS node through a higher concentration of active acetate scavenging Acs protein and downstream metabolism throughput in the TCA cycle is necessary for diminishing overflow metabolism of acetate in E. coli and achieving higher target product production in bioprocesses.

  9. Spontaneous adsorption of 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid onto carbon

    International Nuclear Information System (INIS)

    Paez, Julieta I.; Strumia, Miriam C.; Passeggi, Mario C.G.; Ferron, Julio; Baruzzi, Ana M.; Brunetti, Veronica

    2009-01-01

    Dendritic molecules contain multifunctional groups that can be used to efficiently control the properties of an electrode surface. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In the present work, we explore the immobilization of a dendritic molecule: 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid (D-NO 2 ) onto carbon surfaces showing a simple and rapid way to produce conductive surfaces with electroactive chemical functions. The immobilized D-NO 2 layer has been characterized using atomic force microscopy and cyclic voltammetry. D-NO 2 adsorbs onto carbon surfaces spontaneously by dipping the electrode in dendron solutions. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple. The film permeability of the derivatized surface has been analyzed employing the electrochemical response of redox probes: Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ and Fe(CN) 6 3- /Fe(CN) 6 4- . Electrocatalytic oxidation of nicotinamide adenine dinucleotide onto a modified carbon surface was also observed.

  10. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  11. Heterotrophic utilization of acetate and glucose in Swartvlei, South Africa

    International Nuclear Information System (INIS)

    Robarts, R.D.

    1979-01-01

    The utilization of dissolved organic compounds in Swartvlei was measured by the addition of single concentrations of 14 C-labelled acetate and glucose to water samples. The results indicated acetate uptake was greatest in the aerobic zone while glucose was predominantly utilized in the anaerobic zone. With the exception of two months, integral glucose uptake was usually greater than the uptake of acetate. In August and September 1971 acetate was indicated as being utilized predominantly by flagellates and in December 1971 by dinoflagellates. During the remainder of the study, bacteria were assumed to be responsible for the uptake of acetate. The extensive weed beds which surround the upper reaches of Swartvlei may be a major source of acetate and glucose in the pelagic water column

  12. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives

    Science.gov (United States)

    Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea

    2015-10-01

    Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.

  13. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz; Mehl, Marco; Lokachari, Nitin; Nilsson, Elna J.K.; Konnov, Alexander A.; Wagnon, Scott W.; Pitz, William J.; Curran, Henry J.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  14. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz

    2017-12-14

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  15. Acetate causes alcohol hangover headache in rats.

    Directory of Open Access Journals (Sweden)

    Christina R Maxwell

    2010-12-01

    Full Text Available The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache.We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats.Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia, followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity.Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction.

  16. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    Science.gov (United States)

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  17. Addressing Cellulose Acetate Microfilm from a British Library perspective

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2005-08-01

    Full Text Available This paper is about cellulose acetate microfilm from the British Library perspective. It traces how acetate microfilm became an issue for the British Library and describes cellulose acetate deterioration. This is followed by details of what has already been done about the situation and what action is planned for the future.

  18. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  19. Disorder effects in Mn(12)-acetate at 83 K.

    Science.gov (United States)

    Cornia, Andrea; Fabretti, Antonio Costantino; Sessoli, Roberta; Sorace, Lorenzo; Gatteschi, Dante; Barra, Anne-Laure; Daiguebonne, Carole; Roisnel, Thierry

    2002-07-01

    The structure of hexadeca-mu-acetato-tetraaquadodeca-mu(3)-oxo-dodecamanganese bis(acetic acid) tetrahydrate, [Mn(12)O(12)(CH(3)COO)(16)(H(2)O)(4)] x 2CH(3)COOH x 4H(2)O, known as Mn(12)-acetate, has been determined at 83 (2) K by X-ray diffraction methods. The fourfold (S(4)) molecular symmetry is disrupted by a strong hydrogen-bonding interaction with the disordered acetic acid molecule of solvation, which displaces one of the acetate ligands in the cluster. Up to six Mn(12) isomers are potentially present in the crystal lattice, which differ in the number and arrangement of hydrogen-bonded acetic acid molecules. These results considerably improve the structural information available on this molecular nanomagnet, which was first synthesized and characterized by Lis [Acta Cryst. (1980), B36, 2042-2046].

  20. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    Science.gov (United States)

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  1. Density, refraction index and vapor–liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methyl acetate or ethyl acetate or propyl acetate) at several temperatures

    International Nuclear Information System (INIS)

    Alvarez, V.H.; Mattedi, S.; Aznar, M.

    2013-01-01

    Highlights: ► Densities, refraction indices and VLE were measured for ester + m-2-HEAB mixtures. ► V E , apparent molar volumes and thermal expansion coefficients were calculated. ► Peng–Robinson EoS + Wong–Sandler mixing rule + COSMO-SAC predicted the data. -- Abstract: This paper reports the densities, refraction indices, and vapor liquid equilibria for binary systems ester + N-methyl-2-hydroxyethylammonium butyrate (m-2-HEAB): methyl acetate (1) + m-2-HEAB (2), ethyl acetate (1) + m-2-HEAB and propyl acetate (1) + m-2-HEAB (2). The excess molar volumes, deviations in the refraction index, apparent molar volumes, and thermal expansion coefficients for the binary systems were fitted to polynomial equations. The Peng–Robinson equation of state, coupled with the Wong–Sandler mixing rule, is used to describe the experimental data. Since the predictive activity coefficient model COSMO-SAC is used in the Wong–Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the vapor–liquid equilibria have a deviation lower than 1.0% and 1.1%, respectively

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  3. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    Science.gov (United States)

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  4. Crystal structures of a manganese(I and a rhenium(I complex of a bipyridine ligand with a non-coordinating benzoic acid moiety

    Directory of Open Access Journals (Sweden)

    Sheri Lense

    2018-05-01

    Full Text Available The structures of two facially coordinated Group VII metal complexes are reported, namely: fac-bromido[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylmanganese(I tetrahydrofuran monosolvate, [MnBr(C17H12N2O2(CO3]·C4H8O, I, and fac-[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylchloridorhenium(I tetrahydrofuran monosolvate, [ReCl(C17H12N2O2(CO3]·C4H8O, II. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ion, and a 2-(2,2′-bipyridin-6-ylbenzoic acid ligand, in a distorted octahedral geometry. In manganese complex I, the tetrahydrofuran (THF solvent molecule could not be refined due to disorder. The benzoic acid fragment is also disordered over two positions, such that the carboxylic acid group is either positioned near to the bromide ligand or to the axial carbonyl ligand. In the crystal of I, the complex molecules are linked by a pair of C—H...Br hydrogen bonds, forming inversion dimers that stack up the a-axis direction. In the rhenium complex II, there is hydrogen bonding between the benzoic acid moiety and a disordered co-crystallized THF molecule. In the crystal, the molecules are linked by C—H...Cl hydrogen bonds, forming layers parallel to (100 separated by layers of THF solvent molecules.

  5. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    Science.gov (United States)

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  6. Electroantennographic responses of New World screwworm to components of swormlure-4 and related compounds

    International Nuclear Information System (INIS)

    Cork, A.

    1992-01-01

    Electroantennographic (EAG) responses from New World screwworm flies were recorded as dose-response curves to the components of swormlure and to isobutyric acid, butanol, 1-hexanol, 1-octen-3-o1, 3-propylphenol and 3-methylindole. Among the swormlure components, good responses were obtained to valeric acid, phenol 4-methylphenol and indole. Only weaker responses were obtained to the butyl alcohols, dimethyldisulphide, acetic, butyric and benzoic acids. A strong response was obtained to 1-octen-3-o1, and the response to 3-methylindole was greater than that to indole. Responses of male and female flies were generally similar, except for those to dimethylsulphide and 4-methylphenol where responses fo males were greater than those of females. These studies indicate that EAG linked to gas chromatography should be a useful technique for detection of the biologically-active components in naturally-derived, volatile attractants, and suggest 1-octen-3-o1 and 3- methylindole should be tested for behavioural effects on NWS. 7 figs

  7. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Pingping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Li, Jie [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Bu, Huaiyu, E-mail: 7213792@qq.com [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Wei, Qing [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Zhang, Ruolin [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Chen, Sanping, E-mail: sanpingchen@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  8. Safe use and waste disposal of uranyl acetate

    International Nuclear Information System (INIS)

    Sanchez, A.; Calvo, S.; Caparros, G.; Gallego, E.; Rascon, J.; Valladares, M.C.

    2006-01-01

    Radioactive labelled molecules are widely used in Biological Research Centres. The most common radioisotopes are: 32 P, 33 P, 35 S, 3 H, 14 C, 125 I and 45 Ca.Due to the inherent risk in the manipulation of these radiation unsealed sources, in these radioactive installations there are established radiological protection programs to reduce this potential risk and the professional exposure in the manipulation and in the radioactive waste generated. In these Biological Research Centres we used techniques with other radioactive products less used, that we must to control. It is the case of the use of uranyl acetate. Uranyl acetate is a uranium salt used in the preparation of samples for analysis in the electron microscope. Although the amounts used are relatively small, both the chemical and radiological toxicities of these compounds are significant and require working whit that some cautions, with the main emphasis on avoiding the possibility of inhalation of fine particulates or vapours. Due to changes in the Spanish regulations for this product, it was necessary to establish a specific control program in its manipulation. The purpose of this work is the accomplishment of specific protocols for the acquisition, manipulation, contamination measurements, inspections of the work zone and waste management, in order to minimize the risks in the manipulation of uranyl acetate,as well as apply the knowledge and use of specific norms for working with this product. (authors)

  9. Safe use and waste disposal of uranyl acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.; Calvo, S.; Caparros, G.; Gallego, E.; Rascon, J.; Valladares, M.C. [Centro de Biologia Molecular, Madrid (Spain)

    2006-07-01

    Radioactive labelled molecules are widely used in Biological Research Centres. The most common radioisotopes are: {sup 32}P,{sup 33}P, {sup 35}S,{sup 3}H,{sup 14}C,{sup 125}I and {sup 45}Ca.Due to the inherent risk in the manipulation of these radiation unsealed sources, in these radioactive installations there are established radiological protection programs to reduce this potential risk and the professional exposure in the manipulation and in the radioactive waste generated. In these Biological Research Centres we used techniques with other radioactive products less used, that we must to control. It is the case of the use of uranyl acetate. Uranyl acetate is a uranium salt used in the preparation of samples for analysis in the electron microscope. Although the amounts used are relatively small, both the chemical and radiological toxicities of these compounds are significant and require working whit that some cautions, with the main emphasis on avoiding the possibility of inhalation of fine particulates or vapours. Due to changes in the Spanish regulations for this product, it was necessary to establish a specific control program in its manipulation. The purpose of this work is the accomplishment of specific protocols for the acquisition, manipulation, contamination measurements, inspections of the work zone and waste management, in order to minimize the risks in the manipulation of uranyl acetate,as well as apply the knowledge and use of specific norms for working with this product. (authors)

  10. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample.

    Science.gov (United States)

    Supharoek, Sam-Ang; Ponhong, Kraingkrai; Siriangkhawut, Watsaka; Grudpan, Kate

    2018-04-01

    A simple, rapid and environmentally friendly sequential injection analysis system employing natural extract reagents was developed for the determination of acetic acid following an acid-base reaction in the presence of an indicator. Powdered lime and turmeric were utilized as the natural base and indicator, respectively. Mixing lime and turmeric produced an orange to reddish-brown color solution which absorbed the maximum wavelength at 455 nm, with absorbance decreasing with increasing acetic acid concentration. Influential parameters including lime and turmeric concentrations, reagent and sample aspirated volumes, mixing coil length and dispensing flow rate were investigated and optimized. A standard calibration graph was plotted for 0-5.0 mmol/L acetic acid with r 2  = 0.9925. Relative standard deviations (RSD) at 2.0 and 4.0 mmol/L acetic acid were less than 3% (n = 7), with limit of detection (LOD) and limit of quantification (LOQ) at 0.12 and 0.24 mmol/L, respectively. The method was successfully applied to assay acetic acid concentration in cooking vinegar samples. Results achieved were not significantly different from those obtained following a batchwise standard AOAC titration method. Copyright © 2017. Published by Elsevier B.V.

  11. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives

    Directory of Open Access Journals (Sweden)

    Shaimaa eElsharif

    2015-10-01

    Full Text Available Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty. Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.

  12. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  13. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  14. The behaviour of tungsten electrodes in a mixture of acetic acid and acetic anhydride

    International Nuclear Information System (INIS)

    Pastor, T.J.; Vajgand, V.H.

    1976-01-01

    Tungsten electrodes have advantageously been used for potentiometric end-point detection in perchloric acid titration of bases in a mixture of acetic acid and acetic anhydride. They have also given good results in biamperometric detection of the equivalence point in continuous coulometric titration of small quantities of bases and acids in the same solvent. Tungsten electrodes in the presence of quinhydrone behave like platinum electrodes, but in biamperometric end-point determination in the absence of quinhydrone it is better to remove the oxide layer from their surface. Some other factors affecting their behaviour have also been studied. Errors in determination do not exceed +-2% even in titration of very small quantities of substances. (author)

  15. Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Calabrese, Federica; Stryhanyuk, Hryhoriy

    2017-01-01

    pressure and their survival depends on successful partnership. Here we demonstrate that conductive minerals facilitate a SAO partnership between Geobacter and Methanosarcina from the coastal sediments of the Bothnian Bay, Baltic Sea. Bothnian methanogenic sediments showed a high apparent isotopic...... fractionation (αc 1.07) characteristic of CO2-reductive methanogenesis. The native community was represented by electrogens such as Geobacter and methanogens like Methanosarcina. Upon the addition of conductive particles (activated carbon and magnetite), methanogenesis from acetate increased fourfold. Geobacter...... (96% related to G. psychrophilus) and Methanosarcina (99% related to M. subterranea) dominated the conductive particle-spiked SAO communities. Using NanoSIMS we demonstrated that during SAO, Geobacter incorporated 82% of the labeled acetate as compared to only 18% by Methanosarcina. At the same time...

  16. Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols

    Science.gov (United States)

    Wang, Na; Cai, Chen; He, Xiang; Pang, Shu-Feng; Zhang, Yun-Hong

    2018-03-01

    Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000 s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2 + hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between 70% and 90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be 5 × 10- 12 m2·s- 1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.

  17. Radiation sterilization of hydrocortisone acetate

    International Nuclear Information System (INIS)

    Charef, A.; Boussaha, A.

    1989-09-01

    The feasibility of using high energy ionizing radiation for the sterilization of hydrocortisone acetate was investigated. Hydrocortisone acetate in the form of powder was exposed to different dose levels of gamma radiation using a Cobalt-60 source. The irradiated samples were examined by various physico-chemical techniques in order to detect possible radiolysis products. It was of interest to know if one could insure sterility and retain biological properties of the drug by suitable choice of radiation dose. The results showed that a 10 KGy radiation dose causes no change in the physico-chemical properties of the drug and is sufficient to obtain contaminant-free product

  18. The fragment ion C13H9O2 m/z 197 in the mass spectra of 2-(2'-R-phenyl)benzoic acids

    International Nuclear Information System (INIS)

    Gills, R.G.; Porter, Q.N.

    1990-01-01

    In the electron impact mass spectrum of 2-( ' -R-phenyl)benzoic acids where R = H, NO 2 , OCH 3 , COOH, or Br, and abundant fragment ion m/z 197 is formed by an ipso substitution in which R is expelled as a radical. The structure of the ion m/z 197 has been shown by collision-activated dissociation to be identical with that of the protonated molecule formed by methane chemical ionization of 6H-dibenzo[b,d]pyran-6-one. 11 refs., 1 fig., ills

  19. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  20. Spontaneous adsorption of 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid onto carbon

    Energy Technology Data Exchange (ETDEWEB)

    Paez, Julieta I.; Strumia, Miriam C. [Departamento de Quimica Organica (IMBIV-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina); Passeggi, Mario C.G. [Laboratorio de Superficies e Interfaces (INTEC-CONICET), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Ferron, Julio [Laboratorio de Superficies e Interfaces (INTEC-CONICET), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Baruzzi, Ana M. [Departamento de Fisicoquimica (INFIQC-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina); Brunetti, Veronica [Departamento de Fisicoquimica (INFIQC-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina)], E-mail: brunetti@fcq.unc.edu.ar

    2009-07-01

    Dendritic molecules contain multifunctional groups that can be used to efficiently control the properties of an electrode surface. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In the present work, we explore the immobilization of a dendritic molecule: 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid (D-NO{sub 2}) onto carbon surfaces showing a simple and rapid way to produce conductive surfaces with electroactive chemical functions. The immobilized D-NO{sub 2} layer has been characterized using atomic force microscopy and cyclic voltammetry. D-NO{sub 2} adsorbs onto carbon surfaces spontaneously by dipping the electrode in dendron solutions. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple. The film permeability of the derivatized surface has been analyzed employing the electrochemical response of redox probes: Ru(NH{sub 3}){sub 6}{sup 3+}/Ru(NH{sub 3}){sub 6}{sup 2+} and Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-}. Electrocatalytic oxidation of nicotinamide adenine dinucleotide onto a modified carbon surface was also observed.

  1. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  2. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  3. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  4. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    Science.gov (United States)

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  5. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  6. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    Science.gov (United States)

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  7. Functionalization of Chitosan with 3,4,5-Trihydroxy Benzoic Acid Moiety for The Uptake of Chromium Species

    Directory of Open Access Journals (Sweden)

    Akhmad Sabarudin

    2013-03-01

    Full Text Available Chitosan-based chelating resin, the cross-linked chitosan functionalized with 3,4,5-trihydroxy benzoic acid moiety (CCTS-THBA resin, was newly synthesized and its adsorption behavior toward appropriate elements was investigated. At pH 5-9, the CCTS-THBA resin showed quantitative adsorption (87-91% for Cr (VI, while only < 15% for Cr (III. The addition of cyclohexanediamine tetraacetic acid (CyDTA to the samples resulted in a considerably increase of the adsorption of both chromium species. In this condition, Cr (III is chelated with CyDTA to form anionic complexes at pH 3-5, which was then completely adsorbed on the resin by ion exchange mechanism. Similarly, the adsorption of Cr (VI reached almost 100% in pH range of 3-6. The adsorption capacity of CCTS-THBA resin for Cr (VI was 109 mg g-1.

  8. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase.

    Science.gov (United States)

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-02-01

    Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  9. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    Science.gov (United States)

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    Counce, Robert M.; Watson, Jack S.

    2009-01-01

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  12. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  13. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  14. Acetic acid sclerotheraphy of renal cysts

    International Nuclear Information System (INIS)

    Hong, Hoon Pyo; Oh, Joo Hyeong; Yoon, Yup; Kong, Keun Young; Kim, Eui Jong; Goo, Jang Sung

    1998-01-01

    Sclerotherapy for renal cysts was performed, using 50% acetic acid as new sclerosing agent. We report the methods and results of this procedure. Fifteen patients underwent sclerotherapy for renal cyst, using 50% acetic acid. Because four patients were lost to follow-up, only 11 of the 15 were included in this study. The renal cysts, including one infected case, were diagnosed by ultrasonograpy (n=3D10) ormagnetic resonance imaging (n=3D1). The patient group consisted of four men and seven women(mean age, 59 years; range, 23-77). At first, the cyst was completely aspirated, and 25 volume% of aspirated volume was replaced with 50% sterile acetic acid through the drainage catheter. During the follwing 20 minutes, the patient changed position, and the acetic acid was then removed from the cyst. Finally, the drainage catheter was removed, after cleaning the cyst with saline. After treatment of infection by antibiotics and catheter drainage for 7 days, sclerotherapy in the infected case followed the same procedure. In order to observe changes in the size of renal cysts and recurrence, all patients were followed up by ultrasound between 2 and 8 months. We defined response to therapy as follows:complete regression as under 5 volume%, partial regression as 5-50 volume% and no response as more than 50 volume% of initial cyst volume. No clinically significant complication occured during the procedures or follow-up periods. All cysts regressed completely during follow-up of 8 months. Complete regression occurred as follows: two cysts at 2 months, seven cysts at 4 months, two cysts at 6 months. Two cysts showed residues at the last follow-up, at 4 and 6 months, respectively. The volume of residual cysts decreased to under 5 volume% of initial volume, however. Completely regressed cysts did not recurr during follow-up. Acetic acid sclerotherapy for renal cysts showed good results, regardless of the dilution of sclerosing agent with residual cyst fluid, and no significant

  15. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  16. Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac ...

    African Journals Online (AJOL)

    Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac·eptive Preparation. Basil Bloch. Abstract. Experience with depot medroxyprogesterone acetate as a contraceptive preparation in 7 335 patients for a total of 38 714 months over a 3-year period is described. The discontinuation rate was 18.3% and the ...

  17. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  18. The Inhibitory Effect of Alisol A 24-Acetate from Alisma canaliculatum on Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Kwang-Jin Kim

    2015-01-01

    Full Text Available Osteoporosis is a disease that decreases bone mass. The number of patients with osteoporosis has been increasing, including an increase in patients with bone fractures, which lead to higher medical costs. Osteoporosis treatment is all-important in preventing bone loss. One strategy for osteoporosis treatment is to inhibit osteoclastogenesis. Osteoclasts are bone-resorbing multinucleated cells, and overactive osteoclasts and/or their increased number are observed in bone disorders including osteoporosis and rheumatoid arthritis. Bioactivity-guided fractionations led to the isolation of alisol A 24-acetate from the dried tuber of Alisma canaliculatum. Alisol A 24-acetate inhibited RANKL-mediated osteoclast differentiation by downregulating NFATc1, which plays an essential role in osteoclast differentiation. Furthermore, it inhibited the expression of DC-STAMP and cathepsin K, which are related to cell-cell fusion of osteoclasts and bone resorption, respectively. Therefore, alisol A 24-acetate could be developed as a new structural scaffold for inhibitors of osteoclast differentiation in order to develop new drugs against osteoporosis.

  19. Improved adaptation of test with lanthanum nitrate for the colorimetric estimation of acetate

    Energy Technology Data Exchange (ETDEWEB)

    Szumilo, T [Akademia Medyczna, Lublin (Poland)

    1976-01-01

    A colorimetric method for the determination of acetate based on the production of the blue complex between iodine and lanthanum alkaline acetate has been developed. Optimum concentrations of reagents (acetate, lanthanum nitrate, iodine and ammonia) as well as the volume of acetate were selected to achieve best colour intensity. Coloured complex was stabilized by dilution of reagent mixture with water to the final volume convenient for determinaton. Absorbance of the complex can be measured immediately after dilution and any changes can be observed during at least 15 minutes. Elevation of temperature over 60/sup 0/decreases absorbance. The method fulfills the Beer's law in the range 1,5-3,5 ..mu..moles of acetate, precision of the method 2/sup +/ = 3,7%. Apart from acetate - propionate and fluoroacetate complex is 620 nm, propionate complex - at 590 nm. Propionate complex displayed any relationship between concentration and absorbance. Potassium, sodium, lithium and barium acetates give the identical results as acetic acid, whereas zinc and cupric acetates failed to react. Other derivatives tested, e.g. chloroacetate, trichloroacetate, iodoacetate, chloroporpionate and butyrate are unable to form the coloured complexes. Many compounds interfere with the formation of acetate complex, therefore, in material containing impurities acetate can be determined after purificaton by means of described in literature methods.

  20. Protective effect of ketotifen and disodium cromoglycate against bronchoconstriction induced by aspirin, benzoic acid or tartrazine in intolerant asthmatics.

    Science.gov (United States)

    Wüthrich, B

    1979-01-01

    Oral challenge tests with acetylsalicylic acid, tartrazine or benzoic acid were performed in 7 intolerant asthmatic patients after a 3-day treatment with either orally taken ketotifen (1 mg twice daily) or inhaled disodium cromoglycate (20 mg four times daily) at random. Protection was noted with ketotifen in 5, with DSCG in 3 patients. On the evaluation of the mean percentage of the maximum decline in the forced expiratory volume in 1 sec (FEV1) only ketotifen afforded significant protection statistically (p less than 0.05). All the intolerant asthmatics studies showed, as an immunological abnormity, a slight, but significant decrease of the C1-inhibitor levels. Moreover, in three out of these the alpha 1-antitrypsin serum values were under the lower normal range.

  1. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    Science.gov (United States)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  2. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  3. The Effects of Lead Acetate on Sexual Behavior and the Level of Testosterone in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Mokhtar Mokhtari

    2011-01-01

    Full Text Available Background: In the present study, the oral effect of lead acetate on the parameters related to sexualbehavior as well as changes in the level of testosterone hormone in adult male rats have beeninvestigated.Materials and Methods: Forty adult male Wistar rats were allocated into five equal groups. Thecontrol group received nothing, the sham group received distilled water and the experimentalgroups received 25, 50 and 100mg/kg lead acetate orally, respectively for 28 days. The changesin testosterone hormone level and following sexual behavior parameters were investigated: mountlatency (ML, intromission latency (IL, post ejaculatory interval (PEI, mount frequency (MF,ejaculatory latency (EL, intromission frequency (IF, copulatory efficacy (CE and intercopulatoryinterval (ICI.Results: The levels of testosterone hormone in the groups that received 50 and 100 mg/kg leadacetate showed significant decreases in compared to the control group. Additionally, the same dosesof lead acetate caused significant increases in ML, IL, PEI and EL compared to the control group.No significant change was observed in MF, but a significant decrease was detected in IF and CEin the experimental group that received 100 mg/kg lead acetate when compared with the controlgroup. ICI showed significant decreases in the experimental groups that received 50 and 100 mg/kglead acetate compared to the control group.Conclusion: It can be concluded that ingestion of lead acetate affects some behavioral activitiesand the testosterone level of male rats. These effects might be conducted via the alteration of leydigcells following lead acetate poisoning.

  4. The ratio of acetate-to-glucose oxidation in astrocytes from a single 13C NMR spectrum of cerebral cortex.

    Science.gov (United States)

    Marin-Valencia, Isaac; Hooshyar, M Ali; Pichumani, Kumar; Sherry, A Dean; Malloy, Craig R

    2015-01-01

    The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate. © 2014 International Society for Neurochemistry.

  5. Leuprorelin Acetate in Prostate Cancer: a European Update

    Directory of Open Access Journals (Sweden)

    Persad R

    2002-01-01

    Full Text Available This review provides an update on leuprorelin acetate, the world's most widely prescribed depot luteinising hormone-releasing hormone analogue. Leuprorelin acetate has been in clinical use in the palliative treatment of prostate cancer for more than 20 years, but advances continue to be made in terms of convenience and flexibility of administration, and in the incorporation of leuprorelin acetate into novel treatment regimens. The drug is administered in the form of a depot injection containing leuprorelin acetate microspheres, and is at least as effective in suppressing testosterone secretion as orchiectomy. In patients with prostate cancer, serum testosterone levels are reduced to castrate levels (= 50 ng/dl within 2-3 weeks of the first one-month depot injection of 3.75 mg or three-month depot injection of 11.25 mg. Both the one-month and three-month formulations are effective in delaying tumour progression and alleviating symptoms of locally advanced and metastatic prostate cancer. Tolerability is generally good, with side-effects reflecting effective testosterone suppression. Recent studies have investigated the place of leuprorelin acetate as part of continuous or intermittent maximal androgen blockade (MAB and in neoadjuvant therapy (ie, to reduce the size of the prostate and downsize the tumour before radiotherapy. Additional formulations and presentations are in development, including a six-month injection, with the aim of adding to the clinical flexibility and patient acceptability of this important palliative treatment for prostate cancer.

  6. Modeling molecular acidity with electronic properties and Hammett constants for substituted benzoic acids.

    Science.gov (United States)

    Huang, Ying; Liu, Lianghong; Liu, Wanhui; Liu, Shaogang; Liu, Shubin

    2011-12-29

    Molecular acidity is an important physiochemical property essential in many fields of molecular studies, but an efficient and reliable computational approach to make accurate predictions is still missing. In this work, based on our previous studies to use gas phase electronic properties such as molecular electrostatic potential and valence natural atomic orbitals of the acidic atom and leaving proton, we demonstrate here that different approaches can be employed to tackle this problem. To that end, we employ 196 singly, doubly, and triply substituted benzoic acids for the study. We show that two different approaches are possible, one focusing on the carboxyl group through its localized electronic properties and the other on the substituting groups via Hammett constants and their additivity rule. Our present results clearly exhibit that with the linear models built from the singly substituted species, one can accurately predict the pK(a) values for the doubly and triply substituted species with both of these two approaches. The predictions from these approaches are consistent with each other and agree well with the experimental data. These intrinsically different approaches are the two manifestations of the same molecular acidity property, both valid and complementary to each other. © 2011 American Chemical Society

  7. Photoinduced Birefringent Pattern and Photoinactivation of Liquid-Crystalline Copolymer Films with Benzoic Acid and Phenylaldehyde Side Groups.

    Science.gov (United States)

    Kawatsuki, Nobuhiro; Inada, Shogo; Fujii, Ryosuke; Kondo, Mizuho

    2018-02-06

    In situ formation of N-benzylideneaniline (NBA) side groups achieved photoinduced cooperative reorientation of photoinactive copolymers with phenylaldehyde (PA) and benzoic acid (BA) side groups doped with 4-methoxyaniline (AN) molecules. Thermally stimulated molecular reorientation of the side groups was generated due to the axis-selective photoreaction of the NBA moieties. Selective coating with AN on the copolymer film formed NBA moieties in the desired region, resulting in a photoinduced birefringent pattern. Additionally, postannealing at an elevated temperature for a long time attained photoinactivation of the reoriented film, and recoating with AN to form NBA achieved the multiple birefringent patterns and repatterning of the reoriented structures. The slow thermal hydrolysis of NBA, which was 50 times slower than the thermally stimulated self-organization of the side groups due to the presence of BA side groups, contributed to the photodurability of the reoriented film and multiple birefringent patterns.

  8. Letrozole and norethisterone acetate versus letrozole and triptorelin in the treatment of endometriosis related pain symptoms: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Gillott David J

    2011-06-01

    Aromatase inhibitors reduce the intensity of endometriosis-related pain symptoms. Combining letrozole with oral norethisterone acetate was associated with a lower incidence of adverse effects and a lower discontinuation rate than combining letrozole with triptorelin.

  9. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  10. Acetalization of furfural with zeolites under benign reaction conditions

    DEFF Research Database (Denmark)

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  11. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    Science.gov (United States)

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of

  12. Fate and residues of trenbolone acetate in edible tissues from sheep amd calves implanted with tritium-labeled trenbolone acetate

    Energy Technology Data Exchange (ETDEWEB)

    Evrard, P.; Maghuin-Rogister, G.; Rico, A.G. (Univ. of Liege (Belgium))

    1989-06-01

    In order to study the fate and residues of trenbolone acetate in edible tissues, two groups of six animals from two ruminant species (ewes and calves) were implanted with (3H)trenbolone acetate. The distribution of extractable radioactive residues was measured in liver, kidney and muscle. We found that the largest proportion of residues was not extractable and thus was considered as covalently bound residues. The proportion of the main extractable metabolites (17 alpha-trenbolone, trendione, 17 beta-trenbolone) was measured. The evaluation of the distribution of trenbolone acetate metabolites directly soluble in water showed that unknown metabolite(s) were predominant. The covalent binding to nucleic acids was measured. It was so low that it was not detectable. The results are discussed in light of the data presented in the scientific report on anabolic agents in animal production from the European scientific working group.

  13. Fate and residues of trenbolone acetate in edible tissues from sheep amd calves implanted with tritium-labeled trenbolone acetate

    International Nuclear Information System (INIS)

    Evrard, P.; Maghuin-Rogister, G.; Rico, A.G.

    1989-01-01

    In order to study the fate and residues of trenbolone acetate in edible tissues, two groups of six animals from two ruminant species (ewes and calves) were implanted with [3H]trenbolone acetate. The distribution of extractable radioactive residues was measured in liver, kidney and muscle. We found that the largest proportion of residues was not extractable and thus was considered as covalently bound residues. The proportion of the main extractable metabolites (17 alpha-trenbolone, trendione, 17 beta-trenbolone) was measured. The evaluation of the distribution of trenbolone acetate metabolites directly soluble in water showed that unknown metabolite(s) were predominant. The covalent binding to nucleic acids was measured. It was so low that it was not detectable. The results are discussed in light of the data presented in the scientific report on anabolic agents in animal production from the European scientific working group

  14. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  15. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  16. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Methods: Chitosan acetate was chemically modified with acetaldehyde and the solution was prepared with 1 % acetic acid, in which was dissolved propranolol hydrochloride, was cast as films in Petri dish and characterised by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and ...

  17. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    Directory of Open Access Journals (Sweden)

    Nematollah Gheibi

    2015-02-01

    Full Text Available Objective(s:Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50 werecomparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  18. Potentiometric titrations in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Le Port, L.

    1966-03-01

    The method used for studying anhydrous acetic acid is potentiometry with a glass electrode. We have in this way studied the titration of common inorganic acids (HClO 4 - HBr - H 2 SO 4 - HCl - HNO 3 - H 3 PO 4 ) and of some metallic salts. Furthermore we have shown that complex acids are formed between HCl and some metallic chlorides. An analysis of the titration curves for the inorganic acids against pyridinium chloride has made it possible to calculate a certain number of values for the dissociation pK of these acids and of the corresponding pyridinium salts. The titration of metallic perchlorates constitutes a method of studying the stability of acetates; we have thus been able to draw up a classification for some of these acetates. The metallic chlorides studied fall into two groups according to their behaviour in weak or strong acids. The differences have been explained on the basis of the role played by solvolysis. In the third part we have studied the acidic properties of mixtures of HCl with certain metallic chlorides. This work has demonstrated the existence, in certain cases, of acid complexes of the type (HCl) m MCl n . (author) [fr

  19. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  20. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  1. Characterization of cellulose acetate obtained from sugarcane bagasse by 1H-NMR

    International Nuclear Information System (INIS)

    Cerqueira, Daniel A.; Rodrigues Filho, Guimes; Carvalho, Rui A.; Valente, Artur J.M.

    2009-01-01

    Cellulose from sugarcane bagasse was used for synthesizing cellulose acetate with different degrees of substitution, which were characterized by 1 H-NMR through the relationship between the peak areas of the hydrogen atoms present at the acetate groups (-(C=O)OCH 3 ) and the peaks of the hydrogen bonded to the carbon atoms of the glycosidic rings. Suppression was carried out in order to remove the peak of residual water in the materials and the peak related to impurities in cellulose triacetate. Degree of substitution values obtained through the resonance deconvolution were compared to those obtained by chemical determination through an acid-base titration. The determined degrees of substitution of the cellulose samples were 2.94 and 2.60. (author)

  2. Evolution of the zinc compound nanostructures in zinc acetate single-source solution

    International Nuclear Information System (INIS)

    Wang Ying; Li Yinhua; Zhou Zhengzhi; Zu Xihong; Deng Yulin

    2011-01-01

    A series of nanostructured zinc compounds with different nanostructures such as nanobelts, flake-like, flower-like, and twinning crystals was synthesized using zinc acetate (Zn(Ac) 2 ) as a single-source. The evolution of the zinc compounds from layered basic zinc acetate (LBZA) to bilayered basic zinc acetate (BLBZA) and twinned ZnO nano/microcrystal was studied. The low-angle X-ray diffraction spectra indicate the layered spacing is 1.34 and 2.1 nm for LBZA and BLBZA, respectively. The Fourier transform infrared (FTIR) spectra results confirmed that the bonding force of acetate anion with zinc cations decreases with the phase transformation from Zn(Ac) 2 to BLBZA, and finally to LBZA. The OH − groups gradually replaced the acetate groups coordinated to the matrix zinc cation, and the acetate groups were released completely. Finally, the Zn(OH) 2 and ZnO were formed at high temperature. The conversion process from Zn(Ac) 2 to ZnO with release of acetate anions can be described as Zn(Ac) 2 → BLBZA → LBZA → Zn(OH) 2 → ZnO.

  3. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material

    International Nuclear Information System (INIS)

    Scalzullo, Stefania; Mondal, Kartick; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik; Witcomb, Mike

    2008-01-01

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures

  4. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  5. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    Science.gov (United States)

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. [Effects of selective methanogenic inhibitors on methanogenesis and methanogenic communities in acetate degrading cultures].

    Science.gov (United States)

    Ma, Tingting; Cheng, Lei; Liu, Laiyan; Dai, Lirong; Zhou, Zheng; Zhang, Hui

    2015-05-04

    We evaluated the role of syntrophic acetate oxidation coupled with hydrogenotrophic methanogens in three different methanogenic consortia. Three methanogenic hexadecane degrading consortia named Y15, M82 and SK were taken from the same oily sludge of Shengli oil-field and enriched. They were incubated at 15, 35 and 55 °C, respectively. The consortia amended with acetate and inhibitors of NH4Cl or CH3F were further transferred and incubated at corresponding temperatures. The cultures atlate logarithmic phase were collected for terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and phylogenetic analysis of 16S rRNA gene fragments. Gas chromatograph analysis showed that all of the consortia could grow and produce methane, but the lag phase was delayed and the growth rate was retarded in the cultures amended with inhibitor. Combination analysis of T-RFLP and clone library revealed the predominance of obligate aceticlastic Methanosaeta in the acetate cultures of Y15, M82 and SK. Under the mesophilic and thermophilic conditions, after add inginhibitor the relative abundance of aceticlastic methanogen decreased but hydrogenotrophic methanogen increased. Syntrophic acetate oxidation during methanogenic degradation of petroleum hydrocarbons occurs under mesophilic and thermophilic conditions, although the situation at low temperature seems uncertain.

  7. Naturally Compatible: Starch Acetate/Cellulosic Fiber Composites. I. Processing and Properties

    DEFF Research Database (Denmark)

    Nättinen, Kalle; Hyvärinen, Sari; Joffe, Roberts

    2010-01-01

    Composite compounds based on hemp and flax fibers in triethyl citrate plasticized starch acetate were prepared by melt processing. For better properties and processability, compounds with plasticizer contents in the range 20-35 wt% were screened. Composites were prepared with fiber contents up...... to 50 wt%. The composite mechanical properties were measured from injection molded test specimens. A Young's modulus of 8.3 GPa and stress at maximum load of 51 MPa were obtained with 40 wt% flax fiber in a plasticized starch acetate with 20 wt% triethyl citrate. Decreasing the plasticizer...... and increasing the fiber content, the tensile properties were consistently improved. An almost linear relation between fiber content and the tensile properties was found. The increase of the fiber content first improved the impact strength, but at higher fiber contents resulted in a reduction of impact strength...

  8. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Furbo, Simon

    2016-01-01

    Sodium acetate trihydrate is a promising phase change material for long term storage of solar thermal energy if supercooling is actively utilized. Well performing thermal energy storages need to be able to charge and discharge energy at a high rate. The relatively low thermal conductivity....... Investigations of the solidification behavior, the formation of cavities and thermal conductivity of composites based on sodium acetate trihydrate crystalizing with or without supercooling are presented in this paper. The thermal conductivity was measured with an ISOMET hot disc surface measurement probe....... Samples that crystalized without supercooling tended to form solid crystals near the heat transfer surface and cavities away from the heat transfer surface. The measured thermal conductivity was up to 0.7 W/m K in solid sodium acetate trihydrate. Samples that crystalized from supercooled state formed...

  9. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  10. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to acetic acid and maintenance of normal blood pressure (ID 1447) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    that maintenance of normal blood pressure is a beneficial physiological effect. In weighing the evidence, the Panel took into account that although one animal study showed an effect of acetic acid administration on systolic blood pressure, results from two human intervention studies are conflicting...... claims in relation to acetic acid and maintenance of normal blood pressure. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders....... The food that is the subject of the health claim is apple vinegar drink. From the references provided for the scientific substantiation of the claim, the Panel assumes that the food constituent which is responsible for the claimed effect is acetic acid. The Panel considers that acetic acid is sufficiently...

  11. Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates.

    Science.gov (United States)

    Yunta, Felipe; García-Marco, Sonia; Lucena, Juan J; Gómez-Gallego, Mar; Alcázar, Roberto; Sierra, Miguel A

    2003-08-25

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid (EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soils. EDDHA, EDDH4MA (ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenyl)acetic acid), and EDDCHA (ethylenediamine-N,N'-bis(2-hydroxy-5-carboxyphenyl)acetic acid) are allowed by the European directive, but also EDDHSA (ethylenediamine-N,N'-bis(2-hydroxy-5-sulfonylphenyl)acetic acid) and EDDH5MA (ethylenediamine-N,N'-bis(2-hydroxy-5-methylphenyl)acetic acid) are present in several commercial iron chelates. In this study, these chelating agents as well as p,p-EDDHA (ethylenediamine-N,N'-bis(4-hydroxyphenyl)acetic acid) and EDDMtxA (ethylenediamine-N,N'-bis(2-metoxyphenyl)acetic acid) have been obtained following a new synthetic pathway. Their chemical behavior has been studied to predict the effect of the substituents in the benzene ring on their efficacy as iron fertilizers for soils above pH 7. The purity of the chelating agents has been determined using a novel methodology through spectrophotometric titration at 480 nm with Fe(3+) as titrant to evaluate the inorganic impurities. The protonation constants were determined by both spectrophotometric and potentiometric methods, and Ca(2+) and Mg(2+) stability constants were determined from potentiometric titrations. To establish the Fe(3+) and Cu(2+) stability constants, a new spectrophotometric method has been developed, and the results were compared with those reported in the literature for EDDHA and EDDHMA and their meso- and rac-isomers. pM values have been also determined to provide a comparable basis to establish the relative chelating ability of these ligands. The purity obtained for the ligands is higher than 87% in all cases and is comparable with that obtained by (1)H NMR. No significant differences have been found among ligands when their protonation and stability constants were compared. As expected, no Fe(3

  12. The selective generation of acetic acid directly from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.

    1986-01-01

    The authors conclude that each of the ruthenium, cobalt and iodide-containing catalyst components have very specific roles to play in the ''melt'' catalyzed conversion of synthesis gas to acetic acid. C 1 -Oxygenate formation is only observed in the presence of ruthenium carbonyls - [Ru(CO) 3 I 3 ] - is here the dominant species - and there is a direct relationship between liquid yield, ΣOAc - productivity and [Ru(CO) 3 I 3 ] - content. Controlled quantities of iodide ensure that initially formed MeOH is rapidly converted to the more reactive methyl iodide. Subsequent cobalt-catalyzed carbonylation to acetic acid may be preparatively attractive (>80% selectivity, good yields) relative to competing syntheses, where the [Co(CO) 4 ] - concentration is maximized that is, where the Co/Ru ratio is >1, the syngas feedstock is rich in CO, and the initial iodide/cobalt ratios are ca. unity. Formation of cobalt-iodide species appears to be a competing, inhibitory step in this catalysis

  13. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  14. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  15. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  16. Acetate in Oz: Some Strategic Moves

    Directory of Open Access Journals (Sweden)

    Colin Webb

    2005-08-01

    Full Text Available I would like to add my voice to the words of congratulations and thanks to the British Library for organising this forum, and for their generosity in making it possible for me to come across the world to be part of it. The issues we are discussing today have an importance extending beyond cellulose acetate, as they reflect our ability as custodians to deal with common threats to the documentary heritage we are charged with preserving. As I will argue later, we need to see this situation in the context of the full range of preservation management issues that face our institutions. While it imposes a burden and a challenge on us as preservation managers, it also presents opportunities to sort out some things that have needed attention for some time. I have been asked to talk about problems with cellulose acetate microfilm collections in Australia, and specifically the strategies – both national and local – that have been adopted or at least explored in response to those problems. In the time I have I will not be going into any of these in great detail, but I hope I can give you some sense of the situation down under, and perhaps draw out a few issues that might make this more than just an ‘us too’ session! One thing to emphasise from the start is that we have had a number of goes at dealing with acetate microfilm collections: it is not a newly discovered problem in Australia. One significant context in which we have been working is that of a national strategy for all kinds of cellulose acetate collection materials. Explaining this national strategy will form a major part of my presentation, with issues and approaches specific to microfilm discussed towards the end.

  17. Synthesis, characterization and biocidal activity of new organotin complexes of 2-(3-oxocyclohex-1-enyl)benzoic acid.

    Science.gov (United States)

    Vieira, Flaviana T; de Lima, Geraldo M; Maia, José R da S; Speziali, Nivaldo L; Ardisson, José D; Rodrigues, Leonardo; Correa, Ary; Romero, Oscar B

    2010-03-01

    The reaction of 1,3-cyclohexadione with 2-aminobenzoic acid has produced the 2-(3-oxocyclohex-1-enyl)benzoic acid (HOBz). Subsequent reactions of the ligand with organotin chlorides led to [Me(2)Sn(OBz)O](2) (1), [Bu(2)Sn(OBz)O](2) (2), [Ph(2)Sn(OBz)O](2) (3), [Me(3)Sn(OBz)] (4), [Bu(3)Sn(OBz)] (5) and [Ph(3)Sn(OBz)] (6). All complexes have been fully characterized. In addition the structure of complexes (2) and (4) have been authenticated by X-ray crystallography. The biological activity of all derivatives has been screened against Cryptococcus neoformans and Candida albicans. In addition we have performed toxicological testes employing human kidney cell. The complexes (3), (5) and (6) displayed the best values of inhibition of the fungus growing, superior to ketoconazole. Compound (5) presented promising results in view of the antifungal and cytotoxicity assays. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  18. Catalytic oxidation of butyl acetate over silver-loaded zeolites

    International Nuclear Information System (INIS)

    Wong, Cheng Teng; Abdullah, Ahmad Zuhairi; Bhatia, Subhash

    2008-01-01

    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV) = 15,000-32,000 h -1 , reaction temperature between 150 and 500 deg. C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 deg. C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively

  19. The use of sodium alginate-based coating and cellulose acetate in papaya post-harvest preservation

    Directory of Open Access Journals (Sweden)

    Denise Andrade Silva

    2014-02-01

    Full Text Available This study aimed to evaluate the ripening of papaya fruit (Carica papaya L. at room temperature (±25°C and10°C with 80% relative humidity, coated with edible film based on sodium alginate (1% and cellulose acetate film (3% by dipping the fruit in the suspensions for 1 min. On the application of the treatment and every three days during 12 days of storage, fruit were evaluated for weight loss, firmness, total carotenoid content, lycopene content and vitamin C content of the pulp. The cellulose acetate film extended the shelf-life of papayas, without affecting their quality. This treatment delayed fruit ripening, whose changes in all the parameters analyzed were significantly slower than fruit treated with sodium alginate-based coating. The coating with cellulose acetate at 3% was more effective in the preservation of papaya stored for 12 days under both temperatures.

  20. Teratogenic effects of lead acetate on kidney

    International Nuclear Information System (INIS)

    Jabeen, R.; Tahir, M.; Waqas, S.

    2010-01-01

    Background: Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both men and women. Conflicting reports have appeared on lead induced nephrotoxicity in experimental studies in the past. There is hardly any work on its teratogenic effects on kidney. Present study was therefore designed to investigate the effects of lead acetate on developing kidney. Methods: Twelve mice were used as experimental model and were divided into two groups of six animals each; group A served as control group and B was used as an experimental group. Lead acetate (10 mg/kg) dissolved in 0.02 ml of distilled water was administered as a single daily dose orally to group B whereas weight related amount of distilled water was given to group A for the entire period of experiment. On 18 day of gestation foetuses were dissected free of uterine wall under the dissecting microscope and were sacrificed; kidneys were removed and fixed in 10% formalin, dehydrated in ascending grades of alcohol, cleared in xylene and infiltrated with filtered paraffin. The paraffin blocks were made and five micron thin sections were obtained using a rotary microtome. The sections were stained with Hematoxylin and eosin and, PAS; these were examined under light microscope. Results: Significant decrease in cortical thickness was observed which varied from 578.6 +- 1.4 mu m in group A to 515.6 +- 5 mu m in group B (p<0.001). Diameter of renal corpuscles varied from 57.7 +- 0.07 mu m in group A to 50.5 +- 0.07 mu m in group B (p<0.001). Moderate cortical tubular atrophy showing thickening of endothelial basement membrane in glomeruli, desquamated epithelium with degenerated nuclei in proximal and distal tubules were observed in group B in contrast to group A. Conclusion: The results of the investigation indicated that lead acetate administration to the dams produced deleterious effects on the developing kidney in mice. (author)

  1. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  2. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  3. Acetic acid production from marine algae. Progress report No. 2, September 30--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicate that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ were observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate. Work is continuing to improve the yield of acetic acid from marine algae. Marine algae have been found to be rather low in carbon, but the carbon appears to be readily available for fermentation. It, therefore, lends itself to the production of higher value chemicals in relatively expensive equipment, where the rapid conversion rate is particularly cost effective. Fixed packed bed fermenters appear to be desirable for the production of liquid products which are inhibitory to the fermentation from coarse substrates. The inhibitory products may be removed from the fermentation by extraction during recirculation. This technique lends itself to either conventional processing or low capital processing of substrates which require long retention times.

  4. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols.

    Science.gov (United States)

    Landolt, P J; Smithhisler, C S; Reed, H C; McDonough, L M

    2000-12-01

    Nineteen compounds were evaluated in combination with a solution of acetic acid as baits for trapping the German yellowjacket, Vespula germanica (F.), the western yellowjacket Vespula pensylvanica (Sausssure), and the golden paper wasp Polistes aurifer Saussure. Compounds with three to six carbon chains or branched chains and with a hydroxy functional group were selected for testing based on their similarity to isobutanol. They were compared with isobutanol with acetic acid, which is a known wasp attractant. None of the compounds tested were superior to isobutanol when presented with acetic acid as a lure for these species of wasps. However, traps baited with either the S-(-)- or the racemic mixture of 2-methyl-1-butanol in combination with acetic acid captured similar numbers of both species of yellowjackets, compared with isobutanol with acetic acid. Polistes aurifer responded strongly to the S-(-)-enantiomer and to the racemic mixture of 2-methyl-1-butanol with acetic acid and not to the R-(+)-enantiomer with acetic acid.

  5. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Sri Agus Sudjarwo

    2017-11-01

    Full Text Available Objective(s: In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily, positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days, and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days. On day 65 levels of blood urea nitrogen (BUN, creatinine, malondialdehyde (MDA, Superoxide Dismutase (SOD, and Glutathione Peroxidase (GPx were measured. Also, kidney samples were collected for histopathological studies. Results: The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. Conclusion: From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats.

  6. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    Science.gov (United States)

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  7. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    Sugano, Motoyuki; Katoh, Harumi; Komatsu, Akihiro; Kobayashi, Hiroshi; Okado, Kohta; Kakuta, Yusuke; Hirano, Katsumi

    2012-01-01

    It is well known that over 0.8 kg kg −1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg −1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L −1 and 0.52 mol L −1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L −1 to 3.33 mol L −1 . It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L −1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg -1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  8. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    Science.gov (United States)

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  10. Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533

    NARCIS (Netherlands)

    Hertzberger, R.Y.; Pridmore, R.D.; Gysler, C.; Kleerebezem, M.; Teixeira de Mattos, M.J.

    2013-01-01

    Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be

  11. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  12. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  13. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  14. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    Science.gov (United States)

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  15. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  16. (Benzoato-κObis(1,10-phenanthroline-κ2N,N′copper(II chloride benzoic acid disolvate

    Directory of Open Access Journals (Sweden)

    Wen-Xiang Huang

    2010-05-01

    Full Text Available In the title complex, [Cu(C7H5O2(C12H8N22]Cl·2C6H5COOH, the CuII ion is coordinated by one carboxylate O atom from a benzoate anion and four N atoms from two phenantroline ligands in a distorted five-coordinate trigonal-bipyramidal CuON4 chromophore. The Cu2+ and the Cl− ion are imposed by a twofold rotation axiss which also bisects the equally disordered benzoate anion. In the crystal, the molecules are assembled into chains along [010] by C—H...Cl, O—H...Cl and C—H...O hydrogen-bonding interactions. The resulting chains are further connected into two-dimensional supramolecular layers parallel to [100] by interchain π...π stacking interactions [centroid–centroid distance = 3.823 (5 Å] between the phenanthroline ligands and the benzoic acid molecules, and by C—H...O hydrogen-bonding interactions. Strong π...π stacking interactions between adjacent phenantroline ligands [3.548 (4 Å] assemble the layers into a three-dimensional supramolecular architecture.

  17. Clomazone selectivity in cotton seeds treated with dietholate and zinc acetate

    Directory of Open Access Journals (Sweden)

    Miriam Hiroko Inoue

    2014-12-01

    Full Text Available The objective of this study objective was to evaluate the selectivity of pre-emergence applications the herbicide clomazone cotton seeds treated with dietholate and zinc acetate. The 4 x 2 factorial arrangement was adopted (4 seed treatment methods and 2 clomazone dosages, distributed in a randomized block design with 4 repetitions. In treatments where dietholate and zinc acetate were applied, rates of 0.4 kg ha-1 and 8 ml per kg of seeds were used respectively. The clomazone rates used refer to 0.8 and 1.0 kg ha- 1. The cotton cultivar used was the Fiber Max 966 LL. Independent of treatment, all seeds were treated with tiametoxam insecticide and fludioxonil + metalaxyl-M fungicide at rates of 2.24 and 0.08 + 0.03 g per kg of seed, respectively, to control pests early and limit losses caused by pathogens in germination and seedling emergence. Dietholate and zinc acetate treatment had greater initial effect on cotton plants at 21, 30 and 45 days after application. In phytointoxication symptoms were observed for treatment with dietholate and zinc acetate during the evaluation periods. Seeds treated with dietholate, dietholate and zinc acetate or zinc acetate alone provided a higher number of bolls and seed cotton production compared to the control.

  18. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  19. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  20. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis.

    Science.gov (United States)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2009-09-01

    The photolysis of S(2)O(8)(2-) was studied for the removal of acetic acid in aqueous solution and compared with the H(2)O(2)/UV system. The SO(4)(-) radicals generated from the UV irradiation of S(2)O(8)(2-) ions yield a greater mineralization of acetic acid than the ()OH radicals. Acetic acid is oxidized by SO(4)(-) radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of ()OH radicals from SO(4)(-) radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with SO(4)(-) and also ()OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to HCO(3)(-) ions, the presence of Cl(-) ions enhances the efficiency of the S(2)O(8)(2-)/UV process towards the acetate removal. It is attributed to the formation of the Cl() radical and its great reactivity towards acetate.

  1. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    International Nuclear Information System (INIS)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R.

    1988-01-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R a was matched by a comparable decrease in glucose utilization (R d ), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R a is counterbalanced by equal inhibition of R d ; (2) basal R a and R d are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  2. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  3. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  4. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  5. Bioelectrochemical Ethanol Production through Mediated Acetate Reduction by Mixed Cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Schaap, J.D.; Kampman, C.; Buisman, C.J.N.

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate

  6. Presença dos ácidos benzóico e sórbico em vinhos e sidras produzidos no Brasil Presence of benzoic and sorbic acids in Brazilian wines and ciders

    Directory of Open Access Journals (Sweden)

    Rita Margarete Donato Machado

    2007-12-01

    Full Text Available O objetivo do presente trabalho foi a determinação dos níveis de ácido benzóico e ácido sórbico em uma variedade de vinhos e sidras brasileiros, de modo a comparar os valores com os máximos permitidos pela legislação. Um total de 49 amostras (sendo 35 vinhos tintos, 11 vinhos brancos e 3 sidras, disponíveis comercialmente, foram analisadas por CLAE com detector de arranjo de diodos. Apesar do uso de ácido benzóico em vinhos e sidras não ser permitido, esse conservador foi detectado em 3 amostras: 1 vinho e 2 sidras em níveis de 295,6, 424,7 e 608,4 mg.L-1, respectivamente. O ácido sórbico foi detectado em 49% das amostras analisadas com níveis variando de 91,0 a 309,5 mg.L-1. Considerando apenas as amostras nas quais o ácido sórbico foi detectado, o valor médio encontrado foi de 171,2 mg.L-1. Em seis amostras de vinho tinto os níveis de ácido sórbico estavam acima do permitido pela legislação brasileira. Os resultados encontrados no presente trabalho mostram que em algumas amostras, os níveis dos ácidos benzóico e sórbico nos vinhos e sidras analisados, assim como a rotulagem desses produtos não estão de acordo com a legislação vigente no Brasil.This study determined benzoic and sorbic acid contents in Brazilian wines and ciders in order to verify whether these preservatives are used in accordance with Brazilian regulations. Forty-nine samples of commercially available wines (35 red wines, 11 white wines and 3 ciders were analyzed by HPLC coupled to a photodiode array detector. Although the use of benzoic acid in wines and ciders is not permitted, this preservative was detected in three samples, one wine and two ciders, which contained benzoic acid levels of 295.6, 424.7 and 608.4 mg.L-1, respectively. Sorbic acid was detected in 49% of the analyzed samples, with levels ranging from 91.0 to 309.5 mg.L-1. Considering only the samples containing sorbic acid, the mean content detected was 171.2 mg.L-1. Six red wine

  7. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    Science.gov (United States)

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  8. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  9. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  10. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of Pb-acetate on Testicle Weight and Volume of Mice

    Directory of Open Access Journals (Sweden)

    Israhnanto Isradji

    2011-12-01

    Design and Method: Eighty male mice placed in individual cages according to the group. Food and drink provided ad libitum. The treatment of male mice given for 6 weeks. Treatment with 0.2 ml distilled water to PI, P II were given a solution of 400 ppm Pb acetate total of 0.2 ml, P III was given a solution of 1000 ppm Pb acetate as many as 0.2 ml, and P IV were given a solution of 2000 ppm Pb acetate total of 0,2 ml by using a gastric sonde, every morning once a day for 42 days. At week 7, mice were surgery to take the testis. Testicular volume was measured and weighed. Data were analyzed by ANOVA, hypothesis is accepted when p 0.05, testis weight obtained by ANOVA test probability of 0.216 (> 0.05, mean Pb -acetate had no effect on testis weight and volume. Conclusion: Pb-acetate had no effect on testis weight and volume (Sains Medika, 3(2:150-156.

  12. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  13. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  14. Formation of acetals under rhodium-catalyzed hydroformylation conditions in alcohols

    NARCIS (Netherlands)

    Diebolt, O.H.; Müller, C.; Cruzeuil, C.; Vogt, D.

    2012-01-01

    Hydroformylation of terminal alkenes in alcohol solvents leads to the selective formation of the corresponding acetals. The Xantphos ligand gave the best results as well as acetal selectivities higher than 99% and linear/branched ratios of up to 52 were obtained. The scope of the reaction was

  15. The effective reaction of 2-chloro-3-formylquinoline and acetic acid ...

    African Journals Online (AJOL)

    formylquinolines in a single step by treating with sodium acetate and acetic acid under microwave irradiation. The structures of the compounds have been established by IR, NMR and mass spectral data. Unexpectedly ...

  16. DFT-Based Explanation of the Effect of Simple Anionic Ligands on the Regioselectivity of the Heck Arylation of Acrolein Acetals

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Cacchi, Sandro

    2009-01-01

    The Heck arylation of acrolein acetal has been studied computationally and compared to the corresponding reaction with allyl ethers. The reaction can be controlled to give either cinnamaldehydes or arylpropanoic esters by addition of different coordinating anions, acetate, or chloride. The comput...... reaction conditions. The difference between the two substrate classes could be rationalized in terms of relative hydride donating power of the two substrates....

  17. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  18. Effect of various solvents on the viscosity-average molecular weight of poly (vinyl acetate)

    International Nuclear Information System (INIS)

    Rehman, W.U.; But, M.A.; Chughtai, A.; Jamil, T.; Sattar, A.

    2006-01-01

    Solution polymerization of Vinyl Acetate was carried out in various solvents (benzene, toluene, ethyl acetate, acetonitrile). Dilute solution viscometry was used to determine the viscosity-average molecular weight of the resulting Poly (Vinyl Acetate) (PV Ac) in each case. The viscosity-average molecular weight (M,J of PVAc was found to increase in the order benzene < toluene < ethyl acetate < acetonitrile, It was concluded that under the same reaction conditions (polymerization time, initiator quantity, solvent/monomer ratio, temperature), acetonitrile served as the best solvent for solution. polymerization of Vinyl Acetate monomer. (author)

  19. NMR study of the epoxidation of liquid hydrolyzed poly-butadiene and meta-chloro-per-benzoic acid; Estudo atraves de RMN da reacao de epoxidacao de polibutadieno liquido hidroxilado (PBLH) e acido m-cloro perbenzoico (AMCPB)

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Marcelo [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Akcelrud, L [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica; Menezes, Sonia Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-12-31

    This work presents a study concerning the selectivity of the different configurations of the double bond present in liquid hydrolyzed poly-butadiene towards the epoxidation reaction with meta-chloro-per-benzoic acid through hydrogen-1, carbon-13 NMR aiming the production of new materials, varying the epoxidation level 12 refs., 7 figs., 4 tabs.

  20. Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm.

    Science.gov (United States)

    Rahman, M Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J Colin

    2011-06-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using (13)C-methane and (12)C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  1. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  2. modelling and simulation of the batch hydrolysis of acetic ing

    African Journals Online (AJOL)

    eobe

    The kinetic modelling of the batch synthesis of acetic acid from acetic. The kinetic modelling of ... integral method of analysis to determine the kinetic parameters .... Equation (5) is applied to all the components ... In common chemical engineering terminology, the degree of ..... of Physical Organic Chemistry, Vol. 25, Number ...

  3. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    Science.gov (United States)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  4. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    Science.gov (United States)

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P PET (P PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  5. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  6. [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation].

    Science.gov (United States)

    Qi, Zhengliang; Yang, Hailin; Xia, Xiaole; Wang, Wu; Leng, Yunwei; Yu, Xiaobin; Quan, Wu

    2014-03-04

    The aim of the study is to propose a dynamic acetic acid resistance mechanism through analysis on response of cellular morphology, physiology and metabolism of A. pasteurianus CICIM B7003 during vinegar fermentation. Vinegar fermentation was carried out in a Frings 9 L acetator by strain B7003 and cultures were sampled at different cellular growth phases. Simultaneously, percentage of capsular polysaccharide versus dry cells weight, ratio of unsaturated fatty acids to saturated fatty acids, transcription of acetic acid resistance genes, activity of alcohol respiratory chain enzymes and ATPase were detected for these samples to assay the responses of bacterial morphology, physiology and metabolism. When acetic acid was existed, no obvious capsular polysaccharide was secreted by cells. As vinegar fermentation proceeding, percentage of capsular polysaccharide versus dry cells weight was reduced from 2.5% to 0.89%. Ratio of unsaturated fatty acids to saturated fatty acids was increased obviously which can improve membrane fluidity. Also transcription level of acetic acid resistance genes was promoted. Interestingly, activity of alcohol respiratory chain and ATPase was not inhibited but promoted obviously with acetic acid accumulation which could provide enough energy for acetic acid resistance mechanism. On the basis of the results obtained from the experiment, A. pasteurianus CICIM B7003 relies mainly on the cooperation of changes of extracellular capsular polysaccharide and membrane fatty acids, activation of acid resistance genes transcription, enhancement of activity of alcohol respiratory chain and rapid energy production to tolerate acidic environment.

  7. Synthesis, spectroscopic studies and antimicrobial activity of chelates 2-(acetyloxy)-benzoic acid with transition metals (CR+3, MN+2, NI+2 AND CU+2)

    International Nuclear Information System (INIS)

    Khan, B.; Mateen, B.; Ahmed, F.; Ahmed, F.

    2007-01-01

    2-(acetyloxy)-Benzoic acid chelates with Cr+3, Mn+2, Ni+2 and Cu+2 were synthesized and characterized by the melting point, solubility, Fourier Transform Infrared (FT-IR) Spectroscopy, Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD) method and evaluated by antimicrobial activity. The functional group present in the chelates was determined by Fourier Transform Infrared Spectroscopy, by X-Ray Diffraction analysis crystal data of chelates, their inter-atomic and inter-planer spacing was also determined. The amount of metal in the chelates was estimated by Atomic Absorption Spectroscopy and their Antimicrobial Activity was studied against Pseudomonas aeruginosa, Escherisha coli and Staphylococcus aureus. (author)

  8. Secondary deuterium isotope effects in the hydrolysis of some acetals

    International Nuclear Information System (INIS)

    Paterson, R.V.

    Secondary α-deuterium kinetic isotope effects have been determined in the hydrolyses of some acetals. Benzaldehyde dimethyl acetal and 2-phenyl-1,3-dioxolan show isotope effects in agreement with an A1 mechanism. 2-Phenyl-4,4,5,5-tetramethyl-1,3-dioxolan, which has been shown to undergo hydrolysis by an A2 type mechanism, has an isotope effect in agreement with participation by water in the transition state. Hydrolysis of benzylidene norbornanediols, although complicated by isomerisation, has an isotope effect in agreement with an A2 mechanism. Kinetic isotope effects in acetals which have a neighbouring carboxyl group have also been determined. Hydrolysis of 2-carboxybenzaldehyde dimethyl acetal in aqueous and 82% w/w dioxan-water buffers has isotope effects in agreement with a large degree of carbonium ion character in the transition state. Anderson and Capon proposed nucleophilic participation in the hydrolysis of this acetal in 82% dioxan-water. The isotope effect determined in this study is not in agreement with this finding. Hydrolysis of 2-(2'-carboxyphenyl)-4,4,5,5-tetramethyl-1,3-dioxolan shows an isotope effect larger than the corresponding dioxolan without the carboxyl group in agreement with some carbonium ion character in the transition state. A new synthesis of a deuterated aldehyde is described which might be general for aldehydes which will not form benzoins readily. (author)

  9. Cellulose acetate electrospun nanofibrous membrane: fabrication ...

    Indian Academy of Sciences (India)

    337–343. c Indian Academy of Sciences. ... 1Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81300 Johor, Malaysia ... concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone ...

  10. Synthese und Charakterisierung wasserfreier Seltenerdmetall-Nitrate, -Acetate und -Oxyacetate

    OpenAIRE

    Heinrichs, Christina

    2013-01-01

    Durch thermische Entwässerung der Seltenerdmetall(SE)-Nitrat-Hydrate und der SE-Acetat-Hydrate im Argon-Strom/Vakuum konnten wasserfreie SE-Nitrate und SE-Nitrat-Monohydrate bzw. wasserfreie SE-Acetate erhalten werden. Es gelang zudem, SE-Oxyacetate durch thermische Zersetzung der SE-Acetate darzustellen. Des Weiteren wurde beim Erhitzen von Praseodym-Carbonat-Hydrat ein Pr-Carbonat-Hydroxid erhalten. Die Verbindungen wurden mittels Röntgenpulverdiffraktometrie und an ausgewählten Beispielen ...

  11. A study of 11C-acetate production using 11C-choline commercial module

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Yao Shulin; Chen Yan

    2008-01-01

    Objective: 11 C-acetate is a useful PET tracer in evaluating myocardial metabolism but more interest has been focused on its application in tumor detection in recent years, especially hepatocellular carcinoma (HCC). This study was designed to evaluate the laboratory, preparation of 11 C-acetate with a modified 11 C-choline commercial module and to investigate its biodistribution in tumor (lung adenocarcinoma)-bearing mice as well as its potential as a tumor imaging agent. Methods: 11 C-acetate was synthesized with a modified 11 C choline module: Methyl magnesium bromide Grignard (0.1 ml of 1.5 mol/L) was load- ed to a Teflon loop before 11 CO 2 was recovered from the target. Cartier acetate solution (2 ml of 1 mmol/L) was pushed through the loop, SPE cartridges (mixed AG50 and IC-Ag) and then the QMA. The loop and cartridges were then rinsed with water. The product 11 C-acetate was then washed out from QMA with 0.9% NaCl solution into a collection vial containing diluted HCl. 11 C-carbonate was removed by nitrogen bubbling for 2 min. After neutralization with trisodium citrate, the injectable 11 C-acetate solution was obtained. The tumor-bearing mice were sacrificed. The percentage activity of injected dose per gram of tissue (% ID/g) for tumor and other tissues were calculated. One patient with known diagnosis of moderately differentiated HCC was injected with 11 C-acetate and imaged by PET/CT, followed by 18 F-fluorodeoxyglucose (FDG). Results: The synthesis yield of 11 C-acetate was (60.5 ± 8.7)% (decay conected, n=10); the radio-chemistry purity was > 98% and the synthesis time was 10 min from 11 CO 2 to 11 C-acetate. The radioactivity ratio for tumor/muscle was 1.76 at 30 min. A patient with known HCC showed positive 11 C-acetate accumulation in the tumor but was negative in 18 F-FDG. Conclusion: The synthesis of 11 C-acetate by modification of an 11 C-choline commercial module was feasible and it could be achieved with high yield, high radiochemical purity

  12. Synthesis, characterization and thermogravimetric study of zinc and cadmium acetates-polyaniline hybrids

    International Nuclear Information System (INIS)

    Fernandes de Farias, Robson

    2004-01-01

    By dissolution of respective acetates and conducting polymer in dimethylformamide, homogeneous zinc acetate and cadmium acetate-polyaniline (PANI) hybrids were synthesized and characterized by infrared spectroscopy, thermogravimetry and SEM microscopy. The infrared spectra suggests that there are interactions between PANI and the metal cations involving both, imine and amine nitrogens in a typical Lewis acid-base reaction. The thermogravimetric degradation profile of the synthesized hybrids resembles those exhibited by PANI samples

  13. Supportive treatment with megestrol acetate during radio-(chemo-)therapy. A randomized trial

    International Nuclear Information System (INIS)

    Fietkau, R.; Sauer, R.

    1996-01-01

    Background: The value of megestrol acetate in treating tumor anorexia and cachexia of terminal patients is well known. However, the supportive effect of megestrol acetate during intensive radio-(chemo-)therapy was not investigated up to now. Therefore a randomized trial was performed including patients with advanced tumors in the head and neck region. Patients and Methods: From June 1991 to December 1993 a total of 64 patients were admitted to a randomized, double-blind placebo-controlled study. During and up to 6 weeks following radiotherapy patients received 160 mg/d megestrol acetate or placebo. The nutritional status (anthropometric and laboratory parameters) and the quality-of-life index according to Padilla et al. were determined prior to therapy, 1, 4, 6 weeks later during radiotherapy and 12, 18 weeks after completion. Results: Sixty-one out of 64 patients were evaluable (control group: n=30; megestrol acetate patients: n=31). One patients refused further participation after randomization. One patient in each arm was excluded due to side effects (impotence, diarrhoea). Further side effects were not observed. In the control group the nutrititional parameters (body weight, triceps skinfold) and the subjective feeling of the patients deteriorated during radiotherapy and did not restore following radiotherapy. By contrast, the patients of the megestrol acetate group were able to stabilize these parameters. This difference was most prominent in the orally nourished patients (weight loss during therapy: Control group: -4.1 kg; megestrol acetate group: -0.8 kg; p=0.004); but not in the patients fed by percutaneous endoscopically guided gastrostomy (weight loss control group: -2.4 kg; megestrol acetate group: -0.8 kg; p=0.14). Conclusion: In patients on radiochemotherapy megestrol acetate prevents patients from further deterioration of the nutritional status and quality of life. (orig.) [de

  14. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  15. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: Identification and characterization

    NARCIS (Netherlands)

    K.W.A. Grinsven; S. Rosnowsky (Silke); S.W.H. van Weelden (Susanne); S. Pütz (Simone); M. van der Giezen (Mark); W. Martin (William); J.J. van Hellemond (Jaap); A.G.M. Tielens (Aloysius); K. Henze (Katrin)

    2008-01-01

    textabstractAcetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial

  16. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  17. Parameters Affecting the Synthesis of (Z)-3-hexen-1-yl acetate by Transesterifacation in Organic Solvent

    International Nuclear Information System (INIS)

    Liaquat, M.; Mehmood, T.; Khan, S. U.; Ahmed, Z.; Saeed, M.; Aslam, S.; Khan, J.; Ali, N.; Jahangir, M.; Nawaz, M.

    2015-01-01

    (Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Crude acetone powders extracted lipases from five plant seedlings of rapeseed, wheat, barley, linseed and maize were investigated for their use in the synthesis of flavor esters with vinyl acetate by transesterification in organic solvents. Rape seedlings showed the highest degree of (Z)-3-hexen-1-yl acetate synthesis with a yield of 76 percentage in 72 h. Rape seedling was chosen as promising biocatalyst to evaluate the effects of some of reaction parameters on (Z)-3-hexen-1-yl acetate synthesis using vinyl acetate and (Z)-3-hexen-1-ol at 40 Degree C in n-hexane with 50 g/L enzyme as catalyst. Acetonitrile proved distinctly superior solvent. The percent remaining activity relative to fresh seedlings powders was highest in wheat and barley. Highest ester yield of 80 percentage was obtained with 0.8 M of substrate concentrations within 48 h. Crude rapeseed lipase afforded a conversion 93 percentage of ethyl alcohol. Higher ester yield was achieved within first 24 h with added molecular. The crude rape seedlings lipase is low cost yet effective, showed potential for the production of green note esters industrially. (author)

  18. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Patrick M Long

    Full Text Available Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA, the primary storage form of acetate in the brain, and aspartoacylase (ASPA, the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA, which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683 and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35 relative to an oligodendrocyte progenitor line (Oli-Neu were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.

  20. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    Science.gov (United States)

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  1. Allelopathic activity of Leonurus siribicus L. on seed germination and seedling growth of wheat and identification of 4- hydroxy benzoic acid as an allelochemical by chromatography

    International Nuclear Information System (INIS)

    Sayed, M. A.; Imam, R.; Siddiqui, M.N.

    2016-01-01

    The aim of this study was to investigate the allelopathic effects of L. siribicus extract on seed germination and seedlings growth of wheat as well as to identify potential allelochemical. The different concentration (5, 10 and 15%) of aqueous extract were applied during the time of sowing and at 5 days after sowing of wheat seed. L. siribicus extract showed concentration and time - depending activity. Different concentration of aqueous extract inhibited seed germination, seedlings growth, when extracts were applied during the time of seed sowing. The stimulatory effect of seedlings growth were found for 5 % aqueous extract, in contrast 10 and 15% extract inhibited seedlings growth, when extracts were applied at 5 days after sowing. Apart from, 4-hydroxy benzoic acids affected seedlings growth irrespective of application time. The weight of dry matter of wheat seedlings were increased for 5% than 10 and 15% extracts. Thin layer chromatography suggested that the presence of 4-hydroxy benzoic acid including other allelopathic and growth regulatory compounds inhibited germination and seedlings growth. Mineral composition was determined and its might have some stimulatory effect on seedlings growth. It was interesting that 5% extract inhibited germination and seedlings growth, when it was applied during the time of seed sowing, but stimulated seedling growth, when it was applied at 5 days after sowing. The extract of this plants can be used either for bioherbicide as well as growth stimulatory agents for the organic farming system. To find out molecular mechanism behind it, further research is to be done. (author)

  2. An experimental study for efficacy of acetic acid as a sclerosing agent

    International Nuclear Information System (INIS)

    Kim, Young Chan; Oh, Ju Hyung; Yoon, Yup; Ko, Young Tae; Choi, Woo Suk; Kim, Eui Jong; Lim, Joo Won

    1997-01-01

    To evaluate the efficacy of acetic acid as a sclerosing agent by observation of histologic change in urinary bladder epithelium after the instillation of acetic acid. Urinary bladder of the rabbit was catheterized with a Foley catheter, and acetic acid of 10%, 20%, 30%, 40% and 50% concentration was instilled for 5 minutes. After evacuation of the acid, the bladder was irrigated three times with normal saline. After two days, gross and histologic examinations of the bladder were performed. A bladder into which 10% acetic acid had been instilled revealed a nearly normal epithelium without denudation. In two cases, 20% acetic acid was instilled;one revealed partial denudation of the epithelium and the other revealed complete denudation. Mild to moderate interstitial edema and vascular congestion of the bladder wall were evident in all cases in which acid at a concentration of 30% or more had been instilled. In all cases in which the concentration of acid was greater than 30%, the epithelium was completely denuded. An acetic acid concentration of 40% or more is sufficient to completely destroy the epithelium of rabbit urinary bladder, and may be effective as a new sclerosing agent in cases of renal or hepatic cyst

  3. Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment

    NARCIS (Netherlands)

    Scholten, J.C.M.; Stams, A.J.M.

    2000-01-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was

  4. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  5. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Corrigendum to ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; [J. Mol. Struct. 1137 (2017) 440-452

    Science.gov (United States)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-08-01

    The authors regret to inform that three references in the article titled ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; are not given in the manuscript. This is purely an oversight mistake. The references are as shown in this correction. The authors would like to apologize for any inconvenience caused.

  7. Transports of acetate and haloacetate in Burkholderia species MBA4 are operated by distinct systems

    Directory of Open Access Journals (Sweden)

    Su Xianbin

    2012-11-01

    Full Text Available Abstract Background Acetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase. Recent studies have identified the presence of a concomitantly induced haloacetate-uptake activity in MBA4. This uptake activity has also been found to transport acetate. Since acetate transporters are commonly found in bacteria it is likely that haloacetate was transported by such a system in MBA4. Results The haloacetate-uptake activity of MBA4 was found to be induced by monochloroacetate (MCA and monobromoacetate (MBA. While the acetate-uptake activity was also induced by MCA and MBA, other alkanoates: acetate, propionate and 2-monochloropropionate (2MCPA were also inducers. Competing solute analysis showed that acetate and propionate interrupted the acetate- and MCA- induced acetate-uptake activities. While MCA, MBA, 2MCPA, and butyrate have no effect on acetate uptake they could significantly quenched the MCA-induced MCA-uptake activity. Transmembrane electrochemical potential was shown to be a driving force for both acetate- and MCA- transport systems. Conclusions Here we showed that acetate- and MCA- uptake in Burkholderia species MBA4 are two transport systems that have different induction patterns and substrate specificities. It is envisaged that the shapes and the three dimensional structures of the solutes determine their recognition or exclusion by the two transport systems.

  8. Oxidation of sodium (2-14C) acetate with alkaline permanganate

    International Nuclear Information System (INIS)

    Zielinski, M.

    1983-01-01

    The mechanism and kinetics of the oxidation of sodium acetate with permanganate in alkile and neutral media have been investigated using (2- 14 C) acetate. The reaction is first order with respect to both permanganate and acetate ions. The initial second order rate constants depend linearly on the square of the hydroxide ion concentration. Arrhenius activation energy of the oxidation reaction carried out in 12M NaOH is 24.0 kcal/mole in the temperature interval of 50-100 deg C. The mechanism of the principal path leading to the oxalate formation and the mechanism of the side reaction resulting in the carbon dioxide production have been proposed and discussed. (author)

  9. 2-[1-(Methylsulfanylnaphtho[2,1-b]furan-2-yl]acetic acid

    Directory of Open Access Journals (Sweden)

    Uk Lee

    2008-02-01

    Full Text Available The title compound, C15H12O3S, was prepared by alkaline hydrolysis of ethyl 2-{1-(methylsulfanylnaphtho[2,1-b]furan-2-yl}acetate. The crystal structure is stabilized by CH2—H...π interactions between the methyl H atoms of the methylsulfanyl substituent and the central benzene ring of the naphthofuran system, and by inversion-related intermolecular O—H...O hydrogen bonds between the carboxyl groups.

  10. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  11. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.

    Science.gov (United States)

    Steger, Franziska; Rachbauer, Lydia; Windhagauer, Matthias; Montgomery, Lucy F R; Bochmann, Günther

    2017-08-01

    Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H 2 and CO 2 . Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO 2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l -1 . Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H 2 and CO 2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l -1 d -1 . This has great industrial potential and future studies should focus on the scale-up of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Contribution to the study of 14C-acetate as the precursor of aminoacids in detached leaves of coffee (Coffea arabica cv. Mundo Novo)

    International Nuclear Information System (INIS)

    Brasil, O.G.

    1975-01-01

    Labelled acetates with 14 C were used as the forerunner of aminoacids in leaves of coffee (Coffea arabica cv Mundo Novo). Leaves with the labelled acetates were incubated and released CO 2 was retained in paper discs with hiamine for further radioactivity detection. Separated proteins furnished 13 amino-acids through acid hidrolysis, all of them were identified by bidimensional filter paper chromatography. Through the obtained results it is possible to conclude that acetates are metabolized by the leafs and are related to the processes of leaf synthesis. It was possible to show that an utilization of acetate for energetical production via Krebs cycle was donne. The obtained conclusions show too that methylic carbon was more incorporated than carboxylic carbon [pt

  13. Effect of antimicrobial agents on cellulose acetate nano composites properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo, E-mail: francisco.rodriguez.m@usach.cl [Center for the Development of Nanoscience and Nanotechnology (CEDENNA). Universidad de Santiago de Chile. Faculty of Technology. Department of Food Science and Technology. Food Packaging Laboratory. Santiago (Chile)

    2011-07-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  14. Effect of antimicrobial agents on cellulose acetate nano composites properties

    International Nuclear Information System (INIS)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo

    2011-01-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  15. Kinetic study of adsorption and degradation of aniline, benzoic acid, phenol, and diuron in soil suspensions

    International Nuclear Information System (INIS)

    Dao, T.H.; Lavy, T.L.

    1987-01-01

    Laboratory studies were conducted to investigate the effects of low temperature and accelerated soil-solution contact on soil adsorption of labile organic chemicals. The authors measured the kinetics of adsorption and degradation of 14 C-aniline, 14 C-benzoic acid, 14 C-phenol, and 14 C-diuron in the solution phase at 3 and 22 0 C. In the initial stages of reactions, the adsorption of all four chemicals was instantaneous at both temperatures under accelerated soil and solution mixing. A steady state was observed after the onset of equilibrium for the adsorption reaction for all compounds within 10 to 30 min. Its length varied according to the expected order of susceptibility to microbial degradation, i.e., diuron > aniline > phenol ≥ benzoate. It was apparent that the steady-state period without or in combination with low temperature could be advantageously used to obtain adsorption measurements in microbially active systems. A mechanistic sorption-catalyzed degradation model was evaluated to uncouple mathematically these processes. The model described satisfactorily the disappearance of labile chemicals in soil suspensions. Numerical analysis allowed the concurrent determination of adsorption, desorption, and biodegradation rate coefficients

  16. The photochemistry of ring-substituted cinnamyl acetates

    International Nuclear Information System (INIS)

    Fleming, S.A.; Renault, L.; Grundy, E.C.; Pincock, J.A.

    2006-01-01

    The photochemistry of the (E)-cinnamyl acetates ((E)-1-aryl-3-propenyl acetates, 8a-8e) with substituents H, 4-CH 3 O, 3-CH 3 O, 4-CF 3 , and 3-CF 3 , respectively, was examined in both cyclohexane and methanol solvents. Alkene isomerization (E to Z) occurred more efficiently than other reactions and evidence is presented that this process occurs from the excited triplet state. In a slower process, 1,3-migration of the acetoxy group led to the rearranged 3-aryl-3-propenyl acetate isomers (9a-9e) as the major pathway, particularly in cylohexane. In methanol, the isomeric ethers 3-aryl-3-methoxypropene (14) and 1-aryl-3-methoxypropene (15) were formed by reaction of methanol with the photochemically generated cation. The combined yield of 14 and 15 (95% and 5%, respectively) was quantitative for the 4-methoxyphenyl compound (8b). Independent irradiations of the isomers 9a-9c demonstrated that the ethers 14 and 15 were primary photoproducts from 8 and not secondary photoproducts from 9. Fluorescence quantum yields and excited singlet state lifetimes indicated that the reactions, other than the E to Z isomerization, are from the excited singlet state. (author)

  17. Proton magnetic resonance studies in solutions of o- and p-hydroxy benzoic acids in dioxan

    International Nuclear Information System (INIS)

    Arulmozhi, V.; Srinivasa Rao, A.; Balasubramanian, V.

    1990-01-01

    High resolution proton(NMR) studies were carried out in solutions of o- and p-hydroxy benzoic acids(OHBA and PHBA) in dioxan (D) for several solute concentrations in the range of 0.01 to 0.10 mole fraction (mf). The spectra corresponding to OH and COOH protons could be distinguished in solutions of OHBA in D whereas solution of PHBA in D show only peak in the range of chemical shifts attributable to OH and COOH protons. In the solution of OHBA in dioxan the chemical shift of the proton of the hydroxyl group increases with increase of solute concentration and attains a maximum at a solute concentration of 0.04 mf and then decreases with further increase of solute concentration. For the carboxyl group, the chemical shift increase with increase of solute concentration and attians a maximum at 0.08 mf solute concentration. In solutions of PHBA in D the chemical shift of the single line observed increases with increase of solute concentration and attains a maximum at a solute concentration of 0.05 mf. The data are interpreted as due to formation of hydrogen bonds between the molecule of OHBA and PHBA and dioxan. The proton magnetic relaxation studies in the above solutions also confirm the above findings. (author). 6 refs., 5 figs

  18. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  19. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources

    DEFF Research Database (Denmark)

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov

    2017-01-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate...... production was examined. When substrate concentration was controlled at 100 mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11 g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio...... ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700 mM, which inhibited the fermentation process. The highest caproate concentration of 8.42 g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550 m...

  20. Analysis of Factors Related to Visual Inspection with Acetic Acid Examination on Child Bearing Women

    Directory of Open Access Journals (Sweden)

    Esti Yunitasari

    2017-07-01

    Full Text Available Not only the health promotion about Visual Inspection with Acetic Acid (VIA examination and servical cancer but also free for VIA examination have been held in Polindes Tanjunganom, but the scope of VIA examination is still in low grade. Health Belief Model (HBM theory is used to evaluate and explain the differences of individual perception towards preventive behaviors. This study was aimed to analyze the factors correlating with VIA examination in women by HBM. Design used in this study was cross sectional. The population was all child bearing women in Puskesmas Tanjunganom region. Total sample was 50 respondents, taken according to simple random technique. The independent variabels were perceived susceptibility, perceived seriousness, perceived benefits, perceived barriers, and cues to action. The dependent variabel was VIA examination. Data were collected by using structured questionnaire and analyzed by using chi square test with level of significance of ≤ 0,05. Results showed that perceived susceptibility had correlation with VIA examination (p=0,026, perceived seriousness had correlation with VIA examination (p=0,004, perceived benefits had correlation with VIA examination (p=0,016, perceived barriers had correlation with VIA examination (p=0,016, and cues to action (p=0,000 had correlation with VIA examination. It can be concluded that HBM has correlation with VIA examination and cues to action has the strongest variabel related to VIA examination. Further studies should involve larger respondents and better measurement tools to obtain more accurate results.

  1. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Kotsopoulos, T. A.

    2013-01-01

    exposure to different ammonia concentrations. The methanogenic pathway was determined by following the production of (14) CH(4) and (14) CO(2) from acetate labeled in the methyl group (C-2). Microbial communities' composition was determined by fluorescence in situ hybridization. Upon acclimatization......Methanogenesis from acetate (aceticlastic methanogenesis or syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis) is the most important step for the biogas process. The major environmental factors influencing methanogenesis are volatile fatty acids, ammonia, p...

  2. Successful Treatment of Liver Aspergilloma by Caspofungin Acetate First-Line Therapy in a Non-Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Hong-Juan Dong

    2012-09-01

    Full Text Available Aspergillosis remains to be a life-threatening complication in immunocompromised patients. However, Aspergillus infection can be observed in non-immunocompromised individuals in rare cases. We report a case of liver aspergilloma in a chronic aplastic anemia patient under relatively intact immune status. Therapeutic strategy for this rare condition was extensively discussed and caspofungin acetate single agent first-line therapy was applied after careful consideration. Encouraging clinical and radiologic improvements were achieved in response to the antifungal salvage. Our long-term follow-up study also revealed a favorable prognosis. Based on this experience, we suggest caspofungin acetate as first-line therapy for treatment plans of liver aspergilloma.

  3. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  4. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  5. Hydrogenation of ethyl acetate on Re/γ-A12O3 catalyst

    International Nuclear Information System (INIS)

    Minachev, K.M.; Avaev, V.I.; Ryashentseva, M.A.

    1986-01-01

    This paper presents a study of the catalytic properties of 5% Re/gamma-A1 2 O 3 contact in the hydrogenation reaction of ethyl acetate (EA). To clarify the paths of formation of the by products, experiments were also carried out with ethanol under the conditions of hydrogenation of EA. It is shown that the main product of the hydrogenation of EA is ethanol. In addition, Et 2 O, water, and traces of acetaldehyde were found in the catalyzate. In the range of conditions studied, the maximal conversion of ethyl acetate into ethanol is 49%. Increase in the temperature and molar ratio, and also decrease in pressure leads to a decrease in the selectivity of hydrogenation of ethyl acetate into ethanol. Byproducts of the hydrogenation of ethyl acetate - diethyl ether and hydrocarbons - are formed not only as a result of dehydration of ethanol on gamma-A1 2 O 3 , but also directly from ethyl acetate (diethyl ether) and also by the hydrogenolysis of the C-O bond in ethanol on rhenium (hydrocarbons)

  6. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  7. 78 FR 66936 - Advisory Council for the Elimination of Tuberculosis (ACET)

    Science.gov (United States)

    2013-11-07

    ... Council for the Elimination of Tuberculosis (ACET) In accordance with section 10(a)(2) of the Federal... Health, and the Director, CDC, regarding the elimination of tuberculosis. Specifically, the Council makes... tuberculosis. Matters To Be Discussed: Agenda items include the following topics: (1) ACET Chair's report to...

  8. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.

    Science.gov (United States)

    Scholten, Johannes C M; Bodegom, Peter M; Vogelaar, Jaap; Ittersum, Alexander; Hordijk, Kees; Roelofsen, Wim; Stams, Alfons J M

    2002-12-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and without (13)C-labelled acetate, we could show that the competition for acetate between methanogens and sulfate reducers is the main cause of inhibition of methanogenesis in the sediment. Although nitrate led to a complete inhibition of methanogenesis, acetate-utilising nitrate-reducing bacteria hardly competed with methanogens for the available acetate in the presence of nitrate. Most-probable-number enumerations showed that methanogens (2x10(8) cells cm(-3) sediment) and sulfate reducers (2x10(8) cells cm(-3) sediment) were the dominant acetate-utilising organisms in the sediment, while numbers of acetate-utilising nitrate reducers were very low (5x10(5) cells cm(-3) sediment). However, high numbers of sulfide-oxidising nitrate reducers were detected. Denitrification might result in the formation of toxic products. We speculate that the accumulation of low concentrations of NO (<0.2 mM) may result in an inhibition of methanogenesis.

  9. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia

    Energy Technology Data Exchange (ETDEWEB)

    Warikoo, V.; McInerney, M.J.; Suflita, J.M. [and others

    1997-03-01

    Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio strain G-11 reached a threshold value which depended on the amount of acetate added, and ranged from about 2.5 to 29.9 {mu}M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V{sub max} and K{sub m} for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacity (V{sub max}/K{sub m}) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the degradation capacity was lower with nitrate than with sulfate. When strain SB was grown with a hydrogen-using partner that had a 5-fold lower hydrogen utilization capacity, a 5 to 9-fold lower the benzoate degradation capacity was observed compared to SB/G-11 cocultures. The Gibb`s free energy for benzoate degradation was less negative in cell suspensions with threshold compared to those without threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation capacity by acetate, or the toxicity of the undissociated form of acetate. Rather a critical or minimal Gibb`s free energy may exist where thermodynamic constraints preclude further benzoate degradation.

  10. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

  11. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  12. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Science.gov (United States)

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  13. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón

    2016-09-15

    Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.

  14. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    Directory of Open Access Journals (Sweden)

    Himanshu Singh

    Full Text Available Cellular metabolite analyses by (13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13C-labelled acetate ((13CH(3-COOH or CH(3-(13COOH supported that both the (13C nuclei give rise to bicarbonate and CO2(aq. The observed metabolite(s upon further incubation led to the production of starch and triacylglycerol (TAG in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  15. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The study of 2-acetylaminotoluene ozonolysis in acetic ACID

    OpenAIRE

    Галстян, Андрій Генрійович

    2014-01-01

    The kinetics and mechanism of ozone reaction with 2-aminotoluene and its acylated derivative in acetic acid were studied in order to determine the possibility of obtaining 2-aminobenzoic acid.It is shown that the 2-aminotoluene ozonolysis reaction in acetic acid solution runs at high speed, and preferably on the free electron pair of the amino group to form mainly resinous compounds; oxidation products by the methyl group of the substrate are not formed under these conditions. The ozone attac...

  17. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    International Nuclear Information System (INIS)

    Mohd Zulkhairi Abdul Rahim; Lee, Pat M.; Lee, Kong H.

    2008-01-01

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  18. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  19. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  20. Bacteria contributing to behaviour of radiocarbon in sodium acetate

    International Nuclear Information System (INIS)

    Ishii, N.; Uchida, S.

    2011-01-01

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2- 14 C] sodium acetate, and the autoradiograms showed that all the colonies were positive for 14 C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 deg. C. Phylogenetic analysis based on 16 S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 deg. C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of 14 C to for the safety assessment of geological disposal of transuranic waste. (authors)

  1. FTIR studies of chitosan acetate based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Arof, A.K.

    2003-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. As such, depending on the degree of deacetylation, the carbonyl, C=O-NHR band can be observed at ∼1670 cm -1 and the amine, NH 2 band at 1590 cm -1 . When lithium triflate is added to chitosan to form a film of chitosan acetate-salt complex, the bands assigned to chitosan in the complex and the spectrum as a whole shift to lower wavenumbers. The carbonyl band is observed to shift to as low as 1645 cm -1 and the amine band to as low as 1560 cm -1 . These indicate chitosan-salt interactions. Also present are the bands due to lithium triflate i.e. ∼761, 1033, 1182 and 1263 cm -1 . When chitosan and ethylene carbonate (EC) are dissolved in acetic acid to form a film of plasticized chitosan acetate, the bands in the infrared spectrum of the films do not show any significant shift indicating that EC does not interact with chitosan. EC-LiCF 3 SO 3 interactions are indicated by the shifting of the C-O bending band from 718 cm -1 in the spectrum of EC to 725 cm -1 in the EC-salt spectrum. The Li + -EC is also evident in the ring breathing region at 893 cm -1 in the pure EC spectrum. This band has shifted to 898 cm -1 in the EC-salt spectrum. C=O stretching in the doublet observed at 1774 and 1803 cm -1 in the spectrum of pure EC has shifted to 1777 and 1808 cm -1 in the EC-salt spectrum

  2. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    Science.gov (United States)

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  3. Granisetron ameliorates acetic acid-induced colitis in rats.

    Science.gov (United States)

    Fakhfouri, Gohar; Rahimian, Reza; Daneshmand, Ali; Bahremand, Arash; Rasouli, Mohammad Reza; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem

    2010-04-01

    Inflammatory bowel disease (IBD) is a chronically relapsing inflammation of the gastrointestinal tract, of which the definite etiology remains ambiguous. Considering the adverse effects and incomplete efficacy of currently administered drugs, it is indispensable to explore new candidates with more desirable therapeutic profiles. 5-HT( 3) receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo. This study aims to investigate granisetron, a 5-HT( 3) receptor antagonist, in acetic acid-induced rat colitis and probable involvement of 5-HT(3) receptors. Colitis was rendered by instillation of 1 mL of 4% acetic acid (vol/vol) and after 1 hour, granisetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT( 3) receptor agonist, or granisetron + mCPBG was given intraperitoneally. Twenty-four hours following colitis induction, animals were sacrificed and distal colons were assessed macroscopically, histologically and biochemically (malondialdehyde, myeloperoxidase, tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6). Granisetron or dexamethasone significantly (p granisetron were reversed by concurrent administration of mCPBG. Our data suggests that the salutary effects of granisetron in acetic acid colitis could be mediated by 5-HT(3) receptors.

  4. Preparation and characterization of film of poly vinyl acetate ethylene copolymer emulsion

    International Nuclear Information System (INIS)

    Zhang, Yanhua; Gu, Jiyou; Tan, Haiyan; Shi, Junyou; Di, Mingwei; Zuo, Yingfeng; Qiu, Si

    2013-01-01

    In order to improve the storage modulus and water resistance of poly (vinyl acetate), the vinyl acetate and poly (vinyl alcohol) (PVA) were respectively used as monomers and protective colloid to prepare a new kind of polyvinyl acetate emulsion adhesive by continuous emulsion polymerization. The dynamic mechanics, particle distribution, glass transition temperature, polymer emulsion structure of both polymerized and copolymerized emulsion were analyzed by SEM, DMA and XPS, respectively. The results indicated that the copolymerized emulsion has the appropriate particle size and the uniform particle distribution, the glass transition temperature increased from 50 °C to 70 °C, compared with poly (vinyl acetate). It could be seen from XPS spectra of copolymerized emulsion that key characteristic peak of C=O was still existent. X-ray photoelectron spectra revealed that the addition of EVA did not generate the new bond, whereas the maximum percentage increases in ester was determined in the composite film with the introduction of EVA of 25%, which indicated that the composite film has copolymer structure. The storage modulus and water resistance of poly (vinyl acetate) were improved due to the introduction of the EVA.

  5. Establishing the analytical procedure for acetate in water by ion chromatography method

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh

    2015-01-01

    In recent studies of contamination sources of arsenic, ammonium, iron, organic carbon in groundwater, acetate is measured a lot because it is the main decomposition product of organic compounds from sediment into groundwater. In order to better support for the study of the origin and mobilization mechanism of the pollutants, acetate was studied analysis method in Isotopes Hydrology Laboratory using ion chromatography technique. Project Researchers used Ion Chromatography system - DX-600 including IonPac ICE-AS1 column for separating acetate and conductivity detector CD 25 to quantify acetate in water samples. The study results showed that project team has successfully developed analytical procedures of acetate in water with acetate’s retention time is 12 minutes, limit of detection (LOD) of the method was 0.01 ppm. The accuracy of the method was established by calculating the precision and bias of 10 analysis times of a standard sample at content levels 1 ppm and 8 ppm. The results of the 10 measurements are satisfiable about precision and bias with repeated standard deviation coefficient CVR were 1.3% and 0.2% and the recoveries R were 99.92% and 101.72%. (author)

  6. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    Science.gov (United States)

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions. © 2011 American Chemical Society

  7. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  8. Mixed ligand lanthanide complexes with dipivaloylmethane and acetic acid

    International Nuclear Information System (INIS)

    Lyu Fehnkhua; Kuz'mina, N.P.; Mazo, G.N.; Martynenko, L.I.

    1995-01-01

    Methods of elemental, X-ray phase, thermal analyses and infrared spectroscopy were used to characterize solid products, formed in MDpm 3 -HAcet-H-hexane systems (M = Pr, Nd, Eu, Gd, Ho, Er, Yb, HDpm -dipivaloylmethane, HAcet - acetic acid). It was established that prepared mixed ligand complexes (MLC) had MDpm 2 Acet composition for all studied rare earths. Differenced in properties of cerium and yttrium rare earths are manifested in processes of MLC thermal dissociation, proceeding at low pressure and 170 deg C. 6 refs., 4 tabs

  9. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Science.gov (United States)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-08-01

    Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH3COOH → CH3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for Osbnd H bond formation of C2-oxygenates (CH3CO + H → CH3COH, CH3CHO + H → CH3CHOH and CH3CH2O + H → CH3CH2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  10. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation.

    Directory of Open Access Journals (Sweden)

    Bettina Müller

    Full Text Available This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB. Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention.

  11. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  12. Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions

    Science.gov (United States)

    Mazyar, Oleg A.; Mayer, Paul M.; Baer, Tomas

    1997-11-01

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of metastable methyl acetate ions, CH3COOCH3.+. The rate of molecular ion fragmentation with the loss of CH3O. and CH2OH radicals as a function of ion internal energy was obtained from the coincidence data and used in conjunction with Rice-Ramsperger-Kassel-Markus and ab initio molecular orbital calculations to model the dissociation/isomerization mechanism of the methyl acetate ion (A). The data were found to be consistent with the mechanism involving a hydrogen-bridged complex CH3CO[middle dot][middle dot][middle dot]H[middle dot][middle dot][middle dot]OCH2.+(E) as the direct precursor of the observed fragments CH3CO+ and CH2OH.. The two-component decay rates were modeled with a three-well-two-product potential energy surface including the distonic ion CH3C(OH)OCH2.+(B) and enol isomer CH2C(OH)OCH3.+(C), which are formed from the methyl acetate ion by two consecutive [1,4]-hydrogen shifts. The 0 K heats of formation of isomers B and C as well as transition states TSAB, TSBC, and TSBE (relative to isomer A) were calculated from Rice-Ramsperger-Kassel-Markus (RRKM) theory.

  13. Crystal structures of two solvates of (18-crown-6potassium acetate

    Directory of Open Access Journals (Sweden)

    Phil Liebing

    2016-12-01

    Full Text Available The crystal and molecular strutures of two solvated forms of [K(18c6]OAc (18c6 = 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane and OAc = acetate were determined by single-crystal X-ray diffraction, namely (acetato-κ2O,O′(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6Opotassium dihydrate, [K(CH3COO(C12H24O6]·2H2O (1 and (acetato-κ2O,O′aqua(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6Opotassium acetic acid monosolvate [K(CH3COO(C12H24O6(H2O]·CH3COOH (2. In both compounds, the acetate anion is bonded to the potassium ion in a chelating fashion and the metal atom is consequently slightly displaced from the O6 plane of the crown ether. In the crystals, O—H...O hydrogen bonds lead to a polymeric ladder structure in the dihydrate 1, while the acetic acid hydrate 2 features inversion dimers.

  14. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    Science.gov (United States)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  15. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    Science.gov (United States)

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    Science.gov (United States)

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Captive solvent [11C]acetate synthesis in GMP conditions

    International Nuclear Information System (INIS)

    Soloviev, Dmitri; Tamburella, Claire

    2006-01-01

    Reliable procedure for the production of 1-[ 11 C]acetate in GMP conditions was developed based on a combination of the captive-solvent Grignard reaction conducted in the sterile catheter followed by the convenient solid-phase extraction purification on a series of ion-exchange cartridges. The described procedure proved to be reliable in more than 30 patient productions. The process provides stable radiochemical yields (65% EOB) of sodium acetate (1-[ 11 C]) of the Ph.Eur. quality (radiochemical purity better than 95%) in a short time (5 min)

  18. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  19. A Phase Transfer Catalyzed Permanganate Oxidation: Preparation of Vanillin from Isoeugenol Acetate.

    Science.gov (United States)

    Lampman, Gary M.; Sharpe, Steven D.

    1983-01-01

    Background information, laboratory procedures, and results are provided for the preparation of vanillin from isoeugenol acetate. Reaction scheme used to prepare the vanillin and a table indicating the different oxidation experiments carried out on isoeugenol or isoeugenol acetate are also provided. (JN)

  20. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    Science.gov (United States)

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples. PMID:21515721

  1. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    OpenAIRE

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  2. Extraction of left ventricular myocardial mass from dynamic 11C-acetate PET

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Background: Dynamic 11C-acetate PET is used to quantify oxygen metabolism, which is used to calculate left ventricular (LV) myocardial efficiency, an early marker of heart failure. This requires estimation of LV myocardial mass and is typically derived from a separate cardiovascular magnetic...... resonance (CMR) scan. The aim of this study was to explore the feasibility of estimating myocardial mass directly from a dynamic 11C-acetate PET scan. Methods: 21 subjects underwent a 27-min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner. In addition, 10 subjects underwent a dynamic...... 11C-acetate 27-min PET scan on a GE Discovery ST PET/CT scanner. Parametric images of uptake rate K1 and both arterial (VA) and venous (VV) spillover fractions were generated using a basis function implementation of the standard single tissue compartment model using non-gated dynamic data. The LV...

  3. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    Science.gov (United States)

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  4. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  5. Absorption mechanism study of benzoic acid on calcite. Influence on the wettability; Etude du mecanisme d`absorption de l`acide benzoique sur la calcite. Incidence sur la mouillabilite

    Energy Technology Data Exchange (ETDEWEB)

    Legens, Ch

    1997-12-03

    A pure carbonate rock is strongly water-wet whereas oil accumulations study shows that most of carbonate reservoirs are oil-wet or of mixed-wettability. This is one of the main difficulties to extract crude oil. This change of behavior is due to the adsorption of some crude oil compounds on the mineral surface. We have mainly studied the interactions between acid molecules by adsorption on a calcite powder in an organic phase (benzoic acid and lauric acid) and in an aqueous phase (benzoic acid and lauric sodium salt). The technics which enabled us to define and characterize adsorption are thermogravimetry infrared diffuse reflection and thermal analysis with controlled kinetic linked to a mass spectrometer. Molecular modelling calculations have completed these analysis. It has been showed that when crude oil fills the biggest pores of the reservoir rock, the aqueous film is unstable and acids adsorb via ionic bonds on mineral calcium ions. Wettability is evaluated thanks to contact angle measurements of a water droplet deposited on a compacted powder pellet. Calcite wettability changes were all the greater as hydro-carbonated chains were longer, as it confers molecule hydrophobia. It has been also investigated acid molecules diffusion from the organic to the aqueous phase which saturates the smallest pores. Molecules which are able to diffuse from the first to the second medium do not adsorb on the surface. As a consequence, carbonate rock wettability changes require a direct contact between crude oil and mineral that involves aqueous film instability. (author) 128 refs.

  6. Hydroxyl group induced adsorption of four-nitro benzoic acid on Si(100) 2x1 surface

    International Nuclear Information System (INIS)

    Ihm, K.; Kang, T.-H.; Hwang, C.C.; Kim, K.-J.; Hwang, H.-N.; Kim, H.-D.; Han, J.H.; Moon, S.; Kim, B.; POSTECH

    2004-01-01

    Full text: A number of studies have been conducted on self-assembled monolayers (SAMs) in order to study the adhesion of polymer films on various substrates. Recently, the studies on SAMs on the semiconductor substrate are more motivated because of their possible application to nanoscale devices. For the electronic and chemical properties suitable for various applications, the aromatic ring has been used as a building block of various molecules forming SAMs. Here, we used four-nitro benzoic acid (4-NBA) as a model planar aromatic compound, in which the phenyl ring, the carboxylic functional group, and NO2 are on the same plane. The adsorption mechanism of 4-NBA on the in-situ prepared OH/Si(100) 2x1 surface was investigated using x-ray photoelectron spectroscopy and near-edge x-ray absorption e structure. The results revealed that the 4-NBA molecule reacts with the hydroxyl group on the Si(100) 2x1 surface through deprotonation of the carboxyl group. The saturation coverage of 4-NBA estimated by the O 1s ratio is 1/2 ML. Additionally, we could observe the desorption of the oxygen atom from the NO2 moiety of the 4-NBA upon irradiating the surface by photons of 500 eV

  7. Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi

    2018-05-16

    High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

  8. Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour

    Science.gov (United States)

    Shelenkov, P. G.; Pantyukhov, P. V.; Popov, A. A.

    2018-05-01

    Recently, there is a great interest in the world to biodegradable materials based on synthetic polymers in a composition with natural fillers. Highly filled polymer composite materials based on various grades of synthetic block copolymer of ethylene vinyl acetate with wood flour were under investigation. Five grades of ethylene-vinyl acetate copolymer differing in the content of vinyl acetate groups and a melt flow index were used in this work in order to find the best one for highly filled biocomposites. Wood flour content in biocomposites was 50, 60, 70 weight %. The rheological and physico-mechanical characteristics of the resulting biocomposites were studied.

  9. Negative association of acetate with visceral adipose tissue and insulin levels

    Directory of Open Access Journals (Sweden)

    Layden BT

    2012-02-01

    Full Text Available Brian T Layden1, Sudha K Yalamanchi1, Thomas MS Wolever2, Andrea Dunaif1, William L Lowe Jr11Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; 2Department of Nutritional Sciences (TMSW, University of Toronto, Toronto, CanadaBackground: The composition of gut flora has been proposed as a cause of obesity, a major risk factor for type 2 diabetes. The objective of this study was to assess whether serum short chain fatty acids, a major by-product of fermentation in gut flora, are associated with obesity and/or diabetes-related traits (insulin sensitivity and secretion.Methods: The association of serum short chain fatty acids levels with measures of obesity was assessed using body mass index, computerized tomography scan, and dual photon X-ray absorptiometry scan. Insulin sensitivity and insulin secretion were both determined from an oral glucose tolerance test and insulin sensitivity was also determined from a hyperinsulinemic euglycemic clamp.Results: In this population of young, obese women, acetate was negatively associated with visceral adipose tissue determined by computerized tomography scan and dual photon X-ray absorptiometry scan, but not body mass index. The level of the short chain fatty acids acetate, but not propionate or butyrate, was also negatively associated with fasting serum insulin and 2 hour insulin levels in the oral glucose tolerance test.Conclusions: In this population, serum acetate was negatively associated with visceral adipose tissue and insulin levels. Future studies need to verify these findings and expand on these observations in larger cohorts of subjects.Keywords: obesity, insulin, gut flora, short chain fatty acids 

  10. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  11. Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE).

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2013-06-01

    Experiments with trichloroethylene-contaminated aquifer material demonstrated that TCE, cis-DCE, and VC were completely degraded with concurrent Fe(III) or Fe(III) and sulfate reduction when acetate was amended at stoichiometric concentration; competing TEAPs did not inhibit ethene production. Adding 10× more acetate did not increase the rate or extent of TCE reduction, but only increased methane production. Enrichment cultures demonstrated that ~90 μM TCE or ~22 μM VC was degraded primarily to ethene within 20 days with concurrent Fe(III) or Fe(III) + sulfate reduction. The dechlorination rates were comparable between the low and high acetate concentrations (0.36 vs 0.34 day(-1), respectively), with a slightly slower rate in the 10× acetate amended incubations. Methane accumulated to 13.5 (±0.5) μmol/tube in the TCE-degrading incubations with 10× acetate, and only 1.4 (±0.1) μmol/tube with low acetate concentration. Methane accumulated to 16 (±1.5) μmol/tube in VC-degrading enrichment with 10× acetate and 2 (±0.1) μmol/tube with stoichiometric acetate. The estimated fraction of electrons distributed to methanogenesis increased substantially when excessive acetate was added. Quantitative PCR analysis indicated that 10× acetate did not enhance Dehalococcoides biomass but rather increased the methanogen abundance by nearly one order of magnitude compared to that with stoichiometric acetate. The data suggest that adding low levels of substrate may be equally if not more effective as high concentrations, without producing excessive methane. This has implications for field remediation efforts, in that adding excess electron donor may not benefit the reactions of interest, which in turn will increase treatment costs without direct benefit to the stakeholders.

  12. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    Science.gov (United States)

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  13. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    Directory of Open Access Journals (Sweden)

    F Aura Kullmann

    Full Text Available Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5% to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion was precisely repeated every 30 minutes. Administration of vehicle (saline i.v. occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v. after the 8(th. Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function.

  14. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    Science.gov (United States)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  15. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Syu, Jyun-Cyuan; Tien, Shih-Yuan; Whang, Liang-Ming

    2018-08-01

    This study investigated the acetate production from gas mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H 2 and CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats

    Directory of Open Access Journals (Sweden)

    Walid Hamdy El-Tantawy

    2016-10-01

    Full Text Available Lead is a toxic metal that induces a wide range of behavioral, biochemical and physiological effects in humans. Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. The current study was carried out to evaluate the antioxidant activities of Spirulina supplement against lead acetate -induced hepatic injury in rats. Five groups of rats were used in this study, Control, Lead acetate (100 mg/kg, Lead acetate (100 mg/kg + 0.5 g/kg Spirulina, Lead acetate (100 mg/kg + 1 g/kg Spirulina and Lead acetate + 25 mg/100 g Vitamin C (reference drug. All experimental groups received the oral treatment by stomach tube once daily for 4 weeks. Lead intoxication resulted in a significant increase in serum alanine transaminae (ALT, aspartate transaminae (AST activities, liver homogenate tumor necrosis factor-α (TNF-α, caspase-3, malondialdehyde (MDA, nitric oxide (NO levels and a significant decline of total serum protein, liver homogenate reduced glutathione (GSH level and superoxide dismutase (SOD activity. Both doses of Spirulina supplement as well as Vitamin C succeeded to improve the biochemical parameters of serum and liver and prevented the lead acetate-induced significant changes on plasma and antioxidant status of the liver. Both doses of Spirulina supplement had the same anti-apoptotic activity and high dose exhibited more antioxidant activity than that of low dose. In conclusion, the results of the present work revealed that Spirulina supplement had protective, antioxidant and anti-apoptotic effects on lead acetate-induced hepatic damage.

  17. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  18. Neutron scattering studies of Mn12-acetate

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: The S=10 magnetic molecule Mn 12 -acetate, which crystallises into a tetragonal crystal structure, has attracted substantial recent attention by virtue of its low temperature bulk magnetic properties, which give evidence for resonant quantum tunnelling of the magnetisation. We report a full neutron crystal structure including positions of all protons/deuterons, including the solvated water and acetic acid, a polarised-neutron study of the real space magnetisation, which confirms a simple magnetic-structure model for the molecule, albeit with reduced Mn moments, and inelastic neutron scattering data containing both the excitations within the 21-fold degenerate S=10 manifold, and those from S=10 to the S=9 manifolds. Both manifolds are split by uniaxial magnetic anisotropy, and we report coefficients for 2nd and 4th-order terms in the magnetic Hamiltonian

  19. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  20. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    Science.gov (United States)

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  1. Kinetic stability of the dysprosium(3) complex with tetraazaporphine in acetic acid-water and acetic acid-methanol mixtures

    International Nuclear Information System (INIS)

    Khelevina, O.G.; Vojnov, A.A.

    1999-01-01

    Water-soluble dysprosium tetraazaporphine with acetylacetonate-ion as extraligand is synthesized for the first time. Its kinetic stability in acetic acid solutions is investigated. It is shown that the complex is dissociated with formation of free tetraazaporphine. Kinetic parameters of dissociation reaction are determined [ru

  2. Practical Stannylation of Allyl Acetates Catalyzed by Nickel with Bu3 SnOMe.

    Science.gov (United States)

    Komeyama, Kimihiro; Itai, Yuuhei; Takaki, Ken

    2016-06-27

    A practical and scalable nickel-catalyzed allylic stannylation of allyl acetates with Bu3 SnOMe is described. A variety of acyclic and cyclic allyl acetates, even with base-sensitive moieties, undergoes the stannylation by using NiBr2 /4,4'-di-tert-butylbipyridine (dtbpy)/Mn catalyst system to afford highly functionalized allyl stannanes with excellent regioselectivity and yields. Furthermore, the scope of protocol is also extended by the reaction of propargyl acetates, giving rise to propargyl or allenyl stannanes. Additionally, a unique diastereoselectivity using the nickel catalyst different from the palladium was demonstrated for the stannylation of cyclic allyl acetates. In the reaction, inexpensive and stable nickel complexes, abundant reductant (Mn), and atom-economical stannyl source were used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2018-01-01

    Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcr......Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcr......(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest...

  4. Effect of oral contraceptives containing estradiol and nomegestrol acetate or ethinyl-estradiol and chlormadinone acetate on primary dysmenorrhea.

    Science.gov (United States)

    Grandi, Giovanni; Napolitano, Antonella; Xholli, Anjeza; Tirelli, Alessandra; Di Carlo, Costantino; Cagnacci, Angelo

    2015-10-01

    To study the three cycles effect on primary dysmenorrhea of the monophasic 24/4 estradiol/nomegestrol acetate (E2/NOMAC) and of the 21/7 ethinyl-estradiol/chlormadinone acetate (EE/CMA) oral contraceptive. The tolerability and the effect of both preparations on metabolism and health-related quality of life were also evaluated. Prospective observational cohort study. Tertiary gynecologic center for pelvic pain. Subjects with primary dysmenorrhea requiring an oral contraceptive, who spontaneously selected either E2/NOMAC (n = 20) or EE/CMA (n = 20). Visual Analogue Scale (VAS) score for dysmenorrhea, Short Form-36 questionnaire for health-related quality of life, lipoproteins and days of menstrual bleeding (withdrawal bleeding during oral contraceptive). Mean age and body mass index (BMI) were similar between the two groups. The final analysis was performed on 34 women, 15 in E2/NOMAC and 19 in EE/CMA group. Compliance with treatment was significantly higher with EE/CMA (100%) than E2/NOMAC (75%) (p = 0.02). Both treatments significantly (p dysmenorrhea, similarly (E2/NOMAC by a mean of 74.7%, EE/CMA by a mean of 78.4%; p = 0.973). Only E2/NOMAC significantly increased SF-36 score (p = 0.001), both in physical (p = 0.001) and mental domains (p = 0.004). The mean number of days of menstrual bleeding was significantly reduced in E2/NOMAC group (from 4.86 ± 1.20 d to 2.64 ± 1.59 d, p = 0.0005 versus baseline, p = 0.007 versus EE/CMA group). BMI did not vary in either group. E2/NOMAC did not change lipoproteins and apoproteins while EE/CMA increased total cholesterol (p = 0.0114), HDL-cholesterol (p = 0.0008), triglycerides (p = 0.002), apoprotein-A1 (Apo-A1; p = 0.0006) and apopoprotein-B (Apo-B; p = 0.008), decreasing LDL/HDL ratio (p = 0.024). Both oral contraceptives reduced similarly primary dysmenorrhea, with E2/NOMAC also reducing withdrawal bleedings and being neutral on lipid metabolism.

  5. Topical vitamin E and hydrocortisone acetate treatment after photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, K; Ozdek, S; Ozoğul, C; Gurelik, G; Bilgihan, A; Hasanreisoğlu, B

    2000-04-01

    To investigate the effects of topical vitamin E and hydrocortisone acetate treatments on corneal healing response after -10.0 D photorefractive keratectomy (PRK) in rabbits. Thirty-three New Zealand white rabbits were divided into four groups and -10 D PRK was performed under in vivo conditions. Following PRK, group 1 (n = 9) received no topical treatment and served as control. Group 2 (n = 8) received 0.1% hydrocortisone acetate ointment twice a day, group 3 (n = 8) received 1% vitamin E ointment and group 4 (n = 8) received both 0.1% hydrocortisone acetate and 1% vitamin E twice a day for a month. At the end of the third month, corneal haze was graded and the corneal hydroxyproline levels were measured, as a crude indicator of new collagen synthesis. Finally corneal samples were examined by transmission electron microscopy. Non-homogeneously distributed strong haze was identified in group 1 which was greater than in the other groups; haze was least in groups 2 and 4. Corneal hydroxyproline levels were found to be significantly lower in groups 2, 3 and 4 compared with the control (Student's t-test, p < 0.05). Histopathologically, the most aggressive wound healing response was detected in group 1. The corneal wound healing response of group 2 was less than that of group 1 and equal to or more than that of group 4. Deep corneal photoablation induces an aggressive healing response, and topical hydrocortisone acetate reduces this corneal wound healing effectively. The inhibitory effect of topical vitamin E on corneal wound healing seems to be less than that of hydrocortisone acetate, but combined treatment with these two drugs may have an additive effect in controlling corneal wound healing after PRK.

  6. Colorimetric determination of uranium using ammonium thiocyanate in a medium of ethyl acetate, acetone and water; Dosage colorimetrique de l'uranium par le thiocyanate d'ammonium en milieu acetate d'ethyle-acetone-eau

    Energy Technology Data Exchange (ETDEWEB)

    Hucleux, M; Dessapt, P

    1959-04-01

    The method consists of colorimetrically analyzing uranium using ammonium sulfo-cyanide in the solvent phase. The optimum conditions for extracting uranium by ethyl acetate have been studied. A precise colorimetric method was established which depends on the extracted phase and on the behavior of the ethyl acetate-acetone medium. (author) [French] La methode consiste a doser l'uranium par colorimetrie au sulfocyanure d'ammonium en phase solvant. Les meilleures conditions d'extraction de l'uranium par l'acetate d'ethyle ont ete etudiees. Une colorimetrie precise a ete mise au point en fonction de l'acidite de la phase extraite et du comportement du milieu acetate d'ethyleacetone. (auteur)

  7. Drug-Induced Liver Injury by Glatiramer Acetate Used for Treatment of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Attila Onmez

    2013-12-01

    Full Text Available Glatiramer acetate (GA, Copaxone is an approved drug for the treatment of relapsing–remitting multiple sclerosis. Most common side effects observed with GA are local injection site reactions, which can include pain, swelling, or redness. However, systemic adverse event such as hepatotoxicity related to GA is rarely seen. In this report, we present a case of GA-induced toxic hepatitis associated with cholestatic and hepatocellular damage.

  8. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    Science.gov (United States)

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  9. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli

    2016-08-15

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  10. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli; Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  11. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    Science.gov (United States)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  12. Identification (GC and GC-MS) of unsaturated acetates in Elasmopalpus lignosellus and their biological activity (GC-EAD and EAG).

    Science.gov (United States)

    Jham, Gulab N; da Silva, Alexsandro A; Lima, Eraldo R; Viana, Paulo

    2005-02-01

    Two insect colonies of Elasmopalpus lignosellus were reared in our laboratory, the first being initiated from pupae obtained from a cornfield in the region of Sete Lagoas, Minas Gerais and the second from a cornfield in the region of Goiânia, Goiás. From the two colonies, two extracts were prepared from the pheromone glands of virgin E. lignosellus females. The extract obtained from the first colony was designated as extract 1 while the extract obtained from the second colony was designated as extract 2. Extract 1 was analyzed by gas chromatography-mass spectrometry (GC-MS) with (Z)-9-hexadecenyl acetate [(Z)-9-HDA] and (Z)-11-hexadecenyl acetate [(Z)-11-HDA] being identified and confirmed by the formation of DMDS derivatives. In addition, a third acetate, which could be either (E)-8-hexadecenyl acetate [(E)-8-HDA] or (E)-9-hexadecenyl acetate [(E)-9-HDA] was detected by GC-MS. Extract 2 was analyzed by gas chromatography (GC) and gas chromatography-electroannetography (GC-EAD) revealing the presence of (Z)-11-HDA and (Z)-9-TDA. In addition, the same compounds elicited a response with the E. lignosellus male antenna obtained from the second insect colony. Electroantennography (EAG) screening with the male E. lignosellus antenna (obtained from the second insect colony) was conducted with the 23 possible tetradecenyl acetates (TDA) and 22 hexadecenyl acetates (HDA) as standards. Out of the 23 TDA isomers evaluated, only (Z)-9-TDA elicited a response and out of the 22 HDA [(Z) and (E) isomers gamma2 to delta13] evaluated only (Z)-11-HDA elicited a response. The acetate compositions of two extracts obtained from insects originating from the two states (Minas Gerais and Goiás) of Brazil were different from one another as well as from that obtained from insects in Tifton, GA, USA. The bioactivity data (GC-EAD) of the extract 2 differed from those reported for the Tifton, GA, USA population. These data suggest polymorphism in relation to the insect populations found in

  13. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    OpenAIRE

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru?Rh bimetallic catalyst using imidazole as the ligand and LiI as the promot...

  14. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  15. Nucleated Poly(L-lactic acid) with N, N‧-oxalyl bis(benzoic acid) dihydrazide

    Science.gov (United States)

    Tian, Liang-Liang; Cai, Yan-Hua

    2018-04-01

    One of the major challenges in the field of Poly(L-lactic acid) (PLLA) is the enhancement of crystallization. In the present work, the evaluation of the influence of N, N‧-oxalyl bis(benzoic acid) dihydrazide (TBOD), as a novel organic nucleating agent, on the non-isothermal crystallization, melting behavior, and thermal stability of PLLA was performed using differential scanning calorimeter and thermogravimetric analysis. Non-isothermal crystallization measurement revealed that TBOD had an excellent accelerating effect for the crystallization of PLLA in cooling, and upon the addition of 3 wt% TBOD, PLLA exhibited the highest onset crystallization temperature and the crystallization peak temperature, as well as the largest non-isothermal crystallization enthalpy. In particular, when the TBOD concentration was 1 wt% ∼ 3 wt%, the onset crystallization temperatures were higher than the theoretical ceiling temperature of crystallization, thoroughly demonstrating the powerful crystallization promoting ability of TBOD. Additionally, the non-isothermal crystallization behavior of PLLA/TBOD depended on the TBOD concentration, cooling rate as well as the final melting temperature. The melting behavior of PLLA/TBOD after non-isothermal crystallization further confirmed the effect of TBOD on the crystallization process and crystal structure of PLLA, and the appearance of the double melting peaks during melting stages was attribute to the melting-recrystallization. For melting behavior after isothermal crystallization, the crystallization temperature and crystallization time significantly affected the melting behavior of PLLA/TBOD. The addition of TBOD could not change the thermal decomposition profile of the PLLA, but the thermal stability did not regularly decrease with increasing of TBOD concentration, indicating that there might exist intermolecular interaction between PLLA and TBOD.

  16. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  17. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-07-14

    ... an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar... a maximum permissible level for residues of acetic acid, also known as vinegar. DATES: This... humans. It is also naturally produced during the fermentation process in a wide range of foods. In plants...

  18. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  19. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  20. Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater.

    Science.gov (United States)

    Chen, Si; Cheng, Huicai; Liu, Jiang; Hazen, Terry C; Huang, Vicki; He, Qiang

    2017-02-01

    Acetoclastic methanogenesis is a key metabolic process in anaerobic digestion, a technology with broad applications in biogas production and waste treatment. Acetoclastic methanogenesis is known to be performed by two archaeal genera, Methanosaeta and Methanosarcina. The conventional model posits that Methanosaeta populations are more competitive at low acetate levels (competitiveness of Methanosaeta at elevated acetate was further supported by the enrichment of Methanosaeta with high concentrations of acetate (20 mM). The dominance of Methanosaeta in the methanogen community could be reproduced in anaerobic digesters with the direct addition of acetate to above 20 mM, again supporting the competitiveness of Methanosaeta over Methanosarcina at elevated acetate levels. This study for the first time systematically demonstrated that the dominance of Methanosaeta populations in anaerobic digestion could be linked to the competitiveness of Methanosaeta at elevated acetate concentrations. Given the importance of acetoclastic methanogenesis in biological methane production, findings from this study could have major implications for developing strategies for more effective control of methanogenic treatment processes.

  1. Acetic acid dressings: Finding the Holy Grail for infected wound management

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2017-01-01

    Full Text Available Background: Wounds have since long, contributed majorly to the health-care burden. Infected long-standing non-healing wounds place many demands on the treating surgeon and are devastating for the patients physically, nutritionally, vocationally, financially, psychologically and socially. Acetic acid has long been included among agents used in the treatment of infected wounds. In this study, we have evaluated the use of acetic acid for topical application in the treatment of infected wounds. Materials and Methods: A total of 100 patients with infected wounds were treated with topical application of 1% acetic acid as dressing material after appropriate cleaning. A specimen of wound swab was collected before first application and further on days 3, 7, 10 and 14. Daily dressings of wounds were done similarly. Minimum inhibitory concentration (MIC of acetic acid against various organisms isolated was determined. Results: The patients treated ranged between 9 and 60 years, with the mean age 33 years. Nearly 70% of patients were male. Aetiologies of wounds: infective 35, diabetic 25, trauma 20, burns 10, venous ulcers 5 and infected graft donor site 5. Various microorganisms isolated include Pseudomonas aeruginosa (40%, Staphylococcus aureus (2%, Acinetobacter (12%, Escherichia Coli (5%, Proteus mirabilis (3%, Klebsiella (18%, methicillin-resistant S. aureus (10%, Streptococcus (2% and Enterococcus (1%, Citrobacter (1%. Few wounds (6% also isolated fungi. About 28%, 64% and 8% of patients isolated no growth on culture after 7, 14 and 21 days, respectively. MIC of all isolated organisms was ≤0.5%. Conclusion: pH of the wound environment plays a pivotal role in wound healing. Acetic acid with concentration of 1% has shown to be efficacious against wide range of bacteria as well as fungi, simultaneously accelerating wound healing. Acetic acid is non-toxic, inexpensive, easily available and efficient topical agent for effective elimination of wound

  2. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  3. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    Science.gov (United States)

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  4. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    International Nuclear Information System (INIS)

    Reinecke, D.

    1989-01-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O 2 , and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14 C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  5. Avalanches in Mn12-Acetate: ``Magnetic Burning"

    Science.gov (United States)

    McHugh, Sean; Suzuki, Y.; Graybill, D.; Sarachik, M. P.; Avraham, N.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2006-03-01

    From local time-resolved measurements of fast reversal of the magnetization in single crystals of the molecular magnet Mn12-acetate, we have shown[1] that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. The propagation speed of the avalanche depends on the energy stored in each molecule, which can be controlled and tuned using an external magnetic field. We report studies of propagation speed with different external fields in Mn12-acetate. [1] Yoko Suzuki, M.P. Sarachik, E.M. Chudnovsky, S. McHugh, R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, H. Shtrikman, E. Zeldov, N.E. Chakov and G. Christou, Phys. Rev. Lett. 95, 147201 (2005).

  6. Lewis Base Activation of Silyl Acetals: Iridium-Catalyzed Reductive Horner-Wadsworth-Emmons Olefination.

    Science.gov (United States)

    Dakarapu, Udaya Sree; Bokka, Apparao; Asgari, Parham; Trog, Gabriela; Hua, Yuanda; Nguyen, Hiep H; Rahman, Nawal; Jeon, Junha

    2015-12-04

    A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel.

  7. The preparation of benzyl esters using stoichiometric niobium (V) chloride versus niobium grafted SiO2 catalyst: A comparison study

    OpenAIRE

    Sandro L. Barbosa; Camila D. Lima; Melina A.R. Almeida; Larissa S. Mourão; Myrlene Ottone; David L. Nelson; Stanlei I. Klein; Lucas D. Zanatta; Giuliano C. Clososki; Franco J. Caires; Eduardo J. Nassar; Gabriela R. Hurtado

    2018-01-01

    Two solvent free methods of a one-to-one alcohol/acid mol ratio synthesis of benzyl esters of the formic, acetic, benzoic, salicylic, nicotinic, and oxalic acids are described. The stoichiometric reactions used 1.5 mol ratio solid NbCl5 as the reagent and required from two to three hours for completion at room temperature; for the catalytic processes, NbCl5 was grafted directly, at room temperature, onto a silica gel of specific area of 507 m2g−1, produced from construction sand and sodium ca...

  8. Radiation chemical grafting of vinyl acetate and styrene on nitrocellulose

    International Nuclear Information System (INIS)

    Chapiro, A.; Foex, M.; Jendrychowska-Bonamour, A.M.

    1977-01-01

    Vinyl acetate and styrene were grafted onto nitrocellulose using the direct radiation grafting technique with 500 and 3000 Ci 60 Co γ sources. For vinyl acetate, the reaction proceeds homogeneously. The kinetics are dominated by degradative chain transfer to the nitrocellulose. The polymerization of vinyl acetate was examined in the presence of isoamyl nitrate, a model for nitrocellulose; the transfer constant was determined and the results are treated semi-quantitatively. For styrene, grafting occurs in a swollen film irradiated in the presence of excess monomer. The diffusion of styrene into nitrocellulose is extremely slow; methanol was added to the reaction mixture to favour diffusion which was found to obey Fick's law. The diffusion constant and activation energy of diffusion are evaluated. The grafting kinetics are controlled by monomer diffusion, accounting for the increase of dose-rate exponent with temperature. A spontaneous grafting process occurs in the absence of irradiation. It is initiated by macroradicals arising from thermal decomposition of nitrocellulose. (author)

  9. The obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis

    International Nuclear Information System (INIS)

    Mansurov, M.M.; Lugovenko, A.N.; Mirzoeva, M.M.

    1993-01-01

    Present article is devoted to obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis. The method of synthesis of iron acetate from processed iron comprising catalyst of ammonia synthesis was elaborated. The structure of complex was determined.

  10. Positron emission tomography with [11C]-acetate for evaluation of myocardial oxidative metabolism. Clinical use

    International Nuclear Information System (INIS)

    Litvinova, I.S.; Litvinov, M.M.; Rozhkova, G.G.; Leont'eva, I.V.; Sebeleva, I.A.; Tumanyan, M.R.; Koledinskij, D.G.; Sukhorukov, V.S.

    2001-01-01

    The diagnostic potentials of positron emission tomography (PET) with [ 11 C]-acetate as applied to mitochondrial disorders in children with cardiomyopathies (CMP) are evaluated. PET examinations are performed in 17 patients of the mean age of 7.5 ± 3.1 years with CMP. A dynamic study with [ 11 C]-acetate is conducted to evaluate the Krebs cycle activity. The experiments have indicated to a fewer accumulation of [ 11 C]-acetate and to its slower clearance in the ischemic zone as compared with the normal myocardium. The Krebs cycle activity has been reduced. By means of PET with [ 11 C]-acetate the oxidation rate constant of the Krebs cycle and the [ 11 C]-acetate-activity clearance half-time can be quantified. This makes possible to assess the extent of oxidative metabolism malfunction, including the case of perfusion reduction [ru

  11. Use of cyproterone acetate/ethinylestradiol in polycystic ovary syndrome: rationale and practical aspects.

    Science.gov (United States)

    Ruan, X; Kubba, A; Aguilar, A; Mueck, A O

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a common, heterogeneous disorder characterised by hyperandrogenic skin symptoms, irregular menstruation and subfertility, increased risk of endometrial malignancy, and increased risk of preventable diseases associated with metabolic syndrome. Cyproterone acetate (CPA) 2 mg, combined with ethinylestradiol (EE) 35 μg, is indicated for the treatment of moderate to severe acne related to androgen-sensitivity (with or without seborrhea) and/or hirsutism, in women of reproductive age. To review the present knowledge about PCOS and summarize the role of CPA/EE in the care of patients suffering from this condition for the practitioner. Experts with clinical interest and experience in treating symptoms of androgen excess performed a non-systematic review to provide updated information regarding the use of CPA/EE in patients with PCOS. Polycystic ovary-related hyperandrogenic skin symptoms are effectively treated by CPA/EE, reducing not only the symptoms but also their negative impact on quality of life and mental health. Proven additional benefits for these patients include the treatment of menstrual irregularities and reduction in endometrial cancer risk. Possible benefits include preservation of fertility. Treatment increases the risk for venous thromboembolic complications. The nature of other metabolic and cardiovascular long-term effects i.e., whether positive or negative, are still to be investigated. Cyproterone acetate/ethinylestradiol provides effective treatment for PCO-related hyperandrogenic skin symptoms. This efficacy and additional benefits related to menstrual irregularities and endometrial cancer risk, have to be weighed against the risk of venous thromboembolic complications based on an individual benefit/risk evaluation.

  12. Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C. (SUNY, Stony Brook, NY (USA) Univ. of Colorado, Boulder (USA)); Michelson, A.R.; Scranton, M.I. (SUNY, Stony Brook, NY (USA)); Banta, G.T.; Hobbie, J.E. (Marine Biological Laboratory, Woods, Hole, MA (USA)); Howarth, R.W. (Cornell Univ., Ithaca, NY (USA))

    1988-10-01

    Molecular hydrogen and acetate are believed to be key intermediates in the anaerobic remineralization of organic carbon. The authors have made measurements of the cycling of both these compounds in two marine sediments: the bioturbated sediments of Buzzards Bay, Mass., and the much more reducing sediments of Town Cove, Orleans, Mass. Hydrogen concentrations are similar in these environments (from less than 5 to 30 nM), and are within the range previously reported for coastal sediments. However, apparent hydrogen production rates differ by a factor of 60 between these two sediments and at both sites show strong correlation with measured rates of sulfate reduction. Acetate concentrations generally increased with depth in both environments; this increase was greater in Buzzards Bay (22.5 to 71.5 {mu}M) than in Town Cove (26 to 44 {mu}M). Acetate oxidation rates calculated from measured concentrations and {sup 14}C-acetate consumption rate constants suggest that the measured acetate was not all available to sulfate-reducing bacteria. Using the measured sulfate reduction rates, they estimate that between 2% and 100% of the measured acetate pool is biologically available, and that the bioavailable pool decreases with depth. A diagenetic model of the total acetate concentration suggests that consumption may be first order with respect to only a fraction of the total pool.

  13. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  14. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    Science.gov (United States)

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  15. Efficacy of immunomodulatory therapy with interferon-β or glatiramer acetate on multiple sclerosis-associated uveitis.

    Science.gov (United States)

    Velazquez-Villoria, D; Macia-Badia, C; Segura-García, A; Pastor Idoate, S; Arcos-Algaba, G; Velez-Escola, L; García-Arumí, J

    2017-06-01

    To analyse the role of interferon-β or glatiramer acetate in reducing the inflammatory episodes of intra-ocular inflammation in multiple sclerosis-associated uveitis. A study was conducted on a non-randomised, retrospective case series of 13 patients with proven multiple sclerosis and uveitis (minimum follow-up, 12 months). All patients were given immunomodulatory treatment (interferon-β or glatiramer acetate) to control the course of the multiple sclerosis. Patients were compared to themselves before initiating the treatment, in order to assess the difference in uveitis episodes. The main outcome measurements were the number of uveitis episodes with/without immunomodulatory treatment. Uveitis was bilateral in 10 (77%) out of 13 patients. Intermediate uveitis was observed in 11 patients, retinal vasculitis in 3 patients, and one patient was classified as a posterior uveitis. The patients had a mean of 4.15±3.1 episodes of uveitis (range 1-10) during the follow-up period (148.6±84.3 months). When compared to their pre-treatment status, patients on treatment with interferon-β or glatiramer acetate showed a significant decrease of 0.36 episodes of ocular inflammation per year (P=.02). Mild side effects related to immunomodulatory treatment were observed in 6 (46%) patients, 3 (23%) patients with a flu-like syndrome, and 3 (23%) patients with a skin rash. Interferon β or glatiramer acetate could be effective in reducing the uveitis episodes in patients with multiple sclerosis-associated uveitis, and was well tolerated in most patients. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Acetate enhances startup of a H₂-producing microbial biocathode.

    Science.gov (United States)

    Jeremiasse, Adriaan W; Hamelers, Hubertus V M; Croese, Elsemiek; Buisman, Cees J N

    2012-03-01

    H(2) can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease MEC capital costs, a cathode is needed that is made of low-cost material and produces H(2) at high rate. A microbial biocathode is a low-cost candidate, but suffers from a long startup and a low H(2) production rate. In this study, the effects of cathode potential and carbon source on microbial biocathode startup were investigated. Application of a more negative cathode potential did not decrease the startup time of the biocathode. If acetate instead of bicarbonate was used as carbon source, the biocathode started up more than two times faster. The faster startup was likely caused by a higher biomass yield for acetate than for bicarbonate, which was supported by thermodynamic calculations. To increase the H(2) production rate, a flow through biocathode fed with acetate was investigated. This biocathode produced 2.2 m(3) H(2) m(-3)  reactor day(-1) at a cathode potential of -0.7 V versus NHE, which was seven times that of a parallel flow biocathode of a previous study. Copyright © 2011 Wiley Periodicals, Inc.

  17. Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

    International Nuclear Information System (INIS)

    Zhou, Jingjing; Liu, Kaiyu; Kong, Chunlong; Chen, Liang

    2013-01-01

    We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/Cr(NO 3 ) 3 . The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 m 2 /g. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. CO 2 , CH 4 and N 2 adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced CO 2 selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced CO 2 adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr)

  18. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  19. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  20. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-01-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14 C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14 C radioactivity in the plant, mediums, and atmospheric carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14 C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14 C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14 CO 2 gas was released from the culture solution in both types of cultures. Results indicated that the 14 C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14 C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14 C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14 C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14 C through the plant roots not because of uptake of 14 C-acetic acid but because of uptake of 14 C in gaseous forms such as 14 CO 2 .

  1. Biotransformation of (-)-dihydromyrcenyl acetate using the plant parasitic fungus Glomerella cingulata as a biocatalyst.

    Science.gov (United States)

    Miyazawa, M; Akazawa, S i; Sakai, H; Nankai, H

    2000-10-01

    The microbial transformation of (-)-dihydromyrcenyl acetate was investigated using the plant parasitic fungus Glomerella cingulata. As a result, (-)-dihydromyrcenyl acetate was converted to dihydromyrcenol, 3,7-dihydroxy-3,7-dimethyl-1-octene-7-carboxylate, 3,7-dihydroxy-3,7-dimethyl-1-octene, 3,7-dimethyloctane-1,2, 7-triol-7-carboxylate, and 3,7-dimethyloctane-1,2,7-triol. In addition, microbial transformation of dihydromyrcenol by G. cingulata was carried out. The metabolic pathway of (-)-dihydromyrcenyl acetate is discussed.

  2. Preparation of neodymium acetate for use in nuclear area and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, C.A.S.; Seneda, J.A., E-mail: cqueiroz@ipen.br, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Filho, W. R. Pedreira, E-mail: walter.pedreira@fundacentro.gov.br [Fundação Jorge Duprat Figueiredo, de Segurança e Medicina do Trabalho (FUNDACENTRO), Sao Paulo, SP (Brazil)

    2017-07-01

    Neodymium and its compounds are being increasingly applied in the manufacture of new materials. In nuclear area neodymium isotopes are used in a variety of scientific applications. Nd-142 has been used to produce short-lived Tm and Yb isotopes. Nd-146 has been suggested to produce Pm-147 and Nd-150 has been used to study double beta decay. Due to the several modern applications using nanomaterials, more and more highly rare earth compounds have been demanded. The researches at IPEN uses the experience gained in rare earth separation for the preparation of some pure acetates, purity > 99.9% for application in nanotechnology research. A simple and economical chemical process to obtaining neodymium acetate of high purity is studied. The raw material in the form of mixed rare earths carbonate comes from Brazilian monazite. It is used the technique of strong cationic exchange resin, proper to water treatment, to the neodymium's fractionation and it is achieved a purity of 99.9% in Nd{sub 2}O{sub 3} and yield greater than or equal 80%, with the elution of rare earths by EDTA solution in pH controlled. The complex of EDTA-neodymium is transformed in neodymium oxide, subsequently the oxide is dissolved in acetic acid to obtain the neodymium acetate. The solid salt was characterized via molecular absorption spectrophotometry, mass spectrometry, thermal analysis, chemical analysis and X ray diffraction. In summary the analytical data collected allowed to conclude that the stoichiometric formula for the neodymium acetate prepared is Nd(CH {sub 3}COOH)3.1.5H{sub 2}O. (author)

  3. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  4. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  5. Effect of kaolin silver complex on the control of populations of Brettanomyces and acetic acid bacteria in wine.

    Science.gov (United States)

    Izquierdo-Cañas, P M; López-Martín, R; García-Romero, E; González-Arenzana, L; Mínguez-Sanz, S; Chatonnet, P; Palacios-García, A; Puig-Pujol, A

    2018-05-01

    In this work, the effects of kaolin silver complex (KAgC) have been evaluated to replace the use of SO 2 for the control of spoilage microorganisms in the winemaking process. The results showed that KAgC at a dose of 1 g/L provided effective control against the development of B. bruxellensis and acetic acid bacteria. In wines artificially contaminated with an initial population of B. bruxellensis at 10 4 CFU/mL, a concentration proven to produce off flavors in wine, only residual populations of the contaminating yeast remained after 24 days of contact with the additive. Populations of acetic bacteria inoculated into wine at concentrations of 10 2 and 10 4  CFU/mL were reduced to negligible levels after 72 h of treatment with KAgC. The antimicrobial effect of KAgC against B. bruxellensis and acetic bacteria was also demonstrated in a wine naturally contaminated by these microorganisms, decreasing their population in a similar way to a chitosan treatment. Related to this effect, wines with KAgC showed lower concentrations of acetic acid and 4-ethyl phenol than wines without KAgC. The silver concentration from KAgC that remained in the finished wines was below the legal limits. These results demonstrated the effectiveness of KAgC to reduce spoilage microorganisms in winemaking.

  6. Brain MR finding of {beta}-fluoroethyl acetate rodenticide intoxication: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Jung, Cheol Kyu; Lee, Seung Ro; Park, Dong Woo [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2008-05-15

    {beta}-fluoroethyl acetate rodenticide intoxication can manifest as several different clinical abnormalities such as respiratory, neurologic, cardiologic and fluid-electrolyte problems. We report here on the MR findings of a case that showed symmetric cytotoxic edema in the while matter of the cerebral hemispheres after the ingestion of {beta} - fluoroethyl acetate rodenticide by a woman who was attempting suicide.

  7. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    International Nuclear Information System (INIS)

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  8. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrates, do not undergo hydrolysis. At the same time, the viability of first four plants was observed for different levels of acetate concentration. The method of continuous preparative hydrolysis of the same acetates was worked out in Cyrtomium falcatum culture.

  9. First total synthesis of (-)-ichthyothereol and its acetate.

    Science.gov (United States)

    Mukai, C; Miyakoshi, N; Hanaoka, M

    2001-08-24

    The first and stereoselective total syntheses of (-)-ichthyothereol (1) and its acetate ((+)-2) were achieved by incorporation of the two chiral centers of diethyl L-tartrate. The starting diethyl L-tartrate was converted into trans-2-ethynyl-3-hydroxytetrahydropyran 14 in a stereoselective manner via the endo mode cyclization of the epoxy-alkyne derivative 12. The alcohol 12 was then transformed into (E)-iodoolefin derivative 15, which was exposed to a coupling reaction with 1-tributylstannyl-1,3,5-heptyne (19), derived from the corresponding 1-trimethylsilyl-1,3,5-heptyne (18), under Stille conditions to produce the all-carbon framework of the target natural products. Chemical modification of the coupled product 20 under conventional conditions completed the first total synthesis of (-)-ichthyothereol (1) and its acetate ((+)-2).

  10. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes

    International Nuclear Information System (INIS)

    Berna, Antonio; Delgado, Jose Manuel; Orts, Jose Manuel; Rodes, Antonio; Feliu, Juan Miguel

    2008-01-01

    Acetate adsorption at gold electrodes is studied in perchloric acid solutions by cyclic voltammetry and in-situ infrared spectroscopy. External reflection measurements, performed with gold single crystal electrodes, are combined with Surface Enhanced Infrared Reflection Absorption Spectroscopy experiments under attenuated total reflection conditions (ATR-SEIRAS) carried out with sputtered gold thin-film electrodes. Theoretical harmonic IR frequencies of acetate species adsorbed with different geometries on Au clusters with (1 1 1), (1 0 0) and (1 1 0) orientations have been obtained from B3LYP/LANL2DZ, 6-31 + G* calculations. The theoretical and experimental results confirm that, irrespective of the surface crystallographic orientation, bonding of acetate to the surface involves the two oxygen atoms of the carboxylate group, with the OCO plane perpendicular to the metal surface. DFT calculations reveal also that the total charge of the metal cluster-acetate supermolecule has small effect on the vibrational frequencies of adsorbed acetate species. Both the external and the internal reflection measurements show the co-adsorption of acetate and perchlorate anions. Step-scan measurements carried out with the gold thin-film electrodes have allowed the monitoring of the time-dependent behaviour of perchlorate, acetate and water bands in potential step experiments. Acetate adsorption under those conditions is shown to involve perchlorate desorption and to follow a Langmuir-type kinetics. The step-scan spectra also show the rise and decay of transient water structures with parallel time-dependent shifts of the background intensity in the infrared spectra

  11. THE INCORPORATION OF ACETATE-1-C14 INTO CHOLESTEROL AND FATTY ACIDS BY SURVIVING TISSUES OF NORMAL AND SCORBUTIC GUINEA PIGS

    Science.gov (United States)

    Bolker, H. I.; Fishman, S.; Heard, R. D. H.; O'Donnell, V. J.; Webb, J. L.; Willis, G. C.

    1956-01-01

    The synthesis of cholesterol and fatty acids from acetate-l-C14 by the isolated liver, adrenal, and aorta of scorbutic and pair-fed control guinea pigs has been studied. It was found that ascorbic acid deficiency does not affect the rate of incorporation of C14-acetate into cholesterol and fatty acids by the tissues investigated, under our experimental conditions. The relatively high metabolic activity of the artery with regard to cholesterogenesis and lipogenesis was noted. The elevation of serum cholesterol and hexosamine in scurvy has been confirmed. PMID:13286427

  12. Effect of eslicarbazepine acetate and oxcarbazepine on cognition and psychomotor function in healthy volunteers.

    Science.gov (United States)

    Milovan, Denise; Almeida, Luis; Romach, Myroslava K; Nunes, Teresa; Rocha, José Francisco; Sokowloska, Marta; Sellers, Edward M; Soares-da-Silva, Patrício

    2010-08-01

    The results of two single-blind studies conducted to evaluate the cognitive and psychomotor effects of eslicarbazepine acetate and oxcarbazepine following single and repeated administration in healthy volunteers are reported. The cognitive and psychomotor evaluation consisted of several computerized and paper-and-pencil measures. Eslicarbazepine acetate and oxcarbazepine had similar overall cognitive profiles and did not cause clinically relevant cognitive impairment. The incidence of adverse events was lower with eslicarbazepine acetate than with oxcarbazepine. Copyright 2010. Published by Elsevier Inc.

  13. Thermoelectrical and thermal analyses of copper(II) acetate monohydrate ZnO-matrix composite powder obtained by freeze-drying

    International Nuclear Information System (INIS)

    Bellini, Jusmar Valentin; Pineda, Edgardo Alfonso Gomez; Rocha, Raquel de Almeida; Ponzoni, Andre Luis de Lima; Paesano, Andrea

    2006-01-01

    The thermal history of freeze-dried mixtures of composite powders containing ZnO-matrix and (CH 3 COO) 2 Cu.H 2 O (copper(II) acetate monohydrate) was undertaken by thermal analysis (TA) coupled to thermoelectrical analysis (TEA). Experiments were carried out on compacted samples, under non-isothermal conditions, in air, up to 350 deg. C, by measuring the electrical resistance during heating, called thermoelectrical resistometry (TER), and by differential scanning calorimetry (DSC). Activation energy (E a ) for exothermal events related to the decomposition of (CH 3 COO) 2 Cu (copper(II) acetate, CuAc 2 ), observed within the range 225-325 deg. C, was estimated according to ASTM E 698 method. Values of E a equal to 154 and 155 kJ/mol were obtained by TER and DSC, respectively. TER showed that the thermal decomposition of CuAc 2 involves the liberation of electrons. Results also indicated that TER may be used as an alternative or complementary method for the study of the thermal decomposition mechanisms of transition metal(II) acetates

  14. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.

    2009-01-01

    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by

  15. Normal Uptake of 11C-Acetate in Pancreas, Liver, Spleen, and Suprarenal Gland in PET

    Directory of Open Access Journals (Sweden)

    Bogdan Malkowski

    2017-01-01

    Full Text Available Purpose. C11-Acetate is radiotracer being considered an alternative to 18F-fluorodeoxyglucose. Evaluation of C11-acetate biodistribution in human parenchymal organs is described. Methods and Materials. 60 consecutive patients referred to C11-acetate PET CT suspected of renal or prostate cancer relapse with negative results (no recurrent tumor were included in the study. Acquisition from the base of skull to upper thigh was made 20 min after i.v. injection of 720 MBq of C11-acetate. The distribution was evaluated by measuring the uptake in pancreas (uncinate process and body separately, liver, spleen, and left suprarenal gland. Clinical data of included patients showed no abnormalities in these organs. Results. Biodistributions of C11-acetate radiotracer were compared in different organs. Standardized uptake values of 11C-acetate were significantly higher in pancreatic parenchyma (SUV mean 6,4 than in liver (SUV mean 3,3, spleen (SUV mean 4,5, or suprarenal gland (SUV mean 2,7 tissues. No significant difference was found between pancreatic head (SUV mean 6,4 and body (SUV mean 5,9 uptake. In case of all aforementioned organs, there were no differences either between both sexes or between formerly diagnosed tumors (renal and prostate. Conclusions. Evaluation of C11-acetate uptake differences in parenchymal organs will allow establishing normal patterns of distribution. High pancreatic uptake may be used in quantitative assessment of organ function in diffuse nonneoplastic pathology.

  16. Effects of Maternal Lead Acetate Exposure during Lactation on Postnatal Development of Testis in Offspring Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mehran Dorostghoal

    2011-03-01

    Full Text Available Objective(sDuring recent years, there has been an increasing interest in contribution of environmental pollutants as heavy metals to human male infertility. Present study was aimed to investigate the effects of maternal lead acetate exposure during lactation on postnatal development of testis in offspring rats.Materials and MethodsA total of 60 female rats randomly divided into four equal groups; control and three treatment groups received 20, 100 and 300 mg/kg/day lead acetate via drinking water from day 2 to day 21 of lactation. At 7, 14, 21, 28, 60, 90 and 120 days after birth, the testis weight and volume of offspring were measured and their epididymal semen analyzed. Following tissue processing, 5 μm sections were stained with haematoxylin-eosin and evaluated with quantitative techniques. Testicular parameters in different groups were compared by one-way ANOVA.ResultsTestis weight and volume of offspring decreased significantly in a dose-related manner in moderate (P< 0.05 and high (P< 0.01 doses groups. Dose-dependent significant reductions were seen in seminiferous tubules diameter and germinal epithelium height during neonatal, prepubertal and postpubertal periods in moderate (P< 0.05 and high (P< 0.01 doses groups until 90 and 120 days after birth, respectively. Significant decreases were observed in mean sperm density of offspring at puberty in moderate and high doses groups until 90 and 120 days after birth, respectively. Testosterone levels decreased significantly in a dose-related manner at puberty in moderate and high doses groups. ConclusionPresent study showed maternal lead acetate exposure during lactation caused dose-related and long-term alterations of testicular parameters in offspring rats.

  17. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Stefanie Berger

    2012-01-01

    Full Text Available The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM=0.27±0.05 mM that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell.

  18. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  19. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    Science.gov (United States)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  20. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    Science.gov (United States)

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry

    Science.gov (United States)

    Konermann, Lars

    2017-09-01

    Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4 + and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. [Figure not available: see fulltext.

  2. Preparation of vinyl acetate grafted natural rubber by irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Porntrairat, A.; Pattamaprom, C. [Center of Excellence on Natural Rubber Technology, Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120 (Thailand)

    2016-03-09

    Improvement in properties of natural rubber could be done by several methods. In this research, gamma radiation technique, which is simple, accurate, easy to control and clean, was applied to enhance the properties of natural rubber (NR) in latex state. The purpose of this research is to study the appropriate condition for preparing grafted natural rubber latex by using irradiation method. Vinyl acetate monomers (VAc) were grafted onto natural rubber latex (NR-g-PVAc) at 0-10 kGys by gamma radiation from Cobalt-60 source at room temperature. Physical properties of grafted natural rubber such as chloroform number, swelling ratio and gel content were measured. The VAc content of NR-g-PVAc was investigated by titration and visualized by FTIR spectroscopy. The FTIR spectra of NR-g-PVAc prepared at 0-10 kGys showed characteristic peaks of the vinyl acetate confirming that VAc could be grafted onto natural rubber molecular chains effectively under appropriate irradiation conditions. From the result, radiation grafting was found to be a useful technique for grafting of vinyl acetate onto natural rubber.

  3. Synthesis, characterization and biological studies of 2-(4-nitrophenylamino-carbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Imran, M; Nazir, S.; Latif, S.; Mahmood, Z.

    2010-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2-(4-Nitrophenyl aminocarbonyl)benzoic acid were synthesized and characterized on the basis of physical, analytical and spectroscopic data. The ligands, as well as its metal complexes were checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis, Escherichia coli, Pseudomonas aeuroginosa, and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. Disc diffusion method and Tube diffusion test were used for antibacterial and antifungal activities, respectively. The synthesized complexes only show significant antifungal activity but inactive for antibacterial, however, in general, the metal complexes were found to be more active against antimicrobial activities as compared to their un complexed ligand. (author)

  4. α-Mangostin suppresses 12-o-tetradecanoylphorbol-13- acetate ...

    African Journals Online (AJOL)

    α-Mangostin, Matrix metalloproteinase, Osteosarcoma, Cell migration, 12-O-. Tetradecanoylphorbol-13-acetate ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus, JournalSeek .... The results were analyzed using Student's t-test, and differences were.

  5. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species.

    Science.gov (United States)

    Lee, Kim-Chung; Tam, Emily W T; Lo, Ka-Ching; Tsang, Alan K L; Lau, Candy C Y; To, Kelvin K W; Chan, Jasper F W; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2015-06-17

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu-Glu-Leu-Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu-Glu-Leu-Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species.

  6. Life cycle inventory of sodium acetate and expanded graphite: Short report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N. [ESU-Services Ltd., Uster (Switzerland); Nguyen, B. [Haute Ecole d' Ingenierie et de Gestion du canton de Vaud, Laboratoire d' Energetique Solaire et de Physique du BATiment, HEIG-VD / LESBAT, Yverdon-les-Bains (Switzerland)

    2008-07-01

    This short report for the Laboratory for Solar Energy and Building Physics at the University of Applied Sciences in Yverdon, Switzerland, takes a look at work being done on the issue of solar energy storage. The use of sodium acetate as a phase-change material is reviewed and considered as being a good way of optimising solar heating systems. The goal of this study was to assess if the energy gain resulting from the use of sodium acetate is balanced out or not by its embodied energy. The study investigated sodium acetate with and without expanded graphite. The paper discusses the life cycle inventory analysis of the two materials and provides some aggregated key indicators for further analysis. In general the ecoinvent methodology has been followed in order to achieve full consistency with the background data used and to provide an assessment of the materials' impact on the environment.

  7. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  8. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  9. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid

    Directory of Open Access Journals (Sweden)

    Youssef A. Attia

    2013-04-01

    Full Text Available In order to evaluate the effect of acetic acid on growing and laying performance of Japanese Quail (JQ, 180 15-day-old JQ were divided into 4 groups. During the growing (15-42 days of age and laying (43-84 days of age periods, the groups fed the same basal diets supplemented with 0, 1.5, 3 and 6% of acetic acid. Each diet was fed to five replicates of 9 JQ (3 males:6 females during the growing period. During the laying period, 128 birds were housed in 32 cages (4 birds per cage, 1 male and 3 females, 8 replicates per treatment. Birds were housed in wire cages (46L×43W×20H cm in an open room. Acetic acid supplementation at 3% in the diets significantly increased the growth and laying rate and the Haugh unit score. The liver percentage significantly decreased with acetic acid at 6%. Acetic acid at 3% significantly increased hemoglobin concentrations at 6 weeks of age and increased weight of day old chicks hatched. Acetic acid affected the immune system as manifested by an excess of cellular reactions in the intestine as well as lymphoid hyperplasia in the spleen tissue. Degenerative changes in the covering epithelium of the intestinal villi were noted at the 6% concentration of acetic acid. Hepatocyte vacuolation and fatty changes were also observed at this concentration of treatment. In conclusion, 3% acetic acid may be used as a feed supplement for JQ during the growing and laying period to improve the productive performance.

  10. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    International Nuclear Information System (INIS)

    Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.

    2011-01-01

    Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions (coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)) over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the 'fines' fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.

  11. The Cost-Effectiveness of Emergency Hormonal Contraception with Ulipristal Acetate versus Levonorgestrel for Minors in France.

    Directory of Open Access Journals (Sweden)

    Ramona Schmid

    Full Text Available To evaluate the cost-effectiveness of ulipristal acetate and levonorgestrel in minors in France, and analyze whether it is worthwhile to provide ulipristal acetate to minors free of charge.The cost-effectiveness of two emergency contraceptive methods was compared based on a decision-analytical model. Pregnancy rates, outcomes of unintended pregnancies, and resource utilization were derived from the literature. Resources and their costs were considered until termination or a few days after delivery. Deterministic and probabilistic sensitivity analyses were performed.The cost of an unintended pregnancy in a French minor is estimated to be 1,630 € (range 1,330 € - 1,803 €. Almost 4 million € (3.1 € - 13.7 € million in unintended pregnancy spending in 2010 could have been saved by the use of ulipristal acetate instead of levonorgestrel. The incremental cost of ulipristal acetate compared to levonorgestrel is 3.30 € per intake, or 418 € per pregnancy avoided (intake within 72 hours. In the intake within 24 hours subgroup, ulipristal acetate was found to be more efficacious at a lower cost compared to levonorgestrel.Ulipristal acetate dominates levonorgestrel when taken within 24 hours after unprotected intercourse, i.e., it is more effective at a lower cost. When taken within 72 hours, ulipristal acetate is a cost- effective alternative to levonorgestrel, given that the cost of avoiding an additional pregnancy with ulipristal acetate is less than the average cost of these pregnancies. In the light of these findings, it is worthwhile to provide free access to minors.

  12. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis

    International Nuclear Information System (INIS)

    Schumann, W.C.; Magnusson, I.; Chandramouli, V.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1991-01-01

    To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, [2-14C]acetate, [2-14C]ethanol, and [1-14C]ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With [2-14C]acetate and [2-14C]ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of [2-14C]acetate being primarily in liver. Therefore, [2-14C]acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from [2-14C]acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. [1,3-14C]Acetone formation from the [2-14C]acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after [1-14C]ethanol administration

  13. Production of acetone and conversion of acetone to acetate in the perfused rat liver

    International Nuclear Information System (INIS)

    Gavino, V.C.; Somma, J.; Philbert, L.; David, F.; Garneau, M.; Belair, J.; Brunengraber, H.

    1987-01-01

    The utilization of millimolar concentrations of [2- 14 C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2- 14 C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1- 14 C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2- 14 C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate

  14. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    Science.gov (United States)

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®

  15. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    Six strains of thermophilic anaerobic acetate-utilizing methanogens were isolated from different full-scale thermophilic biogas plants in China and Denmark. The strain isolated from the Chinese biogas plant was designated KN-6P and the isolates from the Danish full-scale biogas plants were......, utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...... designated HG-1P, LVG-4P R1-1P, SO-2P and V-1P. The isolates were characterized morphologically and physiologically, and their immunological and phylogenetic relatedness to already known isolated strains were established. All isolated strains were identified as organisms belonging to genus Methanosarcina...

  16. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Makki, Arwa; Sekar, N; Eppinger, Jö rg

    2017-01-01

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  17. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  18. Photo-Fries rearrangements of 1-naphthyl (R-2-phenylpropanoate in poly(vinyl acetate and ethyl acetate: influence of medium polarity and polymer relaxation on motions of singlet radical pairs

    Directory of Open Access Journals (Sweden)

    Xu Jinqi

    2006-01-01

    Full Text Available Both the regio- and stereo-chemistries of the photoreactions of 1-naphthyl (R-2-phenylpropanoate have been investigated in poly(vinyl acetate films in their glassy (at 5masculineC and melted (at 50masculineC states and in ethyl acetate. These results are compared with those from irradiations in polyethylene films and in n-hexane. The regioselectivity of the intermediate 1-naphthoxy/(R-2-phenylpropanoyl radical pair combinations is much higher in both the melt and glassy states of poly(vinyl acetate films than that in the melt state of completely amorphous polyethylene films, but the stereoselectivity of intermediate prochiral 1-naphthoxy/1-phenylethyl radical pair combinations is much lower in poly(vinyl acetate. The results emphasize the need to control the ratio between the rates of radical tumbling and translation, as well as the ratio between the rates of in-cage motions and cage-escape, if high stereo- and regio-selectivities of combination products are to be achieved. A mechanistic picture of how the radicals of the intermediate pairs are affected by and interact with the various media is advanced.

  19. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  20. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.......05 of the emulsifier concentration, but independent of the initiator concentration. The limiting viscosity number of the polymers produced was independent of the initiator concentration and number of polymer particles. It is suggested that the mechanism of vinyl acetate emulsion polymerization is similar...