WorldWideScience

Sample records for reionization evaporation times

  1. Reionization histories of Milky Way mass halos

    International Nuclear Information System (INIS)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A.

    2014-01-01

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600 3 Mpc 3 volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10 11 M ☉ reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10 12±0.25 M ☉ halos, decreasing slightly to ∼95 Myr for 10 15±0.25 M ☉ halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  2. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    Science.gov (United States)

    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  3. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  4. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  5. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  6. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  7. Reionization and Cosmic Dawn: theory and simulations

    Science.gov (United States)

    Mesinger, Andrei

    2018-05-01

    We highlight recent progress in the sophistication and diversification of the simulations of cosmic dawn and reionization. The application of these modeling tools to recent observations has allowed us narrow down the timing of reionization. The midpoint of reionization is constrained to z = 7.6-0.7+0.8 (1 σ), with the strongest constraints coming from the optical depth to the CMB measured with the Planck satellite and the first detection of ongoing reionization from the spectra of the z = 7.1 QSOs ULASJ1120+0641. However, we still know virtually nothing about the astrophysical sources during the first billion years. The revolution in our understanding will be led by upcoming interferometric observations of the cosmic 21-cm signal. The properties of the sources and sinks of UV and X-ray photons are encoded in the 3D patterns of the signal. The development of Bayesian parameter recovery techniques, which tap into the wealth of the 21-cm signal, will soon usher in an era of precision astrophysical cosmology.

  8. Constraining Reionization with the z ˜ 5-6 Lyα Forest Power Spectrum: The Outlook after Planck

    Science.gov (United States)

    Oñorbe, J.; Hennawi, J. F.; Lukić, Z.; Walther, M.

    2017-09-01

    The latest measurements of cosmic microwave background electron-scattering optical depth reported by Planck significantly reduces the allowed space of {{H}} {{I}} reionization models, pointing toward a later ending and/or less extended phase transition than previously believed. Reionization impulsively heats the intergalactic medium (IGM) to ˜ {10}4 {{K}}, and owing to long cooling and dynamical times in the diffuse gas that are comparable to the Hubble time, memory of reionization heating is retained. Therefore, a late-ending reionization has significant implications for the structure of the z˜ 5{--}6 Lyα forest. Using state-of-the-art hydrodynamical simulations that allow us to vary the timing of reionization and its associated heat injection, we argue that extant thermal signatures from reionization can be detected via the Lyα forest power spectrum at 5noise ratio will allow distinguishing between different reionization scenarios.

  9. THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT AS A PROBE OF THE PHYSICS OF COSMIC REIONIZATION: THE EFFECT OF SELF-REGULATED REIONIZATION

    International Nuclear Information System (INIS)

    Park, Hyunbae; Shapiro, Paul R.; Komatsu, Eiichiro; Iliev, Ilian T.; Ahn, Kyungjin; Mellema, Garrelt

    2013-01-01

    We calculate the angular power spectrum of the cosmic microwave background temperature fluctuations induced by the kinetic Sunyaev-Zel'dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed N-body+radiative-transfer simulations to follow inhomogeneous reionization of the intergalactic medium. For the first time, we take into account the ''self-regulation'' of reionization: star formation in low-mass dwarf galaxies (10 8 M ☉ ∼ 9 M ☉ ) or minihalos (10 5 M ☉ ∼ 8 M ☉ ) is suppressed if these halos form in the regions that were already ionized or Lyman-Werner dissociated. Some previous work suggested that the amplitude of the kSZ power spectrum from the EOR can be described by a two-parameter family: the epoch of half-ionization and the duration of reionization. However, we argue that this picture applies only to simple forms of the reionization history which are roughly symmetric about the half-ionization epoch. In self-regulated reionization, the universe begins to be ionized early, maintains a low level of ionization for an extended period, and then finishes reionization as soon as high-mass atomically cooling halos dominate. While inclusion of self-regulation affects the amplitude of the kSZ power spectrum only modestly (∼10%), it can change the duration of reionization by a factor of more than two. We conclude that the simple two-parameter family does not capture the effect of a physical, yet complex, reionization history caused by self-regulation. When added to the post-reionization kSZ contribution, our prediction for the total kSZ power spectrum is below the current upper bound from the South Pole Telescope. Therefore, the current upper bound on the kSZ effect from the EOR is consistent with our understanding of the physics of reionization.

  10. Reionization of the Milky Way, M31, and their satellites - I. Reionization history and star formation

    Science.gov (United States)

    Dixon, Keri L.; Iliev, Ilian T.; Gottlöber, Stefan; Yepes, Gustavo; Knebe, Alexander; Libeskind, Noam; Hoffman, Yehuda

    2018-06-01

    Observations of the Milky Way (MW), M31, and their vicinity, known as the Local Group (LG), can provide clues about the sources of reionization. We present a suite of radiative transfer simulations based on initial conditions provided by the Constrained Local UniversE Simulations (CLUES) project that are designed to recreate the Local Universe, including a realistic MW-M31 pair and a nearby Virgo. Our box size (91 Mpc) is large enough to incorporate the relevant sources of ionizing photons for the LG. We employ a range of source models, mimicking the potential effects of radiative feedback for dark matter haloes between {˜ }10^8 and 10^9 M_{⊙}. Although the LG mostly reionizes in an inside-out fashion, the final 40 per cent of its ionization shows some outside influence. For the LG satellites, we find no evidence that their redshift of reionization is related to the present-day mass of the satellite or the distance from the central galaxy. We find that fewer than 20 per cent of present-day satellites for MW and M31 have undergone any star formation prior to the end of global reionization. Approximately 5 per cent of these satellites could be classified as fossils, meaning the majority of star formation occurred at these early times. The more massive satellites have more cumulative star formation prior to the end of global reionization, but the scatter is significant, especially at the low-mass end. Present-day mass and distance from the central galaxy are poor predictors for the presence of ancient stellar populations in satellite galaxies.

  11. Constraining the contribution of active galactic nuclei to reionization

    Science.gov (United States)

    Hassan, Sultan; Davé, Romeel; Mitra, Sourav; Finlator, Kristian; Ciardi, Benedetta; Santos, Mario G.

    2018-01-01

    Recent results have suggested that active galactic nuclei (AGN) could provide enough photons to reionize the Universe. We assess the viability of this scenario using a semi-numerical framework for modelling reionization, to which we add a quasar contribution by constructing a Quasar Halo Occupancy Distribution (QHOD) based on Giallongo et al. observations. Assuming a constant QHOD, we find that an AGN-only model cannot simultaneously match observations of the optical depth τe, neutral fraction and ionizing emissivity. Such a model predicts τe too low by ∼2σ relative to Planck constraints, and reionizes the Universe at z ≲ 5. Arbitrarily increasing the AGN emissivity to match these results yields a strong mismatch with the observed ionizing emissivity at z ∼ 5. If we instead assume a redshift-independent AGN luminosity function yielding an emissivity evolution like that assumed in Madau & Haardt model, then we can match τe albeit with late reionization; however, such evolution is inconsistent with observations at z ∼ 4-6 and poorly motivated physically. These results arise because AGN are more biased towards massive haloes than typical reionizing galaxies, resulting in stronger clustering and later formation times. AGN-dominated models produce larger ionizing bubbles that are reflected in ∼×2 more 21 cm power on all scales. A model with equal part galaxies and AGN contribution is still (barely) consistent with observations, but could be distinguished using next-generation 21 cm experiments such as Hydrogen Epoch of Reionization Array and SKA-low. We conclude that, even with recent claims of more faint AGN than previously thought, AGN are highly unlikely to dominate the ionizing photon budget for reionization.

  12. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin.

    Science.gov (United States)

    Luque-Martinez, Issis V; Perdigão, Jorge; Muñoz, Miguel A; Sezinando, Ana; Reis, Alessandra; Loguercio, Alessandro D

    2014-10-01

    To evaluate the microtensile bond strengths (μTBS) and nanoleakage (NL) of three universal or multi-mode adhesives, applied with increasing solvent evaporation times. One-hundred and forty caries-free extracted third molars were divided into 20 groups for bond strength testing, according to three factors: (1) Adhesive - All-Bond Universal (ABU, Bisco, Inc.), Prime&Bond Elect (PBE, Dentsply), and Scotchbond Universal Adhesive (SBU, 3M ESPE); (2) Bonding strategy - self-etch (SE) or etch-and-rinse (ER); and (3) Adhesive solvent evaporation time - 5s, 15s, and 25s. Two extra groups were prepared with ABU because the respective manufacturer recommends a solvent evaporation time of 10s. After restorations were constructed, specimens were stored in water (37°C/24h). Resin-dentin beams (0.8mm(2)) were tested at 0.5mm/min (μTBS). For NL, forty extracted molars were randomly assigned to each of the 20 groups. Dentin disks were restored, immersed in ammoniacal silver nitrate, sectioned and processed for evaluation under a FESEM in backscattered mode. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. drying time) for each strategy, and Tukey's test (α=0.05). NL data were computed with non-parametric tests (Kruskal-Wallis and Mann-Whitney tests, α=0.05). Increasing solvent evaporation time from 5s to 25s resulted in statistically higher mean μTBS for all adhesives when used in ER mode. Regarding NL, ER resulted in greater NL than SE for each of the evaporation times regardless of the adhesive used. A solvent evaporation time of 25s resulted in the lowest NL for SBU-ER. Residual water and/or solvent may compromise the performance of universal adhesives, which may be improved with extended evaporation times. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. The mean free path of hydrogen ionizing photons during the epoch of reionization

    Science.gov (United States)

    Rahmati, Alireza; Schaye, Joop

    2018-05-01

    We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.

  14. From first light to reionization

    CERN Document Server

    Stiavelli, Massimo S

    2009-01-01

    This up-to-date and concise account of a critical period of the early universe directly links the latest theories and experiments. Targeted at cosmological problems rather than specific methods, it begins with an introduction reviewing the early universe and looks at why reionization is important. The process of reionization analyzes simple analytical considerations and compares existing observations, while a further chapter describes some of the issues regarding the transition from Population III to Population II stars, as well as the constraints that can be derived from WMAP. Further chapter

  15. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  16. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  17. The duration of reionization constrains the ionizing sources

    Science.gov (United States)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos

    2018-03-01

    We investigate how the nature of the galaxies that reionized the Universe affects the duration of reionization. We contrast two sets of models: one in which galaxies on the faint side of the luminosity function dominate the ionizing emissivity, and a second in which the galaxies on the bright side of the luminosity function dominate. The faint-end of the luminosity function evolves slowly, therefore the transition from mostly neutral to mostly ionized state takes a much longer time in the first set of models compared to the second. Existing observational constraints on the duration of this transition are relatively weak, but taken at face value prefer the model in which galaxies on the bright side play a major role. Measurements of the kinetic Sunyaev Zeldovich effect in the cosmic microwave background from the epoch of reionization also point in the same direction.

  18. The duration of reionization constrains the ionizing sources

    Science.gov (United States)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos

    2018-06-01

    We investigate how the nature of the galaxies that reionized the Universe affects the duration of reionization. We contrast two sets of models: one in which galaxies on the faint side of the luminosity function dominate the ionizing emissivity, and a second in which the galaxies on the bright side of the luminosity function dominate. The faint end of the luminosity function evolves slowly, therefore the transition from mostly neutral to mostly ionized state takes a much longer time in the first set of models compared to the second. Existing observational constraints on the duration of this transition are relatively weak, but taken at face value prefer the model in which galaxies on the bright side play a major role. Measurements of the kinetic Sunyaev-Zeldovich effect in the cosmic microwave background from the epoch of reionization also point in the same direction.

  19. Moving mirrors and black hole evaporation in noncommutative space-times

    International Nuclear Information System (INIS)

    Casadio, R.; Cox, P.H.; Harms, B.; Micu, O.

    2006-01-01

    We study the evaporation of black holes in noncommutative space-times. We do this by calculating the correction to the detector's response function for a moving mirror in terms of the noncommutativity parameter Θ and then extracting the number density as modified by this parameter. We find that allowing space and time to be noncommutative increases the decay rate of a black hole

  20. Cosmic reionization after Planck II: contribution from quasars

    Science.gov (United States)

    Mitra, Sourav; Choudhury, T. Roy; Ferrara, Andrea

    2018-01-01

    In the light of the recent Planck downward revision of the electron scattering optical depth, and of the discovery of a faint active galactic nuclei (AGN) population at z > 4, we reassess the actual contribution of quasars to cosmic reionization. To this aim, we extend our previous Markov Chain Monte Carlo based data-constrained semi-analytic reionization model and study the role of quasars on global reionization history. We find that the quasars can alone reionize the Universe only for models with very high AGN emissivities at high redshift. These models are still allowed by the recent cosmic microwave background data and most of the observations related to H I reionization. However, they predict an extended and early He II reionization ending at z ≳ 4 and a much slower evolution in the mean He II Ly-α forest opacity than what the actual observation suggests. Thus, when we further constrain our model against the He II Ly-α forest data, this AGN-dominated scenario is found to be clearly ruled out at 2σ limits. The data seems to favour a standard two-component picture where quasar contributions become negligible at z ≳ 6 and a non-zero escape fraction of ∼ 10 per cent is needed from early-epoch galaxies. For such models, mean neutral hydrogen fraction decreases to ∼10-4 at z = 6.2 from ∼0.8 at z = 10.0 and helium becomes doubly ionized at much later time, z ∼ 3. We find that these models are as well in good agreement with the observed thermal evolution of IGM as opposed to models with very high AGN emissivities.

  1. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  2. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  3. Radiotracer investigation to study residence time distribution in an evaporator system

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H J; Yelgaonkar, V N; Navada, S V [Isotope Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Determination of mean residence time, residence time distribution and evaluation of flow behavior in industrial process systems is of prime importance in order to control the process and to evaluate the performance of the process systems. This paper describes a case study carried out in an evaporator system in a sugar factory near Pune for determination of the mean residence time and residence time distribution using radiotracer technique. The mean residence time (MRT) was determined to be 4 seconds. The mathematical modelling of residence time distribution (RTD) data indicated the flow behaviour of the system to be a well mixed type. (author). 5 refs., 2 figs., 1 tab.

  4. Towards constraints on the epoch of reionization: A phenomenological approach

    Science.gov (United States)

    Malloy, Matthew

    Based on observations of the early Universe, we know that shortly after the Big Bang, the Universe was composed almost entirely of neutral hydrogen and neutral helium. However, observations of nearby quasars suggest that the gas between galaxies today is neutral to less than one part in 104 . Thus, it must be the case that some process occurred that stripped the electrons from almost all atoms in the intergalactic medium. Understanding the timing and nature of this process, dubbed ''reionization'', is one of the great outstanding problems in astrophysics and cosmology today. In this thesis, we develop several methods for utilizing existing and future measurements in order to make progress toward this end. We begin by proposing two novel approaches for searching for signatures of underlying neutral hydrogen in the Lyalpha and Lybeta forest of distant quasars. We show that, if the Universe is >5% neutral at z ~ 5.5, then damping-wing absorption from neutral hydrogen and absorption from primordial deuterium should leave observable imprints in the Lyalpha and Lybeta forest, respectively. Furthermore, the presence of neutral islands should qualitatively alter the size distribution of absorbed regions. We continue by discussing the ability for the intergalactic medium to retain a thermal memory of the reionization process at redshifts z ~ 5, which in turn affects the small-scale structure in the Lyalpha forest. Motivated by this, we model the temperature of the intergalactic medium after reionization and develop a temperature measurement technique that should be able to distinguish between scenarios where reionization ends at z ~ 6 and at z ~ 10. Lastly, we turn our attention to 21-cm observations during reionization. We demonstrate that, while precise mapping of 21-cm emission from neutral hydrogen should be infeasible by first and second generation interferometers, it may be possible to make crude maps of the reionization process and identify individual ionized regions

  5. Was there an early reionization component in our universe?

    Science.gov (United States)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; Mena, Olga

    2018-04-01

    A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between zsimeq 6 and 0zsimeq 2, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth τ.

  6. Was there an early reionization component in our universe?

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; Mena, Olga

    2018-04-01

    A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between $z\\simeq 6$ and $z\\simeq 20$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike Information Criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth $\\tau$.

  7. Effect of Evaporation Time on Separation Performance of Polysulfone/Cellulose Acetate (PSF/CA) Membrane

    Science.gov (United States)

    Syahbanu, Intan; Piluharto, Bambang; Khairi, Syahrul; Sudarko

    2018-01-01

    Polysulfone and cellulose acetate are common material in separation. In this research, polysulfone/cellulose actetate (PSF/CA) blend membrane was prepared. The aim of this research was to study effect of evaporation time in casting of PSF/CA membrane and its performance in filtration. CA was obtained by acetylation process of bacterial cellulose (BC) from fermentation of coconut water. Fourier Transform Infra Red (FTIR) Spectroscopy was used to examine functional groups of BC, CA and commercial cellulose acetate. Subtitution of acetyl groups determined by titration method. Blend membranes were prepared through phase inversion technique in which composition of PSF/PEG/CA/NMP(%w) was 15/5/5/75. Polyethyleneglycol (PEG) and N-methyl-2-pyrrolidone (NMP) were act as pore forming agent and solvent, respectively. Variation of evaporation times were used as parameter to examine water uptake, flux, and morphology of PSF/CA blend membranes. FTIR spectra of CA show characteristic peak of acetyl group at 1220 cm-1 indicated that BC was acetylated succesfully. Degree of subtitution of BCA was found at 2.62. Highest water flux was performed at 2 bar obtained at 106.31 L.m-2.h-1 at 0 minute variation, and decrease as increasing evaporation time. Morphology of PSF/BCA blend membranes were investigated by Scanning Electron Microscopy (SEM) showed that porous asymetric membrane were formed.

  8. Reionization in sterile neutrino cosmologies

    Science.gov (United States)

    Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.

    2016-12-01

    We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.

  9. LSST and the Epoch of Reionization Experiments

    Science.gov (United States)

    Ivezić, Željko

    2018-05-01

    The Large Synoptic Survey Telescope (LSST), a next generation astronomical survey, sited on Cerro Pachon in Chile, will provide an unprecedented amount of imaging data for studies of the faint optical sky. The LSST system includes an 8.4m (6.7m effective) primary mirror and a 3.2 Gigapixel camera with a 9.6 sq. deg. field of view. This system will enable about 10,000 sq. deg. of sky to be covered twice per night, every three to four nights on average, with typical 5-sigma depth for point sources of r = 24.5 (AB). With over 800 observations in the ugrizy bands over a 10-year period, these data will enable coadded images reaching r = 27.5 (about 5 magnitudes deeper than SDSS) as well as studies of faint time-domain astronomy. The measured properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. The resulting hundreds of petabytes of imaging data for about 40 billion objects will be used for scientific investigations ranging from the properties of near-Earth asteroids to characterizations of dark matter and dark energy. For example, simulations estimate that LSST will discover about 1,000 quasars at redshifts exceeding 7; this sample will place tight constraints on the cosmic environment at the end of the reionization epoch. In addition to a brief introduction to LSST, I review the value of LSST data in support of epoch of reionization experiments and discuss how international participants can join LSST.

  10. Self-shielding of hydrogen in the IGM during the epoch of reionization

    Science.gov (United States)

    Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.

    2018-04-01

    We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman-limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parameterization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.

  11. Detecting Patchy Reionization in the Cosmic Microwave Background.

    Science.gov (United States)

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  12. Cumulative soil water evaporation as a function of depth and time

    Science.gov (United States)

    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land-atmosphere interface. The objective of this study is to mea...

  13. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  14. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  15. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  16. Early reionization and its cosmological implications

    Indian Academy of Sciences (India)

    A proper accounting of this effect would force one towards numerical ... because of the contribution from the complete reionization of 4He → 4He+.) At z = 6.3, new ... The author thanks Mike Chu, Zoltan Haiman, Gil Holder, Lloyd Knox, Mario.

  17. LEDDB : LOFAR Epoch of Reionization Diagnostic Database

    NARCIS (Netherlands)

    Martinez-Rubi, O.; Veligatla, V. K.; de Bruyn, A. G.; Lampropoulos, P.; Offringa, A. R.; Jelic, V.; Yatawatta, S.; Koopmans, L. V. E.; Zaroubi, S.

    2013-01-01

    One of the key science projects of the Low-Frequency Array (LOFAR) is the detection of the cosmological signal coming from the Epoch of Reionization (EoR). Here we present the LOFAR EoR Diagnostic Database (LEDDB) that is used in the storage, management, processing and analysis of the LOFAR EoR

  18. Epoch of reionization 21 cm forecasting from MCMC-constrained semi-numerical models

    Science.gov (United States)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2017-06-01

    The recent low value of Planck Collaboration XLVII integrated optical depth to Thomson scattering suggests that the reionization occurred fairly suddenly, disfavouring extended reionization scenarios. This will have a significant impact on the 21 cm power spectrum. Using a semi-numerical framework, we improve our model from instantaneous to include time-integrated ionization and recombination effects, and find that this leads to more sudden reionization. It also yields larger H II bubbles that lead to an order of magnitude more 21 cm power on large scales, while suppressing the small-scale ionization power. Local fluctuations in the neutral hydrogen density play the dominant role in boosting the 21 cm power spectrum on large scales, while recombinations are subdominant. We use a Monte Carlo Markov chain approach to constrain our model to observations of the star formation rate functions at z = 6, 7, 8 from Bouwens et al., the Planck Collaboration XLVII optical depth measurements and the Becker & Bolton ionizing emissivity data at z ˜ 5. We then use this constrained model to perform 21 cm forecasting for Low Frequency Array, Hydrogen Epoch of Reionization Array and Square Kilometre Array in order to determine how well such data can characterize the sources driving reionization. We find that the Mock 21 cm power spectrum alone can somewhat constrain the halo mass dependence of ionizing sources, the photon escape fraction and ionizing amplitude, but combining the Mock 21 cm data with other current observations enables us to separately constrain all these parameters. Our framework illustrates how the future 21 cm data can play a key role in understanding the sources and topology of reionization as observations improve.

  19. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polarization leakage in epoch of reionization windows : The Low Frequency Array Case

    NARCIS (Netherlands)

    Asad, Khan

    2017-01-01

    The farther we look in space, the earlier we see in time. By observing a radio signal of 21cm wavelength coming from the epoch of reionization, when the universe was less than a billion years old, we can understand how the first stars, galaxies and black holes formed. This signal has not been

  1. Hydrogen Epoch of Reionization Array (HERA)

    Science.gov (United States)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  2. Recombination clumping factor during cosmic reionization

    International Nuclear Information System (INIS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2014-01-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  3. Warm Dark Matter and Cosmic Reionization

    Science.gov (United States)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  4. The accuracy of seminumerical reionization models in comparison with radiative transfer simulations

    Science.gov (United States)

    Hutter, Anne

    2018-06-01

    We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I} fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.

  5. Influence of ∼7 keV sterile neutrino dark matter on the process of reionization

    International Nuclear Information System (INIS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ∼3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ∼7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ∼3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ∼7 keV sterile neutrinos into extended semi-analytical 'bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to 'imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ∼3.5 keV line.

  6. Reionization and Galaxy Formation in Warm Dark Matter Cosmologies

    NARCIS (Netherlands)

    Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.

    2017-01-01

    We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization

  7. Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kaurov, Alexander A., E-mail: gnedin@fnal.gov, E-mail: kaurov@uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-09-20

    We compare the results from several sets of cosmological simulations of cosmic reionization, produced under the Cosmic Reionization On Computers project, with existing observational data on the high-redshift Lyα forest and the abundance of Lyα emitters. We find good consistency with the observational measurements and previous simulation work. By virtue of having several independent realizations for each set of numerical parameters, we are able to explore the effect of cosmic variance on observable quantities. One unexpected conclusion we are forced into is that cosmic variance is unusually large at z > 6, with both our simulations and, most likely, observational measurements still not fully converged for even such basic quantities as the average Gunn-Peterson optical depth or the volume-weighted neutral fraction. We also find that reionization has little effect on the early galaxies or on global cosmic star formation history, because galaxies whose gas content is affected by photoionization contain no molecular (i.e., star-forming) gas in the first place. In particular, measurements of the faint end of the galaxy luminosity function by the James Webb Space Telescope are unlikely to provide a useful constraint on reionization.

  8. Joint QSO – CMB constraints on reionization history

    International Nuclear Information System (INIS)

    Mitra, S

    2014-01-01

    We have tried to give an overview of model-independent semi-analytical approach to study the observational constraints on reionization. We have implemented and investigated a method to do a detailed statistical analysis using principal component analysis (PCA) technique. We have also discussed different observations related to reionization and shown how to use PCA for constraining the reionization history. Using Markov Chain Monte Carlo methods, we have found that all the quantities related to reionization can be severely constrained at z < 6, whereas a broad range of reionization histories at z > 6 are still permitted by the current data sets. We have shown that with the forthcoming PLANCK data on large-scale polarization, the z > 6 constraints will be improved considerably

  9. How Very Massive Metal-Free Stars Start Cosmological Reionization

    Science.gov (United States)

    Wise, John H.; Abel, Tom

    2008-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include nonequilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the case B approximation using adaptively ray-traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of approx.10(exp 6). These first sources of reionization are highly intermittent and anisotropic and first photoionize the small-scale voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf-sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies, making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately five ionizing photons are needed per sustained ionization when star formation in 10(exp 6) stellar Mass halos is dominant in the calculation. As the halos become larger than approx.10(exp 7) Stellar Mass, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Radiative feedback decreases clumping factors by 25% when compared to simulations without star formation and increases the average temperature of ionized gas to values between 3000 and 10,000 K.

  10. How Very Massive Metal Free Stars Start Cosmological Reionization

    International Nuclear Information System (INIS)

    Wise, John H.; Abel, Tom

    2007-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of ∼10 6 . These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10 6 M · halos are dominant in the calculation. As the halos become larger than ∼10 7 M # circle d ot#, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15--50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing photons per sustained ionization

  11. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  12. Flash evaporator

    OpenAIRE

    1997-01-01

    A device and method for flash evaporating a reagent includes an evaporation chamber that houses a dome on which evaporation occurs. The dome is solid and of high thermal conductivity and mass, and may be heated to a temperature sufficient to vaporize a specific reagent. The reagent is supplied from an external source to the dome through a nozzle, and may be supplied as a continuous stream, as a shower, and as discrete drops. A carrier gas may be introduced into the evaporation chamber and cre...

  13. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    Science.gov (United States)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  14. Reionization Models Classifier using 21cm Map Deep Learning

    Science.gov (United States)

    Hassan, Sultan; Liu, Adrian; Kohn, Saul; Aguirre, James E.; La Plante, Paul; Lidz, Adam

    2018-05-01

    Next-generation 21cm observations will enable imaging of reionization on very large scales. These images will contain more astrophysical and cosmological information than the power spectrum, and hence providing an alternative way to constrain the contribution of different reionizing sources populations to cosmic reionization. Using Convolutional Neural Networks, we present a simple network architecture that is sufficient to discriminate between Galaxy-dominated versus AGN-dominated models, even in the presence of simulated noise from different experiments such as the HERA and SKA.

  15. Planck intermediate results: XLVII. Planck constraints on reionization history

    DEFF Research Database (Denmark)

    Adam, R.; Aghanim, N.; Ashdown, M.

    2016-01-01

    obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history......We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We...

  16. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  17. A Search for Radio-loud Quasars within the Epoch of Reionization

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Barrio, F. Eugenio; Hill, Gary J.; Bauer, Amanda; Croft, Steve

    2003-01-01

    The Universe became fully reionized, and observable optically, at a time corresponding to redshift z~6.5, so it is only by studying the HI and molecular absorption lines against higher-redshift, radio-loud sources that one can hope to make detailed studies of the earliest stages of galaxy formation. At present no targets for such studies are known. In these proceedings we describe a survey which is underway to find radio-loud quasars at z > 6.5.

  18. Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain

    Science.gov (United States)

    Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.

    2014-01-01

    We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191

  19. Preheating of the Universe by cosmic rays from primordial supernovae at the beginning of cosmic reionization

    Science.gov (United States)

    Sazonov, S.; Sunyaev, R.

    2015-12-01

    The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z ˜ 30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihaloes into the surrounding IGM, aided by the preceding photo-evaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant, a significant fraction of the SN kinetic energy can be put into low-energy (E ≲ 30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ˜10-100 K by z ˜ 15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first SNe and provide information on the magnetic fields in the primordial IGM.

  20. Neural Network Emulation of Reionization Simulations

    Science.gov (United States)

    Schmit, Claude J.; Pritchard, Jonathan R.

    2018-05-01

    Next generation radio experiments such as LOFAR, HERA and SKA are expected to probe the Epoch of Reionization and claim a first direct detection of the cosmic 21cm signal within the next decade. One of the major challenges for these experiments will be dealing with enormous incoming data volumes. Machine learning is key to increasing our data analysis efficiency. We consider the use of an artificial neural network to emulate 21cmFAST simulations and use it in a Bayesian parameter inference study. We then compare the network predictions to a direct evaluation of the EoR simulations and analyse the dependence of the results on the training set size. We find that the use of a training set of size 100 samples can recover the error contours of a full scale MCMC analysis which evaluates the model at each step.

  1. The observable signature of late heating of the Universe during cosmic reionization.

    Science.gov (United States)

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  2. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  3. Effectiveness of Combined Tear Film Therapy in Patients with Evaporative Dry Eye with Short Tear Film Breakup Time.

    Science.gov (United States)

    Kim, Yung Hui; Kang, Yeon Soo; Lee, Hyo Seok; Choi, Won; You, In Cheon; Yoon, Kyung Chul

    2017-10-01

    The aim of this study was to evaluate the effectiveness of combined tear film therapy targeted to aqueous, mucin, and lipid layers in patients with refractory evaporative dry eye (EDE) with short tear film breakup time (TBUT). The patients who had EDE with short TBUT and severe symptoms refractory to artificial tears were treated with hyaluronic acid (HA) 0.15% and diquafosol tetrasodium (DQS) 3% (Group 1), HA and carbomer-based lipid-containing eyedrops (Liposic EDO Gel, LPO) (Group 2), or HA, DQS, and LPO (Group 3). Ocular Surface Disease Index (OSDI) score, visual analog scale (VAS) symptom score, TBUT, Schirmer score, and corneal and conjunctival staining scores were evaluated, and noninvasive tear film breakup time (NIBUT) and tear meniscus height were measured using Keratograph ® 5 M before and 1 and 3 months after treatment. OSDI scores, VAS scores, TBUT, and NIBUT were improved at 1 and 3 months after treatment in all groups (all P film layers was most effective in improving ocular symptoms and tear film quality.

  4. Effect of combination dope composition and evaporation time on the separation performance of cellulose acetate membrane for demak brackish water treatment

    Directory of Open Access Journals (Sweden)

    Kusworo Tutuk Djoko

    2017-01-01

    Full Text Available The coastal areas in Indonesia often have a problem of clean water lack, because the water is classified as brackish water. Therefore, this research investigated the fabrication of CA membranes using phase inversion method for brackish water treatment. Investigation was conducted to study the effect of combination dope composition and evaporation time on separation performance and morphology of the memrbane. Membrane was fabricated by dry-wet phase inversion technique with variation of polymer concentration 17, 18 and 20 wt% in the total solid and evaporation time of 5, 10 and 15 seconds, respectively. The asymmetric membranes were characterized by permeability test through rejection and flux measurements using brackish water as feed. The experimental results from SEM images analysis showed that all the membranes have a thin small porous layer and thicker sub-structure of larger porous layer formed asymmetric membrane. Moreover, the greater polymer concentration is resulting smaller pore size and smaller membrane porosity. The longer evaporation time was also resulted in denser membrane active layer. The best membrane performance was observed at the composition of 20 wt% CA polymer, 1 wt % polyethylene glycol with the solvent evaporation time of 15 seconds.

  5. Reionization and its imprint of the cosmic microwave background

    Science.gov (United States)

    Dodelson, Scott; Jubas, Jay M.

    1995-01-01

    Early reionization changes the pattern of anisotropies expected in the cosmic microwave backgrond. To explore these changes, we derive from first principles the equations governing anisotropies, focusing on the interactions of photons with electrons. Vishniac (1987) claimed that second-order terms can be large in a reionized universe, so we derive equations correct to second order in the perturbations. There are many more second-order terms than were considered by Vishniac. To understand the basic physics involved, we present a simple analytic approximation to the first-order equation. Then, turning to the second order equation, we show that the Vishniac term is indeed the only important one. We also present numerical results for a variety of ionization histories (in a standard cold dark matter universe) and show quantitatively how the signal in several experiments depends on the ionization history. The most pronounced indication of a reionized universe would be seen in very small scale experiments; the expected signal in the Owens Valley experiment is smaller by a factor of order 10 if the last scattering surface is at a redshift z approximately = 100 as it would be if the universe were reionized very early. On slightly larger scales, the expected signal in a reionized universe is smaller than it would be with standard recombination, but only a factor of 2 or so. The signal is even smaller in these experiments in the intermediate case where some photons last scattered at the standard recombination epoch.

  6. Observing patchy reionization with future CMB polarization experiments

    Science.gov (United States)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  7. Evaporator bulb

    International Nuclear Information System (INIS)

    Stoll, W.

    1977-01-01

    In order to prevent the hazard of a possible excursion in an evaporator bulb for radioactive liquids there is provided in the bottom of the vessel a recess filled with a neutron-absorbing and moderating material. The bottom drain pipe is coming out sideways and connected with a heated pipe feeding above into the vessel tangentially. (TK) [de

  8. Reionization during the dark ages from a cosmic axion background

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L' Aquila (Italy); Leo, Matteo [Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica ' ' Michelangelo Merlin' ' , Via Amendola 173, 70126 Bari (Italy); Montanino, Daniele, E-mail: carmelo.evoli@gssi.infn.it, E-mail: matteo.leo@durham.ac.uk, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: daniele.montanino@le.infn.it [Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Via Arnesano, 73100 Lecce (Italy)

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we put a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.

  9. Liquid evaporation process and evaporator

    International Nuclear Information System (INIS)

    Bergey, Claude; Ravenel, Jacques.

    1975-01-01

    The process described enables a liquid to be evaporated rapidly without any projection. A jet of hot gas is applied to the liquid, the power and angle of the jet being chosen so as to spin the liquid. It is particularly used in the case of radioactive products [fr

  10. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  11. Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller

    Directory of Open Access Journals (Sweden)

    Víctor Vásquez V

    2010-03-01

    Full Text Available It was predicted via Artificial Neural Networks (ANN important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C and in three times (25, 35 and 45 min. The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF type with Backpropagation (BP training algorithms and set of Levenberg-Marquardt (LM weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation, 7 linear outputs (physicochemical characteristics, 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation, 7 linear outputs (physical and chemical characteristics, 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.

  12. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    Science.gov (United States)

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  13. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Oyama, Yoshihiko [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Sekiguchi, Toyokazu [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), 193, Munjiro, Yuseoung-gu, Daejeon 34051 (Korea, Republic of); Takahashi, Tomo, E-mail: kohri@post.kek.jp, E-mail: oyamayo@icrr.u-tokyo.ac.jp, E-mail: sekiguti@ibs.re.kr, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8∼< z ∼<1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  14. A large area search for radio-loud quasars within the epoch of reionization

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Barrio, F. Eugenio; Hill, Gary J.; Bauer, Amanda; Croft, Steve

    2004-01-01

    The Universe became fully reionized, and observable optically, at a time corresponding to redshift z ~ 6.5, so it is only by studying the HI and molecular absorption lines against higher-redshift, radio-loud sources that one can hope to make detailed studies of the earliest stages of galaxy formation. At present no targets for such studies are known. In these proceedings we describe a survey which is underway to find radio-loud quasars at z > 6.5, and present broad-band SEDs of our most promi...

  15. The Brightest of Reionizing Galaxies Survey: Design and Preliminary Results

    Science.gov (United States)

    Trenti, M.; Bradley, L. D.; Stiavelli, M.; Oesch, P.; Treu, T.; Bouwens, R. J.; Shull, J. M.; MacKenty, J. W.; Carollo, C. M.; Illingworth, G. D.

    2011-02-01

    We present the first results on the search for very bright (M AB ≈ -21) galaxies at redshift z ~ 8 from the Brightest of Reionizing Galaxies (BoRG) survey. BoRG is a Hubble Space Telescope Wide Field Camera 3 (WFC3) pure-parallel survey that is obtaining images on random lines of sight at high Galactic latitudes in four filters (F606W, F098M, F125W, and F160W), with integration times optimized to identify galaxies at z >~ 7.5 as F098M dropouts. We discuss here results from a search area of approximately 130 arcmin2 over 23 BoRG fields, complemented by six other pure-parallel WFC3 fields with similar filters. This new search area is more than two times wider than previous WFC3 observations at z ~ 8. We identify four F098M-dropout candidates with high statistical confidence (detected at greater than 8σ confidence in F125W). These sources are among the brightest candidates currently known at z ~ 8 and approximately 10 times brighter than the z = 8.56 galaxy UDFy-38135539. They thus represent ideal targets for spectroscopic follow-up observations and could potentially lead to a redshift record, as our color selection includes objects up to z ~ 9. However, the expected contamination rate of our sample is about 30% higher than typical searches for dropout galaxies in legacy fields, such as the GOODS and HUDF, where deeper data and additional optical filters are available to reject contaminants. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Programs 11700, 11702.

  16. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Trenti, M.; Bradley, L. D.; Stiavelli, M.; MacKenty, J. W.; Oesch, P.; Carollo, C. M.; Treu, T.; Bouwens, R. J.; Illingworth, G. D.; Shull, J. M.

    2011-01-01

    We present the first results on the search for very bright (M AB ∼ -21) galaxies at redshift z ∼ 8 from the Brightest of Reionizing Galaxies (BoRG) survey. BoRG is a Hubble Space Telescope Wide Field Camera 3 (WFC3) pure-parallel survey that is obtaining images on random lines of sight at high Galactic latitudes in four filters (F606W, F098M, F125W, and F160W), with integration times optimized to identify galaxies at z ∼> 7.5 as F098M dropouts. We discuss here results from a search area of approximately 130 arcmin 2 over 23 BoRG fields, complemented by six other pure-parallel WFC3 fields with similar filters. This new search area is more than two times wider than previous WFC3 observations at z ∼ 8. We identify four F098M-dropout candidates with high statistical confidence (detected at greater than 8σ confidence in F125W). These sources are among the brightest candidates currently known at z ∼ 8 and approximately 10 times brighter than the z = 8.56 galaxy UDFy-38135539. They thus represent ideal targets for spectroscopic follow-up observations and could potentially lead to a redshift record, as our color selection includes objects up to z ∼ 9. However, the expected contamination rate of our sample is about 30% higher than typical searches for dropout galaxies in legacy fields, such as the GOODS and HUDF, where deeper data and additional optical filters are available to reject contaminants.

  17. Neutralization-reionization study of the allyloxide anion

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef; Schwarz, H.; Roithová, J.

    2011-01-01

    Roč. 301, 1/3 (2011), s. 84-89 ISSN 1387-3806 Grant - others:European Research Coucil(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : allyloxy radical * C-H activation * neutralization-reionization mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.549, year: 2011

  18. Scaling defect decay and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Avelino, P.P.; Barbosa, D.

    2004-01-01

    We consider a model for the reionization history of the Universe in which a significant fraction of the observed optical depth is a result of direct reionization by the decay products of a scaling cosmic defect network. We show that such network can make a significant contribution to the reionization history of the Universe even if its energy density is very small (the defect energy density has to be greater than about 10 -11 of the background density). We compute the Cosmic Microwave Background temperature, polarization and temperature-polarization cross power spectrum and show that a contribution to the observed optical depth due to the decay products of a scaling defect network may help to reconcile a high optical depth with a low redshift of complete reionization suggested by quasar data. However, if the energy density of defects is approximately a constant fraction of the background density then these models do not explain the large scale bump in the temperature-polarization cross power spectrum observed by Wilkinson Microwave Anisotropy Probe

  19. Impact of dark matter on reionization and heating

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that

  20. Time-dependent evolution of olive mill wastewater sludge organic and inorganic components and resident microbiota in multi-pond evaporation system.

    Science.gov (United States)

    Jarboui, Raja; Chtourou, Mohamed; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-08-01

    The physico-chemical and microbiological characterizations of olive mill wastewater sludge (OMWS) were investigated in five OMW evaporation ponds of the open-pond system in Sfax (Tunisia), during the olive oil production period in 2004. Time-dependent changes in both physico-chemical parameters and the microbiota were investigated. Mathematical models and principal component analysis (PCA) were used to establish the correlations between the studied parameters. During the effluent time-dependent changes in the ponds, the result of OMWS analysis showed an increase of sludge index (SI), ash content, total solids (TS), volatile solids (VS), ethyl acetate extractive (EAE) and total phosphorus (Total P), as well as microbial flora especially the yeasts and moulds. The SI, TS, VS and Total P changes with time fit a simple linear equation, while EAE, phenols and NH(4)(+) fit a second-degree polynomial model. The PCA analysis exhibited three correlated groups. The first group included temperature, ash content, evaporation, SI, TS, VS, Total P, EAE, yeasts and moulds. The second group was made by bacteria and moisture; and the third group by NH(4)(+), oil and phenol. Such modelling might be of help in the prediction of OMW changes in natural evaporation ponds. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Precision epoch of reionization studies with next-generation CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Erminia; Louis, Thibaut [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Hložek, Renée; Hil, J. Colin [Department of Astrophysical Science, Peyton Hall, 4 Ivy Lane, Princeton, NJ, 08544 (United States); Battaglia, Nick [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON, M5S 3H8 Canada (Canada); De Bernardis, Francesco; Henderson, Shawn; Niemack, Michael D. [Department of Physics, Cornell University, 109 Clark Hall, Ithaca, NY, 14853 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 315 Allen Hall, Pittsburgh, PA, 15260 (United States); McMahon, Jeff [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4041 South Africa (South Africa); Newburgh, Laura [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 Canada (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Washington Road, Princeton, NJ, 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041 (United States); Sehgal, Neelima, E-mail: erminia.calabrese@astro.ox.ac.uk, E-mail: rhlozek@astro.princeton.edu [Physics and Astronomy Department, Stony Brook University, Stony Brook, NY, 11794 (United States); and others

    2014-08-01

    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near ℓ=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<ℓ<3000 with simulated temperature data from the full Planck mission in the low and intermediate ℓ region, 2<ℓ<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at ℓ>1500, leading to a measurement of the amplitude of matter density fluctuations, σ{sub 8}, at 1% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(z{sub re})=1.1 and σ(Δz{sub re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.

  2. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  3. IMPACTS OF DARK STARS ON REIONIZATION AND SIGNATURES IN THE COSMIC MICROWAVE BACKGROUND

    International Nuclear Information System (INIS)

    Scott, Pat; Roebber, Elinore; Holder, Gil; Venkatesan, Aparna; Gondolo, Paolo; Pierpaoli, Elena

    2011-01-01

    We perform a detailed and systematic investigation of the possible impacts of dark stars on the reionization history of the universe, and its signatures in the cosmic microwave background (CMB). We compute hydrogen reionization histories, CMB optical depths, and anisotropy power spectra for a range of stellar populations including dark stars. If dark stars capture large amounts of dark matter (DM) via nuclear scattering, reionization can be substantially delayed, leading to decreases in the integrated optical depth to last scattering and large-scale power in the EE polarization power spectrum. Using the integrated optical depth observed by the Wilkinson Microwave Anistropy Probe seven-year mission, in our canonical reionization model we rule out the section of parameter space where dark stars with high scattering-induced capture rates tie up ∼> 90% of all the first star-forming baryons, and live for ∼> 250 Myr. When nuclear scattering delivers only moderate amounts of DM, reionization can instead be sped up slightly, modestly increasing the CMB optical depth. If dark stars do not obtain any DM via nuclear scattering, effects on reionization and the CMB are negligible. The effects of dark stars on reionization and its CMB markers can be largely mimicked or compensated for by changes in the existing parameters of reionization models, making dark stars difficult to disentangle from astrophysical uncertainties, but also widening the range of standard parameters in reionization models that can be made consistent with observations.

  4. COSMIC REIONIZATION ON COMPUTERS. III. THE CLUMPING FACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Kaurov, Alexander A.; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu, E-mail: gnedin@fnal.gov [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2015-09-10

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludes computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.

  5. Cosmic reionization on computers. I. Design and calibration of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2014-09-20

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  6. Cosmic Reionization on Computers. III. The Clumping Factor

    Science.gov (United States)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-01

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludes computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.

  7. Impact of Sommerfeld enhancement on helium reionization via WIMP dark matter

    Science.gov (United States)

    Bandyopadhyay, Bidisha; Schleicher, Dominik R. G.

    2018-03-01

    Dark matter annihilation can have a strong impact on many astrophysical processes in the Universe. In the case of Sommerfeld-enhanced annihilation cross sections, the annihilation rates are enhanced at late times, thus enhancing the potential annihilation signatures. We here calculate the Sommerfeld-enhanced annihilation signatures during the epoch of helium reionization, the epoch where helium becomes fully ionized due to energetic photons. When considering the upper limits on the energy injection from the CMB, we find that the resulting abundance of He++ becomes independent of the dark matter particle mass. The resulting enhancement compared to a standard scenario is thus 1-2 orders of magnitude higher. For realistic scenarios compatible with CMB constraints, there is no significant shift in the epoch of helium reionization, which is completed between redshifts 3 and 4. While it is thus difficult to disentangle dark matter annihilation from astrophysical contributions (active galactic nuclei), a potential detection of dark matter particles and its interactions using the Large Hadron Collider (LHC) would allow one to quantify the dark matter contribution.

  8. Dwarf Spheroidal Satellite Formation in a Reionized Local Group

    OpenAIRE

    Milosavljevic, Milos; Bromm, Volker

    2013-01-01

    Dwarf spheroidal satellite galaxies have emerged a powerful probe of small-scale dark matter clustering and of cosmic reionization. They exhibit structural and chemical continuity with dwarf irregular galaxies in the field and with spheroidal galaxies in high-density environments. By combining empirical constraints derived for star formation at low gas column densities and metallicities in the local universe with a model for dark matter and baryonic mass assembly, we provide an analytical des...

  9. Data-driven analysis of the effectiveness of evaporative emissions control systems of passenger cars in real world use condition: Time and spatial mapping

    Science.gov (United States)

    De Gennaro, Michele; Paffumi, Elena; Martini, Giorgio

    2016-03-01

    This paper assesses the effectiveness of the evaporative emissions control systems of European passenger cars on the basis of real-world activity data. The study relies on two large datasets of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems, consisting of 4.5 million trips and parking events recorded by monitoring 28,000 vehicles over one month. Real world evaporative emissions are estimated using a model that associates a carbon canister desorption event to each trip and a fuel vapour generation event to each parking. The mass of volatile organic compounds released into the air is calculated taking into account the hot-soak, permeation and breathing emission mechanisms. The analysis is based on 36 scenarios, defined by varying the climate conditions, the fuel vapour pressure, the tank material, the tank headspace volume, the purging volume flow rate and the mass of the activated carbon contained in the canister. The results show that in May 4 out of the 18 scenarios considered for Modena and 6 out of the 18 scenarios considered for Firenze lead to evaporative emissions values above the current type approval limit (i.e. 2 [g/day] per vehicle). In July, these numbers increase to 10 out of the 18 scenarios for Modena and to 12 out of the 18 scenarios for Firenze. Looking at the fleet distribution a share of approximately 20% of the fleet is characterised by evaporative emissions higher than the limit in May, increasing to 48% in July, with a peak value of 98%. The emission peak value is estimated to be approximately 4 [g/day] in May and 8 [g/day] in July, while the time-dependent results show emission rates up to nearly 15 [g/s] in Modena and 30 [g/s] in Firenze, with a respective cumulative value in July up to 0.4 and 0.8 tons of VOCs per day. The space-dependent results show a value of the emissions in July of approximately 4-to-8 [kg/km2/day] in the city areas. These results confirm previous findings from the authors

  10. Data-constrained reionization and its effects on cosmological parameters

    International Nuclear Information System (INIS)

    Pandolfi, S.; Ferrara, A.; Choudhury, T. Roy; Mitra, S.; Melchiorri, A.

    2011-01-01

    We perform an analysis of the recent WMAP7 data considering physically motivated and viable reionization scenarios with the aim of assessing their effects on cosmological parameter determinations. The main novelties are: (i) the combination of cosmic microwave background data with astrophysical results from quasar absorption line experiments; (ii) the joint variation of both the cosmological and astrophysical [governing the evolution of the free electron fraction x e (z)] parameters. Including a realistic, data-constrained reionization history in the analysis induces appreciable changes in the cosmological parameter values deduced through a standard WMAP7 analysis. Particularly noteworthy are the variations in Ω b h 2 =0.02258 -0.00056 +0.00057 [WMAP7 (Sudden)] vs Ω b h 2 =0.02183±0.00054[WMAP7+ASTRO (CF)] and the new constraints for the scalar spectral index, for which WMAP7+ASTRO (CF) excludes the Harrison-Zel'dovich value n s =1 at >3σ. Finally, the electron-scattering optical depth value is considerably decreased with respect to the standard WMAP7, i.e. τ e =0.080±0.012. We conclude that the inclusion of astrophysical data sets, allowing to robustly constrain the reionization history, in the extraction procedure of cosmological parameters leads to relatively important differences in the final determination of their values.

  11. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  12. THE END OF HELIUM REIONIZATION AT z ≅ 2.7 INFERRED FROM COSMIC VARIANCE IN HST/COS He II Lyα ABSORPTION SPECTRA

    International Nuclear Information System (INIS)

    Worseck, Gabor; Xavier Prochaska, J.; McQuinn, Matthew; Dall'Aglio, Aldo; Wisotzki, Lutz; Fechner, Cora; Richter, Philipp; Hennawi, Joseph F.; Reimers, Dieter

    2011-01-01

    We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z em ≅ 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from eff,He i i >≅1 at z ≅ 2.3 to eff,He i i >∼>5 at z ≅ 3.2, but with a large scatter of 2∼ eff,He i i ∼ 2.7, probably indicating He II reionization was incomplete at z reion ∼> 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z reion ≅ 2.7 or even below, as suggested by a large τ eff,He i i ∼>3 in two of our five sightlines at z < 2.8. By doubling the sample size at 2.7 ∼< z ∼< 3, our newly discovered He II sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.

  13. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    Science.gov (United States)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  14. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  15. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  16. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  17. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  18. Neutrino mass and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Popa, L.A.; Burigana, C.; Mandolesi, N.

    2005-01-01

    We investigate the role of a HDM component in the form of the three massive neutrino flavors for the reionization history of the Universe. Assuming a flat background cosmology described by the best fit power low ΛCDM model with WMAP data (Ω b h 2 =0.024, Ω m h 2 =0.14, h=0.72), we analyze the role of the neutrino mass for the properties of the gas in the intergalactic medium (IGM), showing that the temporal evolution of the hydrogen and helium ionization fractions are sensitive to the neutrino mass, with important implications for the CMB anisotropy and polarization angular power spectra

  19. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  20. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  1. Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Meyers, Joel; Meerburg, P. Daniel; van Engelen, Alexander; Battaglia, Nicholas

    2018-05-01

    Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the polarized Sunyaev-Zel'dovich effect, the linear polarization generated by the scattering of CMB photons on the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have several cosmological applications. Here we propose a new application: the reconstruction of the cosmological reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.

  2. Reionization and the cosmic microwave background in an open universe

    Science.gov (United States)

    Persi, Fred M.

    1995-01-01

    If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.

  3. Understanding the epoch of cosmic reionization challenges and progress

    CERN Document Server

    2016-01-01

    The aim of this volume is to summarize the current status and future outlook of the reionization field on both the theoretical and observational fronts. It brings together leading experts in many sub-disciplines, highlighting the measurements that are likely to drive the growing understanding of reionization and the cosmic dawn, and lays out a roadmap to interpreting the wealth of upcoming observations. The birth of the first stars and galaxies, and their impact on the diffuse matter perme­ating the early Universe, is one of the final frontiers in cosmology. Recently, measure­ments of the fluctuations in the cosmic microwave background (CMB), sourced only a few hundred thousand years after the Big Bang, provided robust insight into the overall physical content of our Universe. On the other end of the timeline, groundbreaking telescopes provide us a picture of the complexities of the galaxy-rich universe in which we now live. However, we know almost nothing about the astrophysics of the first billion years. ...

  4. THE EFFECTS OF DARK MATTER ANNIHILATION ON COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2016-12-20

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons which ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM might, however, have begun to efficiently annihilate with the formation of primordial microhalos at z  ∼ 100–200, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval z  ∼ 20–100, it could leave a significant imprint on the global optical depth, τ . Moreover, we show that cosmic microwave background polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. We show that future measurements could make it possible to place constraints on the DM’s annihilation cross-sections, which are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic-ray measurements, and studies of recombination.

  5. Rydberg-state reionization of multiply charged ions escaping from solid surfaces

    International Nuclear Information System (INIS)

    Nedeljkovic, Lj.D.; Nedeljkovic, N.N.

    2003-01-01

    Reionization rates of Rydberg states (n>>1 and l=0, 1, and 2) of multiply charged ionic projectiles escaping solid surfaces are calculated. These rates are obtained in an analytic form as a function of the ion-surface distance R. A phenomenological model of the reionization process, based on two-state quantum dynamics, is adopted for the vicinity of the potential barrier top. The results of calculations show that ionization rates for different Rydberg states are strictly localized and relatively separated. Universality of the reionization rate as a function of the scaling parameter α, describing the turning point configurations, is demonstrated. The reionization is discussed within the framework of a nonresonant population-reionization process at intermediate ionic velocities (v∼1 a.u.). The influence of reionization on the population of ionic Rydberg states is expressed in terms of a renormalized neutralization rate. It is demonstrated that the reionization effect significantly changes the population curves for all Rydberg states. The population curves obtained correlate with beam-foil experimental data concerning the S VI, Cl VII, and Ar VIII ions

  6. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    Science.gov (United States)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  7. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Science.gov (United States)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  8. Evaporometer | A Wireless Mesh of Open-Source Rainfall/Evaporation Gauge and Sensor Suite for In Situ Near-Real-Time Environmental Data

    Science.gov (United States)

    Kwon, M.; Lopez Alcala, J. M.; DeBell, T. C.; Udell, C.; Selker, J. S.

    2017-12-01

    Access to in situ near real-time environmental sensor data in remote locations provides invaluable utility in the fields of agricultural and environmental sciences. For studies where data needs to be gathered frequently, it could be costly and dangerous to take numerous trips into the field to collect this information and to inspect multitudes of distributed devices to ensure proper operation. One solution is to develop remote sensors capable of transmitting data and status updates (like battery level) over long distances from unserviced locations to a receiver hub to be accessed in near real-time online. The Openly Published Environmental Sensing Lab at Oregon State University (OPEnS Lab) produced a low-cost Open Source environmental sensing station called the Evaporometer that collects data at precisely timed intervals including rainfall amount, rate of evaporation, temperature, humidity and light (IR and Visible spectra), while CO2 and other sensors are also being evaluated for inclusion. This project focuses on the development and deployment of the prototype Evaporometer in HJ Andrew's Experimental Forest located in Blue River Oregon. The Evaporometer was designed for efficiency and succeeds in systematically collecting environmental data in hard to reach places over long periods of time. A real time clock interrupt enables the device to enter and exit "sleep mode", allowing Evaporometers to remain in the field over long periods of time and controlling the how frequently data should be collected. A load cell measures the weight of collected water in a container. This container is tightly packed with a fiberglass wick, which draws water from the bottom to the surface for efficient evaporation. A siphon has been designed into the container to prevent any possible water overflow situations and lost collected rainfall. All data collection and transmission processes are handled by an Adafruit Feather development board equipped with a long range, low power wireless

  9. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  10. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  11. The evaporation of crude oil and petroleum products

    International Nuclear Information System (INIS)

    Fingas, M. F.

    1996-01-01

    The physics of oil and petroleum evaporation was studied by means of an experimental apparatus. The evaporation was determined by weight loss and recorded on a computer. Examination of the data showed that most oil and petroleum products (those with seven to ten components) evaporate at a logarithmic rate with respect to time, while other petroleum products (those with fewer chemical components) evaporate at a rate which is square root with respect to time. Evaporation of oil and petroleum was not strictly boundary-layer regulated because the typical oil evaporation rate rates do not exceed that of molecular diffusion and thus turbulent diffusion does not increase the evaporation rates. Overall, boundary layer regulation can be ignored in the prediction of oil and petroleum evaporation. The simple equation relating only the logarithm of time (or the square root of time in the case of narrow-cut products) and temperature are sufficient to accurately describe oil evaporation. refs., figs

  12. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Neben, Abraham R. [MIT Kavli Institute for Cosmological Physics, Cambridge, MA, 02139 (United States); Bradley, Richard; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia [National Radio Astronomy Observatory, Charlottesville, VA (United States); Deboer, David; Parsons, Aaron; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S. [Department of Astronomy, University of California, Berkeley, CA (United States); Aguirre, James [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bowman, Judd; Thyagarajan, Nithyanandan [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Venter, Mariet [Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, SA (South Africa); Acedo, Eloy de Lera [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); and others

    2016-11-10

    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish’s design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA’s suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA’s ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at a relatively low cost. We find that electromagnetic resonances in the HERA feed’s cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (-40 dB at 200 ns), which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k {sub ∥} ≲ 0.2 h Mpc{sup -1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.

  13. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS

    International Nuclear Information System (INIS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Neben, Abraham R.; Bradley, Richard; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia; Deboer, David; Parsons, Aaron; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S.; Aguirre, James; Bowman, Judd; Thyagarajan, Nithyanandan; Venter, Mariet; Acedo, Eloy de Lera

    2016-01-01

    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish’s design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA’s suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA’s ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at a relatively low cost. We find that electromagnetic resonances in the HERA feed’s cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (-40 dB at 200 ns), which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k ∥ ≲ 0.2 h Mpc -1 , in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.

  14. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  15. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  16. PFR evaporator leak

    International Nuclear Information System (INIS)

    Smedley, J.A.

    1975-01-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10 -6 g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10 -7 to 10 -6 g/s equivalent water leak could be detected, i

  17. PFR evaporator leak

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10{sup -6} g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10{sup -7} to 10{sup -6} g/s equivalent water leak could be

  18. Impact of reionization on CMB polarization tests of slow-roll inflation

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne

    2008-01-01

    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision

  19. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  20. The Metal-Enriched Environments of Galaxies Near Reionization

    Science.gov (United States)

    Becker, George

    2016-10-01

    The relationship between galaxies and extended metal-enriched gas offers a powerful diagnostic of the feedback processes that shape galaxy growth. Over 0 6; to date, however, little work on the galaxy-absorber connection at these redshifts has been done due to the high cost of identifying the galaxies. To overcome this obstacle, we propose to obtain deep ACS and WFC3 imaging-building on archival data-in the field of a single z=7 quasar whose spectrum contains an unusually high number of intervening absorbers over 5.5 systems systems simultaneously, offering a high multiplexing advantage for follow-up spectroscopy. The extent to which z 6 galaxies are (or are not) associated with these metal lines, and the relationship between absorber and galaxy properties will deliver much needed insights into the mechanisms that drive galaxy growth and metal enrichment during the reionization epoch.

  1. Neutral hydrogen in the post-reionization universe

    Science.gov (United States)

    Padmanabhan, Hamsa

    2018-05-01

    The evolution of neutral hydrogen (HI) across redshifts is a powerful probe of cosmology, large scale structure in the universe and the intergalactic medium. Using a data-driven halo model to describe the distribution of HI in the post-reionization universe (z ~ 5 to 0), we obtain the best-fitting parameters from a rich sample of observational data: low redshift 21-cm emission line studies, intermediate redshift intensity mapping experiments, and higher redshift Damped Lyman Alpha (DLA) observations. Our model describes the abundance and clustering of neutral hydrogen across redshifts 0 - 5, and is useful for investigating different aspects of galaxy evolution and for comparison with hydrodynamical simulations. The framework can be applied for forecasting future observations with neutral hydrogen, and extended to the case of intensity mapping with molecular and other line transitions at intermediate redshifts.

  2. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  3. Micro-evaporation electrolyte concentrator

    NARCIS (Netherlands)

    Timmer, B.H.; van Delft, K.M.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2003-01-01

    The sensitivity of miniaturized chemical analysis systems depends most of the time on the obtainable detection limit. Concentrating the analyte prior to the detection system can enhance the detection limit. In this writing an analyte concentrator is presented that makes use of evaporation to

  4. First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ∼ 7

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhen-Ya; Jiang, Chunyan [CAS Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Wang, Junxian; Hu, Weida; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Rhoads, James; Malhotra, Sangeeta; Gonzalez, Alicia [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Infante, Leopoldo; Galaz, Gaspar; Barrientos, L. Felipe [Institute of Astrophysics and Center for Astroengineering, Pontificia Universidad Catolica de Chile, Santiago 7820436 (Chile); Walker, Alistair R. [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Jiang, Linhua [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hibon, Pascale [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago (Chile); Zheng, XianZhong, E-mail: zhengzy@shao.ac.cn, E-mail: linfante@astro.puc.cl, E-mail: jxw@ustc.edu.cn, E-mail: Sangeeta.Malhotra@asu.edu, E-mail: James.Rhoads@asu.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-06-20

    We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ∼ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg{sup 2} COSMOS field. We have identified 23 Ly α Emitter candidates at z = 6.9 in the central 2-deg{sup 2} region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF) can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L {sub Lyα∼} 10{sup 43.4±0.2} erg s{sup −1}). The number density at L {sub Ly} {sub α} ∼ 10{sup 43.4±0.2} erg s{sup −1} is little changed from z = 6.6, while at fainter L {sub Lyα} it is substantially reduced. Overall, we see a fourfold reduction in Ly α luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ∼3 suppression of Ly α by radiative transfer through the z ∼ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x {sub Hi} ∼ 0.4–0.6 (assuming Ly α velocity offsets of 100–200 km s{sup −1}). The changing shape of the Ly α LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ∼ 7.

  5. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  6. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya [Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Chluba, Jens, E-mail: mayuris@rri.res.in [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom)

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  7. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  8. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  9. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  10. Sodium evaporation into a forced argon flow

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1975-01-01

    Evaporation from a rectangular sodium free surface into an argon flow was measured. Tests were carried out with varying sodium temperature, argon velocity and argon temperature respectively under conditions of fog formation being possible. In order to clarify the enhancement of evaporation by fog formation, convection heat transfer from a plate of the same geometry into an air flow was also measured. The evaporation rate and Sherwood number were compared with those predicted by both the heat transfer experiment and the theory proposed by Hill and Szekely, and also a comparison was run with the previously reported experimental results of sodium evaporation. As a result it was shown that the sodium evaporation rate in this experiment is at least four times as large as that predicted by the heat transfer experiment and varies almost linearly with the heat transfer rate and the sodium vapour pressure. (auth.)

  11. Constraining Cosmic Dawn and Cosmological Reionization via the global redshifted 21-cm signal

    Science.gov (United States)

    Singh, Saurabh

    2018-01-01

    The formation of first stars and consequent thermal evolution in baryons during Cosmic Dawn and the Epoch of Reionization (EoR) is poorly constrained. The 21-cm line transition of neutral hydrogen is one of the richest probes of the astrophysics during this era. The signal has the potential to reveal the nature and timing of the emergence of first stars, first light, and the consequent evolution in thermal and ionization state of the baryons.The detection of the global redshifted 21-cm signal, which represents the mean thermal history of the gas, is challenging since it is extremely faint and seen through orders of magnitude stronger contributions from Galactic and extragalactic foregrounds. Man-made terrestrial Radio Frequency Interference (RFI) and the exacting tolerances required on instrument systematics make the detection even more daunting.The design considerations for a precision spectral radiometer are first listed, and a comparison is made of different radiometer configurations, including short and zero baseline interferometers along with methods to enhance the response. We discuss the relative merits of different methods.We then describe SARAS 2, a spectral radiometer custom-designed for precision measurement of the global 21-cm signal. SARAS 2 has been designed to have a system transfer function and internal systematics – both multiplicative and additive – to be spectrally smooth so as to allow a separation of foregrounds and systematics from plausible and predicted global cosmological 21-cm signals. The algorithms for calibration and RFI mitigation are carefully developed so that they do not introduce spectral features that may confuse the detection of the 21-cm signal.We present the outcomes for cosmology from analysis of 60 hr observing with the radiometer deployed at the Timbaktu Collective in Southern India. The detailed analysis of the data reveals an RMS noise level of 11 mK, without being limited by systematic structures. The likelihood

  12. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    Science.gov (United States)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral

  13. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    Science.gov (United States)

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  14. Study of redshifted H I from the epoch of reionization with drift scan

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sourabh; Sethi, Shiv K.; Subrahmanyan, Ravi; Shankar, N. Udaya; Dwarakanath, K. S.; Deshpande, Avinash A. [Raman Research Institute, Bangalore (India); Bernardi, Gianni [Square Kilometre Array South Africa (SKA SA), 3rd Floor, The Park, Park Road, Pinelands 7405 (South Africa); Bowman, Judd D. [Arizona State University, Tempe, AZ85281 (United States); Briggs, Frank; Gaensler, Bryan M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Cappallo, Roger J.; Corey, Brian E.; Goeke, Robert F. [MIT Haystack Observatory, Westford, MA 01886 (United States); Emrich, David [Curtin University, Perth (Australia); Greenhill, Lincoln J.; Kasper, Justin C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hazelton, Bryna J. [University of Washington, Seattle, WA 98195 (United States); Hewitt, Jacqueline N. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-241, Cambridge, MA 02139 (United States); Johnston-Hollitt, Melanie [Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, David L., E-mail: sourabh@rri.res.in, E-mail: sethi@rri.res.in [University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); and others

    2014-09-20

    Detection of the epoch of reionization (EoR) in the redshifted 21 cm line is a challenging task. Here, we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability compared to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array, which has a wide primary beam. We estimate the EoR power based on a cross-correlation of visibilities over time and show that the drift scan strategy is capable of detecting the EoR signal with a signal to noise that is comparable/better compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal.

  15. DETECTING THE RISE AND FALL OF THE FIRST STARS BY THEIR IMPACT ON COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyungjin [Department of Earth Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Iliev, Ilian T. [Astronomy Centre, Department of Physics and Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Shapiro, Paul R.; Mao, Yi [Department of Astronomy and Texas Cosmology Center, University of Texas, Austin, TX 78712-1083 (United States); Mellema, Garrelt [Department of Astronomy and Oskar Klein Centre, Stockholm University, Albanova, SE-10691 Stockholm (Sweden); Koda, Jun, E-mail: kjahn@chosun.ac.kr [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2012-09-01

    The intergalactic medium was reionized before redshift z {approx} 6, most likely by starlight which escaped from early galaxies. The very first stars formed when hydrogen molecules (H{sub 2}) cooled gas inside the smallest galaxies, minihalos (MHs) of mass between 10{sup 5} and 10{sup 8} M{sub Sun }. Although the very first stars began forming inside these MHs before redshift z {approx} 40, their contribution has, to date, been ignored in large-scale simulations of this cosmic reionization. Here we report results from the first reionization simulations to include these first stars and the radiative feedback that limited their formation, in a volume large enough to follow the crucial spatial variations that influenced the process and its observability. We show that, while MH stars stopped far short of fully ionizing the universe, reionization began much earlier with MH sources than without, and was greatly extended, which boosts the intergalactic electron-scattering optical depth and the large-angle polarization fluctuations of the cosmic microwave background significantly. This boost should be readily detectable by Planck, although within current Wilkinson Microwave Anisotropy Probe uncertainties. If reionization ended as late as z{sub ov} {approx}< 7, as suggested by other observations, Planck will thereby see the signature of the first stars at high redshift, currently undetectable by other probes.

  16. Quantum Evaporation from Liquid 4He by Rotons

    Science.gov (United States)

    Hope, F. R.; Baird, M. J.; Wyatt, A. F. G.

    1984-04-01

    We have shown that rotons as well as phonons can evaporate 4He atoms in a single-quantum process. Measurements of the time of flight and the angular distribution of the evaporated atoms clearly distinguish between evaporation by phonons and rotons. The results indicate that energy and the parallel component of momentum are conserved at the free liquid surface.

  17. Evaporation rate-based selection of supramolecular chirality.

    Science.gov (United States)

    Hattori, Shingo; Vandendriessche, Stefaan; Koeckelberghs, Guy; Verbiest, Thierry; Ishii, Kazuyuki

    2017-03-09

    We demonstrate the evaporation rate-based selection of supramolecular chirality for the first time. P-type aggregates prepared by fast evaporation, and M-type aggregates prepared by slow evaporation are kinetic and thermodynamic products under dynamic reaction conditions, respectively. These findings provide a novel solution reaction chemistry under the dynamic reaction conditions.

  18. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  19. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  20. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  1. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  2. Diverse properties of interstellar medium embedding gamma-ray bursts at the epoch of reionization

    International Nuclear Information System (INIS)

    Cen, Renyue; Kimm, Taysun

    2014-01-01

    Analysis is performed on ultra-high-resolution large-scale cosmological radiation-hydrodynamic simulations to quantify, for the first time, the physical environment of long-duration gamma-ray bursts (GRBs) at the epoch of reionization. We find that, on parsec scales, 13% of GRBs remain in high-density (≥10 4 cm –3 ) low-temperature star-forming regions, whereas 87% of GRBs occur in low-density (∼10 –2.5 cm –3 ) high-temperature regions heated by supernovae. More importantly, the spectral properties of GRB afterglows, such as the neutral hydrogen column density, total hydrogen column density, dust column density, gas temperature, and metallicity of intervening absorbers, vary strongly from sight line to sight line. Although our model explains extant limited observationally inferred values with respect to circumburst density, metallicity, column density, and dust properties, a substantially larger sample of high-z GRB afterglows would be required to facilitate a statistically solid test of the model. Our findings indicate that any attempt to infer the physical properties (such as metallicity) of the interstellar medium (ISM) of the host galaxy based on a very small number (usually one) of sight lines would be precarious. Utilizing high-z GRBs to probe the ISM and intergalactic medium should be undertaken properly, taking into consideration the physical diversities of the ISM.

  3. The Little Engines That Could? Globular Clusters Contribute Significantly to Reionization-era Star Formation

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2018-06-01

    Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at z = 0, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe (10 ≳ z ≳ 4). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST; M1500 ≈ -17). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFs with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 5. The James Webb Space Telescope (JWST) will be able to directly detect individual GCs at z ˜ 6 in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-redshift sources with -19 ≲ M_{1500} ≲ -14 in HST lensing fields indicate that they may actually be GCs in formation.

  4. Quasars at the Cosmic Dawn: effects on Reionization properties in cosmological simulations

    Science.gov (United States)

    Garaldi, Enrico; Compostella, Michele; Porciani, Cristiano

    2018-05-01

    We study a model of cosmic reionization where quasars (QSOs) are the dominant source of ionizing photons at all relevant epochs. We employ a suite of adaptive hydrodynamical simulations post-processed with a multi-wavelength Monte Carlo radiative-transfer code and calibrate them in order to accurately reproduce the observed quasar luminosity function and emissivity evolution. Our results show that the QSO-only model fails in reproducing key observables linked to the Helium reionization, as the temperature evolution of the inter-galactic medium (IGM) and the HeII effective optical depth in synthetic Lyα spectra. Nevertheless, we find hints that an increased quasar contribution can explain recent measurements of a large inhomogeneity in the IGM at redshift z ~ 5. Finally, we devise a method capable of constraining the QSOs contribution to the reionization from the properties of the HeII Lyα forest at z ~ 3.5.

  5. CAPSULE REPORT: EVAPORATION PROCESS

    Science.gov (United States)

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  6. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    Directory of Open Access Journals (Sweden)

    Puja Pradhan

    2018-01-01

    Full Text Available Real time spectroscopic ellipsometry (RTSE has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV devices. The first stage entails the growth of indium-gallium selenide (In1−xGax2Se3 (IGS on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2 spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2 spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2 spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2 spectra have been interpreted as well in relation to observations from scanning electron microscopy, X

  7. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  8. The evaporation pan technique revisited: Old theory and a new application for time-weighted synoptic tracing of the isotopic composition of atmospheric vapour

    International Nuclear Information System (INIS)

    Gibson, J.J.; Edwards, T.W.D.

    1999-01-01

    Reliable and consistent characterization of the stable isotope composition of atmospheric water vapour and its temporal variability are important prerequisites to the wider application of isotope mass balance methods in atmospheric and water balance studies. A new approach is proposed which utilizes standard class-A evaporation pans, which have sufficient volume to buffer short-term transient variations in atmospheric conditions, justifying the assumption of constant kinetic isotopic fractionation effects in concert with precisely measured temperature and relative humidity to derive vapour isotopic composition. The results of the studies suggest that isotopic sampling of existing, conventionally operated class-A evaporation pans could offer a straightforward and cost-effective solution to the problem of documenting the shifting isotopic distribution in atmospheric moisture

  9. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    DEFF Research Database (Denmark)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino...... neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce...

  10. EFFECT OF HALO BIAS AND LYMAN LIMIT SYSTEMS ON THE HISTORY OF COSMIC REIONIZATION

    International Nuclear Information System (INIS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2013-01-01

    We extend the existing analytical model of reionization by Furlanetto et al. to include the biasing of reionization sources and additional absorption by Lyman limit systems. Both effects enhance the original model in non-trivial ways, but do not change its qualitative features. Our model is, by construction, consistent with the observed evolution of the galaxy luminosity function at z ∼ 6 galaxies, the inadequacy of simulations and/or some of the observational constraints, or indicates an additional source of ionizing radiation at z > 8 remains to be seen.

  11. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field

    International Nuclear Information System (INIS)

    Yan Haojing; Windhorst, Rogier A.; Cohen, Seth H.; Hathi, Nimish P.; Ryan, Russell E.; O'Connell, Robert W.; McCarthy, Patrick J.

    2010-01-01

    We present a large sample of candidate galaxies at z ∼ 7-10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z 850 -dropouts (four new discoveries), 15 Y 105 -dropouts (nine new discoveries) and 20 J 125 -dropouts (all new discoveries). The surface densities of the z 850 -dropouts are close to what was predicted by earlier studies, however, those of the Y 105 - and J 125 -dropouts are quite unexpected. While no Y 105 - or J 125 -dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ∼ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ∼ 8 and 10. As compared to their counterpart at z ∼ 7, here L * decreases by a factor of ∼ 6.5 and φ * increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ∼ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ∼ 10, rapidly reach the minimum at z ∼ 7, and start to rise again

  12. A Spectroscopic Search for AGN Activity in the Reionization Era

    Science.gov (United States)

    Laporte, Nicolas; Nakajima, Kimihiko; Ellis, Richard S.; Zitrin, Adi; Stark, Daniel P.; Mainali, Ramesh; Roberts-Borsani, G. W.

    2017-12-01

    The ubiquity of Lyman alpha (Lyα) emission in a sample of four bright [O III]-strong star-forming galaxies with redshifts above seven has led to the suggestion that such luminous sources represent a distinct population compared with their fainter, more numerous counterparts. The presence of Lyα emission within the reionization era could indicate that these sources created early ionized bubbles due to their unusually strong radiation, possibly because of the presence of active galactic nuclei. To test this hypothesis, we secured long integration spectra with XSHOOTER on the VLT for three z≃ 7 sources selected to have similar luminosities and prominent excess fluxes in the IRAC 3.6 or 4.5 μm band, usually attributed to strong [O III] emission. We secured additional spectroscopy for one of these galaxies at z = 7.15 using MOSFIRE at the Keck telescope. For the most well-studied source in our sample with the strongest IRAC excess, we detect significant nebular emission from He II and N V indicative of a non-thermal source. For the other two sources at z = 6.81 and z = 6.85, for which no previous optical/near-infrared spectroscopy was available, Lyα is seen in one and C III] emission in the other. Although based on a modest sample, our results further support the hypothesis that the phenomenon of intense [O III] emission is associated preferentially with sources lying in early ionized bubbles. However, even though one of our sources at z = 7.15 suggests the presence of non-thermal radiation, such ionized bubbles may not uniquely arise in this manner. We discuss the unique advantages of extending such challenging diagnostic studies with JWST.

  13. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  14. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  15. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  16. Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation

    Science.gov (United States)

    Jin, Sheng; Mordasini, Christoph

    2018-02-01

    We use an end-to-end model of planet formation, thermodynamic evolution, and atmospheric escape to investigate how the statistical imprints of evaporation depend on the bulk composition of planetary cores (rocky versus icy). We find that the population-wide imprints like the location of the “evaporation valley” in the distance–radius plane and the corresponding bimodal radius distribution clearly differ depending on the bulk composition of the cores. Comparison with the observed position of the valley suggests that close-in low-mass Kepler planets have a predominantly Earth-like rocky composition. Combined with the excess of period ratios outside of MMR, this suggests that low-mass Kepler planets formed inside of the water iceline but were still undergoing orbital migration. The core radius becomes visible for planets losing all primordial H/He. For planets in this “triangle of evaporation” in the distance–radius plane, the degeneracy in composition is reduced. In the observed planetary mass–mean density diagram, we identify a trend to more volatile-rich compositions with an increasing radius (R/R ⊕ ≲ 1.6 rocky; 1.6–3.0 ices, and/or H/He ≳3: H/He). The mass–density diagram contains important information about formation and evolution. Its characteristic broken V-shape reveals the transitions from solid planets to low-mass core-dominated planets with H/He and finally to gas-dominated giants. Evaporation causes the density and orbital distance to be anticorrelated for low-mass planets in contrast to giants, where closer-in planets are less dense, likely due to inflation. The temporal evolution of the statistical properties reported here will be of interest for the PLATO 2.0 mission, which will observe the temporal dimension.

  17. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Yanhua; Xu Jijun

    2004-01-01

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  18. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION

    International Nuclear Information System (INIS)

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N.; Trenti, M.; Oesch, P. A.; Treu, T.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.

    2012-01-01

    We report the discovery of 33 Lyman-break galaxy candidates at z ∼ 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin 2 ) with Y 098 (or Y 105 ), J 125 , and H 160 band coverage needed to search for z ∼ 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y 105 data (required to select z ∼ 8 sources). Our sample of 33 relatively bright Y 098 -dropout galaxies have J 125 -band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J 125 ∼ * (L/L * ) α e -( L /L * ) , without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive φ * = (4.3 +3.5 –2.1 ) × 10 –4 Mpc –3 , M * = –20.26 +0.29 –0.34 , and a very steep faint-end slope α = –1.98 +0.23 –0.22 . While the best-fit parameters still have a strong degeneracy, especially between φ * and M * , our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z ∼ 8 compared to the best previous determination at ±0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared to measurements at lower redshift, thereby confirming the key role played by small galaxies in the reionization of the universe.

  19. IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yidong; Chen, Xuelei [Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yue, Bin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of the ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.

  20. On the spin-temperature evolution during the epoch of reionization

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem

    Simulations estimating the brightness temperature (delta T-b) of the redshifted 21 cm from the epoch of reionization (EoR) often assume that the spin temperature (T-s) is decoupled from the background cosmic microwave background (CMB) temperature and is much larger than it, i.e. T-s T-CMB. Although

  1. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    Energy Technology Data Exchange (ETDEWEB)

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Cen, R. [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Loeb, A., E-mail: plaplant@andrew.cmu.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  2. All-sky signals from recombination to reionization with the SKA

    NARCIS (Netherlands)

    Subrahmanyan, R.; Shankar, U. N.; Pritchard, J.; Vedantham, H. K.

    2015-01-01

    Cosmic evolution in the hydrogen content of the Universe through recombination and up to the end of reionization is expected to be revealed as subtle spectral features in the uniform extragalactic cosmic radio background. The redshift evolution in the excitation temperature of the 21-cm spin flip

  3. Can the reionization epoch be detected as a global signature in the cosmic background?

    NARCIS (Netherlands)

    Shaver, PA; Windhorst, RA; Madau, P; de Bruyn, AG

    The reionization of the Universe is expected to have left a signal in the form of a sharp step in the spectrum of the sky. If reicnization took place at 5 less than or similar to z(ion) less than or similar to 20, a feature should be present in the radio sky at 70 less than or similar to v less than

  4. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  5. Probing features in inflaton potential and reionization history with future CMB space observations

    Science.gov (United States)

    Hazra, Dhiraj Kumar; Paoletti, Daniela; Ballardini, Mario; Finelli, Fabio; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2018-02-01

    We consider the prospects of probing features in the primordial power spectrum with future Cosmic Microwave Background (CMB) polarization measurements. In the scope of the inflationary scenario, such features in the spectrum can be produced by local non-smooth pieces in an inflaton potential (smooth and quasi-flat in general) which in turn may originate from fast phase transitions during inflation in other quantum fields interacting with the inflaton. They can fit some outliers in the CMB temperature power spectrum which are unaddressed within the standard inflationary ΛCDM model. We consider Wiggly Whipped Inflation (WWI) as a theoretical framework leading to improvements in the fit to the Planck 2015 temperature and polarization data in comparison with the standard inflationary models, although not at a statistically significant level. We show that some type of features in the potential within the WWI models, leading to oscillations in the primordial power spectrum that extend to intermediate and small scales can be constrained with high confidence (at 3σ or higher confidence level) by an instrument as the Cosmic ORigins Explorer (CORE). In order to investigate the possible confusion between inflationary features and footprints from the reionization era, we consider an extended reionization history with monotonic increase of free electrons with decrease in redshift. We discuss the present constraints on this model of extended reionization and future predictions with CORE. We also project, to what extent, this extended reionization can create confusion in identifying inflationary features in the data.

  6. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  7. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  8. Systematics of evaporation

    International Nuclear Information System (INIS)

    Klots, C.E.

    1991-01-01

    Beginning with rather basic principles, general relations are obtained for evaporative rate constants. These are established both as a function of energy and of temperature. In parallel with this, expressions are developed for the kinetic energy distribution of the separating species. Explicit evaluation of the rate constants in the case of 'chemical' evaporation from an entity containing n monomeric units yields as a typical result k(T)(s -1 )=3.10 13 n 2/3 exp[6/n 1/3 ]exp(-ΔE a (n)/k B T). Experimental evidence in support of this relation is cited. Applications to thermionic emission are also noted. (orig.)

  9. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  10. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  11. Exploring the correlation between annual precipitation and potential evaporation

    Science.gov (United States)

    Chen, X.; Buchberger, S. G.

    2017-12-01

    The interdependence between precipitation and potential evaporation is closely related to the classic Budyko framework. In this study, a systematic investigation of the correlation between precipitation and potential evaporation at the annual time step is conducted at both point scale and watershed scale. The point scale precipitation and potential evaporation data over the period of 1984-2015 are collected from 259 weather stations across the United States. The watershed scale precipitation data of 203 watersheds across the United States are obtained from the Model Parameter Estimation Experiment (MOPEX) dataset from 1983 to 2002; and potential evaporation data of these 203 watersheds in the same period are obtained from a remote-sensing algorithm. The results show that majority of the weather stations (77%) and watersheds (79%) exhibit a statistically significant negative correlation between annual precipitation and annual potential evaporation. The aggregated data cloud of precipitation versus potential evaporation follows a curve based on the combination of the Budyko-type equation and Bouchet's complementary relationship. Our result suggests that annual precipitation and potential evaporation are not independent when both Budyko's hypothesis and Bouchet's hypothesis are valid. Furthermore, we find that the wet surface evaporation, which is controlled primarily by short wave radiation as defined in Bouchet's hypothesis, exhibits less dependence on precipitation than the potential evaporation. As a result, we suggest that wet surface evaporation is a better representation of energy supply than potential evaporation in the Budyko framework.

  12. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  13. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  14. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  15. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  16. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Skillman, Evan D.; McQuinn, Kristen B. W. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States); Weisz, Daniel R. [Astronomy Department, Box 351580, University of Washington, Seattle, WA, 98195 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart 7005, TAS (Australia); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l’Universite, F-67000 Strasbourg (France); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Boylan-Kolchin, Michael [INAF–Osservatorio Astronomico di Teramo, via M. Maggini, 64100 Teramo (Italy); Mayer, Lucio [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); McConnachie, Alan [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Navarro, Julio F., E-mail: monelli@iac.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2016-03-10

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.

  17. The continuous similarity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  18. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    International Nuclear Information System (INIS)

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-01-01

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km 2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km 2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  19. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    Science.gov (United States)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  20. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  1. Simultaneous spreading and evaporation: recent developments.

    Science.gov (United States)

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  2. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L.; Pawlik, Andreas H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, Sandy M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Newman, Jeffrey A., E-mail: stevenf@astro.as.utexas.edu [Department of Physics and Astronomy and Pitt-PACC, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to

  3. Uranium concentration monitor manual, secondary intermediate evaporator

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Slice, R.W.; Strittmatter, R.B.

    1985-08-01

    This manual describes the design, operation, and measurement control procedures for the automated uranium concentration monitor on the secondary intermediate evaporator at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration in the return loop of time recirculating evaporator for purposes of process monitoring and control. A detector installed near the bottom of the return loop is used to acquire spectra of gamma rays from the evaporator solutions during operation. Pulse height analysis of each spectrum gives the information required to deduce the concentration of uranium in the evaporator solution in near-real time. The visual readout of concentration is updated at the end of every assay cycle. The readout includes an alphanumeric display of uranium concentration and an illuminated, colored LED (in an array of colored LEDs) indicating whether the measured concentration is within (or above or below) the desired range. An alphanumeric display of evaporator solution acid molarity is also available to the operator. 9 refs., 16 figs., 4 tabs

  4. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  5. Evaporator modeling - A hybrid approach

    International Nuclear Information System (INIS)

    Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun

    2009-01-01

    In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis

  6. Optimal control of evaporator and washer plants

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1989-01-01

    Tests with radioactive tracers were used for experimental analysis of a multiple-effect evaporator plant. The residence time distribution of the liquor in each evaporator was described by one or two perfect mixers with time delay and by-pass flow terms. The theoretical model of a single evaporator unit was set up on the basis of its instantaneous heat and mass balances and such models were fitted to the test data. The results were interpreted in terms of physical structures of the evaporators. Further model parameters were evaluated by conventional step tests and by measurements of process variables at one or more steady states. Computer simulation and comparison with the experimental results showed that the model produces a satisfactory response to solids concentration input and could be extended to cover the steam feed and liquor flow inputs. An optimal feedforward control algorithm was developed for a two unit, co-current evaporator plant. The control criterion comprised the deviations of the final solids content of liquor and the consumption of fresh steam, from their optimal steady-state values. In order to apply the algorithm, the model of the solids in liquor was reduced to two nonlinear differential equations. (author)

  7. Optimized evaporation technique for leachate treatment: Small scale implementation.

    Science.gov (United States)

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.

  8. Effect of the early reionization on the cosmic microwave background and cosmological parameter estimates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing-Guo; Wang, Ke, E-mail: huangqg@itp.ac.cn, E-mail: wangke@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Zhong Guan Cun East Street 55 #, Beijing 100190 (China)

    2017-07-01

    The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio r and the neutrino mass at the sensitivities of current experiments. The better CMB polarization data can be used to give a tighter constraint on the ERE and might be important for more precisely constraining cosmological parameters in the future.

  9. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  10. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  11. Intensity Mapping of the [CII] Fine Structure Line during the Epoch of Reionization

    Science.gov (United States)

    Gong, Yan; Cooray, A.; Silva, M.; Santos, M. G.; Bock, J.; Bradford, M.; Zemcov, M.

    2012-01-01

    The atomic CII fine-structure line is one of the brightest lines in a typical star-forming galaxy spectrum with a luminosity 0.1% to 1% of the bolometric luminosity. It is otentially a reliable tracer of the dense gas distribution at high edshifts and could provide an additional probe to the era of reionization. By taking into account of the spontaneous, stimulated and collisional emission of the CII line, we calculate the spin temperature and the mean intensity as a function of the redshift. When averaged over a cosmologically large volume, we find that the CII emission from ionized carbon in individual galaxies is larger than the signal generated by carbon in the intergalactic medium (IGM). Assuming that the CII luminosity is proportional to the carbon mass in dark matter halos, we also compute the power spectrum of the CII line intensity at various redshifts. In order to avoid the contamination from CO rotational lines at low redshift when targeting a CII survey at high redshifts, we propose the cross-correlation of CII and 21-cm line emission from high redshifts. To explore the detectability of the CII signal from reionization, we also evaluate the expected errors on the CII power spectrum and CII-21 cm cross power spectrum based on the design of the future milimeter surveys. We note that the CII-21 cm cross power spectrum contains interesting features that captures physics during reionization, including the ionized bubble sizes and the mean ionization fraction, which are challenging to measure from 21-cm data alone. We propose an instrumental concept for the reionization CII experiment targeting the frequency range of 200 to 300 GHz with 1, 3 and 10 meter apertures and a bolometric spectrometer array with 64 independent spectral pixels with about 20,000 bolometers.

  12. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Cooray, Asantha; Gong Yan; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Santos, Mario G. [CENTRA, Instituto Superior Tecnico, Technical University of Lisbon, Lisboa 1049-001 (Portugal)

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  13. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  14. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Parametrizing the Reionization History with the Redshift Midpoint, Duration, and Asymmetry

    Science.gov (United States)

    Trac, Hy

    2018-05-01

    A new parametrization of the reionization history is presented to facilitate robust comparisons between different observations and with theory. The evolution of the ionization fraction with redshift can be effectively captured by specifying the midpoint, duration, and asymmetry parameters. Lagrange interpolating functions are then used to construct analytical curves that exactly fit corresponding ionization points. The shape parametrizations are excellent matches to theoretical results from radiation-hydrodynamic simulations. The comparative differences for reionization observables are: ionization fraction | {{Δ }}{x}{{i}}| ≲ 0.03, 21 cm brightness temperature | {{Δ }}{T}{{b}}| ≲ 0.7 {mK}, Thomson optical depth | {{Δ }}τ | ≲ 0.001, and patchy kinetic Sunyaev–Zel’dovich angular power | {{Δ }}{D}{\\ell }| ≲ 0.1 μ {{{K}}}2. This accurate and flexible approach will allow parameter-space studies and self-consistent constraints on the reionization history from 21 cm, cosmic microwave background (CMB), and high-redshift galaxies and quasars.

  16. Dark-ages reionization and galaxy formation simulation - XII. Bubbles at dawn

    Science.gov (United States)

    Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Duffy, Alan R.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    The direct detection of regions of ionized hydrogen (H II) has been suggested as a promising probe of cosmic reionization. Observing the redshifted 21-cm signal of hydrogen from the epoch of reionization (EoR) is a key scientific driver behind new-generation, low-frequency radio interferometers. We investigate the feasibility of combining low-frequency observations with the Square Kilometre Array and near infra-red survey data of the Wide-Field Infrared Survey Telescope to detect cosmic reionization by imaging H II bubbles surrounding massive galaxies during the cosmic dawn. While individual bubbles will be too small to be detected, we find that by stacking redshifted 21-cm spectra centred on known galaxies, it will be possible to directly detect the EoR at z ∼ 9-12, and to place qualitative constraints on the evolution of the spin temperature of the intergalactic medium (IGM) at z ≳ 9. In particular, given a detection of ionized bubbles using this technique, it is possible to determine if the IGM surrounding them is typically in absorption or emission. Determining the globally averaged neutral fraction of the IGM using this method will prove more difficult due to degeneracy with the average size of H II regions.

  17. Quantized evaporation from liquid helium

    Science.gov (United States)

    Baird, M. J.; Hope, F. R.; Wyatt, A. F. G.

    1983-07-01

    The atomic-level kinetics of evaporation from a liquid surface are investigated experimentally for the case of liquid He-4. A pulse of phonons was injected by a submerged thin-film heater into purified He-4 (cooled to less than about 0.1 K) and collimated into a beam directed at the liquid surface; the atoms liberated at the surface were detected by a bolometer. The energy of the incident phonon and the kinetic energy of the liberated atom were calculated by determining the group velocity (from the minimum time elapsed between the beginning of the heater pulse and the arrival of the leading edge of the signal) and combining it with neutron-measured excitation dispersion data. Measurements were also made with a mixture of He-3 and He-4. The results are shown to be in good agreement with theoretical predictions of the phonon-induced quantum evaporation of surface atoms: the energy of the phonon is divided between the kinetic energy of the liberated atom and the energy required to overcome the binding forces.

  18. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  19. Freezing of Water Droplet due to Evaporation

    Science.gov (United States)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  20. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  1. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    Science.gov (United States)

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  2. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  3. Evaporation of boric acid from sea water

    Energy Technology Data Exchange (ETDEWEB)

    Gast, J A; Thompson, T G

    1959-01-01

    Previous investigators have shown that the boron-chlorinity ratios of rain waters are many times greater than the boron-chlorinity ratio of sea water. The presence of boron in the atmosphere has been attributed to sea spray, volcanic activity, accumulation in dust, evaporation from plants, and industrial pollution. In this paper data are presented to demonstrate that boric acid in sea water has a vapor pressure at ordinary temperatures of the sea and, when sea water evaporates, boric acid occurs in the condensate of the water vapor. It is postulated that, while some of the boron in the atmosphere can be attributed to the sources mentioned above, most of the boric acid results from evaporation from the sea.

  4. Slow evaporation method and enhancement in photoluminescence ...

    Indian Academy of Sciences (India)

    nescence (PL) properties and decay time of phosphors were studied at room temperature. The YPO4 ... Keywords. Slow evaporation method; YPO4 : Eu3+, Bi3+; quenching effect; optical material. 1. ... intensity of Eu3+-doped compounds such as CaMoO4 : Bi3+, .... Figure 4 shows FESEM images of YPO4 : Eu3+ and Bi3+.

  5. Structuring of thin-film polymer mixtures upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J.J.; van der Schoot, P.P.A.M.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  6. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  7. Experimental study of liquid evaporation rate from coniferous biomass

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2017-01-01

    Full Text Available The results of experimental studies of moisture evaporation from coniferous wood (spruce, pine are presented. The dependences of the mass evaporation rate on temperature and time are obtained. The calculation of the accommodation coefficient for the corresponding temperature ranges has been performed. The analysis of temperature regimes of drying of two typical coniferous wood species is carried out.

  8. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  9. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Science.gov (United States)

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  10. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z {approx} 8 LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Oesch, P. A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bouwens, R. J. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Holwerda, B. W. [European Space Agency (ESTEC), Keplerlaan 1, NL-2200 AG, Noordwijk (Netherlands)

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z {approx} 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin{sup 2}) with Y {sub 098} (or Y {sub 105}), J {sub 125}, and H {sub 160} band coverage needed to search for z {approx} 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y {sub 105} data (required to select z {approx} 8 sources). Our sample of 33 relatively bright Y {sub 098}-dropout galaxies have J {sub 125}-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J {sub 125} {approx}< 27.4) z {approx} 8 galaxy candidates presented to date. Combining our data set with the Hubble Ultra-Deep Field data set, we constrain the rest-frame ultraviolet galaxy luminosity function at z {approx} 8 over the widest dynamic range currently available. The combined data sets are well fitted by a Schechter function, i.e., {phi} (L) = {phi}{sub *} (L/L{sub *}){sup {alpha}} e{sup -(}L{sup /L{sub *})}, without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive {phi}{sub *} = (4.3{sup +3.5} {sub -2.1}) Multiplication-Sign 10{sup -4} Mpc{sup -3}, M {sub *} = -20.26{sup +0.29} {sub -0.34}, and a very steep faint-end slope {alpha} = -1.98{sup +0.23} {sub -0.22}. While the best-fit parameters still have a strong degeneracy, especially between {phi}{sub *} and M {sub *}, our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z {approx} 8 compared to the best previous determination at {+-}0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared

  11. A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization

    Science.gov (United States)

    Stark, D. P.; Bunker, A. J.; Ellis, R. S.; Eyles, L. P.; Lacy, M.

    2007-04-01

    We present a new measurement of the integrated stellar mass per comoving volume at redshift 5 determined via spectral energy fitting drawn from a sample of 214 photometrically selected galaxies with z'850LPmasses for various subsamples for which reliable and unconfused Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most luminous sources with z=4.92 provides a firm lower limit to the stellar mass density of 1×106 Msolar Mpc-3. Several galaxies in this subsample have masses of order 1011 Msolar, implying that significant earlier activity occurred in massive systems. We then consider a larger sample whose photometric redshifts in the publicly available GOODS-MUSIC catalog lie in the range 4.4MUSIC photometric redshifts, we check the accuracy of their photometry and explore the possibility of contamination by low-z galaxies and low-mass stars. After excising probable stellar contaminants and using the z'850LP-J color to exclude any remaining foreground red galaxies, we conclude that 196 sources are likely to be at z~=5. The implied mass density from the unconfused IRAC fraction of this sample, scaled to the total available, is 6×106 Msolar Mpc-3. We discuss the uncertainties, as well as the likelihood that we have underestimated the true mass density. By including fainter and quiescent sources, the total integrated density could be as high as 1×107 Msolar Mpc-3. Even accounting for 25% cosmic variance within a single GOODS field, such a high mass density only 1.2 Gyr after the big bang has interesting consequences for the implied past average star formation during the period when cosmic reionization is now thought to have taken place. Using the currently available (but highly uncertain) rate of decline in the star formation history over 5mass at z~=5 if we admit significant dust extinction at early times or extend the luminosity function to very faint limits. An interesting consequence of the latter possibility is an abundant population

  12. PROBING THE EPOCH OF REIONIZATION WITH THE Lyα FOREST AT z ∼ 4-5

    International Nuclear Information System (INIS)

    Cen Renyue; McDonald, Patrick; Trac, Hy; Loeb, Abraham

    2009-01-01

    The inhomogeneous cosmological reionization process leaves tangible imprints in the intergalactic medium (IGM) down to z ∼ 4-5. The Lyα forest flux power spectrum provides a potentially powerful probe of the epoch of reionization. With the existing Sloan Digital Sky Survey I/II quasar sample, we show that two cosmological reionization scenarios, one completing reionization at z = 6 and the other at z = 9, can be distinguished at ∼7σ level by utilizing Lyα forest absorption spectra at z = 3.9-4.1 in the absence of other physical processes that may also affect the Lyα flux power spectrum. The difference may not be distinguishable at such high significance after marginalization over other effects, but, in any case, one will need to consider this effect in order to correctly interpret the power spectrum in this redshift range. The redshift range z = 4-5 may provide the best window because there are still enough transmitted flux and quasars to measure precise statistics of the flux fluctuations, and the IGM still retains a significant amount of memory of reionization.

  13. Real time observation of phase formations by XRD during Ga-rich or In-rich Cu(In, Ga)Se{sub 2} growth by co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, Paul; Zahedi-Azad, Setareh; Hartnauer, Stefan; Waegele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland [Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany)

    2015-09-15

    Solar cells with Cu(In, Ga)Se{sub 2} absorbers rely on the three-stage co-evaporation process with Cu-poor/Cu-rich/Cu-poor absorber deposition conditions for highest efficiency devices. During the three-stage process, the formation and evolution of different selenide phases with changing compositions throughout the process crucially determine the final absorber quality. In this contribution, we monitor the evolution of crystalline phases in real-time with an X-ray diffraction (XRD) line detector setup implemented into an evaporation setup. Using the common three-stage process, we prepare and compare samples covering the full alloying range from CuInSe{sub 2} to CuGaSe{sub 2}. The in situ XRD allows the detection of the crystalline phases present at all times of the process as well as an advanced analysis of the phase evolution through a closer look at peak shifts and the full width at half maximum. For samples with a Ga/(Ga + In) ratio (GGI) < 0.5, distinct phase transitions associated with the transition to the reported vacancy compounds Cu(In,Ga){sub 5}Se{sub 8} and Cu(In, Ga){sub 3}Se{sub 5} are observed. No such indication was found for samples with a GGI > 0.5. For Ga-rich Cu(In, Ga)Se{sub 2} phases with a GGI of 0.55, the XRD analysis evidenced a Ga-rich phase segregation before the stoichiometric point was reached. The above findings are discussed in view of their implication on wide gap solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  15. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  16. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  17. The Brightest of Reionizing Galaxies Survey: Constraints on the Bright End of the z ~ 8 Luminosity Function

    Science.gov (United States)

    Bradley, L. D.; Trenti, M.; Oesch, P. A.; Stiavelli, M.; Treu, T.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.; Pirzkal, N.

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z ~ 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin2) with Y 098 (or Y 105), J 125, and H 160 band coverage needed to search for z ~ 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y 105 data (required to select z ~ 8 sources). Our sample of 33 relatively bright Y 098-dropout galaxies have J 125-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J 125 universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. These observations are associated with programs 11519, 11520, 11524, 11528, 11530, 11533, 11534, 11541, 11700, 11702, 12024, 12025, and 12572.

  18. Steady Method for the Analysis of Evaporation Dynamics.

    Science.gov (United States)

    Günay, A Alperen; Sett, Soumyadip; Oh, Junho; Miljkovic, Nenad

    2017-10-31

    Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 μm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 μm on surfaces of different functionalities (45° ≤ θ a,app ≤ 162°, where θ a,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

  19. Probing HeII Reionization at z>3.5 with Resolved HeII Lyman Alpha Forest Spectra

    Science.gov (United States)

    Worseck, Gabor

    2017-08-01

    The advent of GALEX and COS have revolutionized our view of HeII reionization, the final major phase transition of the intergalactic medium. COS spectra of the HeII Lyman alpha forest have confirmed with high confidence the high HeII transmission that signifies the completion of HeII reionization at z 2.7. However, the handful of z>3.5 quasars observed to date show a set of HeII transmission 'spikes' and larger regions with non-zero transmission that suggest HeII reionization was well underway by z=4. This is in striking conflict with predictions from state-of-the-art radiative transfer simulations of a HeII reionization driven by bright quasars. Explaining these measurements may require either faint quasars or more exotic sources of hard photons at z>4, with concomitant implications for HI reionization. However, many of the observed spikes are unresolved in G140L spectra and are significantly impacted by Poisson noise. Current data cannot reliably probe the ionization state of helium at z>3.5.We request 41 orbits to obtain science-grade G130M spectra of the two UV-brightest HeII-transmitting QSOs at z>3.5 to confirm and resolve their HeII transmission spikes as an unequivocal test of early HeII reionization. These spectra are complemented by recently obtained data from 8m telescopes: (1) Echelle spectra of the coeval HI Lya forest to map the underlying density field that modulates the HeII absorption, and (2) Our dedicated survey for foreground QSOs that may source the HeII transmission. Our recent HST programs revealed the only two viable targets to resolve the z>3.5 HeII Lyman alpha forest, and to conclusively solve this riddle.

  20. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.

    2016-12-01

    Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.

  1. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  2. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  3. Re-ionization of a partially ionized plasma by an Alfven wave of moderate amplitude

    International Nuclear Information System (INIS)

    Brennan, M.H.; Sawley, M.L.

    1980-01-01

    The use of forced magnetic-acoustic oscillations to investigate the effect of a torsional hydromagnetic (Alfven) wave pulse of moderate amplitude on the properties of a partially ionized afterglow helium plasma is reported. Observations of the magnetic flux associated with the oscillations, measured at a number of frequencies are used to determine radial density profiles and to provide estimates of plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. The presence of a number of energetic particles is evidenced by the production of a significant number of doubly charged helium ions. (author)

  4. Multilayer composite material and method for evaporative cooling

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  5. A New Method to Measure the Post-reionization Ionizing Background from the Joint Distribution of Lyα and Lyβ Forest Transmission

    Science.gov (United States)

    Davies, Frederick B.; Hennawi, Joseph F.; Eilers, Anna-Christina; Lukić, Zarija

    2018-03-01

    The amplitude of the ionizing background that pervades the intergalactic medium (IGM) at the end of the epoch of reionization provides a valuable constraint on the emissivity of the sources that reionized the universe. While measurements of the ionizing background at lower redshifts rely on a simulation-calibrated mapping between the photoionization rate and the mean transmission of the Lyα forest, at z ≳ 6 the IGM becomes increasingly opaque and transmission arises solely in narrow spikes separated by saturated Gunn–Peterson troughs. In this regime, the traditional approach of measuring the average transmission over large ∼50 Mpc/h regions is less sensitive and suboptimal. In addition, the five times smaller oscillator strength of the Lyβ transition implies that the Lyβ forest is considerably more transparent at z ≳ 6, even in the presence of contamination by foreground z ∼ 5 Lyα forest absorption. In this work we present a novel statistical approach to analyze the joint distribution of transmission spikes in the cospatial z ∼ 6 Lyα and Lyβ forests. Our method relies on approximate Bayesian computation (ABC), which circumvents the necessity of computing the intractable likelihood function describing the highly correlated Lyα and Lyβ transmission. We apply ABC to mock data generated from a large-volume hydrodynamical simulation combined with a state-of-the-art model of ionizing background fluctuations in the post-reionization IGM and show that it is sensitive to higher IGM neutral hydrogen fractions than previous techniques. As a proof of concept, we apply this methodology to a real spectrum of a z = 6.54 quasar and measure the ionizing background from 5.4 ≤ z ≤ 6.4 along this sightline with ∼0.2 dex statistical uncertainties. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the

  6. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  7. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  8. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  9. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  10. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  11. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  13. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    International Nuclear Information System (INIS)

    Shin, Hee Young; Suh, Min Chul

    2014-01-01

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s

  14. Radiative Transfer Simulations of Cosmic Reionization With Pop II and III Stars

    Science.gov (United States)

    Trac, Hy; Cen, Renyue

    2008-03-01

    We have simulated 3 large volume, high resolution realizations of cosmic reionization using a hybrid code that combines a N-body algorithm for dark matter, prescriptions for baryons and star formation, and a radiative transfer algorithm for ionizing photons. Our largest simulation, with 24 billion particles in a 100 Mpc/h box, simultaneously provides (1) the mass resolution needed to resolve dark matter halos down to a virial temperatures of 104 K and (2) the volume needed to fairly sample highly biased sources and large HII regions. We model the stellar initial mass function (IMF) by following the spatially dependent gas metallicity evolution, and distinguish between the first generation (Population III) stars and the second generation (Population II) stars. The Population III stars, with a top-heavy IMF, produce an order of magnitude more ionizing photons at high redshifts z>~10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5measurements from SDSS. The values for the Thomson optical depth are consistent within 1-σ of the current best-fit value from the WMAP Year 3 data release.

  15. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron [MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S. [Department of Astronomy, University of California, Berkeley, CA (United States); Aguirre, James E.; Kohn, Saul A. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); and others

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  16. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    International Nuclear Information System (INIS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron; Bradley, Richard F.; DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S.; Aguirre, James E.; Kohn, Saul A.; Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C.; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J.

    2016-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m 2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  17. SARAS 2 Constraints on Global 21 cm Signals from the Epoch of Reionization

    Science.gov (United States)

    Singh, Saurabh; Subrahmanyan, Ravi; Udaya Shankar, N.; Sathyanarayana Rao, Mayuri; Fialkov, Anastasia; Cohen, Aviad; Barkana, Rennan; Girish, B. S.; Raghunathan, A.; Somashekar, R.; Srivani, K. S.

    2018-05-01

    Spectral distortions in the cosmic microwave background over the 40–200 MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range z = 6–34 at the rest-frame wavelength of 21 cm, has not been detected yet; and a poor understanding of high-redshift astrophysics results in a large uncertainty in the expected spectrum. The SARAS 2 radiometer was purposely designed to detect the sky-averaged 21 cm signal. The instrument, deployed at the Timbaktu Collective (Southern India) in 2017 April–June, collected 63 hr of science data, which were examined for the presence of the cosmological 21 cm signal. In our previous work, the first-light data from the SARAS 2 radiometer were analyzed with Bayesian likelihood-ratio tests using 264 plausible astrophysical scenarios. In this paper we reexamine the data using an improved analysis based on the frequentist approach and forward-modeling. We show that SARAS 2 data reject 20 models, out of which 15 are rejected at a significance >5σ. All the rejected models share the scenario of inefficient heating of the primordial gas by the first population of X-ray sources, along with rapid reionization. Joint Astronomy Program, Indian Institute of Science, Bangalore 560012, India.

  18. Using artificial neural networks to constrain the halo baryon fraction during reionization

    Science.gov (United States)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  19. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki [Astronomy Department, U. California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, U. Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, U. Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, Dave; Dexter, Matthew; MacMahon, Dave [Radio Astronomy Laboratory, U. California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, U. Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  20. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the Universe (CEOU), Building 45, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Minjin; Park, Won-Kee [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong, E-mail: yjkim@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  1. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  2. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NARCIS (Netherlands)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.; Mellema, G.

    2013-01-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find

  3. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, Anastasia; Loeb, Abraham, E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2016-04-10

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  4. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    International Nuclear Information System (INIS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-01-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history

  5. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  6. On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    Full Text Available Many Large Eddy Simulation (LES models use the classic Kessler parameterisation either as it is or in a modified form to model the process of cloud water autoconversion into precipitation. The Kessler scheme, being linear, is particularly useful and is computationally straightforward to implement. However, a major limitation with this scheme lies in its inability to predict different autoconversion rates for maritime and continental clouds. In contrast, the Berry formulation overcomes this difficulty, although it is cubic. Due to their different forms, it is difficult to match the two solutions to each other. In this paper we single out the processes of cloud conversion and accretion operating in a deep model cloud and neglect the advection terms for simplicity. This facilitates exact analytical integration and we are able to derive new expressions for the time of onset of precipitation using both the Kessler and Berry formulations. We then discuss the conditions when the two schemes are equivalent. Finally, we also critically examine the process of droplet evaporation within the framework of the classic Kessler scheme. We improve the existing parameterisation with an accurate estimation of the diffusional mass transport of water vapour. We then demonstrate the overall robustness of our calculations by comparing our results with the experimental observations of Beard and Pruppacher, and find excellent agreement.

    Key words. Atmospheric composition and structure · Cloud physics and chemistry · Pollution · Meteorology and atmospheric dynamics · Precipitation

  7. On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    1998-05-01

    Full Text Available Many Large Eddy Simulation (LES models use the classic Kessler parameterisation either as it is or in a modified form to model the process of cloud water autoconversion into precipitation. The Kessler scheme, being linear, is particularly useful and is computationally straightforward to implement. However, a major limitation with this scheme lies in its inability to predict different autoconversion rates for maritime and continental clouds. In contrast, the Berry formulation overcomes this difficulty, although it is cubic. Due to their different forms, it is difficult to match the two solutions to each other. In this paper we single out the processes of cloud conversion and accretion operating in a deep model cloud and neglect the advection terms for simplicity. This facilitates exact analytical integration and we are able to derive new expressions for the time of onset of precipitation using both the Kessler and Berry formulations. We then discuss the conditions when the two schemes are equivalent. Finally, we also critically examine the process of droplet evaporation within the framework of the classic Kessler scheme. We improve the existing parameterisation with an accurate estimation of the diffusional mass transport of water vapour. We then demonstrate the overall robustness of our calculations by comparing our results with the experimental observations of Beard and Pruppacher, and find excellent agreement.Key words. Atmospheric composition and structure · Cloud physics and chemistry · Pollution · Meteorology and atmospheric dynamics · Precipitation

  8. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  9. Spin coating of an evaporating polymer solution

    KAUST Repository

    Münch, Andreas

    2011-01-01

    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  10. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  11. Humidity-insensitive water evaporation from molecular complex fluids.

    Science.gov (United States)

    Salmon, Jean-Baptiste; Doumenc, Frédéric; Guerrier, Béatrice

    2017-09-01

    We investigated theoretically water evaporation from concentrated supramolecular mixtures, such as solutions of polymers or amphiphilic molecules, using numerical resolutions of a one-dimensional model based on mass transport equations. Solvent evaporation leads to the formation of a concentrated solute layer at the drying interface, which slows down evaporation in a long-time-scale regime. In this regime, often referred to as the falling rate period, evaporation is dominated by diffusive mass transport within the solution, as already known. However, we demonstrate that, in this regime, the rate of evaporation does not also depend on the ambient humidity for many molecular complex fluids. Using analytical solutions in some limiting cases, we first demonstrate that a sharp decrease of the water chemical activity at high solute concentration leads to evaporation rates which depend weakly on the humidity, as the solute concentration at the drying interface slightly depends on the humidity. However, we also show that a strong decrease of the mutual diffusion coefficient of the solution enhances considerably this effect, leading to nearly independent evaporation rates over a wide range of humidity. The decrease of the mutual diffusion coefficient indeed induces strong concentration gradients at the drying interface, which shield the concentration profiles from humidity variations, except in a very thin region close to the drying interface.

  12. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  13. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch; Stucki, S; Schuler, A J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  14. Evaporation-driven instability of the precorneal tear film.

    Science.gov (United States)

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    Science.gov (United States)

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  16. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, Rajesh; Bell, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Raman, R.; Roquemore, A.L.; Ross, P.W.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Timberlake, J.; Wampler, W.R.; Wilgen, John B.; Zakharov, L.E.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

  17. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, R.; Bel, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density

  18. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    Science.gov (United States)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  19. Ultraviolet luminosity density of the universe during the epoch of reionization.

    Science.gov (United States)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-08

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  20. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    Science.gov (United States)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  1. Performance of solar still with a concave wick evaporation surface

    Energy Technology Data Exchange (ETDEWEB)

    Kabeel, A.E. [Mechanical Power Department, Faculty of Engineering, Tanta University (Egypt)

    2009-10-15

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m{sup 2} and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m{sup 2} after solar noon. An estimated cost of 1l of distillate was 0.065 $ for the presented solar still. (author)

  2. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  3. Performance of solar still with a concave wick evaporation surface

    International Nuclear Information System (INIS)

    Kabeel, A.E.

    2009-01-01

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m 2 and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m 2 after solar noon. An estimated cost of 1 l of distillate was 0.065 $ for the presented solar still.

  4. Evaporative cycles - in theory and in practise

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, P.M.

    2000-08-01

    operation in three reversible steps: 1. Simple open gas turbine cycle; 2. Recuperative gas turbine cycle; 3. Evaporative gas turbine cycle. The braked efficiency of the gas turbine engine increased from 22% for the simple cycle to 35% for the evaporative cycle. The NO{sub x} was reduced by about 90% for the evaporative cycle compared to the simple cycle. Single digit NO{sub x} emission levels were measured in the normal operation interval using a simple diffusion flame combustion chamber operating on natural gas. However, the pilot plant has been optimised neither for best performance nor for best emissions values; instead the main goal was just to show an operable evaporative gas turbine unit and to verify performance calculations. During the work, a spin-off idea, the HAM-concept (Humid Air Motor), was introduced. In the HAM-concept, a turbo-charged reciprocate combustion engine is equipped with a humidification tower situated between the turbo-charger and the engine. This action reduces NO{sub x} emissions and raises the efficiency of the engine, and at the same time, operates as an online cleaning device of the engine. Today this concept has been demonstrated in a full scale marine retrofit application with good results. In fact, the HAM-concept is presently on the brink of being commercialised. In the struggle to find a good cogeneration solution of the evaporative cycles and at the same time to close the water loop completely, one new idea further arose. This new concept is presented for the first time in this thesis. The concept is called the 'The TRIGENERATION Technology' due to its possibility of offering three benefits from one cycle. These cycles will have the possibility of reaching higher than 100% total efficiency even if the performance calculations are based on the higher heating value of the fuel. Due to the stable and thermodynamically favourable way the pressurised humidification tower operates in evaporative cycles, its compactness, combined

  5. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  6. Evaporation in relation to hydrology

    NARCIS (Netherlands)

    Wartena, L.; Keijman, J.Q.; Bruijn, H.A.R. de; Bakel, P.J.T. van; Stricker, J.N.M.; Velds, C.A.

    1981-01-01

    In meteorology some topics enjoy particular interest from other disciplines. The interest of hydrologists for the evaporation of water is a case in point, understandably and rightly so. In fact, over the last few decades, hydrology has clearly done more than using meteorological knowledge thus

  7. Evaporation rate of nucleating clusters.

    Science.gov (United States)

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  8. Effects of Topography-driven Micro-climatology on Evaporation

    Science.gov (United States)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  9. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.

    Science.gov (United States)

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G

    2018-01-24

    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total

  10. Performance Improvement of a Radioactive Forced Circulation Evaporator System

    International Nuclear Information System (INIS)

    Zaki, A.A.; Hala, A.A.; Othman, E.A.

    2016-01-01

    Evaporation is a proven method for treatment of liquid radioactive wastes providing both good decontamination and high concentration. In a radioactive waste treatment plant a forced circulation evaporator is used to reduce the volume of radioactive liquid wastes arising from different applications of nuclear industries. The safe operation, limiting the composition of the liquid radioactive waste at a prescribed value, with high performance efficiency, requires good control for the evaporator operating pressure and the level of liquid waste inside the separator part of the evaporator. The aim of this work was to improve the safety and performance of a forced-circulation evaporator used in a liquid radioactive wastes treatment plant. In this respect, a level controller system for this type of evaporator was designed, where proportional (P), proportional Integral (PI) and deadbeat response controllers for the separator level system were suggested. More over, an ideal 2×2(2 inputs and 2 outputs )de coupler controller for controlling the operating pressure and the product composition was developed. Computer results demonstrated that the deadbeat response has been success fully obtained from the developed separator control system. The maximum over shoot in the unit-step response curve was reduce d to 25 % and the settling time also was reduced to more than the half; about 26 minutes using Ziegler-Nichols tuning technique.The designed de coupling controller has been found effective in achieving a good trade-off between stability and performance

  11. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  12. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  13. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  14. Prediction of the 21-cm signal from reionization: comparison between 3D and 1D radiative transfer schemes

    Science.gov (United States)

    Ghara, Raghunath; Mellema, Garrelt; Giri, Sambit K.; Choudhury, T. Roy; Datta, Kanan K.; Majumdar, Suman

    2018-05-01

    Three-dimensional radiative transfer simulations of the epoch of reionization can produce realistic results, but are computationally expensive. On the other hand, simulations relying on one-dimensional radiative transfer solutions are faster but limited in accuracy due to their more approximate nature. Here, we compare the performance of the reionization simulation codes GRIZZLY and C2-RAY which use 1D and 3D radiative transfer schemes, respectively. The comparison is performed using the same cosmological density fields, halo catalogues, and source properties. We find that the ionization maps, as well as the 21-cm signal maps from these two simulations are very similar even for complex scenarios which include thermal feedback on low-mass haloes. The comparison between the schemes in terms of the statistical quantities such as the power spectrum of the brightness temperature fluctuation agrees with each other within 10 per cent error throughout the entire reionization history. GRIZZLY seems to perform slightly better than the seminumerical approaches considered in Majumdar et al. which are based on the excursion set principle. We argue that GRIZZLY can be efficiently used for exploring parameter space, establishing observations strategies, and estimating parameters from 21-cm observations.

  15. Evaporative lithographic patterning of binary colloidal films.

    Science.gov (United States)

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  16. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  17. Evaporation of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Roman, C.E.; Garzon, I.L.

    1991-01-01

    Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)

  18. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.; Elwardani, Ahmed Elsaid; Gusev, Ivan G.; Xie, Jianfei; Shishkova, Irina N.; Cao, Bingyang; Snegirev, Alexander Yu.; Heikal, Morgan Raymond

    2013-01-01

    and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono

  19. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  20. An evaporation driven pump for microfluidics applications

    NARCIS (Netherlands)

    Nie, C.; Mandamparambil, R.; Frijns, A.J.H.; den Toonder, J.M.J.; Tadrist, L.; Graur, I.

    2014-01-01

    We present an evaporation driven micro-pump for micro fluidic applications on a foil. In such a device, the evaporation rate is controlled by the geometry of the channel outlet and its temperature. The evaporation is also influenced by environmental parameters such as air humidity and temperature.

  1. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  2. Duplex Tear Film Evaporation Analysis.

    Science.gov (United States)

    Stapf, M R; Braun, R J; King-Smith, P E

    2017-12-01

    Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system's dynamics.

  3. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    International Nuclear Information System (INIS)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C.; Trenti, Michele; Bradley, Larry D.; Stiavelli, Massimo; Oesch, Pascal A.; Holwerda, Benne W.; Shull, J. Michael

    2014-01-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin 2 of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin 2 of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m J ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M ⋆ =−20.15 −0.38 +0.29 , a faint-end slope of α=−1.87 −0.26 +0.26 , and a number density of log 10  ϕ ⋆ [Mpc −3 ]=−3.24 −0.24 +0.25 . Integrated down to M = –17.7, this luminosity function yields a luminosity density log 10  ϵ[erg s −1 Hz −1 Mpc −3 ]=25.52 −0.05 +0.05 . Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of reionization. By assuming theoretically motivated priors on the clumping factor and the photon

  4. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Bradley, Larry D.; Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, Pascal A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Holwerda, Benne W. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. Michael, E-mail: kschmidt@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States)

    2014-05-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin{sup 2} of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin{sup 2} of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m{sub J} ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M{sup ⋆}=−20.15{sub −0.38}{sup +0.29}, a faint-end slope of α=−1.87{sub −0.26}{sup +0.26}, and a number density of log{sub 10} ϕ{sup ⋆}[Mpc{sup −3}]=−3.24{sub −0.24}{sup +0.25}. Integrated down to M = –17.7, this luminosity function yields a luminosity density log{sub 10} ϵ[erg s{sup −1} Hz{sup −1} Mpc{sup −3}]=25.52{sub −0.05}{sup +0.05}. Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of

  5. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  6. Experimental results on evaporation waves

    Science.gov (United States)

    Grana Otero, Jose; Parra Fabian, Ignacio

    2010-11-01

    A liquid contained in a vertical glass tube is suddenly depressurized from a high initial pressure down to one for which the stable state is vapour, so vaporization sets off at the free surface. For large enough evaporation rates, the planar vapour-liquid interface is Darrieus-Landau unstable [1], leading to the interface surface rippling close to the instability threshold. Further increasing the initial to final pressure ratio brings about evaporation waves [2,3], in which a highly corrugated front propagates downwards into the liquid. A new experimental method is presented as well as some experimental results obtained by tracking the evolution of the front with a high speed camera. In addition, a number of new phenomena related to the dynamics of bubbles growth at the walls has been uncovered. In particular, a new mode of propagation of the evaporation front is found. In this mode the front originates from below the interface, so the propagation is upwards against gravity with a curved but smooth front.[4pt] [1] F. J. Higuera, Phys. Fluids, V. 30, 679 (1987).[0pt] [2] J.E.Shepherd and B.Sturtevant, J.Fluid Mech., V.121,379 (1982).[0pt] [3] P.Reinke and G.Yadigaroglu, Int.J.Multiph. Flow, V.27,1487 (2001).

  7. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  8. GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy)

    2017-01-20

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  9. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Daniel C.; Bowman, Judd [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Gugliucci, Nicole E.; Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  10. Liquid radioactive waste concentration by the method of evaporation from porous plates

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Karlin, Yu.V.; Maryakhin, M.A.; Myasnikov, Yu.G.; Slastennikov, Yu.T.

    2009-01-01

    As it is shown by bench-scale experiments radioactive effluents are concentrated to salt content 319 g/l at temperature lower, than evaporation temperature of water, and specific power inputs lower, than specific evaporation heat of water by 20 times. Results of tests at pilot plant (productivity to 43 kg/h by evaporation water) that is placed in mobile water purification unit ECO are described. This unit is used for radioactive water treatment from different organizations at SPU Radon

  11. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  12. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  13. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  14. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  15. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory; ANNUAL

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  16. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  17. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  18. From field evaporation to focused ion beams

    International Nuclear Information System (INIS)

    Forbes, R.G.

    2004-01-01

    Full text: This paper report various items of recent progress in the theory of field evaporation and the theory of the liquid-metal ion source. The research has, in part, been driven by a desire to find out how to reduce the beam-spot size in a focused ion beam machine, which is developing as a significant tool of nanotechnology. A major factor in determining beam spot size seems to be the behavior of the liquid-metal ion source (LMIS), and one route might be to reduce the minimum emission current of a LMIS, if this is possible. Theories of LMIS minimum emission current have been re-examined. Some progress has been made, but development of more accurate theory has been constrained by several factors, include the long-known limitations of the present theory of field evaporation (FEV). This, in turn, has stimulated a wider re-examination of FEV theory. As part of some general theoretical remarks, the following items of recent progress will be covered. Various results concerning the prediction of the field F e at which the activation energy Q for field evaporation is zero, including calculations in which vacuum electrostatic energy changes are taken into account, and another look at the views of Kingham and Tsong concerning escape charge-state. Some years ago, the following approximate formula was derived for the dependence of FEV activation energy on field F: Q=B(F e /F - 1) 2 . It has recently been possible to show that the parameter B can be estimated as B= βYΩ/8, where Y is Young's modulus, Ω is the atomic volume, and β is a correction factor of order. In the framework of the charge-draining mechanism, another look at how the activation-energy hump can be modelled, in order to predict/explain the conditions under which FEV becomes dominated by ion tunnelling rather than field evaporation. A review of the changes in LMIS theory that result from applying the equation of continuity to the metal/vacuum interface, including modifications to the theory of minimum

  19. Advanced multi-evaporator loop thermosyphon

    International Nuclear Information System (INIS)

    Mameli, M.; Mangini, D.; Vanoli, G.F.T.; Araneo, L.; Filippeschi, S.; Marengo, M.

    2016-01-01

    A novel prototype of multi-evaporator closed loop thermosyphon is designed and tested at different heaters position, inclinations and heat input levels, in order to prove that a peculiar arrangement of multiple heaters may be used in order to enhance the flow motion and consequently the thermal performance. The device consists in an aluminum tube (Inner/Outer tube diameter 3.0 mm/5.0 mm), bent into a planar serpentine with five U-turns and partially filled with FC-72, 50% vol. The evaporator zone is equipped with five heated patches (one for each U-turn) in series with respect to the flow path. In the first arrangement, heaters are wrapped on each bend symmetrically, while in the second layout heaters are located on the branch just above the U-turn, non-symmetrical with respect to the gravity direction, in order to promote the fluid circulation in a preferential direction. The condenser zone is cooled by forced air and equipped with a 50 mm transparent section for the flow pattern visualization. The non-symmetrical heater arrangement effectively promotes a stable fluid circulation and a reliable operation for a wider range of heat input levels and orientations with respect to the symmetrical case. In vertical position, the heat flux dissipation exceeds the pool boiling heat transfer limit for FC-72 by 75% and the tube wall temperatures in the evaporator zone are kept lower than 80 °C. Furthermore, the heat flux capability is up to five times larger with respect to the other existing wickless heat pipe technologies demonstrating the attractiveness of the new concept for electronic cooling thermal management. - Highlights: • A novel passive heat transfer device named Multi-Evaporator Loop Thermosyphon is tested. • The loop is investigated at different heating patterns, inclinations and heat power levels. • The non-symmetrical heating configuration promotes the fluid circulation within the loop. • The performance in terms of maximum heat flux exceeds the

  20. SPECTROSCOPIC CONFIRMATION OF z {approx} 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Pentericci, L.; Fontana, A.; Castellano, M.; Grazian, A.; Boutsia, K.; Giallongo, E.; Maiolino, R.; Paris, D.; Santini, P. [INAF Osservatorio Astronomico di Roma, Via Frascati 33,00040 Monteporzio (Italy); Vanzella, E.; Cristiani, S. [INAF Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34131 Trieste (Italy); Dijkstra, M. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Dickinson, M. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Giavalisco, M. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Moorwood, A., E-mail: laura.pentericci@oa-roma.inaf.it [European Southern Observatory, Karl-Schwarzschild Strasse, 85748 Garching (Germany)

    2011-12-20

    We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO Very Large Telescope (VLT) for the confirmation of z {approx_equal} 7 'z-band dropout' candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular, we report on two newly discovered galaxies at redshift {approx}6.7 in the New Technology Telescope Deep Field. Both galaxies show an Ly{alpha} emission line with rest-frame equivalent widths (EWs) of the order of 15-20 A and luminosities of (2-4) Multiplication-Sign 10{sup 42} erg s{sup -1}. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.6 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular, there is a significant lack of objects with intermediate Ly{alpha} EWs (between 20 and 55 A). We conclude that the observed trend for the rising fraction of Ly{alpha} emission in Lyman break galaxies from z {approx} 3 to z {approx} 6 is most probably reversed from z {approx} 6 to z {approx} 7. Explaining the observed rapid change in the Ly{alpha} emitter fraction among the dropout population with reionization requires a fast evolution of the neutral fraction of hydrogen in the universe. Assuming that the universe is completely ionized at z = 6 and adopting a set of semi-analytical models, we find that our data require a change of the neutral hydrogen fraction of the order of {Delta}{chi}{sub H{sub i}}{approx}0.6 in a time {Delta}z {approx} 1, provided that the escape fraction does not increase dramatically over the same redshift interval.

  1. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  2. Numerical study of the evaporation process and parameter estimation analysis of an evaporation experiment

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2010-05-01

    Full Text Available Evaporation is an important process in soil-atmosphere interaction. The determination of hydraulic properties is one of the crucial parts in the simulation of water transport in porous media. Schneider et al. (2006 developed a new evaporation method to improve the estimation of hydraulic properties in the dry range. In this study we used numerical simulations of the experiment to study the physical dynamics in more detail, to optimise the boundary conditions and to choose the optimal combination of measurements. The physical analysis exposed, in accordance to experimental findings in the literature, two different evaporation regimes: (i a soil-atmosphere boundary layer dominated regime (regime I close to saturation and (ii a hydraulically dominated regime (regime II. During this second regime a drying front (interface between unsaturated and dry zone with very steep gradients forms which penetrates deeper into the soil as time passes. The sensitivity analysis showed that the result is especially sensitive at the transition between the two regimes. By changing the boundary conditions it is possible to force the system to switch between the two regimes, e.g. from II back to I. Based on this findings a multistep experiment was developed. The response surfaces for all parameter combinations are flat and have a unique, localised minimum. Best parameter estimates are obtained if the evaporation flux and a potential measurement in 2 cm depth are used as target variables. Parameter estimation from simulated experiments with realistic measurement errors with a two-stage Monte-Carlo Levenberg-Marquardt procedure and manual rejection of obvious misfits lead to acceptable results for three different soil textures.

  3. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    Science.gov (United States)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  4. Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR

    Science.gov (United States)

    Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.

    2017-03-01

    We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z = 7.9-10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc-1 in the range z = 9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (I) residual side-lobe noise on calibration baselines, (II) leverage due to nonlinear effects, (III) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

  5. An Improved Statistical Point-source Foreground Model for the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S. G.; Trott, C. M.; Jordan, C. H. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia)

    2017-08-10

    We present a sophisticated statistical point-source foreground model for low-frequency radio Epoch of Reionization (EoR) experiments using the 21 cm neutral hydrogen emission line. Motivated by our understanding of the low-frequency radio sky, we enhance the realism of two model components compared with existing models: the source count distributions as a function of flux density and spatial position (source clustering), extending current formalisms for the foreground covariance of 2D power-spectral modes in 21 cm EoR experiments. The former we generalize to an arbitrarily broken power law, and the latter to an arbitrary isotropically correlated field. This paper presents expressions for the modified covariance under these extensions, and shows that for a more realistic source spatial distribution, extra covariance arises in the EoR window that was previously unaccounted for. Failure to include this contribution can yield bias in the final power-spectrum and under-estimate uncertainties, potentially leading to a false detection of signal. The extent of this effect is uncertain, owing to ignorance of physical model parameters, but we show that it is dependent on the relative abundance of faint sources, to the effect that our extension will become more important for future deep surveys. Finally, we show that under some parameter choices, ignoring source clustering can lead to false detections on large scales, due to both the induced bias and an artificial reduction in the estimated measurement uncertainty.

  6. An Improved Statistical Point-source Foreground Model for the Epoch of Reionization

    Science.gov (United States)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2017-08-01

    We present a sophisticated statistical point-source foreground model for low-frequency radio Epoch of Reionization (EoR) experiments using the 21 cm neutral hydrogen emission line. Motivated by our understanding of the low-frequency radio sky, we enhance the realism of two model components compared with existing models: the source count distributions as a function of flux density and spatial position (source clustering), extending current formalisms for the foreground covariance of 2D power-spectral modes in 21 cm EoR experiments. The former we generalize to an arbitrarily broken power law, and the latter to an arbitrary isotropically correlated field. This paper presents expressions for the modified covariance under these extensions, and shows that for a more realistic source spatial distribution, extra covariance arises in the EoR window that was previously unaccounted for. Failure to include this contribution can yield bias in the final power-spectrum and under-estimate uncertainties, potentially leading to a false detection of signal. The extent of this effect is uncertain, owing to ignorance of physical model parameters, but we show that it is dependent on the relative abundance of faint sources, to the effect that our extension will become more important for future deep surveys. Finally, we show that under some parameter choices, ignoring source clustering can lead to false detections on large scales, due to both the induced bias and an artificial reduction in the estimated measurement uncertainty.

  7. Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks

    Science.gov (United States)

    Schmit, C. J.; Pritchard, J. R.

    2018-03-01

    Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.

  8. New observations of z ∼ 7 galaxies: evidence for a patchy reionization

    International Nuclear Information System (INIS)

    Pentericci, L.; Fontana, A.; Castellano, M.; Grazian, A.; Galametz, A.; Giallongo, E.; Paris, D.; Santini, P.; Vanzella, E.; Treu, T.; Mesinger, A.; Dijkstra, M.; Bradač, M.; Conselice, C.; Cristiani, S.; Dunlop, J.; McLure, R.; Giavalisco, M.; Koekemoer, A.; Maiolino, R.

    2014-01-01

    We present new results from our search for z ∼ 7 galaxies from deep spectroscopic observations of candidate z dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only two galaxies have robust redshift identifications, one from its Lyα emission line at z = 6.65, the other from its Lyman break, i.e., the continuum discontinuity at the Lyα wavelength consistent with a redshift of 6.42 but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyα equivalent width derived from the nondetections in ultradeep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z ∼ 7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Lyα emission in z ∼ 7 Lyman-break galaxies compared to z ∼ 6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.

  9. Measuring patchy reionization with kSZ2-21 cm correlations

    Science.gov (United States)

    Ma, Q.; Helgason, K.; Komatsu, E.; Ciardi, B.; Ferrara, A.

    2018-05-01

    We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ) and 21 cm signals during the epoch of reionization (EoR) to measure the effects of patchy reionisation. Since the kSZ effect is proportional to the line-of-sight velocity, the kSZ-21 cm cross correlation suffers from cancellation at small angular scales. We thus focus on the correlation between the kSZ-squared field (kSZ2) and 21 cm signals. When the global ionization fraction is low (xe ≲ 0.7), the kSZ2 fluctuation is dominated by rare ionized bubbles, which leads to an anticorrelation with the 21 cm signal. When 0.8 ≲ xe primary cosmic microwave background (CMB) anisotropy. The expected signal-to-noise ratios for a ˜10-h integration of upcoming Square Kilometre Array data cross-correlated with maps from the current generation of CMB observatories with 3.4μK arcmin noise and 1.7 arcmin beam over 100 deg2 are 51, 60, and 37 for xe = 0.2, 0.5, and 0.9, respectively.

  10. A theoretical study of the spheroidal droplet evaporation in forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian

    2014-11-07

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.

  11. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Science.gov (United States)

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  12. A theoretical study of the spheroidal droplet evaporation in forced convection

    International Nuclear Information System (INIS)

    Li, Jie; Zhang, Jian

    2014-01-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet

  13. A New Microstructure Device for Efficient Evaporation of Liquids

    Science.gov (United States)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself cannot be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 7. A maximum power density of 1400 kW·m-2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapour is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.

  14. The evaporation of oil spills: prediction of equations using distillation data

    International Nuclear Information System (INIS)

    Fingas, M.

    1997-01-01

    The evaporative characteristics of 19 different crude oils and petroleum products were studied . Best-fit equation parameters were determined for percentage loss by time and absolute weight loss. Except in three cases, all oils were found to fit logarithmic curves. The equation constants were correlated with oil distillation data. Relationships enabling calculation of evaporation equations directly from distillation data have been developed. The high correlation of distillation data and evaporation data suggests that the two processes are analogous and that evaporation, like distillation, is largely governed by intrinsic oil properties rather than environmental properties such as boundary-layer factors

  15. Evaporative oxidation treatability test report

    International Nuclear Information System (INIS)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment

  16. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  17. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  18. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  19. Phases of information release during black hole evaporation

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2014-01-01

    In a recent article, we have shown how quantum fluctuations of the background geometry modify Hawking’s density matrix for black hole (BH) radiation. Hawking’s diagonal matrix picks up small off-diagonal elements whose influence becomes larger with the number of emitted particles. We have calculated the “time-of-first-bit', when the first bit of information comes out of the BH, and the “transparency time', when the rate of information release becomes order unity. We have found that the transparency time is equal to the “Page time”, when the BH has lost half of its initial entropy to the radiation, in agreement with Page’s results. Here, we improve our previous calculation by keeping track of the time of emission of the Hawking particles and their back-reaction on the BH. Our analysis reveals a new time scale, the radiation “coherence time”, which is equal to the geometric mean of the evaporation time and the light crossing time. We find, as for our previous treatment, that the time-of-first-bit is equal to the coherence time, which is much shorter than the Page time. But the transparency time is now much later than the Page time, just one coherence time before the end of evaporation. Close to the end, when the BH is parametrically of Planckian dimensions but still large, the coherence time becomes parametrically equal to the evaporation time, thus allowing the radiation to purify. We also determine the time dependence of the entanglement entropy of the early and late-emitted radiation. This entropy is small during most of the lifetime of the BH, but our qualitative analysis suggests that it becomes parametrically maximal near the end of evaporation

  20. Evaporation and condensation at a liquid surface. II. Methanol

    Science.gov (United States)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  1. Technical potential of evaporative cooling in Danish and European condition

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Andersen, Christian Hede; Heiselberg, Per Kvols

    2015-01-01

    Evaporative cooling is a very interesting high temperature cooling solution that has potential to save energy comparing to refrigerant cooling systems and at the same time provide more cooling reliability than mechanical or natural ventilation system without cooling. Technical cooling potential...... of 5 different evaporative systems integrated in the ventilation system is investigated in this article. Annual analysis is conducted based on hourly weather data for 15 cities located in Denmark and 123 European cities. Investigated systems are direct, indirect, combinations of direct and indirect...

  2. Evaporation rate measurement in the pool of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Cegalla, Miriam A.; Baptista Filho, Benedito Dias

    2000-01-01

    The surface water evaporation in pool type reactors affects the ventilation system operation and the ambient conditions and dose rates in the operation room. This paper shows the results of evaporation rate experiment in the pool of IEA-R1 research reactor. The experiment is based on the demineralized water mass variation inside cylindrical metallic recipients during a time interval. Other parameters were measured, such as: barometric pressure, relative humidity, environmental temperature, water temperature inside the recipients and water temperature in the reactor pool. The pool level variation due to water contraction/expansion was calculated. (author)

  3. Rates of collapse and evaporation of globular clusters

    Science.gov (United States)

    Hut, Piet; Djorgovski, S.

    1992-01-01

    Observational estimates of the dynamical relaxation times of Galactic globular clusters are used here to estimate the present rate at which core collapse and evaporation are occurring in them. A core collapse rate of 2 +/- 1 per Gyr is found, which for a Galactic age of about 12 Gyr agrees well with the fact that 27 clusters have surface brightness profiles with the morphology expected for the postcollapse phase. A destruction and evaporation rate of 5 +/- 3 per Gyr is found, suggesting that a significant fraction of the Galaxy's original complement of globular clusters have perished through the combined effects of mechanisms such as relaxation-driven evaporation and shocking due to interaction with the Galactic disk and bulge.

  4. Evaporation dynamics of completely wetting drops on geometrically textured surfaces

    Science.gov (United States)

    Mekhitarian, Loucine; Sobac, Benjamin; Dehaeck, Sam; Haut, Benoît; Colinet, Pierre

    2017-10-01

    This study deals with the evaporation dynamics of completely wetting and highly volatile drops deposited on geometrically textured but chemically homogeneous surfaces. The texturation consists in a cylindrical pillars array with a square pitch. The triple line dynamics and the drop shape are characterized by an interferometric method. A parametric study is realized by varying the radius and the height of the pillars (at fixed interpillar distance), allowing to distinguish three types of dynamics: i) an evaporation-dominated regime with a receding triple line; ii) a spreading-dominated regime with an initially advancing triple line; iii) a cross-over region with strong pinning effects. The overall picture is in qualitative agreement with a mathematical model showing that the selected regime mostly depends on the value of a dimensionless parameter comparing the time scales for evaporation and spreading into the substrate texture.

  5. Changes in the Composition of Aromatherapeutic Citrus Oils during Evaporation

    Directory of Open Access Journals (Sweden)

    George W. Francis

    2015-01-01

    Full Text Available The composition of some commercial Citrus oils, lemon, sweet orange, and tangerine, designated for aromatherapy, was examined before and after partial evaporation in a stream of nitrogen. The intact oils contained the expected mixtures of mono- and sesquiterpenes, with hydrocarbons dominating and lesser amounts of oxygenated analogues making up the remainder. Gas chromatography-mass spectrometry was used to follow alterations in the relative amounts of the various components present as evaporation proceeded. Changes were marked, and in particular more volatile components present in the intact oils rapidly disappeared. Thus the balance of content was shifted away from monoterpene hydrocarbons towards the analogous alcohols and carbonyl compounds. The results of this differential evaporation are discussed and possible consequences for aromatherapy use are noted. The case of lemon oil was especially interesting as the relative amount of citral, a known sensitizer, remaining as time elapsed represented an increasing percentage of the total oil.

  6. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  7. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  8. Is evaporative colling important for shallow clouds?

    Science.gov (United States)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  9. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  10. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi; Vella, Angela; Dé conihout, Bernard; Al-Kassab, Talaat

    2011-01-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  11. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  12. Imprints of quasar duty cycle on the 21cm signal from the Epoch of Reionization

    Science.gov (United States)

    Bolgar, Florian; Eames, Evan; Hottier, Clément; Semelin, Benoit

    2018-05-01

    Quasars contribute to the 21-cm signal from the Epoch of Reionization (EoR) primarily through their ionizing UV and X-ray emission. However, their radio continuum and Lyman-band emission also regulates the 21-cm signal in their direct environment, potentially leaving the imprint of their duty cycle. We develop a model for the radio and UV luminosity functions of quasars from the EoR, and constrain it using recent observations. Our model is consistent with the recent discovery of the quasar J1342+0928 at redshift ˜7.5, and also predicts only a few quasars suitable for 21-cm forest observations (˜10 mJy) in the sky. We exhibit a new effect on the 21-cm signal observed against the CMB: a radio-loud quasar can leave the imprint of its duty cycle on the 21-cm tomography. We apply this effect in a cosmological simulation and conclude that the effect of typical radio-loud quasars is most likely negligible in an SKA field of view. For a ˜10mJy quasar the effect is stronger though hardly observable at SKA resolution. Then we study the contribution of the lyman band (Ly-α to Ly-β) emission of quasars to the Wouthuisen-Field coupling. The collective effect of quasars on the 21-cm power spectrum is larger than the thermal noise at low k, though featureless. However, a distinctive pattern around the brightest quasars in an SKA field of view may be observable in the tomography, encoding the duration of their duty cycle. This pattern has a high signal-to-noise ratio for the brightest quasar in a typical SKA shallow survey.

  13. Analysing the 21 cm signal from the epoch of reionization with artificial neural networks

    Science.gov (United States)

    Shimabukuro, Hayato; Semelin, Benoit

    2017-07-01

    The 21 cm signal from the epoch of reionization should be observed within the next decade. While a simple statistical detection is expected with Square Kilometre Array (SKA) pathfinders, the SKA will hopefully produce a full 3D mapping of the signal. To extract from the observed data constraints on the parameters describing the underlying astrophysical processes, inversion methods must be developed. For example, the Markov Chain Monte Carlo method has been successfully applied. Here, we test another possible inversion method: artificial neural networks (ANNs). We produce a training set that consists of 70 individual samples. Each sample is made of the 21 cm power spectrum at different redshifts produced with the 21cmFast code plus the value of three parameters used in the seminumerical simulations that describe astrophysical processes. Using this set, we train the network to minimize the error between the parameter values it produces as an output and the true values. We explore the impact of the architecture of the network on the quality of the training. Then we test the trained network on the new set of 54 test samples with different values of the parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameters at a given redshift, that including thermal noise and sample variance decreases the quality of the reconstruction and that using the power spectrum at several redshifts as an input to the ANN improves the quality of the reconstruction. We conclude that ANNs are a viable inversion method whose main strength is that they require a sparse exploration of the parameter space and thus should be usable with full numerical simulations.

  14. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS

    International Nuclear Information System (INIS)

    Vedantham, Harish; Udaya Shankar, N.; Subrahmanyan, Ravi

    2012-01-01

    Tomography of redshifted 21 cm transition from neutral hydrogen using Fourier synthesis telescopes is a promising tool to study the Epoch of Reionization (EoR). Limiting the confusion from Galactic and extragalactic foregrounds is critical to the success of these telescopes. The instrumental response or the point-spread function (PSF) of such telescopes is inherently three dimensional with frequency mapping to the line-of-sight (LOS) distance. EoR signals will necessarily have to be detected in data where continuum confusion persists; therefore, it is important that the PSF has acceptable frequency structure so that the residual foreground does not confuse the EoR signature. This paper aims to understand the three-dimensional PSF and foreground contamination in the same framework. We develop a formalism to estimate the foreground contamination along frequency, or equivalently LOS dimension, and establish a relationship between foreground contamination in the image plane and visibility weights on the Fourier plane. We identify two dominant sources of LOS foreground contamination—'PSF contamination' and 'gridding contamination'. We show that PSF contamination is localized in LOS wavenumber space, beyond which there potentially exists an 'EoR window' with negligible foreground contamination where we may focus our efforts to detect EoR. PSF contamination in this window may be substantially reduced by judicious choice of a frequency window function. Gridding and imaging algorithms create additional gridding contamination and we propose a new imaging algorithm using the Chirp Z Transform that significantly reduces this contamination. Finally, we demonstrate the analytical relationships and the merit of the new imaging algorithm for the case of imaging with the Murchison Widefield Array.

  15. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    Science.gov (United States)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-04-01

    Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.

  16. FIRST OBSERVATIONAL SUPPORT FOR OVERLAPPING REIONIZED BUBBLES GENERATED BY A GALAXY OVERDENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M.; Pentericci, L.; Fontana, A.; Merlin, E.; Grazian, A.; Pilo, S.; Amorin, R.; Giallongo, E.; Guaita, L.; Paris, D. [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (RM) (Italy); Dayal, P. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hutter, A. [Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Brammer, G.; Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cristiani, S. [INAF—Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34143 Trieste (Italy); Dickinson, M. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Ferrara, A.; Gallerani, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Maiolino, R., E-mail: marco.castellano@oa-roma.inaf.it [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); and others

    2016-02-10

    We present an analysis of deep Hubble Space Telescope (HST) multi-band imaging of the BDF field specifically designed to identify faint companions around two of the few Lyα emitting galaxies spectroscopically confirmed at z ∼ 7. Although separated by only 4.4 proper Mpc these galaxies cannot generate H ii regions large enough to explain the visibility of their Lyα lines, thus requiring a population of fainter ionizing sources in their vicinity. We use deep HST and VLT-Hawk-I data to select z ∼ 7 Lyman break galaxies around the emitters. We select six new robust z ∼ 7 LBGs at Y ∼ 26.5–27.5 whose average spectral energy distribution is consistent with the objects being at the redshift of the close-by Lyα emitters. The resulting number density of z ∼ 7 LBGs in the BDF field is a factor of approximately three to four higher than expected in random pointings of the same size. We compare these findings with cosmological hydrodynamic plus radiative transfer simulations of a universe with a half neutral IGM: we find that indeed Lyα emitter pairs are only found in completely ionized regions characterized by significant LBG overdensities. Our findings match the theoretical prediction that the first ionization fronts are generated within significant galaxy overdensities and support a scenario where faint, “normal” star-forming galaxies are responsible for reionization.

  17. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  18. Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum

    Science.gov (United States)

    Sarkar, Debanjan; Bharadwaj, Somnath

    2018-05-01

    The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.

  19. Influences of surface and solvent on retention of HEMA/mixture components after evaporation.

    Science.gov (United States)

    Garcia, Fernanda C P; Wang, Linda; Pereira, Lúcia C G; de Andrade e Silva, Safira M; Júnior, Luiz M; Carrilho, Marcela Rocha de Oliveira

    2010-01-01

    This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 microl) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2mm x 2mm x 2mm) (n=5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (pevaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (pevaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation.

  20. Out-of-tank evaporator demonstration. Final report

    International Nuclear Information System (INIS)

    Lucero, A.J.; Jennings, H.L.; VanEssen, D.C.

    1998-02-01

    The project reported here was conducted to demonstrate a skid-mounted, subatmospheric evaporator to concentrate liquid low-level waste (LLLW) stored in underground tanks at Oak Ridge National Laboratory (ORNL). This waste is similar to wastes stored at Hanford and Savannah River. A single-stage subatmospheric evaporator rated to produce 90 gallons of distillate per hour was procured from Delta Thermal, Inc., of Pensacola, Florida, and installed in an existing building. During the 8-day demonstration, 22,000 gal of LLLW was concentrated by 25% with the evaporator system. Decontamination factors achieved averaged 5 x 10 6 (i.e., the distillate contained five million times less Cesium 137 than the feed). Evaporator performance substantially exceeded design requirements and expectations based on bench-scale surrogate test data. Out-of tank evaporator demonstration operations successfully addressed the feasibility of hands-on maintenance. Demonstration activities indicate that: (1) skid-mounted, mobile equipment is a viable alternative for the treatment of ORNL LLLW, and (2) hands-on maintenance and decontamination for movement to another site is achievable. Cost analysis show that 10% of the demonstration costs will be immediately recovered by elimination of solidification and disposal costs. The entire cost of the demonstration can be recovered by processing the inventory of Melton Valley Storage Tank waste and/or sluice water prior to solidifications. An additional savings of approximately $200,000 per year can be obtained by processing newly generated waste through the system. The results indicate that this type of evaporator system should be considered for application across the DOE complex. 25 refs., 11 figs., 2 tabs

  1. Technologies of Selective Energy Supply at Evaporation of Food Solutes

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2017-04-01

    Full Text Available The aim of the research is to create innovative evaporating equipment that can produce concentrates with a high content of solids, with a low level of thermal effects on raw materials. The significance of the solution of technological problems of the key process of food technologies - concentration of liquid solutions (juices, extracts, etc. is shown. Problems and scientific contradictions are formulated and the hypothesis on using of electromagnetic energy sources for direct energy transfer to solution’s moisture has been offered. The prospects of such an energy effect are proved by the energy management methods. The schemes of fuel energy conversion for the conventional thermal concentration technology and the innovative plant based on the electromagnetic energy generators are presented. By means of the similarity theory the obtained model is transformed to the criterial one depicted kinetic of evaporation process at the electromagnetic field action. The dimensionless capacity of the plant is expressed by the dependence between the Energetic effect number and relative moisture content. The scheme of automated experimental system for study of the evaporation process in the microwave field is shown. The experimental results of juice evaporation are presented. It has been demonstrated that the technologies of selective energy supply represent an effective tool for improvement of juice concentration evaporative plants. The main result of the research is design of the evaporator that allows reaching juice concentrates with °brix 95 at the temperature as low as 35 °С, i.e. 2…3 times superior than traditional technologies.

  2. Validating a new device for measuring tear evaporation rates.

    Science.gov (United States)

    Rohit, Athira; Ehrmann, Klaus; Naduvilath, Thomas; Willcox, Mark; Stapleton, Fiona

    2014-01-01

    To calibrate and validate a commercially available dermatology instrument to measure tear evaporation rate of contact lens wearers. A dermatology instrument was modified by attaching a swim goggle cup such that the cup sealed around the eye socket. Results for the unmodified instrument are dependent on probe area and enclosed volume. Calibration curves were established using a model eye, to account for individual variations in chamber volume and exposed area. Fifteen participants were recruited and the study included a contact lens wear and a no contact lens wear stage. Day and diurnal variation of the measurements were assessed by taking the measurement three times a day over 2 days. The coefficient of repeatability of the measurement was calculated and a linear mixed model assessed the influence of humidity, temperature, contact lens wear, day and diurnal variations on tear evaporation rate. The associations between variables were assessed using Pearson correlation coefficient. Absolute evaporation rates with and without contact lens wear were calculated based on the new calibration. The measurements were most repeatable during the evening with no lens wear (COR = 49 g m⁻² h) and least repeatable during the evening with contact lens wear (COR = 93 g m⁻² h). Humidity (p = 0.007), and contact lens wear (p evaporation rate. However, temperature (p = 0.54) diurnal variation (p = 0.85) and different days (p = 0.65) had no significant effect after controlling for humidity. Tear evaporation rates can be measured using a modified dermatology instrument. Measurements were higher and more variable with lens wear consistent with previous literature. Control of environmental conditions is important as a higher humidity results in a reduced evaporation rate. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  3. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  4. Organic evaporator steam valve failure

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)

  5. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  6. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  7. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  8. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  9. Molecular characterization and volatility evolution of α-pinene ozonolysis SOA during isothermal evaporations

    Science.gov (United States)

    D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.

  10. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  11. Sequence crystallization during isotherm evaporation of southern ...

    African Journals Online (AJOL)

    Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple solar evaporation. Indeed, during isothermal solar evaporation, it is possible to recover mineral salts and to determine the precipitation sequences of different ...

  12. Odors from evaporation of acidified pig urine

    NARCIS (Netherlands)

    Willers, H.C.; Hobbs, P.J.; Ogink, N.W.M.

    2004-01-01

    In the Dutch Hercules project feces and urine from pigs are collected separately underneath the slatted floor in a pig house and treated in two processes. Feces are composted and urine is concentrated by water evaporation in a packed bed. Exhaust air from the pig house is used for the evaporation in

  13. 21 CFR 131.130 - Evaporated milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a...

  14. Water evaporation: a transition path sampling study.

    Science.gov (United States)

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  15. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  16. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Zevenbergen, M.A.G.; Toonder, den J.M.J.

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30–250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  17. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  18. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  19. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  20. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  1. Floating convection barrier for evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    A floating matrix of titanium in an uranium evaporation source, melted by an electron beam, serves as a barrier for preventing cooler material from reaching the evaporation area. This construction allows a big volume of melted uranium to be present and new uranium to be furnished in regulated intervals without manual intervention

  2. Structuring of polymer solutions upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; van der Schoot, P.|info:eu-repo/dai/nl/102140618; Michels, J. J.

    2015-01-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench

  3. Evaporation experiments and modelling for glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.

    2007-01-01

    A laboratory test facility has been developed to measure evaporation rates of different volatile components from commercial and model glass compositions. In the set-up the furnace atmosphere, temperature level, gas velocity and batch composition are controlled. Evaporation rates have been measured

  4. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  5. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  6. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  7. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  8. New and conventional evaporative systems in concentrating nitrogen samples prior to isotope-ratio analysis

    International Nuclear Information System (INIS)

    Lober, R.W.; Reeder, J.D.; Porter, L.K.

    1987-01-01

    Studies were conducted to quantify and compare the efficiencies of various evaporative systems used in evaporating 15 N samples prior to mass spectrometric analysis. Two new forced-air systems were designed and compared with a conventional forced-air system and with an open-air dry bath technique for effectiveness in preventing atmospheric contamination of evaporating samples. The forced-air evaporative systems significantly reduced the time needed to evaporate samples as compared to the open-air dry bath technique; samples were evaporated to dryness in 2.5 h with the forced-air systems as compared to 8 to 10 h on the open-air dry bath. The effectiveness of a given forced-air system to prevent atmospheric contamination of evaporating samples was significantly affected by the flow rate of the air stream flowing over the samples. The average atmospheric contaminant N found in samples evaporated on the open-air dry bath was 0.3 μ N, indicating very low concentrations of atmospheric NH 3 during this study. However, in previous studies the authors have experienced significant contamination of 15 N samples evaporated on an open-air dry bath because the level of contaminant N in the laboratory atmosphere varied and could not be adequately controlled. Average cross-contaminant levels of 0.28, 0.20, and 1.01 μ of N were measured between samples evaporated on the open-air dry bath, the newly-designed forced-air system, and the conventional forced-air system, respectively. The cross-contamination level is significantly higher on the conventional forced-air system than on the other two systems, and could significantly alter the atom % 15 N of high-enriched, low [N] evaporating samples

  9. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  10. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  11. Transient Stefan flow and thermophoresis around an evaporating droplet

    International Nuclear Information System (INIS)

    Vittori, O.

    1984-01-01

    The particle scavening efficiency of vapour-grown ice crystals falling from mixed clouds proves to be very high. Stefan flow, an aerodynamic flow originating in the fluid surrounding evaporating or condensing bodies, pushes airborne particles away from the surface of the supercooled droplets evaporating in the vicinity of an ice crystal. The particle Brownian flux towards the surface of the ice crystal (terminal velocity of about 1 m s -1 ) is, therefore, enhanced. However, the efficiency of this process of airborne-particle removal is strongly reduced as a consequence of the cooling of the evaporating droplet which produces a ''thermal force'', thermophoresis, which counteracts the particle Stefan flow. At the surface of an evaporating droplet in a quasi-equilibrium state, the two airborne-particle velocity fields practically balance each other. This counteracting effect on particle motion needs to be evaluated in the transient case. An approach is presented which consists of reformulating the transient heat and mass transfer problem in such a way as to convert it into a purely heat transfer problem having a known analytical solution. The approach is discussed and found to be correct. The results of the computations show that the counteracting role of thermophoresis on Stefan-flow particle motion during the residence time of supercooled droplets in the vicinity of an ice crystal (from 10 -5 to 10 -4 s), which is also the time in which evaporation takes place, is considerably weak. It turns out to be practically negligible for large droplets (radius >= 8x10 -4 cm)

  12. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  13. Sodium evaporation into a forced argon flow, (1)

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1976-01-01

    Measurements were made on the rate of evaporation from a rectangular-shaped free surface of liquid sodium into argon flow. Tests were carried out at various levels of sodium temperature, of argon velocity and of argon temperature, under conditions where fog formation could be expected. To gain information on the enhancement of evaporation occasioned by fog formation, a supplementary experiment was performed on convection heat transfer into flowing air from a heated plate of the same geometry as the free surface of the sodium in the preceding measurements. The values obtained for the rate of evaporation and Sherwood number were compared with those predicted by the heat transfer experiment and by the theory by Hill and Szekely. The overall results revealed that the rate of sodium evaporation can amount to as much as three times that predicted by the heat transfer experiment, and that it varies roughly linearly with the heat transfer rate and with the sodium vapor pressure prevailing at the free surface. (auth.)

  14. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  15. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C. [Physics Dept., U. Washington, Seattle, WA (United States); Ali, Zaki S.; Parsons, Aaron R.; Cheng, Carina; Liu, Adrian [Astronomy Dept., University of California, Berkeley, CA (United States); McQuinn, Matthew [Astronomy Dept., University of Washington, Seattle, WA (United States); Aguirre, James E.; Kohn, Saul A. [Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bernardi, Gianni; Grobbelaar, Jasper; Horrell, Jasper; Maree, Matthys [Square Kilometre Array South Africa (SKA SA), Pinelands (South Africa); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Obs., Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Furlanetto, Steven R. [Dept. of Physics and Astronomy, University of California, Los Angeles, CA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Obs., Charlottesville, VA (United States); and others

    2015-08-10

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK{sup 2} can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.

  16. Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results

    International Nuclear Information System (INIS)

    Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.

    1996-01-01

    Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration

  17. The evaporation of the charged and uncharged water drops

    Indian Academy of Sciences (India)

    Drop evaporation; ventilation coefficient; evaporation-effect of electrical forces. ... to study the effect of ventilation on the rate of evaporation of the millimeter sized ... a ventilated drop to reach its equilibrium temperature increases with the drop ...

  18. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  19. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  20. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    International Nuclear Information System (INIS)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-01-01

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK 2 ). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK) 2 for k = 0.27 h Mpc –1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  1. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  2. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  3. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.

    1986-01-01

    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  4. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  5. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  6. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  7. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  8. Thermocapillary flow about an evaporating meniscus

    Science.gov (United States)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  9. Some cosmological consequences of primordial black-hole evaporations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1976-01-01

    According to Hawking, primordial black holes of less than 10 15 g would have evaporated by now. This paper examines the way in which small primordial black holes could thereby have contributed to the background density of photons, nucleons, neutrinos, electrons, and gravitons in the universe. Any photons emitted late enough should maintain their emission temperature apart from a redshift effect: it is shown that the biggest contribution should come from primordial black holes of about 10 15 g, which evaporate in the present era, and it is argued that observations of the γ-ray background indicate that primordial black holes of this size must have a mean density less than 10 -8 times the critical density. Photons which were emitted sufficiently early to be thermalized could, in principle, have generated the 3 K background in an initially cold universe, but only if the density fluctuations in the early universe had a particular form and did not extend up to a mass scale of 10 15 g. Primordial black holes of less than 10 14 g should emit nucleons: it is shown that such nucleons could not contribute appreciably to the cosmic-ray background. However, nucleon emission could have generated the observed number density of baryons in an initially baryon-symmetric universe, provided some CP-violating process operates in black hole evaporations such that more baryons are always produced than antibaryons. We predict the spectrum of neutrinos, electrons, and gravitons which should result from primordial black-hole evaporations and show that the observational limits on the background electron flux might place a stronger limitation on the number of 10 15 g primordial black holes than the γ-ray observations. Finally, we examine the limits that various observations place on the strength of any long-range baryonic field whose existence might be hypothesized as a means of preserving baryon number in black-hole evaporations

  10. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  11. Century Scale Evaporation Trend: An Observational Study

    Science.gov (United States)

    Bounoui, Lahouari

    2012-01-01

    Several climate models with different complexity indicate that under increased CO2 forcing, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency between models and observations suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We have analyzed century-scale observed annual runoff and precipitation time-series over several United States Geological Survey hydrological units covering large forested regions of the Eastern United States not affected by irrigation. Both time-series exhibit a positive long-term trend; however, in contrast to model results, these historic data records show that the rate of precipitation increases at roughly double the rate of runoff increase. We considered several hydrological processes to close the water budget and found that none of these processes acting alone could account for the total water excess generated by the observed difference between precipitation and runoff. We conclude that evaporation has increased over the period of observations and show that the increasing trend in precipitation minus runoff is correlated to observed increase in vegetation density based on the longest available global satellite record. The increase in vegetation density has important implications for climate; it slows but does not alleviate the projected warming associated with greenhouse gases emission.

  12. Radioactive Waste Evaporation: Current Methodologies Employed for the Development, Design, and Operation of Waste Evaporators at the Savannah River Site and Hanford Waste Treatment Plant

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2003-01-01

    Evaporation of High level and Low Activity (HLW and LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The cross pollination and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The cross pollination of technologies and methods is expected to benefit the Department of Energy's Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes

  13. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  14. Transhorizon Radiowave Propagation due to Evaporation Dueting

    Indian Academy of Sciences (India)

    from the meteorological perspective, evaporation ducts have far reaching implications on radio communications ... Background Theory ... It is in this context that the tropo- .... eters that are representative of the ongoing physical processes at.

  15. Influence of Evaporation on Soap Film Rupture.

    Science.gov (United States)

    Champougny, Lorène; Miguet, Jonas; Henaff, Robin; Restagno, Frédéric; Boulogne, François; Rio, Emmanuelle

    2018-03-13

    Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text]. At first order, the environmental humidity seems to have almost no impact on most of the film thinning dynamics. However, we find that the film length at rupture increases continuously with [Formula: see text]. To rationalize our observations, we propose that film bursting occurs when the thinning due to evaporation becomes comparable to the thinning due to liquid drainage. This rupture criterion turns out to be in reasonable agreement with an estimation of the evaporation rate in our experiment.

  16. Evaporation analysis for Tank SX-104

    International Nuclear Information System (INIS)

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation

  17. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  18. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  19. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.

    2014-01-01

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  20. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  1. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  2. Modelling of spray evaporation and penetration for alternative fuels

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressu...

  3. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves

    Science.gov (United States)

    Cao, Li-Dong; Zheng, Li; Xu, Jun; Li, Feng-Min; Huang, Qi-Liang

    2017-01-01

    The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture. PMID:28472108

  4. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  5. Evaporation of Lennard-Jones fluids.

    Science.gov (United States)

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  6. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  7. Semiclassical Approach to Black Hole Evaporation

    OpenAIRE

    Lowe, David A.

    1992-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are fou...

  8. Towards a rational definition of potential evaporation

    OpenAIRE

    Lhomme, Jean-Paul

    1997-01-01

    International audience; The concept of potential evaporation is defined on the basis of the following criteria: (i) it must establish an upper limit to the evaporation process in a given environment (the term "environment" including meteorological and surface conditions), and (ii) this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (i...

  9. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  10. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  11. Microdroplet evaporation in closed digital microfluidic biochips

    International Nuclear Information System (INIS)

    Ahmadi, Ali; Buat, Matthew D; Hoorfar, Mina

    2013-01-01

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  12. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  13. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  14. Measurement of an Evaporating Drop on a Reflective Substrate

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  15. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  16. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.; Mü nch, Andreas

    2013-01-01

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  17. Assembling the Infrared Extragalactic Background Light with CIBER-2: Probing Inter-Halo Light and the Epoch of Reionization.

    Science.gov (United States)

    Bock, James

    We propose to carry out a program of observations with the Cosmic Infrared Background Experiment (CIBER-2). CIBER-2 is a near-infrared sounding rocket experiment designed to measure spatial fluctuations in the extragalactic background light. CIBER-2 scientifically follows on the detection of fluctuations with the CIBER-1 imaging instrument, and will use measurement techniques developed and successfully demonstrated by CIBER-1. With high-sensitivity, multi-band imaging measurements, CIBER-2 will elucidate the history of interhalo light (IHL) production and carry out a deep search for extragalactic background fluctuations associated with the epoch of reionization (EOR). CIBER-1 has made high-quality detections of large-scale fluctuations over 4 sounding rocket flights. CIBER-1 measured the amplitude and spatial power spectrum of fluctuations, and observed an electromagnetic spectrum that is close to Rayleigh-Jeans, but with a statistically significant turnover at 1.1 um. The fluctuations cross-correlate with Spitzer images and are significantly bluer than the spectrum of the integrated background derived from galaxy counts. We interpret the CIBER-1 fluctuations as arising from IHL, low-mass stars tidally stripped from their parent galaxies during galaxy mergers. The first generation of stars and their remnants are likely responsible for the for the reionization of the intergalactic medium, observed to be ionized out to the most distant quasars at a redshift of 6. The total luminosity produced by first stars is uncertain, but a lower limit can be placed assuming a minimal number of photons to produce and sustain reionization. This 'minimal' extragalactic background component associated with reionization is detectable in fluctuations at the design sensitivity of CIBER-2. The CIBER-2 instrument is optimized for sensitivity to surface brightness in a short sounding rocket flight. The instrument consists of a 28 cm wide-field telescope operating in 6 spectral bands

  18. The variance of dispersion measure of high-redshift transient objects as a probe of ionized bubble size during reionization

    Science.gov (United States)

    Yoshiura, Shintaro; Takahashi, Keitaro

    2018-01-01

    The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.

  19. On the link between potential evaporation and regional evaporation from a CBL perspective

    Science.gov (United States)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  20. EVAPORATION FORM OF ICE CRYSTALS IN SUBSATURATED AIR AND THEIR EVAPORATION MECHANISM

    OpenAIRE

    ゴンダ, タケヒコ; セイ, タダノリ; Takehiko, GONDA; Tadanori, SEI

    1987-01-01

    The evaporation form and the evaporation mechanism of dendritic ice crystals grown in air of 1.0×(10)^5 Pa and at water saturation and polyhedral ice crystals grown in air of 4.0×10 Pa and at relatively low supersaturation are studied. In the case of dendritic ice crystals, the evaporation preferentially occurs in the convex parts of the crystal surfaces and in minute secondary branches. On the other hand, in the case of polyhedral ice crystals, the evaporation preferentially occurs in the pa...

  1. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  2. Leaf surface wetness and evaporation studies with a β-ray gauge

    International Nuclear Information System (INIS)

    Barthakur, N.N.

    1984-01-01

    Surface wetness duration was measured by a β-ray gauge as a function of wind velocity in the laboratory. The instrument was field-tested as a dewmeter over a wax bean canopy. Diurnal variations of the net count rate through a turgid tobacco leaf measured by a β-ray gauge system corresponded with the stomatal movement. The approximate exponential relationship of the transmission of β-particles with absorber thickness was found acceptable to study rates of evaporation from free water and through pores. The cumulative rate of evaporation of free water varied linearly with time. Three distinct stages of evaporation rates were observed through a porous medium. (author)

  3. Formation and evaporation of an electrically charged black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Modesto, Leonardo [Southern University of Science and Technology, Department of Physics, Shenzhen (China); Porey, Shiladitya [Novosibirsk State University, Novosibirsk (Russian Federation); Rachwal, Leslaw [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2018-02-15

    Extending previous work on the formation and the evaporation of black holes in conformal gravity, in the present paper we study the gravitational collapse of a spherically symmetric and electrically charged thin shell of radiation. The process creates a singularity-free black hole. Assuming that in the evaporation process the charge Q is constant, the final product of the evaporation is an extremal remnant with M = Q, which is reached in an infinite amount of time. We also discuss the issue of singularity and thermodynamics of black holes in Weyl's conformal gravity. (orig.)

  4. Evaporation of Water Droplets on “Lock-and-Key” Structures with Nanoscale Features

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Zhang, Chi; Liu, Xiaohan

    2012-01-01

    Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with “lock-and-key” properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been...... investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning–shrinking transition is essentially...

  5. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  6. Effects of maternal inhalation of gasoline evaporative ...

    Science.gov (United States)

    In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le

  7. Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  8. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  9. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  10. YBCO coated conductors by reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Schmatz, U.; Hoffmann, Ch.; Bauer, M.; Metzger, R.; Berberich, P.; Kinder, H. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2001-12-01

    Coated tape conductors of YBCO require a deposition process allowing to obtain a high volume growth rate in order to produce long lengths of tape in a reasonable amount of time. We present our tape coating system where 15 parallel loops of travelling tape of 1 cm width can be coated simultaneously by reactive thermal co-evaporation. For high critical current densities, in-plane alignment of the YBCO film is necessary. Inclined substrate deposition (ISD) is a technique that allows to deposit in-plane oriented buffer layers suitable for YBCO growth at high deposition rates. We present results obtained for YBCO films grown on MgO-ISD buffer layers deposited by e-gun evaporation onto metallic tape substrates. (orig.)

  11. On the Increase in Evaporation, Climate Change Dissent

    Science.gov (United States)

    DeVore, M. E.

    2017-12-01

    To better understand the effects of global warming, I analyzed the Pan Evaporation Rate and Precipitation data in the Global Historical Climatology Dataset provided by NOAA. With this data, I show a clear increase in temperature resulting in an anomaly in the Pan Evaporation Rate that is then confirmed in the analysis of the precipitation dataset. In comparing the behavior of the data before 2005 to the data from 2005 and later, I will show a significant change that warrents greater investigation. In particular, I will show how the behavior of the NOAA data closely correlates with that of Solar Cycle 24, as opposed to other man-made causes as suggested by current theory. Due to the distinct nature and timing of the anomaly, this analysis of the NOAA data set provides a counter-argument to anthropogenic climate change.

  12. Specialized moisture retention eyewear for evaporative dry eye.

    Science.gov (United States)

    Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis

    2015-05-01

    To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p eyes improved significantly (p dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.

  13. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  14. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  16. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. An experimental investigation of evaporating sessile droplet on super-hydrophobic surface

    International Nuclear Information System (INIS)

    Shin, Dong Hwan; Lee, Seong Hyuk; Yoo, Jung Yul

    2008-01-01

    The objective of this study is to investigate the evaporation process of a water droplet on hydrophobic and hydrophilic surfaces. Time-dependent contact angle, height, radius, surface area, and volume were measured for three different surfaces, such as glass, OctadecylTrichloroSilane(OTS), and AlkylKetene Dimmer(AKD) using a digital image analysis technique. For hydrophilic surfaces, the measured contact angle, liquid volume, and height are also compared with numerical estimation. It is found that for super-hydrophobic surfaces, the contact line becomes no longer pinned during evaporation, and three distinct stages for hydrophobic surface cannot be found. For the super-hydrophobic surface, it takes the longest time for evaporation because the droplet maintains spherical shape even near the end of evaporation process

  18. The influence of droplet evaporation on fuel-air mixing rate in a burner

    Science.gov (United States)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  19. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    Science.gov (United States)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  20. The Evaporation of Liquid Micro-Drops on the Heated Substrate

    Directory of Open Access Journals (Sweden)

    Semenov Andrey

    2017-01-01

    Full Text Available Evaporation of a heated sessile water micro-drop was studied experimentally at the substrate temperature and surrounding atmosphere from 30 to 50 °C. The studies were performed on the float glass substrate with aluminum nanocoating of optical quality. The research has shown that the specific rate of evaporation (mass loss per unit of the drop surface area increases with the decrease in droplet volume and at the last stage several times exceeds the initial value.

  1. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  2. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo droplet

    NARCIS (Netherlands)

    Tan, H.; Diddens, C.; Lv, P.; Kuerten, J.G.M.; Zhang, X.; Lohse, D.

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  3. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NARCIS (Netherlands)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J.G.M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  4. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  5. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  6. KEPLER PLANETS: A TALE OF EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Owen, James E. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  7. KEPLER PLANETS: A TALE OF EVAPORATION

    International Nuclear Information System (INIS)

    Owen, James E.; Wu, Yanqin

    2013-01-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕ . Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and

  8. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  10. Evaporation rate of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  11. Evaluation of multiple satellite evaporation products in two dryland regions using GRACE

    KAUST Repository

    Lopez, Oliver

    2015-12-01

    Remote sensing has become a valuable tool for monitoring the water cycle variables in areas that lack the availability of ground-based measurements. Integrating multiple remote sensing-based estimates of evaporation, precipitation, and the terrestrial water storage changes with local measurements of streamflow into a consistent estimate of the regional water budget is a challenge, due to the scale mismatch among the retrieved variables. Evapotranspiration, including soil evaporation, interception losses and canopy transpiration, has received special focus in a number of recent studies that aim to provide global or regional estimates of evaporation at regular time intervals using a variety of remote sensing input. In arid and semi-arid regions, modeling of evaporation is particularly challenging due to the relatively high role of the soil evaporation component in these regions and the variable nature of rainfall events that drive the evaporation process. In this study, we explore the hydrological consistency of remote sensing products in terms of water budget closure and the correlation among spatial patterns of precipitation (P), evaporation (E) and terrestrial water storage, using P-E as a surrogate of water storage changes, with special attention to the evaporation component. The analysis is undertaken within two dryland regions that have presented recent significant changes in climatology (Murray-Darling Basin in Australia) and water storage (the Saq aquifer in northern Saudi Arabia). Water storage changes were derived from the Gravity Recovery and Climate Experiment (GRACE) spherical harmonic (SH) coefficients. Six remote sensing-based evaporation estimates were subtracted from the Global Precipitation Climatology Project (GPCP)-based precipitation estimates and were compared with GRACE-derived water storage changes. Our results suggest that it is not possible to close the water balance by using satellite data alone, even when adopting a spherical harmonic

  12. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    Science.gov (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  13. Evaporation and abstraction determined from stable isotopes during normal flow on the Gariep River, South Africa

    Science.gov (United States)

    Diamond, Roger E.; Jack, Sam

    2018-04-01

    Changes in the stable isotope composition of water can, with the aid of climatic parameters, be used to calculate the quantity of evaporation from a water body. Previous workers have mostly focused on small, research catchments, with abundant data, but of limited scope. This study aimed to expand such work to a regional or sub-continental scale. The first full length isotope survey of the Gariep River quantifies evaporation on the river and the man-made reservoirs for the first time, and proposes a technique to calculate abstraction from the river. The theoretically determined final isotope composition for an evaporating water body in the given climate lies on the empirically determined local evaporation line, validating the assumptions and inputs to the Craig-Gordon evaporation model that was used. Evaporation from the Gariep River amounts to around 20% of flow, or 40 m3/s, of which about half is due to evaporation from the surface of the Gariep and Vanderkloof Reservoirs, showing the wastefulness of large surface water impoundments. This compares well with previous estimates based on evapotranspiration calculations, and equates to around 1300 GL/a of water, or about the annual water consumption of Johannesburg and Pretoria, where over 10 million people reside. Using similar evaporation calculations and applying existing transpiration estimates to a gauged length of river, the remaining quantity can be attributed to abstraction, amounting to 175 L/s/km in the lower middle reaches of the river. Given that high water demand and climate change are global problems, and with the challenges of maintaining water monitoring networks, stable isotopes are shown to be applicable over regional to national scales for modelling hydrological flows. Stable isotopes provide a complementary method to conventional flow gauging for understanding hydrology and management of large water resources, particularly in arid areas subject to significant evaporation.

  14. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    Science.gov (United States)

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848

  15. Drivers of atmospheric evaporative demand during African droughts

    Science.gov (United States)

    Blakeley, S. L.; Harrison, L.; Hobbins, M.; Dewes, C.; Funk, C. C.; Shukla, S.; Husak, G. J.

    2017-12-01

    Seeking to advance the practice of famine early warning across sub-Saharan Africa we illuminate past drivers of high-impact droughts to gain a better understanding of the evaporative processes involved in drought dynamics. Atmospheric evaporative demand (ETo) is often used to estimate plant water balance and drought impacts to vegetation, and previously demonstrated linkages between precipitation, temperature, and ETo need to be better understood. This work is timely as new data streams will enable near-real-time monitoring of ETo and incorporation of ETo forecasts into seasonal outlooks for African growing seasons. For historical droughts during major growing seasons in sub-Saharan Africa, we evaluate ETo and identify main drivers for drought cases-identified based on below-normal precipitation during the wettest three months of the growing season-and contrast these with the ETo drivers that dominate in wetter years (we also consider droughts triggered by above normal ETo). Our focus is on regions of Africa where adequate precipitation is important for productive agriculture and pastoral activities and where evaporative demand might exacerbate moisture limitations. It is expected that important ETo drivers are partly connected with precipitation-related processes but that there are variations between regions and events. The goal here is to provide a generalized understanding of what aspects of evaporative demand historically have posed an additional hazard to plant stress and how precipitation outcomes are responsible for the ETo drivers. In addition, we explore whether there have been discernible changes through time in regard to ETo drivers during below-normal precipitation seasons. Upper and lower terciles of CHIRPS precipitation are used to identify anomalous dry and wet cases. The ETo dataset spans the 1980-near present period and is calculated following ASCE's formulation of Penman-Monteith method driven by daily temperature, humidity, wind speed, and solar

  16. The characteristic of evaporative cooling magnet for ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, B., E-mail: xiongbin@mail.iee.ac.cn [Institute of Electrical Engineering, CAS, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ruan, L.; Gu, G. B. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Lu, W.; Zhang, X. Z.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2016-02-15

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  17. Determination of the evaporation coefficient of D2O

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2008-11-01

    Full Text Available The evaporation rate of D2O has been determined by Raman thermometry of a droplet train (12–15 μm diameter injected into vacuum (~10-5 torr. The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient (γe of 0.57±0.06. This is nearly identical to that found for H2O (0.62±0.09 using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition-state theory (TST model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  18. Evaporation Limited Radial Capillary Penetration in Porous Media.

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  19. The characteristic of evaporative cooling magnet for ECRIS

    Science.gov (United States)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  20. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    Science.gov (United States)

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence.

  1. Evaporation process in histological tissue sections for neutron autoradiography.

    Science.gov (United States)

    Espector, Natalia M; Portu, Agustina; Santa Cruz, Gustavo A; Saint Martin, Gisela

    2018-05-01

    The analysis of the distribution and density of nuclear tracks forming an autoradiography in a nuclear track detector (NTD) allows the determination of 10 B atoms concentration and location in tissue samples from Boron Neutron Capture Therapy (BNCT) protocols. This knowledge is of great importance for BNCT dosimetry and treatment planning. Tissue sections studied with this technique are obtained by cryosectioning frozen tissue specimens. After the slicing procedure, the tissue section is put on the NTD and the sample starts drying. The thickness varies from its original value allowing more particles to reach the detector and, as the mass of the sample decreases, the boron concentration in the sample increases. So in order to determine the concentration present in the hydrated tissue, the application of corrective coefficients is required. Evaporation mechanisms as well as various factors that could affect the process of mass variation are outlined in this work. Mass evolution for tissue samples coming from BDIX rats was registered with a semimicro analytical scale and measurements were analyzed with software developed to that end. Ambient conditions were simultaneously recorded, obtaining reproducible evaporation curves. Mathematical models found in the literature were applied for the first time to this type of samples and the best fit of the experimental data was determined. The correlation coefficients and the variability of the parameters were evaluated, pointing to Page's model as the one that best represented the evaporation curves. These studies will contribute to a more precise assessment of boron concentration in tissue samples by the Neutron Autoradiography technique.

  2. Isotopic fractionation of soil water during evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1974-07-01

    The study of the variation of D/H relation in soil water during evaporation is studied. The isotopic fractionation of soil water has been observed in two soils of light and heavy texture. Soil columns were utilized. Soil water was extracted in a system operated under low pressure and the gaseous hydrogen was obtained by decomposition of the water and was analyzed in a GD-150 mass spectrometer for deuterium content. The variation of the delta sub(eta) /sup 0///sub 00/ value during evaporation showed that for water held at potentials below 15 atm, the deuterium content of soil water stays practically constant. For water held at potentials higher than 15 atm, corresponding to the third stage of evaporation, there is a strong tendency of a constant increase of delta sub(eta) /sup 0///sub 00/ of the remaining water.

  3. Field evaporation test of uranium tailings solution

    International Nuclear Information System (INIS)

    Chandler, B.L.; Shepard, T.A.; Stewart, T.A.

    1985-01-01

    A field experiment was performed to observe the effect on evaporation rate of a uranium tailings impoundment pond water as salt concentration of the water increased. The duration of the experiment was long enough to cause maximum salt concentration of the water to be attained. The solution used in the experiment was tailings pond water from an inactive uranium tailings disposal site in the initial stages of reclamation. The solution was not neutralized. The initial pH was about 1.0 decreasing to a salt gel at the end of the test. The results of the field experiment show a gradual and slight decrease in evaporation efficiency. This resulted as salt concentrations increased and verified the practical effectiveness of evaporation as a water removal method. In addition, the physical and chemical nature of the residual salts suggest that no long-term stability problem would likely result due to their presence in the impoundment during or after reclamation

  4. Method of suppressing evaporation loss of ruthenium

    International Nuclear Information System (INIS)

    Muromura, Tadazumi; Sato, Tadashi.

    1987-01-01

    Purpose: To prevent evaporation loss of ruthenium from liquid wastes by adding an aluminum compound upon applying evaporating and drying to solid treatment to reprocessing liquid wastes for spent fuels. Method: An aluminum compound such as aluminum nitrate or aluminum hydroxide to reprocessing liquid wastes of spent fuels such that aluminum/ruthenium mixing ratio corresponds to 1.3 - 70.0 by g/atom ratio (0.34 - 187 by weight ratio), and the liquid mixture is heated to a temperature of about 130 deg C to be evaporated and dried to solidness. This enables to recover ruthenium without settling and depositing insoluble matters in the liquid wastes and without decomposing nitric acid. (Yoshino, Y.)

  5. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  6. Tank 241-A-105 evaporation estimate, 1970 through 1978

    International Nuclear Information System (INIS)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs

  7. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  8. Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations

    Science.gov (United States)

    Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan

    2018-03-01

    We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.

  9. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    International Nuclear Information System (INIS)

    Hołyst, R; Litniewski, M; Jakubczyk, D; Kolwas, K; Kolwas, M; Kowalski, K; Migacz, S; Palesa, S; Zientara, M

    2013-01-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid–vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid–vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P 1 /(a + P 2 ), where a is the radius of the evaporating droplet, t is time and P 1 and P 2 are two parameters. P 1 = −λΔT/(q eff ρ L ), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet

  10. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  11. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  12. Sea water desalination by horizontal tubes evaporator

    International Nuclear Information System (INIS)

    Mohammadi, H.K.; Mohit, M.

    1986-01-01

    Desalinated water supplies are one of the problems of the nuclear power plants located by the seas. This paper explains saline water desalination by a Horizontal Tube Evaporator (HTE) and compares it with flash evaporation. A thermo compressor research project using HTE method has been designed, constructed, and operated at the Esfahan Nuclear Technology Center ENTC. The poject's ultimate goal is to obtain empirical formulae based on data gathered during operation of the unit and its subsequent development towards design and construction of desalination plants on an industrial scale

  13. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-01-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  14. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  15. An aluminium evaporation source for ion plating

    International Nuclear Information System (INIS)

    Walley, P.A.; Cross, K.B.

    1977-01-01

    Ion plating with aluminium is becoming increasingly accepted as a method of anti-corrosion surface passivation, the usual requirements being for a layer between 12 and 50 microns in thickness, (0.0005 to 0.002). The evaporation system described here offers a number of advantages over high power electron beam sources when used for aluminium ion plating. The source consists of a resistively heated, specially shaped, boron nitride-titanium diboride boat and a metering feed system. Its main features are small physical size, soft vacuum compatibility, low power consumption and metered evaporation output. (author)

  16. Experiments on Evaporative Emissions in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary...... layer at the surface-air-interface. Experiments at different velocity levels were performed in a full-scale ventilated chamber to investigate the influence of local airflow on the evaporative emission from a surface. The experiments included velocity measurements in the flow over the surface...

  17. Evaporation-induced assembly of biomimetic polypeptides

    International Nuclear Information System (INIS)

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-01-01

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 μl volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials

  18. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  19. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.

    Science.gov (United States)

    Altabet, Y Elia; Haji-Akbari, Amir; Debenedetti, Pablo G

    2017-03-28

    The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the substrate material features (e.g., geometry, chemistry, and mechanical properties) that promote or inhibit such transitions remains lacking. In particular, comparatively little research has explored the relationship between water's phase behavior in hydrophobic confinement and the mechanical properties of the confining material. Here, we report the results of extensive molecular simulations characterizing the rates, free energy barriers, and mechanism of water evaporation when confined between model hydrophobic materials with tunable flexibility. A single-order-of-magnitude reduction in the material's modulus results in up to a nine-orders-of-magnitude increase in the evaporation rate, with the corresponding characteristic time decreasing from tens of seconds to tens of nanoseconds. Such a modulus reduction results in a 24-orders-of-magnitude decrease in the reverse rate of condensation, with time scales increasing from nanoseconds to tens of millions of years. Free energy calculations provide the barriers to evaporation and confirm our previous theoretical predictions that making the material more flexible stabilizes the confined vapor with respect to liquid. The mechanism of evaporation involves surface bubbles growing/coalescing to form a subcritical gap-spanning tube, which then must grow to cross the barrier.

  20. Micromodel observations of evaporative drying and salt deposition in porous media

    Science.gov (United States)

    Rufai, Ayorinde; Crawshaw, John

    2017-12-01

    Most evaporation experiments using artificial porous media have focused on single capillaries or sand packs. We have carried out, for the first time, evaporation studies on a 2.5D micromodel based on a thin section of a sucrosic dolomite rock. This allowed direct visual observation of pore-scale processes in a network of pores. NaCl solutions from 0 wt. % (de-ionized water) to 36 wt. % (saturated brine) were evaporated by passing dry air through a channel in front of the micromodel matrix. For de-ionized water, we observed the three classical periods of evaporation: the constant rate period (CRP) in which liquid remains connected to the matrix surface, the falling rate period, and the receding front period, in which the capillary connection is broken and water transport becomes dominated by vapour diffusion. However, when brine was dried in the micromodel, we observed that the length of the CRP decreased with increasing brine concentration and became almost non-existent for the saturated brine. In the experiments with brine, the mass lost by evaporation became linear with the square root of time after the short CRP. However, this is unlikely to be due to capillary disconnection from the surface of the matrix, as salt crystals continued to be deposited in the channel above the matrix. We propose that this is due to salt deposition at the matrix surface progressively impeding hydraulic connectivity to the evaporating surface.

  1. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  2. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  3. Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation.

    Science.gov (United States)

    Sobac, B; Brutin, D

    2011-12-20

    In this article, we investigate the influence of the surface properties of substrates on the evaporation process. Using various nanocoatings, it is possible to modify the surface properties of substrates, such as the roughness and the surface energy, while maintaining constant thermal properties. Experiments are conducted under atmospheric conditions with five fluids (methanol, ethanol, propanol, toluene and water) and four coatings (PFC, PTFE, SiOC, and SiO(x)). The various combinations of these fluids and coatings allow for a wide range of drop evaporation properties to be studied: the dynamics of the triple line, the volatility of fluids, and a large range of wettabilities (from 17 to 135°). The experimental data are in very good quantitative agreement with existing models of quasi-steady, diffusion-driven evaporation. The experimental results show that the dynamics of the evaporative rate are proportional to the dynamics of the wetting radius. Thus, the models succeed in describing the evaporative dynamics throughout the evaporation process regardless of the behavior of the triple line. Moreover, the use of various liquids reveals the validity of the models regardless of their volatility. The results also confirm the recent finding of a universal relation for the time evolution of the drop mass, independent of the drop size and initial contact angle. Finally, this study highlights the separate and coupled roles of the triple line and the wettability on the sessile drop evaporation process. Data reveal that the more wet and pinned a drop, the shorter the evaporation time. © 2011 American Chemical Society

  4. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  5. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  6. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  7. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  8. Spin coating of an evaporating polymer solution

    KAUST Repository

    Münch, Andreas; Please, Colin P.; Wagner, Barbara

    2011-01-01

    and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic

  9. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  10. Rate Control in Dual Source Evaporation

    NARCIS (Netherlands)

    Wielinga, T.; Gruisinga, W.; Leeuwis, H.; Lodder, J.C.; van Weers, J.F.; Wilmans, J.C.

    1980-01-01

    Two-component thin films are deposited in a high-vacuum system from two close sources, heated by an electron beam which is deflected between them. By using quartz-crystal monitors the evaporation rates are measured seperately, which is usually considered to be problematical. One rate signal is used

  11. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  12. Droplet bubbling evaporatively cools a blowfly.

    Science.gov (United States)

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  13. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the

  14. Evaporation of liquids on chemically patterned surfaces

    NARCIS (Netherlands)

    Vieyra Salas, J.A.; Darhuber, A.A.

    2011-01-01

    We studied evaporation rates of volatile liquids deposited onto chemically patterned surfaces by means of experiments and numerical simulations. We quantified the influence of the droplet geometry, in particular circular, triangular, rectangular and square shapes, as well as the influence of contact

  15. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  16. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  17. Steady parallel flow in an evaporating fluid heated from sidewalls

    International Nuclear Information System (INIS)

    Das, Kausik S.

    2009-01-01

    Evaporation is ubiquitous in nature, but very few attempts have been made in the past to couple the effects of evaporation with fluid flow behavior. In this theoretical paper we have discussed the effects of evaporation on the dynamics of steady state thermocapillary convection in a two-dimensional rectangular container. The liquid is heated by differentially heated sidewalls and mass loss from the interface due to evaporation is compensated by the liquid entering into the container through a lower inlet, thus keeping the thickness of the liquid layer constant. We show that for an evaporating liquid one can obtain a plane parallel base state profile which depends on the evaporative mass flux.

  18. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  19. Evaluating the hydrological consistency of evaporation products

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this "consistency"-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2–3 months

  20. Evaluating the hydrological consistency of evaporation products

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2017-01-18

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this "consistency"-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2–3 months