WorldWideScience

Sample records for reinforcing materials

  1. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  3. Mechanics of fiber reinforced materials

    Science.gov (United States)

    Sun, Huiyu

    This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.

  4. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  6. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  7. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  8. Effects of Material And Non-Material Reinforcers On Academic ...

    African Journals Online (AJOL)

    This study examined effects of material and non-material reinforcers on academic performance of Abia State Senior Secondary Schools girls on health science. As a quasi-experimental study, 120 SS II students were selected from six secondary schools located in the three Educational zones of the state. From each zone ...

  9. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  10. Highly radioresistant aramid fiber as a concrete-reinforcing material. Development of reinforced compound materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Moriya, Toshio.

    1997-01-01

    Nuclear installations, such as nuclear fusion reactor always receive strong influence from magnetic field. There, stray current is induced by the changes in magnetic fields among iron rods of the construction, resulting that the plasma control magnetic field might be disturbed. As the countermeasures for these troubles, iron rods mixed with non-magnetic Mn-steel have been used in JAERI, but it is insufficient to completely prevent such electromagnetic damages. Thus, aramid fiber reinforced plastics (ArFRP) was paid an attention as a concrete-reinforcing material. JAERI has been attempting to develop a radioresistant ArFRP jointly with Mitsui Construction Co., Ltd. and a highly efficient producing process of ArFRP was developed. The product had superior properties in respects of radioresistancy, heat-resistancy and durability. The properties of newly developed ArFRP rods were compared with those of the conventional ArFRP and iron rods. (M.N.)

  11. Fiber glass reinforced structural materials for aerospace application

    Science.gov (United States)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  12. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  13. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  14. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  15. Compressive Failure of Fibre Reinforced Materials

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2003-01-01

    Compressive failure of uni-directional fibre composites by the kink band mechanism is analysed taking into account effects of residual stresses. Two criteria for determining the strength of the composite material have been investigated: Kink band formation at a bifurcation stress in a composite...... with perfectly aligned fibres, and kink band formation at a peak stress in a composite with a band of imperfect material....

  16. Optimal Material Layout - Applied on Reinforced Concrete Slabs

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2015-01-01

    This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...

  17. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  18. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  19. Micromechanics of the Interface in Fibre-Reinforced Cement Materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Shah, S.P.

    1996-01-01

    In fibre reinforced brittle matrix composites the mechanicalbehaviour of the interface between the fibres and the matrix has avery significant influence on the overall mechanical behaviour ofthe composite material. Since brittle matrix composites are designed primarilywith the aim of improving th...

  20. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  1. Numerical investigation of porous materials composites reinforced with natural fibers

    Science.gov (United States)

    Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.

    2018-05-01

    The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.

  2. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  3. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  4. Organic compound materials used as pipes reinforcement of fluids conduction

    International Nuclear Information System (INIS)

    Latorre, G; Vargas, F

    1999-01-01

    This paper presents the experimental test and the results of the development of a composite organic material (MCO) for the reinforcement and covering of pipelines. MCO is designed to be applied to pipelines with external, damages such as dents or gauges or with surface damages caused by corrosion; The product can recover transport lines with 65% thickness losses due to corrosion in lengths of less than 0,2 m. the system developed by ECOPETROL-ICP can stop progressive picking corrosion, it has an excellent capillary, good adhesion, good resistance in cathodic protection, and mechanical strength that can support the operational pressure of the pipeline. MCO is a mixture of a polymeric resin reinforced with organic fibers, it can be applied to surface or underground pipelines without stopping normal operation. The maximum rupture pressure attained by the MCO was 23,4 MPA in pipelines with a 65% thickness loss due to corrosion. The normal operation pressure is 10-12 MPA

  5. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  6. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  7. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  8. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  9. Numerical modelling of reinforced concrete beams with fracture-plastic material

    Directory of Open Access Journals (Sweden)

    O. Sucharda

    2014-10-01

    Full Text Available This paper describes the use of models of fracture-plastic materials for reinforced concrete in numerical modelling of beams made from reinforced concrete. The purpose of the paper is to use of a model of concrete for modelling of a behaviour of reinforced concrete beams which have been tested at the University of Toronto within re-examination of classic concrete beam tests. The original tests were performed by Bresler- Scordelis. A stochastic modelling based on LHS (Latin Hypercube Sampling has been performed for the reinforced concrete beam. An objective of the modelling is to evaluate the total bearing capacity of the reinforced concrete beams depending on distribution of input data. The beams from the studied set have longitudinal reinforcement only. The beams do not have any shear reinforcement. The software used for the fracture-plastic model of the reinforced concrete is the ATENA.

  10. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  11. Radiographic testing of glass fiber reinforced plastic materials

    International Nuclear Information System (INIS)

    Babylas, E.

    1976-01-01

    The microradiography of glass fiber reinforced polymers allowed to obtain informations on the growth of defects during molding. A relation was established between microstructure and routine radiography. The conditions needed for obtaining good quality radiograms are analyzed [fr

  12. Evaluation of corrosion resistance of various concrete reinforcing materials.

    Science.gov (United States)

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  13. Radiation processing for carbon fiber-reinforced polytetrafluoroethylene composite materials

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    The present work is an attempt to evaluate the performance of the fiber composites with crosslinked polytetrafluoroethylene (PTFE) as a polymer matrix by radiation. The uni-directional carbon fiber-reinforced composites were fabricated with PTFE fine powder impregnation method and then crosslinked by electron beams irradiation under selective conditions. The carbon fiber-reinforced crosslinked PTFE composites show good mechanical properties compared with crosslinked PTFE. The radiation resistance of crosslinked PTFE composites is improved more than that of crosslinked resin without fiber. (author)

  14. Alternative materials for the reinforcement and prestressing of concrete

    National Research Council Canada - National Science Library

    Clarke, John L

    1993-01-01

    ... and bridges subjected to de-icing salts. Many approaches are being tried to inhibit the corrosion mechanism in aggressive environments. Most involve protective systems of some sort, applied either to the reinforcement directly or to the exposed concrete surface. One alternative approach being developed worldwide at an increasing pace is the replacement of...

  15. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  16. Reliability analysis of reinforced concrete grids with nonlinear material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Rodrigo A [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil); Chateauneuf, Alaa [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)]. E-mail: alaa.chateauneuf@ifma.fr; Venturini, Wilson S [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil)]. E-mail: venturin@sc.usp.br; Lemaire, Maurice [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)

    2006-06-15

    Reinforced concrete grids are usually used to support large floor slabs. These grids are characterized by a great number of critical cross-sections, where the overall failure is usually sudden. However, nonlinear behavior of concrete leads to the redistribution of internal forces and accurate reliability assessment becomes mandatory. This paper presents a reliability study on reinforced concrete (RC) grids based on coupling Monte Carlo simulations with the response surface techniques. This approach allows us to analyze real RC grids with large number of failure components. The response surface is used to evaluate the structural safety by using first order reliability methods. The application to simple grids shows the interest of the proposed method and the role of moment redistribution in the reliability assessment.

  17. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  18. Microanalytical investigation of fibre-reinforced ceramic materials

    International Nuclear Information System (INIS)

    Meier, B.; Grathwohl, G.

    1989-01-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.)

  19. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  20. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  1. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  2. Hardening in Two-Phase Materials. I. Strength Contributions in Fibre-Reinforced Copper-Tungsten

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1977-01-01

    Cyclic tests (Bauschinger tests) were conducted at 77 K and at room temperature on the fibre-reinforced material of single crystal Cu with long W-fibres of diameter 20 mum and volume fractions up to 4%. These tests enabled two important contributions to the total strength of the unrelaxed material...

  3. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  4. Structural reinforcement of a {theta}16 inches tee made during operation with composite material

    Energy Technology Data Exchange (ETDEWEB)

    Beim, Andre [Tresca Engenharia Ltda., Sao Paulo, SP (Brazil); Vilani, Eduardo Cesar [Rust Engenharia Ltda., Diadema, SP (Brazil)

    2009-07-01

    An industrial installation went through a turnaround to increase capacity. A tie-in line had to be made for this, and a 16 inches diameter branch was required to be made on an existing 16 inches pipe. The joining of these elements resulted in a 'tee' that was supposed to receive a reinforcement plate. This reinforcement plate was not installed before the plant start-up. Code calculations and a finite element stress analysis showed that reinforcement was necessary. The only viable solution was the application of a composite material reinforcement, designed to substitute the missing reinforcement plate, and reduce the stresses to allowable levels. A new finite element stress analysis was made to determine the required thickness of this reinforcement. The first part of this work shows the results of the finite element stress analysis. Figures with stress contours of the analyses show the results. The second part shows the details of the installation of the reinforcement, which was made during normal operation of the plant. Pictures illustrate the main steps of the installation procedure. (author)

  5. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  6. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  7. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  8. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  9. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  10. Fabrication and properties of graphene reinforced silicon nitride composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaping; Li, Bin, E-mail: libin@nudt.edu.cn; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-09-17

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si{sub 3}N{sub 4} ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si{sub 3}N{sub 4} ceramic matrix. β-Si{sub 3}N{sub 4,} O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si{sub 3}N{sub 4}, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods.

  11. Fabrication and properties of graphene reinforced silicon nitride composite materials

    International Nuclear Information System (INIS)

    Yang, Yaping; Li, Bin; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-01-01

    Silicon nitride (Si 3 N 4 ) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si 3 N 4 ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si 3 N 4 ceramic matrix. β-Si 3 N 4, O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si 3 N 4 , Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods

  12. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-01-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices. (technical note)

  13. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  14. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  15. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    Science.gov (United States)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  16. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  17. Continuous welding of unidirectional fiber reinforced thermoplastic tape material

    Science.gov (United States)

    Schledjewski, Ralf

    2017-10-01

    Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.

  18. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  19. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  20. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    Directory of Open Access Journals (Sweden)

    B. Dan-asabe

    2016-06-01

    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  1. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  2. Numerical modelling of the reinforcing effect of geosynthetic material used in a ballasted railway tracks

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Jíra, J.; Hrdlička, Ondřej; Kunecký, Jiří; Kytýř, Daniel; Vyčichl, J.; Doktor, Tomáš

    2010-01-01

    Roč. 224, č. 4 (2010), s. 259-267 ISSN 0954-4097 Institutional research plan: CEZ:AV0Z20710524 Keywords : railway track bed * reinforcing geogrid * finite-element modelling * settlement reduction * contact analysis * ballast material Subject RIV: JN - Civil Engineering Impact factor: 0.389, year: 2010 http://journals.pepublishing.com/content/k561040632411117/

  3. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  4. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  5. STUDY OF MECHANICAL BEHAVIOR OF TEXTILE REINFORCED COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    CARLOS ROLANDO RIOS-SOBERANIS

    2012-01-01

    Full Text Available La relación entre la geometría del entramado de las fibras y los mecanismos de fractura bajo cargas de tensión ha sido evaluada para materiales compuestos reforzados con textiles de diferente arquitectura tales como colchoneta (fibras al azar y petatillo (biaxial. Estos materiales están manufacturados empleando como matriz polimérica resina epóxica curada a altas temperaturas. El sistema elegido para este trabajo consiste en resina epóxica bifuncional diglicidil éter de bisfenol A (DGEBA curada con una amina tetrafuncional diaminodifenil sulfona (DDS. Este sistema asegura la obtención de un material rígido transparente con excelentes propiedades mecánicas que permite observar, analizar e identificar el proceso y el progreso del daño generado así como los mecanismos de fractura que conllevan a la ruptura del material. Los resultados demostraron que la arquitectura/geometría de los textiles de refuerzo influye en la generación de sitios de concentración de esfuerzos donde se incrementa la posibilidad de iniciación de fallas y la propagación de grietas.

  6. Experimental study of polyurethane foam reinforced soil used as a rock-like material

    Directory of Open Access Journals (Sweden)

    Eren Komurlu

    2015-10-01

    Full Text Available In this study, polyurethane foam type thermoset polymerizing, due to chemical reaction between its liquid ingredients, was tested as binder after solidifying and then a rock-like material mixing with a sandy silt type soil was prepared. The uniaxial compressive strengths (UCSs of polyurethane foam reinforced soil specimens were determined for different polyurethane ratios in the mixture. Additionally, a series of tests on slake durability, impact value, freezing–thawing resistance, and abrasion resistance of polyurethane reinforced soil (PRS mixture was conducted. The UCS values over 3 MPa were measured from the PRS specimens. The testing results showed that treated soil can economically become a desirable rock-like material in terms of slake durability and resistances against freezing–thawing, impact effect and abrasion. As another characteristic of the rock-like material made with polyurethane foam, unit volume weight was found to be quite lower than those of natural rock materials.

  7. Radiation effects on carbon fiber-reinforced plastics for spacecraft materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Kudoh, Hisaaki; Sasuga, Tsuneo; Morino, Yoshiki; Seguchi, Tadao; Yudate, Kozo.

    1995-02-01

    The effects of space environment were studied for two kinds of carbon fiber-reinforced plastics(CFRP) which were an epoxy resin composite using construction materials of satellite and a polyimide(PMR-15) composite expecting bright future space materials for long term operation. Resistibility of these materials to the space environments were evaluated from the change of mechanical properties after exposure of electron, proton, atomic oxygen and thermal cycling. It was found that the CFRP with PMR-15 as a matrix had good performance in the space environments. No differences in the mechanical properties for the materials were observed between proton and electron irradiations. (author)

  8. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    Science.gov (United States)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  10. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  11. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  12. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Junko; Kawakami, Masashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Kondoh, Katsuyoshi, E-mail: kondoh@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Ayman, El-Sayed; Imai, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan)

    2010-10-01

    Pure titanium (Ti) particulate reinforced pure magnesium (Mg) composite materials were fabricated via powder metallurgy route, and their microstructural and mechanical properties were evaluated. When using the elemental mixture of pure Mg and pure Ti powders and consolidating them by solid-state sintering process, no significant increase in tensile strength of the composites was obtained, because of poor bonding strength at the interface between {alpha}-Mg matrix and Ti particles. In particular, coarse magnesium oxide (MgO) particles of about 100 nm were formed via thermite reaction between TiO{sub 2} surface films of Ti particles and Mg raw powders and resulted in preventing the improvement of the mechanical properties of the composite material. On the other hand, when using the atomized pure Mg composite powders reinforced with Ti particulates, their extruded composite material showed obviously improved tensile strength and good elongation, compared to the extruded pure Mg powder material including no Ti particle. The obvious improvement in the tensile strength was due to the restriction of dislocation movement by Ti reinforcements under applied tensile load.

  13. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    Science.gov (United States)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  14. Development and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Alam, S.; Irfan, S.; Iftikhar, F.; Raza, M.A.

    2006-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. A great effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the % age composition of curing agent in epoxy matrix. In order to study the phenomenon; how the change in composition of curing agent effect the composite material and which optimum composition can give the optimum properties of the material, when Kevlar reinforced to Epoxy Matrix by Hand Lay-up process. It was ensured that factors which can .affect the experiment remained the same for each experiment. The composite produced were subjected to mechanical tests to analyze the performance, to optimize the material. (author)

  15. Reuse of polyethylene fibres from discarded fishing nets as reinforcement in gypsym-based materials

    DEFF Research Database (Denmark)

    Bertelsen, Ida Maria Gieysztor; Ottosen, Lisbeth M.

    In this study, the potential of reusing plastic fibres from discarded waste fishing nets of polyethylene (PE) as fibre reinforcement in gypsum-based building materials is investigated. The fishing nets were not reprocessed, but simply washed and cut to monofilament fibres by an industrial operation...... cylinders and prisms were determined by laboratory-scale testing. A decrease in first-crack strength of the prisms was observed. However, the addition of waste PE fibres resulted in improved post-crack behaviour....

  16. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  17. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  18. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  19. Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Lepech, M.

    2017-01-01

    In this paper a coupled hygrothermal, electrochemical, and mechanical modelling approach for the deterioration prediction in cementitious materials is briefly outlined. Deterioration prediction is thereby based on coupled modelling of (i) chemical processes including among others transport of hea......, i.e. information, such as such as corrosion current density, damage state of concrete cover, etc., are constantly exchanged between the models....... and matter as well as phase assemblage on the nano and micro scale, (ii) corrosion of steel including electrochemical processes at the reinforcement surface, and (iii) material performance including corrosion- and load-induced damages on the meso and macro scale. The individual FEM models are fully coupled...

  20. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  1. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  2. Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions

    Science.gov (United States)

    Ma, Yunhai; Wu, Siyang; Tong, Jin; Zhao, Xiaolou; Zhuang, Jian; Liu, Yucheng; Qi, Hongyan

    2018-03-01

    This work was mainly aimed to study the physical, mechanical and tribological behaviours of the friction materials reinforced by different contents of rattan fibre. These friction materials were fabricated by a compression moulder and tested using a constant speed tester at different friction temperatures. It was found that the friction coefficients of the friction materials added with rattan fibre were relatively stable and no obvious fade was observed in comparison with specimen F-0 (containing 0 wt.% rattan fibres). The fade ratio of specimen F-5 (containing 5 wt.% rattan fibres) was 10.3% and its recovery ratio was 92.4%, indicating the excellent performances of fade resistance and recovery. And the specimen F-5 exhibited the lowest wear rate (0.541 × 10‑7 cm3(N · m)‑1 at 350 °C) among all tested specimens. The worn surface morphologies of the friction materials showed that the appropriate addition of rattan fibres effectively reduced abrasive wear and adhesion wear. The specimen F-5 had a smooth worn surface (Sa = 1.885 μm) with the superior fibre-matrix interfacial adhesion and a lot of secondary contact plateaus, which indicated the highest wear resistance property. The rattan-fibre-reinforced friction materials could be widely applied to automotive friction brake field according to their economic, environmental and social benefits.

  3. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  4. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    Science.gov (United States)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  5. Preparation and Mechanical Properties of Fiber Reinforced PLA for 3D Printing Materials

    Science.gov (United States)

    Li, Xionghao; Ni, Zhongjin; Bai, Shuyang; Lou, Baiyang

    2018-03-01

    The cellulose prepared by means of TEMPO oxidation method and glass fibre was blended with PLA respectively, and were spun into enhanced PLA wires. This study evaluates the wire rods that is from extruder is suitable for FDM printing by various physical characterization tests to determine their feasibility as a 3D printing filament materials. The cellulose and glass fibre is blended with PLA and spun into the reinforced PLA filament respectively, which is applied to FDM printing technology. The results showed that the intensity of strike resistant of the reinforced PLA filament made from cellulose and PLA is 34% to 60% higher than the PLA filament, meanwhile the tensile strength is 43% to 52% higher than the pure one. The other enhanced PLA filament is 13% to 35% higher than the PLA filament in intensity of strike resistant, and the tensile strength is 54% to 61% higher than the pure one.

  6. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  7. Investigation of laboratory test procedures for assessing the structural capacity of geogrid-reinforced aggregate base materials.

    Science.gov (United States)

    2015-04-01

    The objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Pro...

  8. Comparative Environmental Sustainability Assessment of Bio-Based Fibre Reinforcement Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Corona, Andrea; Markussen, Christen Malte; Birkved, Morten

    2015-01-01

    and flax/carbon, flax/glass mixed fibres) are compared in terms of environmental sustainability. Applying one of the most recent life cycle impact assessment methods, we demonstrate that the environmental sustainability of natural fibre based composite materials is similar or even lower, within certain...... turbines have therefore partially been focused on substitution of conventional fibre materials with bio-fibres assuming that this substitution was in the better for the environment and human health. The major question is if this material substitution, taking into account a multitude of environmental impact...... reinforcement materials. Since the environmental burden of the resin in addition is comparable to that of the fibres (especially in terms human health related impacts), the higher resin demand counterbalances the environmental sustainability improvements, obtained with the application of natural fibres....

  9. Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures

    Directory of Open Access Journals (Sweden)

    Robert S. Pierce

    2017-10-01

    Full Text Available Increasing demand for weight reduction and greater fuel efficiency continues to spur the use of composite materials in commercial aircraft structures. Subsequently, as composite aerostructures become larger and more complex, traditional autoclave manufacturing methods are becoming prohibitively expensive. This has prompted renewed interest in out-of-autoclave processing techniques in which resins are introduced into a reinforcing preform. However, the success of these resin infusion methods is highly dependent upon operator skill and experience, particularly in the development of new manufacturing strategies for complex parts. Process modeling, as a predictive computational tool, aims to address the issues of reliability and waste that result from traditional trial-and-error approaches. Basic modeling attempts, many of which are still used in industry, generally focus on simulating fluid flow through an isotropic porous reinforcement material. However, recent efforts are beginning to account for the multiscale and multidisciplinary complexity of woven materials, in simulations that can provide greater fidelity. In particular, new multi-physics process models are able to better predict the infusion behavior through textiles by considering the effect of fabric deformation on permeability and porosity properties within the reinforcing material. In addition to reviewing previous research related to process modeling and the current state of the art, this paper highlights the recent validation of a multi-physics process model against the experimental infusion of a complex double dome component. By accounting for deformation-dependent flow behavior, the multi-physics process model was able to predict realistic flow behavior, demonstrating considerable improvement over basic isotropic permeability models.

  10. Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide establishes essential and desirable data elements for fiber-reinforced composite materials for two purposes: to establish the material identification component of data-reporting requirements for test reporting and to provide information for the design of material property databases. 1.1.1 This guide is the first part of a two-part modular approach. The first part serves to identify the material and the second part serves to describe testing procedures and variables and to record results. 1.1.2 For mechanical testing, the related document is Guide E 1434. The interaction of this guide with Guide E 1434 is emphasized by the common numbering of data elements. Data Elements A1 through G13 are included in this guide, and numbering of data elements in Guide E 1434 begins with H1 for the next data element block. This guide is most commonly used in combination with a guide for reporting the test procedures and results such as Guide E 1434. 1.2 These guidelines are specific to fiber-reinforced polyme...

  11. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  12. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  13. Effect of Material Variability and Mechanical Eccentricity on the Seismic Vulnerability Assessment of Reinforced Concrete Buildings

    Directory of Open Access Journals (Sweden)

    Mario Lucio Puppio

    2017-07-01

    Full Text Available The present paper deals with the influence of material variability on the seismic vulnerability assessment of reinforced concrete buildings. Existing r.c. buildings are affected by a strong dispersion of material strengths of both the base materials. This influences the seismic response in linear and nonlinear static analysis. For this reason, it is useful to define a geometrical parameter called “material eccentricity”. As a reference model, an analysis of a two storey building is presented with a symmetrical plan but asymmetrical material distribution. Furthermore, an analysis of two real buildings with a similar issue is performed. Experimental data generate random material distributions to carry out a probabilistic analysis. By rotating the vector that defines the position of the center of strength it is possible to describe a strength domain that is characterized by equipotential lines in terms of the Risk Index. Material eccentricity is related to the Ultimate Shear of non-linear static analyses. This relevant uncertainty, referred to as the variation of the center of strength, is not considered in the current European and Italian Standards. The “material eccentricity” therefore reveals itself to be a relevant parameter to considering how material variability affects such a variation.

  14. Investigation of production of continuous off axis fibre reinforced thermoplastic material

    Science.gov (United States)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  15. Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials.

    Science.gov (United States)

    Chen, Ke; Zhang, Shuhao; Li, Anran; Tang, Xuke; Li, Lidong; Guo, Lin

    2018-05-22

    Many biological organisms usually derived from the ordered assembly of heterogeneous, hierarchical inorganic/organic constituents exhibit outstanding mechanical integration, but have proven to be difficult to produce the combination of excellent mechanical properties, such as strength, toughness, and light weight, by merely mimicking their component and structural characteristics. Herein, inspired by biologically strong chelating interactions of phytic acid (PA) or IP6 in many biomaterials, we present a biologically interfacial chelating-like reinforcement (BICR) strategy for fabrication of a highly dense ordered "brick-and-mortar" microstructure by incorporating tiny amounts of a natural chelating agent ( e. g., PA) into the interface or the interlamination of a material ( e. g., graphene oxide (GO)), which shows joint improvement in hardness (∼41.0%), strength (∼124.1%), maximum Young's modulus (∼134.7%), and toughness (∼118.5%) in the natural environment. Besides, for different composite matrix systems and artificial chelating agents, the BICR strategy has been proven successful for greatly enhancing their mechanical properties, which is superior to many previous reinforcing approaches. This point can be mainly attributed to the stronger noncovalent cross-linking interactions such as dense hydrogen bonds between the richer phosphate (hydroxyl) groups on its cyclohexanehexol ring and active sites of GO, giving rise to the larger energy dissipation at its hybrid interfaces. It is also simple and environmentally friendly for further scale-up fabrication and can be readily extended to other material systems, which opens an advanced reinforcement route to construct structural materials with high mechanical performance in an efficient way for practical applications.

  16. Determination of the buckling safety of reinforced concrete shells considering the nonlinear material-behavior

    International Nuclear Information System (INIS)

    Zerna, W.; Mungan, I.; Steffen, W.

    1980-01-01

    The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de

  17. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  18. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  19. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  20. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  1. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  2. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    Science.gov (United States)

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  3. Standard Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide provides a common format for mechanical test data for composite materials for two purposes: (1) to establish data reporting requirements for test methods and ( 2) to provide information for the design of material property databases. This guide should be used in combination with Guide E 1309 which provides similar information to identify the composite material tested. 1.2 These guidelines are specific to mechanical tests of high-modulus fiber-reinforced composite materials. Types of tests considered in this guide include tension, compression, shear, flexure, open/filled hole, bearing, fracture toughness, and fatigue. The ASTM standards for which this guide was developed are listed in . The guidelines may also be useful for additional tests or materials. 1.3 This guide is the second part of a modular approach for which the first part is Guide E 1309. Guide E 1309 serves to identify the material, and this guide serves to describe mechanical testing procedures and variables and to record results....

  4. Modeling of the Indentation of Fiber Reinforced Materials Using Spherical Indenters

    International Nuclear Information System (INIS)

    Gountsidou, V.; Polatoglou, H. M.

    2010-01-01

    Following the enormous development of the technology there is a great need for complex engineering materials to be studied in multilayered films at the nano-level. Careful modeling of the structure of engineering materials, using finite element analysis may reveal specific behavior of the component materials and the filling materials, such as mortars, which are the important boundaries of all the engineering materials. The instruments used for experiments are expensive and their utilization is hindered by many unexpected factors. With the help of computer programs it is possible to achieve virtual nanoindentation, a widely known non-destructive method. It is easy to model structures in whatever shape or dimensions we wish, with one or more layers and with linear or nonlinear materials in order to obtain stress, strain, displacement curves, study microhardness, etc. The purpose of this paper is to model the nanoindentation process for fiber-reinforced concrete and to study the mechanical properties as a function of the distance of a particular fibre.

  5. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    OpenAIRE

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  6. Pineapple leaf fiber as reinforce in composite materials, an alternative for automotive industry

    International Nuclear Information System (INIS)

    Campos, Rejane Daniela de; Seo, Emilia Satoshi Miyamaru

    2013-01-01

    The composites appear as an extremely favorable alternative for different industries, due to the fact that it combines the best mechanical properties with the best physic-chemical properties of two or more materials. Nowadays, in the evaluation of materials, besides criteria such as economic viability and performance, the environmental criterion was included in this evaluation. Part of the environmental criteria is the use of biodegradable materials and/or recycled materials. In this sense, researches focused on vegetal fibers, as reinforcement in composites are growing considerably and positive results for its performance were achieved. Moreover, the environmental-friendly approach not only is the unique advantage on usage of vegetal fibers, but also it has an economical advantage, because of the low cost and good performance due to low density. The fiber extracted from the pineapple leaf (PALF) is a new alternative for automotive industry as cellulose-based fiber composite. In this sense, the present paper aims to present the characterization of the pineapple leaf fiber for manufacturing the automotive composite materials. Milled pineapple fibers extracted, in two different ways and submitted to mercerisation treatments, were characterized by mechanical and thermal properties; density; morphology; FTIR spectroscopy, EDX and X-ray diffraction. It is important to characterize the fibers, in order to obtain appropriate mechanical properties of composite. (author)

  7. Pineapple leaf fiber as reinforce in composite materials, an alternative for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Rejane Daniela de; Seo, Emilia Satoshi Miyamaru, E-mail: rejanedaniela@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The composites appear as an extremely favorable alternative for different industries, due to the fact that it combines the best mechanical properties with the best physic-chemical properties of two or more materials. Nowadays, in the evaluation of materials, besides criteria such as economic viability and performance, the environmental criterion was included in this evaluation. Part of the environmental criteria is the use of biodegradable materials and/or recycled materials. In this sense, researches focused on vegetal fibers, as reinforcement in composites are growing considerably and positive results for its performance were achieved. Moreover, the environmental-friendly approach not only is the unique advantage on usage of vegetal fibers, but also it has an economical advantage, because of the low cost and good performance due to low density. The fiber extracted from the pineapple leaf (PALF) is a new alternative for automotive industry as cellulose-based fiber composite. In this sense, the present paper aims to present the characterization of the pineapple leaf fiber for manufacturing the automotive composite materials. Milled pineapple fibers extracted, in two different ways and submitted to mercerisation treatments, were characterized by mechanical and thermal properties; density; morphology; FTIR spectroscopy, EDX and X-ray diffraction. It is important to characterize the fibers, in order to obtain appropriate mechanical properties of composite. (author)

  8. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  9. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  10. Recent Advances and Future Perspectives for Reinforcement of Poly(methyl methacrylate Denture Base Materials: A Literature Review

    Directory of Open Access Journals (Sweden)

    Sahar Abdulrazzaq Naji

    2018-03-01

    Full Text Available Poly(methyl methacrylate (PMMA is the most common material used to fabricate complete and partial dentures. Despite its desirable properties, it cannot fulfill all mechanical requirements of prosthesis. Flexural fatigue due to repeated masticatory and high-impact forces caused by dropping are the main causes of denture fractures. In the past, different reinforcing agents such as rubbers, macro fibers, and fillers have been employed to improve the mechanical properties of denture base resins. Development of Nano dentistry has introduced new approaches for reinforcement of dental materials. Interest in nanostructure materials is driven by their high surface area to volume ratio, which enhances interfacial interaction and specific new biological, physical, and chemical properties. Researchers to reinforce PMMA resins have used Nanoparticles (Nps which were comprised of silver, Titania (TiO2, zirconia (ZrO2, alumina, and ceramic. Although different reports describe the use of nanofiber and nanotubes in dental composites, few studies have evaluated the reinforcement potential of nanofiber and nanotubes in PMMA denture base resins. The current article aims to review the different attempts to enhance the mechanical properties of denture base materials. We also focus on recent advances and potential future developments for reinforcement of the PMMA acrylic resins.

  11. Design and fabrication hazard stakes golf course polymeric foam material empty bunch (EFB) fiber reinforced

    Science.gov (United States)

    Zulfahmi; Syam, B.; Wirjosentono, B.

    2018-02-01

    A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polimeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%). The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v = 35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The largest deformation area occurred at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball

  12. On the suitability of fiberglass reinforced polyester as building material for mesocosms.

    Science.gov (United States)

    Berghahn, R; Brandsch, J; Piringer, O; Pluta, H J; Winkler, T

    1999-07-01

    Gel- and topcoat surface layers on fiberglass [glass-reinforced plastic (GRP)] made of unsaturated resin based on isophthalic acid polyester and neopentyl glycol (ISO-NPG) were tested for leaching, ecotoxicity of water eluates, and abrasion by river sediments at a current speed of 0.5 m * s-1. Leaching from topcoat tempered at low temperature was significant, whereas it was negligible from highly tempered gelcoat. Water eluates from both gel-and topcoat were nontoxic in routinely employed biotests (bacteria, algae, daphnids). No abrasion by river sediments was detectable. Based on these results, GRP with gelcoat made of ISO-NPG is considered a suitable building material for mesocosms. Copyright 1999 Academic Press.

  13. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Directory of Open Access Journals (Sweden)

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  14. Isolation and Characterization of Cellulose Nanofibers from Gigantochloa scortechinii as a Reinforcement Material

    Directory of Open Access Journals (Sweden)

    Chaturbhuj K. Saurabh

    2016-01-01

    Full Text Available Cellulose nanofibers (CNF were isolated from Gigantochloa scortechinii bamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.

  15. Study of stinging nettle (urtica dioica l.) Fibers reinforced green composite materials : a review

    Science.gov (United States)

    Agus Suryawan, I. G. P.; Suardana, N. P. G.; Suprapta Winaya, I. N.; Budiarsa Suyasa, I. W.; Tirta Nindhia, T. G.

    2017-05-01

    Stinging Nettle (Urtica dioica L., latin) is a wild plant that grows in Indonesia, Asia, and Europe. Nettle in Bali, Indonesia is called as Lateng, Jelatang. Nettle plant has a very strong fiber and high fixed carbon. Nettle plants are covered with fine hairs, especially in the leaves and stems. When it is touched, it will release chemicals, sting and trigger inflammation that causes redness, itching, bumps and irritation to the skin. Nettle plants grow in the wild, regarded as a weed in the agricultural industry, easy to grow and snatch food from the parent plant. The main objective of this paper is to review of the potential nettle fibers and then explain about the potential of local nettle plant in Indonesia. Nettle is a plant group at the end of bast. Its plant fibers taken from the bark, as reinforcement in composite materials. Nettle fibers have three main advantages such as strong, lightweight and low environmental impact.

  16. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J.W.

    2017-01-01

    The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by ...

  17. Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement

    Directory of Open Access Journals (Sweden)

    A. Lopez-Gil

    2014-01-01

    Full Text Available Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP and polyethylene-terphthalate (PET, and a biodegradable polymer, polylactic acid (PLA.

  18. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  19. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    Science.gov (United States)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with

  20. Evaluation of the physical and electrochemical properties of adobe reinforced and of its component materials

    Directory of Open Access Journals (Sweden)

    Pérez, G.

    2004-06-01

    Full Text Available The search of solutions to the habitacional crisis that exists in Latin America has favored to the use of the soil-cement-sisal, adobe reinforced like alternative material of building, in such sense, prevailing to determine the vulnerability of a building of this type, is for that reason that, the characterization of the physical, mechanical and electrochemical properties of the materials that composes it, helps to relate causal the external ones of deterioration to the internal ones. In this particular case it was studied, the permeability, the porosity, the capillaiy absorption, the corrosion potentials (referring to Cu/CuSO4 and the corrosion rates of adobe reinforced, of its components and their interfaces. In the methodological aspect, permeabilimeter of modified Figg. was used to determine the permeability to the water The porosity and capillary absorption were determined following methods traditional, the corrosion potentials were determined using multimeter and the corrosion rates was made by means of the equipment Gecor 6. Two groups was tried, a first group of the component materials: adobe, mortar for stucco and mortar of reinforcement. The adobe with 5% of cement, mortars for stucco: MFA with 12% of cement and MFB with 16% of cement and internal mortar of reinforcement: MRD, of relation water/cement 0,50. A second group of the composed materials, conformed by 3 specimens test of each one of both types of wall of adobe in where all the individual components are combined: mortar of stucco, adobe and internal mortar: (MFA-Adobe-MRD and (MFB-adobe- MRD. The coefficients of permeability to the water of the component materials oscillate between 5.2.10-5 for adobe up to 9.71.10-9 for the internal mortar of reinforcement MRD (a/c=0.50, in mortars for stucco (MFA and MFB this in the 10-7 order For the case of the composed materials oscillates between 9,38.10-8 for (MFA-Adobe-MRD until 3

  1. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    International Nuclear Information System (INIS)

    Dimassi, M A; Brauner, C; Herrmann, A S

    2016-01-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence. (paper)

  2. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  3. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  4. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  5. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material.

    Science.gov (United States)

    Fráter, Márk; Forster, András; Keresztúri, Márk; Braunitzer, Gábor; Nagy, Katalin

    2014-09-01

    The purpose of this in vitro study was to evaluate the efficiency of a short fibre-reinforced composite (SFRC) material compared to conventional composites when restoring class II. MOD cavities in molar teeth with different layering techniques. One hundred and thirty mandibular third molars were divided into 5 groups (n=26). Except for the control group (intact teeth), in all other groups MOD cavities were prepared. The cavities were restored by either conventional composite with horizontal and oblique layering or by SFRC with horizontal and oblique layering. The specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were evaluated. In general, no statistically significant difference was found in fracture toughness between the study groups, except for horizontally layered conventional composite restorations, which turned out to be significantly weaker than controls. However, SFRC yielded noticeably higher fracture thresholds and only obliquely applied SFRC restorations exhibited favourable fracture patterns above chance level. The application of SFRC did not lead to a statistically significant improvement of the fracture toughness of molar teeth with MOD cavities. Still, SFRC applied in oblique increments measurably reduces the chance of unrestorable fractures of molar teeth with class II MOD cavities. The restoration of severely weakened molar teeth with the use of SFRC combined with composite might have advantages over conventional composites alone. It was observed from the statistical data, that the application of SFRC with an oblique layering technique yielded not significantly but better fracture thresholds and more favourable fracture patterns than any other studied material/technique combination. Thus further investigations need to be carried out, to investigate the possible positive mechanical effects of SFRC. The application of the horizontal layering technique with conventional composite materials is inferior

  6. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  7. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  8. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    Science.gov (United States)

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  9. Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement.

    Science.gov (United States)

    Fumagalli, Matthieu; Berriot, Julien; de Gaudemaris, Benoit; Veyland, Anne; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Heux, Laurent

    2018-04-04

    Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.

  10. Review of the use of phase change materials (PCMs in buildings with reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Pons, O.

    2014-09-01

    Full Text Available Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.Los materiales de cambio de fase son capaces de almacenar y liberar energía en forma de calor en un determinando rango de temperaturas, y así aumentar la inercia térmica de un edificio, estabilizar las temperaturas en el interior y reducir la demanda energética. En consecuencia, si utilizáramos estos materiales podríamos tener un parque de edificios más eficientes energéticamente. No obstante, ¿estos materiales son apropiados para usarse en edificios? ¿Se podría generalizar la incorporación de materiales de cambio de fase en edificios con estructuras de hormigón? Este artículo tiene como objetivos hacer una revisión del estado del arte de estos materiales de cambio de fase desde el punto de vista de los profesionales de la construcción, estudiar las aplicaciones en edificios con estructuras de hormigón armado y los puntos clave para estas aplicaciones, extraer conclusiones y recomendaciones útiles para los profesionales del sector que se planteen la utilización de estos materiales.

  11. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  12. Ageing of fibre reinforced polymer composite selected as a bearing material for Rams of 540 MWe fuelling machine

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2006-01-01

    Fibre-reinforced-polymer-composite material has been suggested as a bearing material to overcome tribological problems witnessed during the testing of Ram assembly of the 540 MWe fuelling machine at RTD. After successful trials at B-Ram the composite material has been adapted for B-RAM, C-Ram and RDB head at fuelling machines being tested at RTD, Hall 7 and at Tarapur. Laboratory evaluations were also carried out at Tribology Lab RTD to study effect of radiation on the composite. Paper deals with the various aspects of life prediction of this material in term of wear and radiation damage. (author)

  13. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  14. Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction

    Science.gov (United States)

    2000-08-01

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  15. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  16. Three-dimensional contraction and mechanical properties of glass-cloth-reinforced epoxy materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Hamelin, J.

    1979-01-01

    In this paper three-dimensional thermal contraction and mechanical properties of glass-cloth reinforced epoxy laminates are reported. The results are shown to depend on the material density (and thus on the glass content). They cover both commercially available products and other materials of higher density recently developed with the aim of getting a thermal contraction of same amplitude as that of the superconductor, specially in the direction orthogonal to the plane of laminations. The feasibility of this last type of structural material was investigated along a R and D programme involved with the 'TORE II' project, a tokamak machine proposed for plasma physics experiments by the Euratom-CEA Association

  17. Bamboo Fibre-reinforced Semi-Metallic Brake Friction Materials for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Talib R. J.

    2016-01-01

    Full Text Available Three friction material formulations composed of bamboo fiber along with binder, friction modifiers and filler have been prepared through powder metallurgy process. Sample F1 and F2 are composed of 10 wt. % of copper and barium, respectively, while the other ingredients in both formulations have the same wt. %. The wt. % of bamboo fiber in sample F3 is, however, increased by 100%, while the compositions of the other ingredients are proportionally decreased. The samples were examined for their porosity, hardness, and friction and wear properties using hot bath, Rockwell hardness tester, and CHASE friction dynamometer, respectively. The test results are compared with those of a commercial sample as the benchmark. Normal and hot frictions of all the three samples developed comply with the requirements specified by Automotive Manufacturer Equipment Companies Agency (AMECA. However, sample F3 which is composed of 20 wt. % of bamboo fiber does not comply with the minimum requirement of friction coefficient. Whereas, sample F2, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of barium, has lower friction coefficient than the commercial sample, and has a sudden drop in friction coefficient at a temperature of 500°F. Out of three developed samples, sample F1, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of copper, complies with all the requirements and has higher friction coefficient than the commercial sample, and has higher fade resistance. Thus, it could be postulated that bamboo fiber could be used as a reinforcing fiber with composition of 10 wt. %.

  18. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  19. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  20. Modeling the Creep of Rib-Reinforced Composite Media Made from Nonlinear Hereditary Phase Materials 2. Verification of the Model

    Science.gov (United States)

    Yankovskii, A. P.

    2015-05-01

    An indirect verification of a structural model describing the creep of a composite medium reinforced by honeycombs and made of nonlinear hereditary phase materials obeying the Rabotnov theory of creep is presented. It is shown that the structural model proposed is trustworthy and can be used in practical calculations. For different kinds of loading, creep curves for a honeycomb core made of a D16T aluminum alloy are calculated.

  1. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  2. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  3. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Sivakumar Gowthaman

    2018-04-01

    Full Text Available Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS and randomly distributed fiber-reinforced soil (RDFS are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  4. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    Science.gov (United States)

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  5. Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine.

    Science.gov (United States)

    Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao

    2018-04-04

    With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.

  6. Long-fibre reinforced thermoplastics. Applications and limitations of a new type of material

    Energy Technology Data Exchange (ETDEWEB)

    Neise, E.

    1986-06-01

    New processing possibilities are offered by long-fibre reinforced thermoplastics, because - contrary to thermoset processing - no chemical reaction occurs and thermoforming and welding of prepregs is possible. Processing techniques like filament winding, tape laying or pultrusion are in development at different institutes.

  7. GEOMETRIC AND MATERIAL NONLINEAR ANALYSIS OF REINFORCED CONCRETE SLABS AT FIRE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ayad A. Abdul -Razzak

    2013-05-01

    Full Text Available In the present study a nonlinear finite element analysis is presented  to predict the fire resistance of reinforced concrete slabs at fire environment. An eight node layered degenerated shell element utilizing Mindlin/Reissner thick plate theory is employed. The proposed model considered cracking, crushing and yielding of concrete and steel at elevated temperatures. The layered approach is used to represent the steel reinforcement and discretize the concrete slab through the thickness. The reinforcement steel is represented as a smeared layer of equivalent thickness with uniaxial strength and rigidity properties.Geometric nonlinear analysis may play an important role in the behavior of reinforced concrete slabs at high temperature. Geometrical nonlinearity in the layered approach is considered in the mathematical model, which is based on the total Lagrangian approach taking into account Von Karman assumptions.Finally two examples for which experimental results are available are analyzed, using the proposed model .The comparison showed good agreement with experimental results. 

  8. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  9. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  10. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  11. Masonry arches retrofitted with steel reinforced grout materials: In-situ experimental tests and advanced FE simulations

    Science.gov (United States)

    Bertolesi, Elisa; Carozzi, Francesca Giulia; Milani, Gabriele; Poggi, Carlo

    2017-11-01

    The paper presents the results of a series of in-situ tests carried out on two masonry arches, one unreinforced and the other reinforced with SRG (Steel Reinforced Grout). The arches are built adopting a peculiar construction technique using common Italian bricks with dimensions 250 × 120 × 55 mm3 and 10 mm thick mortar joints. One of the two arches has been reinforced with an SRG material constituted by an inox grid embedded into a layer of lime mortar, whereas the second one is maintained unreinforced for comparison purposes. The experimental set-up is designed to apply an eccentric vertical load placed at ¼ of the span in a series of loading and unloading cycles up to the failure. The numerical analyses have been performed using a sophisticated heterogeneous micro-modeling technique, where bricks, mortar joints and the strengthening have been modeled separately. Finally, the numerical outcomes have been comparatively assessed with respect to the experimental results and the crack patterns obtained at the end of the tests, showing a satisfactory agreement in terms of the global behavior of the arches and their collapse mechanisms.

  12. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  13. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  14. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  15. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  16. Contributions in the Preparation and Processing of Composite Material Type Silumin 3 - Reinforced Matrix with S235JR Steel Mesh

    Directory of Open Access Journals (Sweden)

    Remus Belu-Nica

    2015-07-01

    Full Text Available In the paper are presented concrete data on developing technological batches of metal composite material (MCM type Silumin 3-reinforced matrix with steel mesh S235JR, with the indicating of the parameter and of the distinct stages of work. The samples from prepared batches were cut along and across by water jet abrasive process and were subjected to a destructive testing program and microstructural examination, obtaining results in concordance with the desired quality. The abrasive material used for cut was GMA granite with the average mesh of 80, the particle size ranging between 150-300 µm, density 2300 kg/m3 and melting point 1240°C.

  17. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  18. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study.

    Science.gov (United States)

    Gupt, Parikshit; Nagpal, Archana; Samra, Rupandeep Kaur; Verma, Ramit; Kaur, Jasjeet; Abrol, Surbhi

    2017-01-01

    The purpose of the study was to evaluate the fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate (PMMA) resin using different types of reinforcement materials to determine the best among them. Fifty samples were made (10 samples for each group) with autopolymerizing PMMA resin using reinforcement materials (stainless steel wire: looped and unlooped and glass fiber: loose and unidirectional) as 3-unit posterior bridge. The test specimens were divided into five groups depending on the reinforcing material as Group I, II, III, IV, and V; Group I: PMMA unreinforced (control group), Group II: PMMA reinforced with stainless steel wire (straight ends), Group III: PMMA reinforced with stainless steel wire (looped ends), Group IV: PMMA reinforced with unidirectional glass fibers, and Group V: PMMA reinforced with randomly distributed glass fibers. Universal testing machine was used to evaluate and compare the fracture strength of samples. Comparison of mean ultimate force and ultimate stress was done employing one-way analysis of variance and Tukey's post hoc tests. The highest and lowest mean ultimate force and mean ultimate stress were of Group IV and I, respectively. Tukey's post hoc honestly significant difference multiple comparison for mean ultimate force and stress shows the increase in strength to be statistically significant ( P 0.05). Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  19. Optimization and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Aslam, S.

    2007-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. An effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the vol. fraction of Kevlar in epoxy matrix. The optimum characteristics were observed with 37% fiber with resin by applying hand-lay-up process. The composites produced were subjected to mechanical testing to evaluate the mechanical characteristics. (author)

  20. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    Science.gov (United States)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  1. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  2. Textile-reinforced concrete using composite binder based on new types of mineral raw materials

    Science.gov (United States)

    Lesovik, V. S.; Glagolev, E. S.; Popov, D. Y.; Lesovik, G. A.; Ageeva, M. S.

    2018-03-01

    To determine the level of development of science, it is necessary to start with a particular stage in the development of society. At present, the purpose of building materials science is to create composites, which ensure safety of buildings and structures, including their protection against certain natural and man-made impacts. A new stage in construction materials science envisages the development of a technology for creating composites comfortable for a particular person. To implement this, a new paradigm for designing and synthesizing building materials with a new raw material base is needed. The optimization of the “human-material-habitat” system is a complex task, for the solution of which transdisciplinary approaches are required.

  3. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  4. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  5. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    Science.gov (United States)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  6. Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xin-Jing; Zhang, Juan; Qi, Gong-Wei; Dai, Xiao-Hui; Zhou, Jun-Ping [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); Zhang, Shu-Yong, E-mail: syzhang@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); National Key Lab of Crystal, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China)

    2015-08-15

    Highlights: • Electrochemical performance of Fe{sub 3}O{sub 4} is improved by combining different approaches. • Porous Cu substrate is used to enlarge surface area and improve conductivity. • MWCNT is used to reinforce the electrode structure and change morphology of Fe{sub 3}O{sub 4}. • Reversible capacity, capacity retention and high-rate performance are improved. - Abstract: Multi-walled carbon nanotube-reinforced porous iron oxide (Fe{sub 3}O{sub 4}/MWCNT) is synthesized by a two-step approach with porous Cu substrate serving as current collector. Porous Cu substrate is prepared through electroless deposition with hydrogen bubble serving as template. Fe{sub 3}O{sub 4}/MWCNT composites are prepared by the electrodeposition of Fe{sub 3}O{sub 4} in the presence of dispersed MWCNTs from a Fe{sub 2}(SO{sub 4}){sub 3} solution with MWCNT suspension. Results showed that Fe{sub 3}O{sub 4} forms granular nanoparticles on the porous Cu substrate with several MWCNTs embedded in it. Adding MWCNTs changes the morphology of Fe{sub 3}O{sub 4}. Smooth Fe{sub 3}O{sub 4}, smooth Fe{sub 3}O{sub 4}/MWCNT, and porous Fe{sub 3}O{sub 4} composites are also prepared for comparison. When used as anode materials, porous Fe{sub 3}O{sub 4}/MWCNT composites have a reversible capacity of approximately 601 mA h g{sup −1} at the 60th cycle at a cycling rate of 100 mA g{sup −1}. This value is higher than that of the other materials. The reversible capacity at a cycling rate of 10,000 mA g{sup −1} is approximately 50% of that at 100 mA g{sup −1}. Therefore, the MWCNT-reinforced porous Fe{sub 3}O{sub 4} composite exhibits much better reversible capacity, capacity retention, and high-rate performance than the other samples. This finding can be ascribed to the porous structure of Fe{sub 3}O{sub 4}, better conductivity of porous Cu substrate and MWCNTs, and the morphology change of Fe{sub 3}O{sub 4} nanoparticles upon the addition of MWCNTs.

  7. Mechanical Reinforcement, Shapestabilization and Thermal Improvement of Phase-Change Energy Storage Materials Using Graphene Oxide Aerogel

    Science.gov (United States)

    Schuman, Yue Xu

    Paraffin is known as a good energy storage phase change material (PCM) because of its high energy storage capacity and low cost. However, the leakage of liquid paraffin beyond its melting point and its low thermal conductivity hinder applications of paraffin in energy storage systems. Recently, nanomaterials have been used to create PCM composites in order to enhance their thermal properties while shape stabilizing the PCMs. However, fundamental studies on the material structures and mechanical behavior of the thermally enhanced PCM composites are limited especially at the nanoscale. In this study, we developed a PCM composite using graphene oxide aerogel (GOxA) as the reinforcing 3D network. The GOxA functions thermally as a heat transfer path and mechanically as a nanofiller to reinforce the PCM matrix. We characterized the morphology, the crystal and molecular structures as well as the multiscale mechanical and thermal behavior of the GOxA-PCM composite to evaluate the role of GOxA in the PCM composite. The molecular and diffraction characterizations imply that the GOxA network may affect the paraffin's crystallization, potentially forming an interfacial phase at the surfaces of GOxA. Furthermore, the mechanical properties were studied using nanoindentation at the nano/microscale and a digital durometer at the macroscale from 25degree C to 80 degree C. The mechanical characterizations show that the GOxA-PCM composite is 3 7x harder than pure paraffin and maintains significant strength even above paraffin's melting point due to the support from the GoxA. Moreover, the composite is much less strain-rate sensitive than paraffin. The reinforcement via GOxA is much beyond the prediction by the rule of mixture, implying a strong GOxA-paraffin interfacial bonding. Finally, a thermal scanning microscopy (SThM) along with AFM was used to study the thermal properties at microscale. AFM and thermal images indicate that GOxA-PCM has a better thermal conductivity. The latent

  8. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed, and differ...... the applicability of this technique to more complicated structures, and to be used as a structural health monitoring design tool....

  9. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  10. A Novel CAE Method for Compression Molding Simulation of Carbon Fiber-Reinforced Thermoplastic Composite Sheet Materials

    Directory of Open Access Journals (Sweden)

    Yuyang Song

    2018-06-01

    Full Text Available Its high-specific strength and stiffness with lower cost make discontinuous fiber-reinforced thermoplastic (FRT materials an ideal choice for lightweight applications in the automotive industry. Compression molding is one of the preferred manufacturing processes for such materials as it offers the opportunity to maintain a longer fiber length and higher volume production. In the past, we have demonstrated that compression molding of FRT in bulk form can be simulated by treating melt flow as a continuum using the conservation of mass and momentum equations. However, the compression molding of such materials in sheet form using a similar approach does not work well. The assumption of melt flow as a continuum does not hold for such deformation processes. To address this challenge, we have developed a novel simulation approach. First, the draping of the sheet was simulated as a structural deformation using the explicit finite element approach. Next, the draped shape was compressed using fluid mechanics equations. The proposed method was verified by building a physical part and comparing the predicted fiber orientation and warpage measurements performed on the physical parts. The developed method and tools are expected to help in expediting the development of FRT parts, which will help achieve lightweight targets in the automotive industry.

  11. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  12. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  13. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  14. Influence of vermiculite on performance of flyash-based fibre-reinforced hybrid composites as friction materials

    International Nuclear Information System (INIS)

    Satapathy, Bhabani K.; Patnaik, Amar; Dadkar, Nandan; Kolluri, Dilip K.; Tomar, Bharat S.

    2011-01-01

    Highlights: → Study successfully demonstrates the possibility of designing fibre reinforced friction materials with vermiculite-flyash combination. → Vermiculite has caused an increase in the post-braking onset of degradation temperature. → Fade behaviour was found to be optimally dependent on the flyash-vermiculite combination whereas recovery remained broadly unaffected. → Vermiculite caused reduction in the maximum disc temperature rise and enhanced the frictional amplitude, i.e. μ max -μ min . → Static-friction, fade and recovery acted as major determinants for the overall friction performance whereas wear remained thermally activated. -- Abstract: Flyash-based fibre-reinforced hybrid phenolic composites filled with vermiculite were fabricated and characterized for their physical, thermal, mechanical and tribological performance. The performance were evaluated in terms of their friction-fade, friction-recovery, maximum disc temperature rise and wear behaviour on a Krauss friction tester conforming to the Regulation-90 as per the Economic Commission for Europe (ECE) norms. The fade behaviour has been observed to be optimally dependent on the flyash-vermiculite combination whereas the recovery remained broadly unaffected at ∼112 ± 14%. Addition of vermiculite has contributed to the reduction in the maximum disc temperature rise whereas it enhanced the frictional amplitude, i.e. μ max -μ min . The wear behaviour remains closely related to the trend observed in fade. The addition of vermiculite has caused an increase in the post-braking onset of degradation temperature of the surface composition as compared to the pre-braking composition. The analyses of friction and wear performance of the composites were carried out and major factors influencing the tribo-performance were identified. Worn surface morphology investigation using scanning electron microscope has revealed that the addition of vermiculite alters the compositional interactions at the

  15. GRC: Composite material from an inorganic matrix reinforced with AR glass fibres

    Directory of Open Access Journals (Sweden)

    Comino Almenara, P. I.

    1996-06-01

    Full Text Available This article describes the historical background of Cem-FIL. Alkali Resistant Glass Fibre, as well as the composite characteristics of the element they generate: GRC. The most important advantages and properties of this type of Composite Material are also detailed.

    En este artículo se detallan cuáles son las bases históricas de las Fibras de Vidrio Álcali-Resistentes Cem-FIL así como las características del elemento compuesto que ellas generan: GRC. En este documento también se pueden encontrar indicaciones sobre las principales ventajas y propiedades de este tipo de Material Compuesto.

  16. Properties of modified polysiloxane based ceramic matrix for long fibre reinforced composite materials

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Černý, Martin; Strachota, Adam; Kozák, Vladislav

    2011-01-01

    Roč. 40, 6-7 (2011), s. 380-385 ISSN 1465-8011 R&D Projects: GA ČR GA106/09/1101 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : Polysiloxane resin * Pyrolysis * Indentation Subject RIV: JI - Composite Materials Impact factor: 0.597, year: 2011

  17. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  18. Synthesis of irregular graphene oxide tubes using green chemistry and their potential use as reinforcement materials for biomedical applications.

    Directory of Open Access Journals (Sweden)

    Ángel Serrano-Aroca

    Full Text Available Micrometer length tubes of graphene oxide (GO with irregular form were synthesised following facile and green metal complexation reactions. These materials were obtained by crosslinking of GO with calcium, zinc or strontium chlorides at three different temperatures (24, 34 and 55°C using distilled water as solvent for the compounds and following a remarkably simple and low-cost synthetic method, which employs no hazardous substances and is conducted without consumption of thermal or sonic energy. These irregular continuous GO networks showed a very particular interconnected structure by Field Emission Scanning Electron Microscopy with Energy-Disperse X-Ray Spectroscopy for elemental analysis and High-resolution Transmission Electron Microscopy with Scanning Transmission Electron Microscope Dark Field Imaging, and were analysed by Raman Spectroscopy. To demonstrate the potential use of these 3D GO networks as reinforcement materials for biomedical applications, two composites of calcium alginate with irregular tubes of GO and with single GO nanosheets were prepared with the same amount of GO and divalent atoms and analysed. Thus, the dynamic-mechanical modulus of the composites synthesised with the 3D crosslinked GO networks showed a very significant mechanical improvement due to marked microstructural changes confirmed by confocal microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy.

  19. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study

    Directory of Open Access Journals (Sweden)

    Parikshit Gupt

    2017-01-01

    Conclusion: Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  20. Consideration of reinforcement mechanism in the short fiber mixing granular materials by granular element simulations

    Science.gov (United States)

    Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka

    2017-06-01

    The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.

  1. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  2. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  3. Effect of the functionalization of silica nanoparticles as a reinforcing agent on dental composite materials

    Directory of Open Access Journals (Sweden)

    Henry Alberto Rodríguez-Quirós

    2015-01-01

    Full Text Available El presente estudio evaluó el efecto del estado de agregación de nanopartículas de sílica en la reflectancia y cristalinidad de materiales compuestos de uso dental. Se emplearon dos tipos de sílica nanométrica (ca. 10 nm: Aerosil 200  no funcionalizado y Aerosil DT4  funcionalizado con 3-metacriloxipropiltrimetoxisilano. Las nanopartículas de sílica fueron dispersas en una mezcla de monómeros de Uretano Dimetilacrilato (UDMA y Etilenglicol Dimetacrilato (EGDMA en una relación 80:20 en masa. El tamaño de partícula de la silica y su estado de agregación fue determinado mediante microscopía electrónica de barrido (SEM y microscopía electrónica de transmisión (TEM, mostrando que el Aerosil DT4  presentó agregados densos de tamaño superior a 1 μm; en tanto el Aerosil 200  presentó una estructura agregada tipo gel de partículas. El grado de funcionalización del Aerosil DT4  fue determinado mediante análisis termogravimétrico (TGA, obteniendo un valor de 7.57% w/w. Los materiales compuestos fueron evaluados mediante calorimetría diferencial de barrido (DSC para determinar su cristalidad. El material compuesto reforzado con Aerosil DT4  presentó una menor cristalinidad que el sistema con Aerosil 200  , debido a la mayor interacción de la matriz polimérica con la superficie funcionalizada del Aerosil DT4  . El efecto de la agregación de las nanopartículas de silica en las propiedades ópticas del material compuesto fue determinado mediante análisis de reflectancia. La muestra de Aerosil 200  presentó un menor estado de agregación de las nanopartículas y mayor reflectancia que el sistema con Aerosil DT4  . La funcionalización de la superficie del Aerosil DT4  propició la aglomeración de las nanopartículas deteriorando las propiedades ópticas del material compuesto.

  4. Radiation resistance of the carbon fiber reinforced composite material with PEEK as the matrix resin

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-01-01

    In the fast breeder reactor etc. the structural materials are exposed to various environment, i.e., repeated high and low temperature, stress, etc. Irradiation effect (electron radiation) in the mechanical characteristic at low and high temperature has been studied in the PEEK-CF, polyarylether · ether · ketone - carbon fiber composite. Following are the results. (1) Radiation resistance of PEEK-CF is higher than that of PEEK-PES-CF, PEEK - polyethersulfone surface treated CF composite. In PEEK-PES-CF, PES is deteriorated by irradiation so the adhesive power lowers. (2) In the unirradiated PEEK-CF, its mechanical characteristic decreases beyond 140 deg C. With increase of the radiation dose, however, the characteristic rises. (3) Mechanical characteristic of PEEK-CF thus little drops by the heat treatment after the irradiation. (Mori, K.)

  5. Multiscale Modeling of Carbon Fiber Reinforced Polymer (CFRP) for Integrated Computational Materials Engineering Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jiaying; Liang, Biao; Zhang, Weizhao; Liu, Zeliang; Cheng, Puikei; Bostanabad, Ramin; Cao, Jian; Chen, Wei; Liu, Wing Kam; Su, Xuming; Zeng, Danielle; Zhao, John

    2017-10-23

    In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can be modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.

  6. New recycling approaches for thermoset polymeric composite wastes – an experimental study on polyester based concrete materials filled with fibre reinforced plastic recyclates

    OpenAIRE

    Ribeiro, M. C. S.; Fiúza, António; Meira Castro, A C; Dinis, M. L.; Silva, Francisco J. G.; Meixedo, João Paulo

    2011-01-01

    In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in we...

  7. Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials

    International Nuclear Information System (INIS)

    Beheri, Hanan H.; Mohamed, Khaled R.; El-Bassyouni, Gehan T.

    2013-01-01

    Highlights: ► Nano sized of HA and CS powders were prepared. ► Mechanical of HACS composites enhanced with content of CS. ► The apatite formation onto the composites is proved. -- Abstract: In this study, the nano sized hydroxyapatite (HA) and calcium silicate (CS) powders prepared by both chemical precipitation and sol–gel methods respectively. Biphasic nano-composites materials containing different ratios of HA and CS were fabricated and assessed using X-ray diffraction (XRD), Fourier transmission infrared reflectance (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The effect of variation of ratios between HA and CS on mechanical properties, microstructure and in vitro study was studied. The results proved that the mechanical properties were enhanced with increasing the CS ratio in the composite. In vitro study proved the formation and nucleation of apatite onto composites surfaces which contain low content of CS after one week of immersion. Finally, it is concluded that the HACS composites containing high HA content at the expense of CS content will be promising for bone substitute’s applications, especially in load bearing sites.

  8. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  9. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Wolfrum

    2018-02-01

    Full Text Available Cubic boron nitride (c-BN composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS, has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram.

  10. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  11. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study.

    Science.gov (United States)

    Eapen, Ashly Mary; Amirtharaj, L Vijay; Sanjeev, Kavitha; Mahalaxmi, Sekar

    2017-09-01

    The purpose of this in vitro study was to comparatively evaluate the fracture resistance of endodontically treated teeth restored with 2 fiber-reinforced composite resins and 2 conventional composite resin core buildup materials. Sixty noncarious unrestored human maxillary premolars were collected, endodontically treated (except group 1, negative control), and randomly divided into 5 groups (n = 10). Group 2 was the positive control. The remaining 40 prepared teeth were restored with various direct core buildup materials as follows: group 3 teeth were restored with dual-cure composite resin, group 4 with posterior composite resin, group 5 with fiber-reinforced composite resin, and group 6 with short fiber-reinforced composite resin. Fracture strength testing was performed using a universal testing machine. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test. Fracture patterns for each sample were also examined under a light microscope to determine the level of fractures. The mean fracture resistance values (in newtons) were obtained as group 1 > group 6 > group 4 > group 3 > group 5 > group 2. Group 6 showed the highest mean fracture resistance value, which was significantly higher than the other experimental groups, and all the fractures occurred at the level of enamel. Within the limitations of this study, a short fiber-reinforced composite can be used as a direct core buildup material that can effectively resist heavy occlusal forces against fracture and may reinforce the remaining tooth structure in endodontically treated teeth. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  13. Influence of sulfates on chloride diffusion and chloride-induced reinforcement corrosion in limestone cement materials at low temperature

    Czech Academy of Sciences Publication Activity Database

    Sotiriadis, Konstantinos; Rakanta, E.; Mitzithra, M. E.; Batis, G.; Tsivilis, S.

    2017-01-01

    Roč. 29, č. 8 (2017), č. článku 04017060. ISSN 0899-1561 R&D Projects: GA MŠk(CZ) LO1219 Keywords : limestone cement * chloride diffusion * reinforcement corrosion * sulfate attack * low temperature Subject RIV: JN - Civil Engineering OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.644, year: 2016 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001895

  14. Impact resistance performance of green construction material using light weight oil palm shells reinforced bamboo concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Thiruchelvam, S; Sidek, L M; Basri, H; Saadi, S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete with varied bamboo reinforcement content for the concrete slab of 300mm x 300mm size reinforced with different thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter for a constant spacing for various slab thickness using 0.45 OPS and 0.6 OPS bamboo reinforced concrete. The increment in bamboo diameter has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Increment in slab thickness of the slab has more effect on the crack resistance as compare to the increment in the diameter of the bamboo reinforcement.

  15. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material

    International Nuclear Information System (INIS)

    Wang, Peng; Tang, Xiaobin; Chai, Hao; Chen, Da; Qiu, Yunlong

    2015-01-01

    Highlights: • Sm_2O_3 is used for neutron absorber instead of B_4C, and Sm_2O_3 has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm_2O_3/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  16. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  17. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  18. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  19. Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites

    International Nuclear Information System (INIS)

    Han, Zhihui; Zhu, Bangshang; Chen, Rongrong; Huang, Zhuoli; Zhu, Cailian; Zhang, Xiuyin

    2015-01-01

    Highlights: • The novel Novaron-nano-ZrO 2 –ABW/PMMA composites was synthesized. • Nano-ZrO 2 and ABWs could increase the mechanical behavior of this composites. • Novaron had synergistic effect to improve the composites mechanical property and the 4 wt% was the optimal proportion. • Novaron could improve the antibacterial properties through their direct contact with the bacteria. • The composites did not have an adverse affect on cell viability. - Abstract: The aim of this study was to investigate the effect of silver-supported material (Novaron (N)) in acrylic resin (poly(methyl methacrylate) (PMMA)) composites, which reinforced with zirconium dioxide nanoparticles (nano-ZrO 2 ) and aluminum borate whiskers (ABWs), on the mechanical behavior, antibacterial properties and cytotoxicity. Silanized ABWs (4 wt%) and nano-ZrO 2 (2 wt%) were mixed with PMMA powder to obtain nano-ZrO 2 –ABW/PMMA matrices. Various amounts of Novaron particles were incorporated into the matrices and the pure PMMA to test the flexural strength. In addition, Streptococcus mutans (S. mutans) and Canidia albicans (C. albicans) biofilms on the specimen surface and in the culture medium were investigated for metabolic activity and colony-forming units (CFUs). Extracts taken in the cell culture medium of the specimens were used to evaluate cell viability. Results showed that the silanized nano-ZrO 2 and ABWs could improve the flexural strength of composites compared with the pure PMMA. Novaron itself had no mechanical function for composites while it had synergistic effect when it mixed with silanized nano-ZrO 2 and ABWs. And when 4 wt% (N-4) Novaron mixed in nano-ZrO 2 –ABW/PMMA composites, flexural strength achieved an increase of 44%, getting the maximum value. For the antibacterial properties, the values of MTT and CFUs of S. mutans and C. albicans biofilms on the composites surface were greatly reduced (p < 0.05) with the higher proportion of Novaron, and no significant

  20. CFRP materials reinforced with LCP fibres for applications in vehicle and aircraft engineering. Final report; Faserverbundkunststoffe mit einer LCP-Faserverstaerkung fuer Anwendungen im Fahrzeug- und Flugzeugbau. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-11

    CFRP materials reinforced with liquid crystalline polyester (LCP) fibres were produced and characterized with regard to their physical and mechanical characteristics. Compared with non-reinforced plastics, polypropylene/LCP fibre-UD laminates produced by filmstacking, epoxy resin/LCP fibre-UD laminates produced by spooling and epoxy resin composites with internal LCP fibre fleece had significantly higher strength and stiffness as well as high thermoforming resistance and waterproofness. [Deutsch] In diesem Forschungsvorhaben wurden Faserverbundkunststoffe mit einer Verstaerkungsfaser auf Basis eines thermotropen fluessigkristallinen Polyester [Liquid Crystalline Polyester, abgekuerzt LCP] hergestellt und bezueglich der physikalisch-mechanischen Eigenschaften charakterisiert. Die im `filmstacking`-Verfahren hergestellte Polypropylen/LCP-Faser-UD-Laminate und mittels Bewicklung gewonnene Epoxidharz/LCP-Faser-UD-Laminate sowie Epoxidharzverbunde mit eingearbeiteten LCP-Faservlies zeigen gegenueber den unverstaerkten Kunststoffmaterialien einen betraechtlichen Anstieg von Festigkeit und Steifigkeit. Die Faserverbunde weisen ausserdem eine hohe Waermeformbestaendigkeit und Wassersperrwirkung auf. (orig.)

  1. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Science.gov (United States)

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  2. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  3. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  4. Mechanical Performance of Natural / Natural Fiber Reinforced Hybrid Composite Materials Using Finite Element Method Based Micromechanics and Experiments

    OpenAIRE

    Rahman, Muhammad Ziaur

    2017-01-01

    A micromechanical analysis of the representative volume element (RVE) of a unidirectional flax/jute fiber reinforced epoxy composite is performed using finite element analysis (FEA). To do so, first effective mechanical properties of flax fiber and jute fiber are evaluated numerically and then used in evaluating the effective properties of ax/jute/epoxy hybrid composite. Mechanics of Structure Genome (MSG), a new homogenization tool developed in Purdue University, is used to calculate the hom...

  5. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.

    Science.gov (United States)

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Jönsson, Leif J; Hong, Feng F

    2016-07-08

    Bacterial nanocellulose (BNC) is a microbial nanofibrillar hydrogel with many potential applications. Its use is largely restricted by insufficient strength when in a highly swollen state and by inefficient production using static cultivation. In this study, an in situ nanocellulose-coating technology created a fabric-frame reinforced nanocomposite of BNC hydrogel with superior strength but retained BNC native attributes. By using the proposed technology, production time could be reduced from 10 to 3 days to obtain a desirable hydrogel sheet with approximately the same thickness. This novel technology is easier to scale up and is more suitable for industrial-scale manufacture. The mechanical properties (tensile strength, suture retention strength) and gel characteristics (water holding, absorption and wicking ability) of the fabric-reinforced BNC hydrogel were investigated and compared with those of ordinary BNC hydrogel sheets. The results reveal that the fabric-reinforced BNC hydrogel was equivalent with regard to gel characteristics, and exhibited a qualitative improvement with regard to its mechanical properties. For more advanced applications, coating technology via dynamic bacterial cultures could be used to upgrade conventional biomedical fabrics, i.e. medical cotton gauze or other mesh materials, with nanocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1077-1084, 2016. © 2016 American Institute of Chemical Engineers.

  6. Seismic load resistance of reinforcing steels in the as delivered condition and after corrosion - relevant material characteristics for performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moersch, Ing. Joerg [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    This type of accelerated corrosion test was used to study the high number of test samples in due time. The corrosion phenomena obtained in salt spray testing deviate significantly from corrosion phenomena (pitting factor) obtained in practical conditions. Salt spray testing represents practical conditions for the more uniform corrosion as a result of a severe carbonation of the concrete and/or for higher chloride contents at the surface of the rebar. At low corrosion current densities the effect of pit depth on residual mechanical performance might be underestimated. Reinforced concrete (r.c.) buildings in seismic areas shall be designed to guarantee enough ductile resources as for example a sufficient rotational capacity to allow for load re-distribution. The rotational capacity is directly dependent on the ductility of the reinforcing steel which is generally expressed as elongation at maximum load (A+g{sub t}) and the hardening ratio (R{sub m}/R{sub e}). A direct testing of the seismic load resistance of reinforcing steels is not part of the construction product standards. Therefore it was decided by European Commission to introduce this performance requirement in the mandate for the revision of EN 10080:2005. In parallel to the standardization process a research project was carried out to deliver the scientific background.

  7. In vitro and in vivo biocompatibility and osteogenesis of graphene-reinforced nanohydroxyapatite polyamide66 ternary biocomposite as orthopedic implant material

    Directory of Open Access Journals (Sweden)

    Zhang S

    2016-07-01

    Full Text Available Shiyang Zhang,1 Qiming Yang,1 Weikang Zhao,1 Bo Qiao,1 Hongwang Cui,1 Jianjun Fan,2 Hong Li,3 Xiaolin Tu,4 Dianming Jiang1 1Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 2Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing, 3College of Physical Science and Technology, Sichuan University, Chengdu, 4Institutes of Life Sciences, Chongqing Medical University, Chongqing, People’s Republic of China Abstract: Graphene and its derivatives have been receiving increasing attention regarding their application in bone tissue engineering because of their excellent characteristics, such as a vast specific surface area and excellent mechanical properties. In this study, graphene-reinforced nanohydroxyapatite/polyamide66 (nHA/PA66 bone screws were prepared. The results of scanning electron microscopy observation and X-ray diffraction data showed that both graphene and nHA had good dispersion in the PA66 matrix. In addition, the tensile strength and elastic modulus of the composites were significantly improved by 49.14% and 21.2%, respectively. The murine bone marrow mesenchymal stem cell line C3H10T1/2 exhibited better adhesion and proliferation in graphene reinforced nHA/PA66 composite material compared to the nHA/PA66 composites. The cells developed more pseudopods, with greater cell density and a more distinguishable cytoskeletal structure. These results were confirmed by fluorescent staining and cell viability assays. After C3H10T1/2 cells were cultured in osteogenic differentiation medium for 7 and 14 days, the bone differentiation-related gene expression, alkaline phosphatase, and osteocalcin were significantly increased in the cells cocultured with graphene reinforced nHA/PA66. This result demonstrated the bone-inducing characteristics of this composite material, a finding that was further supported by alizarin red staining results. In addition, graphene reinforced nHA/PA66

  8. Multi-physics and multi-scale deterioration modelling of reinforced concrete part I: Coupling transport and corrosion at the material scale

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2015-01-01

    is fully coupled, i.e. information, such as temperature and moisture distribution, phase assemblage, corrosion current density, damage state of concrete cover, etc., are continuously exchanged between the models. Although not explicitly outlined in this paper, such an analysis may be further integrated...... models are sketched to describe (i) transport of heat and matter in porous media as well as phase assemblage in hardened Portland cement, (ii) corrosion of reinforcement, and (iii) material performance including corrosion-induced damages on the meso and macro scale. The presented modelling framework...

  9. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Directory of Open Access Journals (Sweden)

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  10. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  11. Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials.

    Science.gov (United States)

    Peinado, Víctor; Castell, Pere; García, Lidia; Fernández, Ángel

    2015-10-19

    The aim of this research paper is to study the behaviour of a common used biopolymer (Poly(Lactic Acid) (PLA)) after several reprocesses and how two different types of additives (a melt strength enhancer and a nanoadditive) affect its mechanical and rheological properties. Systematic extraction of extrudate samples from a twin-screw compounder was done in order to study the effect in the properties of the reprocessed material. Detailed rheological tests on a capillary rheometer as well as mechanical studies on a universal tensile machine after preparation of injected specimens were carried out. Results evidenced that PLA and reinforced PLA materials can be reprocessed and recycled without a remarkable loss in their mechanical properties. Several processing restrictions and specific phenomena were identified and are explained in the present manuscript.

  12. A review on the development of reinforced ice for use as a building material in cold regions

    NARCIS (Netherlands)

    Vasiliev, N.K.; Pronk, A.D.C.; Shatalina, I.N.; Janssen, F.H.M.E.; Houben, R.W.G.

    2015-01-01

    Carrying building materials into remote cold regions makes construction in these regions difficult and rather expensive. The need for such materials can be reduced by the use of both ice and ice-soil composites. In cold regions ice is abundant and cheap. However, using ice as a building material has

  13. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  14. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  15. Assessment of the permeation characteristics of fibre-reinforced materials and elastomers for applications in cryotechnics and refrigeration engineering; Bestimmung der Permeationseigenschaften von Faserverbundwerkstoffen und Elastomeren fuer den Einsatz in der Kryo- und Kaeltetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Waschull, Joerg; Knabe, Monika; Grimm, Ulrich; Roemer, Siegfried [Institut fuer Luft- und Kaeltetechnik GmbH, Dresden (Germany)

    2009-07-01

    For safe and environmentally acceptable operation of cryotechnical and refrigerating sytems, the permeation characteristics of the elastomers and fibre-reinforced materials must be known. While elastomers are used primarily as sealing materials of refrigeration systems, fibre-reinforced materials are used increasingly in containers for supercooled liquids like LN2, LH2, and LH3. Measuring systems and methods were developed at the Institut of Ventilation and Refrigeration Engineering at Dresden (Institut fuer Luft- und Kaeltetechnik, Dresden) that enable quantitative statements on the permeation characteristics as a function of temperature. (orig.)

  16. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhang Shaoyang; Wang Fuping

    2007-01-01

    Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiC p (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO 4 ) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 deg. C and 316 deg. C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO 4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO 4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications

  17. Periapical tissue response after use of intermediate restorative material, gutta-percha, reinforced zinc oxide cement, and mineral trioxide aggregate as retrograde root-end filling materials: a histologic study in dogs.

    Science.gov (United States)

    Wälivaara, Dan-Åke; Abrahamsson, Peter; Isaksson, Sten; Salata, Luiz Antonio; Sennerby, Lars; Dahlin, Christer

    2012-09-01

    To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  19. Evaluation of material properties of SiC particle reinforced aluminum alloy composite using neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Akiniwa, Yoshiaki; Machiya, Shutaro; Kimura, Hidehiko; Tanaka, Keisuke; Minakawa, Nobuaki; Morii, Yukio; Kamiyama, Takashi

    2006-01-01

    The phase stresses under loading in a monolithic aluminum alloy and an aluminum alloy reinforced with silicon carbide particles were measured by the neutron diffraction method. Under uniaxial loading, the longitudinal and transverse strains in each constituent phase were measured. The diffraction elastic constants for each diffraction plane were investigated as a function of the diffraction intensity by TOF. Single peak analysis was carried out for each diffraction profile. The measured results were compared with the theoretical micromechanical models such as the self-consistent and Mori-Tanaka method using the Eshelby theory (MTE). The accuracy of the elastic constant strongly depends on the diffraction intensity. In order to confirm the rule of mixture, the phase stress was measured by the X-ray method. The macrostress calculated by the rule of mixture agreed very well with the applied stress. Finally, fatigue damage was evaluated by the neutron method. The change of the full width at half maximum in the aluminum phase during fatigue is small. On the other hand, the value in the SiC phase increased steeply just before fracture

  20. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  1. The influence of the static wind load concept on the material requirements for reinforced-concrete natural-draught cooling towers

    International Nuclear Information System (INIS)

    Harnach, R.

    1977-01-01

    The natural wind is the decisive risk factor in natural-draught cooling towers; therefore, the establishment of an assumed velocity is indispensable for the safety and reliability of the construction. In the framework of a statistical wind concept, static substitution loads for the assumed dynamic wind pressure have been determined, also including dynamic wind effects and the resonance response of the structure. On this basis, it has been studied how wind loads with different periodicity affect the material requirements of reinforced-concrete natural-draught cooling towers. It is found that the additional steel requirements, related to the total building cost, remain within acceptable limits even for extreme wind loads. (orig.) [de

  2. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Science.gov (United States)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  3. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  4. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    OpenAIRE

    Mo, Kim Hung; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut...

  5. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  6. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  7. Preparation and characterisation of poly p-phenylene-2,6-benzobisoxazole fibre-reinforced resin matrix composite for endodontic post material: a preliminary study.

    Science.gov (United States)

    Hu, Chen; Wang, Feng; Yang, Huiyong; Ai, Jun; Wang, Linlin; Jing, Dongdong; Shao, Longquan; Zhou, Xingui

    2014-12-01

    Currently used fibre-reinforced composite (FRC) intracanal posts possess low flexural strength which usually causes post fracture when restoring teeth with extensive loss. To improve the flexural strength of FRC, we aimed to apply a high-performance fibre, poly p-phenylene-2, 6-benzobisoxazole (PBO), to FRCs to develop a new intracanal post material. To improve the interfacial adhesion strength, the PBO fibre was treated with coupling agent (Z-6040), argon plasma, or a combination of above two methods. The effects of the surface modifications on PBO fibre were characterised by determining the single fibre tensile strength and interfacial shear strength (IFSS). The mechanical properties of PBO FRCs were characterised by flexural strength and flexural modulus. The cytotoxicity of PBO FRC was evaluated by the MTT assay. Fibres treated with a combination of Z-6040 and argon plasma possessed a significantly higher IFSS than untreated fibres. Fibre treated with the combination of Z-6040-argon-plasma FRC had the best flexural strength (531.51 ± 26.43MPa) among all treated fibre FRCs and had sufficient flexural strength and appropriate flexural moduli to be used as intracanal post material. Furthermore, an in vitro cytotoxicity assay confirmed that PBO FRCs possessed an acceptable level of cytotoxicity. In summary, our study verified the feasibility of using PBO FRC composites as new intracanal post material. Although the mechanical property of PBO FRC still has room for improvement, our study provides a new avenue for intracanal post material development in the future. To our knowledge, this is the first study to verify the feasibility of using PBO FRC composites as new intracanal post material. Our study provided a new option for intracanal post material development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  9. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  10. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    Science.gov (United States)

    2011-12-01

    particles using positron annihilation lifetime spectroscopy (PALS). They found that the free volume of the matrix was dependent on the volume fraction...mechanical analysis and positron annihilation lifetime spectroscopy ,” Polymer International, vol. 51, pp. 1277–1284, 2002. [35] G. W. Brassell and K. B...use as structural materials in applications at high rates of strain. These types of com- posites are very complex due to their heterogeneous

  11. Advanced Single-Polymer Nanofiber-Reinforced Composite - Towards Next Generation Ultralight Superstrong/Tough Structural Material

    Science.gov (United States)

    2015-04-29

    structural modifications can be used: 1) The incorporation of one or more large pendant groups; 2) The incorporation of flexible or non-symmetrical...provides an attractive route to bridge scales and to utilize unique nano properties in conventional macro materials. • Polyimide-derived carbon...This makes our results macroscopically relevant. Nanofiber continuity provides an easy way to bridge scales. Nanofiber manufacturing is much easier

  12. Full Mouth Oral Rehabilitation by Maxillary Implant Supported Hybrid Denture Employing a Fiber Reinforced Material Instead of Conventional PMMA.

    Science.gov (United States)

    Qamheya, Ala Hassan A; Yeniyol, Sinem; Arısan, Volkan

    2015-01-01

    Many people have life-long problems with their dentures, such as difficulties with speaking and eating, loose denture, and sore mouth syndrome. The evolution of dental implant supported prosthesis gives these patients normal healthy life for their functional and esthetic advantages. This case report presents the fabrication of maxillary implant supported hybrid prosthesis by using Nanofilled Composite (NFC) material in teeth construction to rehabilitate a complete denture wearer patient.

  13. Full Mouth Oral Rehabilitation by Maxillary Implant Supported Hybrid Denture Employing a Fiber Reinforced Material Instead of Conventional PMMA

    Directory of Open Access Journals (Sweden)

    Ala Hassan A. Qamheya

    2015-01-01

    Full Text Available Many people have life-long problems with their dentures, such as difficulties with speaking and eating, loose denture, and sore mouth syndrome. The evolution of dental implant supported prosthesis gives these patients normal healthy life for their functional and esthetic advantages. This case report presents the fabrication of maxillary implant supported hybrid prosthesis by using Nanofilled Composite (NFC material in teeth construction to rehabilitate a complete denture wearer patient.

  14. Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions

    International Nuclear Information System (INIS)

    Garcia-Espinel, J.D.; Castro-Fresno, D.; Parbole Gayo, P.; Ballester-Muñoz, F.

    2015-01-01

    Highlights: • Seawater environment over composite material that are suitable for civil applications. • Seawater intake is linked to tensile and flexural strength degradation in GFC. • Fatigue performance of glass composites is similar in seawater environment than in air. - Abstract: Glass fiber composites (GFRP) are common in civil engineering projects, but not in marine structures. One reason is that seawater effects degrade GFRP composites mechanical properties and interlaminar shear strength (ILSS). Here, influence of seawater environment is studied to determine the best composite materials for marine civil engineer applications, studying the influence of several factors in their mechanical properties. This is to determine safety factors to use in the design of structural calculations for marine applications. Glass/epoxy composites are the safest materials to use in marine civil structures as mechanical properties degradation becomes stabilized after moisture saturation level. UV and water cyclic analysis must be done to determine affection to transversal strength. Only vinylester GFRP has problems with biodegradation. GFRP fatigue performance is not influenced by seawater environment

  15. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    Science.gov (United States)

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  16. Recycling solid residues recovered from glass fibre-reinforced composites – A review applied to wind turbine blade materials

    DEFF Research Database (Denmark)

    Beauson, Justine; Lilholt, Hans; Brøndsted, Povl

    2014-01-01

    For the sustainable development of modern societies, optimized life cycle management of any technologies must be considered, from their development and implementation to their end of life (EoL). This is of main concern for the wind energy sector. Rapidly growing, this industrial sector will have...... to face large amount of future wind turbine (WT) blades coming to EoL. Among the EoL solutions available for WT blades, i.e. reuse, remanufacturing, recycling, incineration or disposal, this literature review focuses on recycling and particularly the recycling of shredded composite (SC) materials...

  17. sp2 carbon allotropes in elastomer matrix: From master curves for the mechanical reinforcement to lightweight materials

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2018-03-01

    Full Text Available This work presents high surface area sp2 carbon allotropes as important tools to design and prepare lightweight materials. Composites were prepared based on either carbon black (CB or carbon nanotubes (CNT or hybrid CB/CNT filler systems, with either poly(1,4-cis-isoprene or poly(styrene-co-butadiene as the polymer matrix. A correlation was established between the specific interfacial area (i.a., i.e. the surface made available by the filler per unit volume of composite, and the initial modulus of the composite (G′γmin, determined through dynamic mechanical shear tests. Experimental points could be fitted with a common line, a sort of master curve, up to about 30.2 and 9.8 mass% as CB and CNT content, respectively. The equation of such master curve allowed to correlate modulus and density of the composite. Thanks to the master curve, composites with the same modulus and lower density could be designed by substituting part of CB with lower amount of the carbon allotrope with larger surface area, CNT. This work establishes a quantitative correlation as a tool to design lightweight materials and paves the way for large scale application in polymer matrices of innovative sp2 carbon allotropes.

  18. Standard practice for determining damage-Based design Stress for fiberglass reinforced plastic (FRP) materials using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice details procedures for establishing the direct stress and shear stress damage-based design values for use in the damage-based design criterion for materials to be used in FRP vessels and other composite structures. The practice uses data derived from acoustic emission examination of four-point beam bending tests and in-plane shear tests (see ASME Section X, Article RT-8). 1.2 The onset of lamina damage is indicated by the presence of significant acoustic emission during the reload portion of load/reload cycles. "Significant emission" is defined with historic index. 1.3 Units - The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units which are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health pr...

  19. Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

    Directory of Open Access Journals (Sweden)

    Pin Gong

    2018-04-01

    Full Text Available With a highly functional methyl vinyl silicone rubber (VMQ matrix and filler materials of B4C, PbO, and benzophenone (BP and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were 323.6°C and 335.3°C, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am–Be neutron source. The transmission of γ-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively. Keywords: Flexible Composite, Neutron Shielding, Radiation Resistance, γ-ray Shielding

  20. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  1. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    Directory of Open Access Journals (Sweden)

    Ireana Yusra A. Fatah

    2014-10-01

    Full Text Available The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC. The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR and X-ray diffraction (XRD. The morphology and thermal stability were investigated by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric (TGA analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC, but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

  2. Investigation of corrosion and wear mechanisms in hard material-reinforced duplex steel coatings; Untersuchungen zum Korrosions- und Verschleissverhalten von hartstoffverstaerkten `Duplex`-Schutzschichten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Schweisstechnik und Trennende Fertigungsverfahren; Goellner, J. [Technische Univ. Magdeburg (Germany). Inst. fuer Werkstofftechnik und Werkstoffpruefung

    1998-09-30

    The hard-material reinforced duplex steel coatings were deposited by plasma arc two-powder surfacing. By varying the angle of the hard materials feeding process, the deposition of the carbides was optimized so that they are deposited into the matrix in the trailing zone of the welding torch under conditions of very low thermal effects near the freezing point of the weld pool. Microstructural studies revealed that the deposition of the hard materials prevents devlopment of the typical, ferritic-austenitic microstructure of duplex steels. Due to a dissolution and diffusion process, the microstructure of the matrix takes up carbon and chromium or tungsten, depending on the carbide, thus enhancing the austenitic material in the microstructure. The wear behaviour of the surface deposits was found to be very good, wear being reduced by a factor of 6, irrespective of the type of carbide. The friction-affected surfaces showed no dissolving effects or cracking. The corrosion behaviour in sulfuric acid is also good. The welded deposits exhibited the typical behaviour of a passive material. Wear mechanisms slightly reduce the resistance. The behaviour of various specimens in artificial seawater could be distinctly assessed. Small grain fractions and pre-heating temperatures of 100 C have a beneficial effect on the corrosion resistance. The technique recommends itself for applications such as coatings for baffle plates used in flue gas desulfurisation, pipes, pump components, flanges or nozzles, or for recurrent coating of system components affected by abrasive corrosion. (orig./CB) [Deutsch] Zur Herstellung hartstoffverstaerkter Duplex-Beschichtungen wurde das Plasma-Zwei-Pulver-Auftragschweissverfahren verwendet. Hierbei wurde durch Variation des Zufuhrwinkels der Hartstoffe der Einbringungsort der Karbide optimiert, so dass diese im Nachlauf des Schweissbrenners mit sehr geringer thermischer Beeinflussung im erstarrungsnahen Schmelzbadbereich in die Matrix eingelagert

  3. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  4. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  5. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  6. Carbon fiber reinforced materials - glass fiber reinforced materials

    Energy Technology Data Exchange (ETDEWEB)

    Krautwald, R

    1980-10-01

    Wind power plants are promising alternative energy systems. The rotor blades are subject to high demands: Long life, light weight, and high stiffness. A GFRP/CFRP combination was chosen for a 316 kW plant, the composite construction is by far superior to the metal construction. Design, fabrication, and testing are described. The plant has a power of 316 kW for a wind velocity of 8.5 m/sec, a rotational speed of 37 min/sup -1/, a rotor diameter of 52 m with a blade length of 25.2 m and a blade mass of 1 t. An experimental component 10.2 m long was constructed and tested with satisfactory results.

  7. Fundamental study on the same kind/different morphology composite material using knitted fabrics for a reinforcing pattern. Amimono wo kyoka keitai to shita doshu ikeitai fukugo zairyo no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Hamada, Y. (Kyoto Inst. of Technology, Kyoto (Japan))

    1998-05-21

    An experimental study was performed on a polyethylene composite material using knitted fabrics for a reinforcing pattern. The experiment used ultra polymeric polyethylene as a reinforcing material, and low-density polyethylene as a matrix. The reinforcing pattern used flat-knitted fabrics, fabricated by using a knitting machine. Formation temperature, which took melting points of both materials of 147 and 120 degC into account, was set to 145 degC with expectation on bonding of both materials. The tensile test was performed under displacement control of 10.0 mm/min, and after the test, SEM observation was conducted on fracture faces. The following findings were obtained as a result of the experiment: regardless of test piece cutting-out directions and the number of lamination, the fracture was observed in three stages; with two-layer test pieces, stress increased further from fracture strain at about 30%, and the test pieces ended up in final fracture while repeating increase and decrease in the stress; two-layer course test pieces showed tensile strength of 33 MPa, which is an enhancement by 51% of the strength of the matrix polyethylene; and fracture strain showed as high values as 70 to 90% in the two-layer test pieces. 2 refs., 6 figs.

  8. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  9. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  10. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  11. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  12. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  13. Behavior of reinforced concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.

    1984-09-01

    A study is presented concerning the behavior of reinforced concrete sections at elevated temperatures. Material properties of concrete and reinforcing steel are discussed. Behavior studies are made by means of moment-curvature-axial force relationships. Particular attention is given to the load carrying capacity, thermal forces and moments, and deformation capacity. The effects on these properties of variations in the strength properties, the temperature level and distribution, the amount of reinforcing steel, and limiting values of strains are considered

  14. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  15. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    Fiber-reinforced ganular composites (for instance, fiber-reinforced sand) are considered as construction materials for such applications as subgrades of airfields and roads, aircraft parking facilities, etc...

  16. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  17. Nanocellulose reinforcement of Transparent Composites

    Science.gov (United States)

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  18. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    OpenAIRE

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  19. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  20. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  1. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    modulus of elasticity, high tensile strength, improved fatigue and impact resistance. Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an ...

  2. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  3. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  4. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  5. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  6. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  7. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  8. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  9. Broad research and application of composite materials. ; Future for textile reinforced resins, rubber, and intelligent composites. Fukugo zairyo no habahiroi kenkyu to oyo ni mukete. ; Textile kyoka jushi, gomu, intelligent composite no shorai

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, S. (Kyoto University, Kyoto (Japan). Faculty of Engineering)

    1994-02-15

    This paper presents several topics on composite materials and describes the ways the materials should be for the future. Composite materials are accomplishing great evolution, which owes a great deal to application and practical use, particularly the progress in materials. However, an impression is ineffaceable that the technology stays in a limited region as a science to pursue basic principles. A development of the 'post-classical theory' is expected in the future. While fiber technologies are related closely with composites, Japan who has a long history of weaving, knitting, and braiding threads stands behind in devising ideas. Fiber engineering education would have to be addressed with problems. Rubber materials are made and used by freely using composite technologies such as carbon black mixing, vulcanization, and reinforcing with fibrous chords, but no through-design theory has been established. While wool has a function of self-adjustment according to humidity and temperature, such intelligent composites as ones using optic glass fibers for example are expected for their future. 1 fig.

  10. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  11. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  12. FRP reinforcement of timber structures

    OpenAIRE

    Schober, Kay-Uwe; Harte, Annette M.; Kliger, Robert; Jockwer, Robert; Xu, Qingfeng; Chen, Jian-Fei

    2015-01-01

    Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in rec...

  13. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  14. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  15. Nonlinear analysis of reinforced concrete structures using software package abaqus

    OpenAIRE

    Marković Nemanja; Stojić Dragoslav; Cvetković Radovan

    2014-01-01

    Reinforced concrete (AB) is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP), Smeared Concrete Cr...

  16. [The behavior of fiber-reinforced plastics during laser cutting].

    Science.gov (United States)

    Emmrich, M; Levsen, K; Trasser, F J

    1992-06-01

    The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.

  17. Optical transparency and mechanical properties of semi-refined iota carrageenan film reinforced with SiO2 as food packaging material

    Science.gov (United States)

    Aji, Afifah Iswara; Praseptiangga, Danar; Rochima, Emma; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    Food packaging is important for protecting food from environmental influences such as heat, light, water vapor, oxygen, dirt, dust particles, gas emissions and so on, which leads to decrease the quality of food. The most widely used type of packaging in the food industry is plastic which is made from synthetic polymers and takes hundreds of years to biodegrade. Recently, food packaging with high bio-degradability is being developed using biopolymer combined with nanoparticles as reinforcing agent (filler) to improve its properties. In this study, semi-refined iota carrageenan films were prepared by incorporating SiO2 nanoparticles as filler at different concentrations (0%, 0.5%, 1.0% and 1.5% w/w carrageenan) using solution casting method. The optical transparency and mechanical properties (tensile strength and elongation at break) of the films were analyzed. The results showed that incorporation of SiO2 nanoparticles to carrageenan matrix on optical transparency of the films. For the mechanical properties, the highest tensile strength was found for incorporation of 0.5% SiO2, while the elongation at break of the films improved with increasing SiO2 concentration.

  18. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  19. PRACTICAL STUDY ON THE CFRP REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Catalina IANASI

    2016-05-01

    Full Text Available One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of CFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem which are presented in this paper.

  20. Development and performance evaluation of fiber reinforced polymer bridge.

    Science.gov (United States)

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  1. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  2. Mechanical analyses of pipeline repair and reinforcement with use of composite functionally graded materials; Analise mecanica de reforco de dutos submarinos com materiais compositos com gradacao funcional

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)

  3. ASSESSMENTS OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS OF INCREASED USE, RECYCLING, AND COMBUSTION OF FIBER-REINFORCED, PLASTIC AND METAL COMPOSITE MATERIALS

    Science.gov (United States)

    The purpose of the study is to identify and define future environmental concerns related to the projected utilization, recycling, and combustion of composite materials. The study is being conducted for the Office of Strategic Assessment and Special Studies (OSASS) of the U.S. Env...

  4. Mechanical characterization of sisal reinforced cement mortar

    Directory of Open Access Journals (Sweden)

    R. Fujiyama

    2014-01-01

    Full Text Available This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the effect of the fibers on the fracture toughness of the material. The results obtained indicate that, while fiber reinforcement leads to a decrease in compressive strength, J-integral calculations at maximum load for the different notch root radii have indicated, particularly for the case of long fibers, a significant superiority of the reinforced material in comparison with the plain cement mortar, in consistence with the impact test data.

  5. The utilization of coal mining wastes as filling materials in reinforced earth structures. III. Construction of a full scale experimental structure; Utilizacion de los esteriles del carbon como material de relleno en estructuras de tierra reforzada. II. Construccion de una estructura experimental

    Energy Technology Data Exchange (ETDEWEB)

    CaNibano Gonzalez, J.; Martinez, C.; Gonzalez, M.R. [HUNOSA. Programa Desarrollo Esteriles. Oviedo (Spain); Pardo, F.; SopeNa, L. [CEDEX. Laboratorio Geotecnia, Madrid (Spain); Torres, M. [Escuela Tecnica Superior de Ingenieros de Minas, Oviedo (Spain); Perez, J.J. [MOPTMA. Demarcacion Carreteras del Estado, Oviedo (Spain)

    1997-06-01

    This article describes the construction of a full scale experimental structure in which coal mining wastes (mine stones) were utilized as a filling material. In such structure, which was 20 m long and 2 high coal mining wastes from two different tips were tested together with different types of reinforcing frames such as metal bands, geomeshes and Paraweb (Freyssisol) bands. Also, thermocouples were placed at different heights. On the other hand, the said structure was subjected to 3.085 passes of a truck having a ballast of 10.5 tons on its rear axle. The performance of the coal mining wastes was completely satisfactory. (Author) 3 refs.

  6. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  7. Investigation on reinforced concrete slabs subjeted to impact loading

    International Nuclear Information System (INIS)

    Freiman, M.; Krutzik, N.J.; Tropp, R.; Zorn, N.F.

    1984-01-01

    A comparison of experimental and computational results for tests of reinforced concrete slabs subjected to soft missile impact is presented. Numerical simulation techniques were employed to predict the target response. The objective of the calculations was to validate the material model for reinforced concrete implemented in a finite difference code. The computational results regarding displacements or strains in the reinforcement conform satisfactorily with the experimental values. (Author) [pt

  8. Long‐Term Monitoring of a Geosynthetic Reinforced Soil Integrated Bridge System (GRS‐IBS)

    Science.gov (United States)

    2017-11-01

    The geosynthetic reinforced soil integrated bridge system (GRS-IBS) is an innovative alternative to conventional bridge technology that utilizes closely spaced layers of geosynthetic reinforcement and compacted granular fill material to provide direc...

  9. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  10. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  11. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  12. Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system

    Science.gov (United States)

    Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi

    2018-03-01

    We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.

  13. Fibre Reinforced Polymer Composites as Internal and External Reinforcements for Building Elements

    Directory of Open Access Journals (Sweden)

    Cătălin Banu

    2008-01-01

    Full Text Available During the latest decades fibre reinforced polymer (FRP composite materials have proven valuable properties and suitable to be used in construction of new buildings and in upgrading the existing ones. These materials have covered the road from research laboratory and demonstration projects to implementation in actual structures. Nowadays the civil and structural engineering communities are about to commence the stage in which the use of FRP composites is becoming a routine similar to that of traditional material such as concrete, masonry and wood. Two main issues are presented in this paper, the use of FRP composite materials for new structural members (internal reinforcements and strengthening of existing members (externally bonded reinforcements. The advantages and disadvantages as well as the problems and constraints associated with both issues are discussed in detail mainly related to concrete members.

  14. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  15. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  16. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  17. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  18. Adhesion analysis between metal supplies and composites materials reinforce with glass fiber; Analise de adesao antre materiais metalicos e materiais compositos reforcados com fibra e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Oushiro, Karol B.; Costa, Anahi P. da; Botelho, Edson C. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Materiais e Tecnologia], e-mail: kaoushiro@hotmail.com; Costa, Michelle L. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Materiais e Tecnologia; Instituto de Aeronautica e Espaco (AMR/IAE/DCTA), Sao Jose dos Campos, SP (Brazil). Div. de Materiais

    2011-07-01

    The appearance of defects, mainly thinning caused by corrosion, is unavoidable in pipeline transport of fluids. Many repair techniques have been developed, among them, has been highlighting the pipeline repair with composite that is to involve the passage of the corroded pipeline with composite material. The study of these techniques is of great interest for the branch industry, since the efficiency of repair will depend on good adhesion between the repair composite and steel pipe. In this work, the bond strength between fiber glass/epoxy composite bonded to a steel tubing used in petrochemical plants was evaluated by mechanical testing of lap shear (ASTM D1002). These samples were conditioned using 2000 thermal shock cycles, and the mechanical results of the conditioned and non-conditioned samples were compared. With this, we observed that the polymer composites can be successfully used for repair of metallic pipes with petrochemical application, because when exposed to sudden temperature changes their mechanical properties (shear) remained practically unchanged. (author)

  19. On the simulation of kink bands in fiber reinforced composites

    DEFF Research Database (Denmark)

    Sørensen, K.D.; Mikkelsen, Lars Pilgaard; Jensen, H.M.

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  20. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    Indian Academy of Sciences (India)

    The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures ... The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have ... Sadhana | News.

  1. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  2. Effect of reinforcement on plastic limit loads of branch junctions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  3. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  4. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  5. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    better performance of slabs with transverse reinforcement in form of T-headed bars compared to the slabs with conventional stirrups with hooks with regards to perforation capacity under hard missile impact. Non-linear dynamic behavior of reinforced concrete slabs under impact loading by rigid missile was analyzed using the commercial Finite Element (FE) code LS-DYNA. FE blind predictions based on Winfrith concrete material model were compared to the tests on slabs with and without transverse reinforcement. The FE predictions obtained were in general agreement with tests. Two different types of transverse reinforcement were examined (stirrups and T-headed bars) using simplified models. Similar to the tests, the FE predictions show that transverse reinforcement localizes damage induced by missile impact but does not increase the perforation resistance of the concrete slab. FE predictions also showed that T-headed bars perform better than stirrups, providing approximately the same perforation resistance and smaller damaged area comparing with a slab with longitudinal reinforcement only. Additionally, FE modeling was conducted for two different slab thicknesses to assess the effect of the thickness.

  6. Theoretical and numerical analysis of reinforced concrete beams with confinement reinforcement

    Directory of Open Access Journals (Sweden)

    R. G. Delalibera

    Full Text Available This paper discusses the use of confinement in over-reinforced concrete beams. This reinforcement consists of square stirrups, placed in the compression zone of the beam cross-section, in order to improve its ductility. A parametric numerical study is initially performed, using a finite element computational program that considers the material nonlinearities and the confinement effect. To investigate the influence of the transverse reinforcing ratio on the beam ductility, an experimental program was also conducted. Four over-reinforced beams were tested; three beam specimens with additional transverse reinforcement to confine the beams, and one without it. All specimens were fabricated with a concrete designed for a compressive strength of 25 MPa. The experimental results show that the post-peak ductility factor is proportional to the confining reinforcement ratio, however the same is not observed for the pre-peak ductility factor, which varied randomly with changes in the confining reinforcement ratio. It was also observed from the experiments that the confinement effect tends to be smaller close to the beam neutral axis.

  7. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  8. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  9. Shape and Reinforcement Optimization of Underground Tunnels

    Science.gov (United States)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  10. Reinforcement Data for Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2004-01-01

    Idealized materials data are derived from a number of test series reported in the literature and made by the author. The data cover a variety of reinforcing steels from mild steel, deformed bars and cold worked bars to cold drawn prestressing steels. Processes are described, which are responsible...

  11. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  12. Concrete cover cracking due to uniform reinforcement corrosion

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Geiker, Mette Rica

    2013-01-01

    and reinforcement de-passivation is a frequently used limit state. The present paper investigates an alternative limit state: corrosion-induced cover cracking. Results from numerical simulations of concrete cover cracking due to reinforcement corrosion are presented. The potential additional service life...... is calculated using literature data on corrosion rate and Faraday’s law. The parameters varied comprise reinforcement diameter, concrete cover thickness and concrete material properties, viz. concrete tensile strength and ductility (plain concrete and fibre reinforced concrete). Results obtained from......Service life design (SLD) is an important tool for civil engineers to ensure that the structural integrity and functionality of the structure is not compromised within a given time frame, i.e. the service life. In SLD of reinforced concrete structures, reinforcement corrosion is of major concern...

  13. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  14. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  15. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  17. Disperse reinforced concrete used in obtaining prefabricated elements for roads

    Directory of Open Access Journals (Sweden)

    Bogdan MEZEI

    2014-07-01

    Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.

  18. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  19. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  20. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  1. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    ... out. This investigation was built on the results of a previous study. Fiber-reinforced granular material was considered as a composite, and a mathematical homogenization scheme was used to arrive at its macroscopic properties...

  2. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rieve, J J [Beton- und Monierbau A.G., Duesseldorf (Germany, F.R.)

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised.

  3. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    International Nuclear Information System (INIS)

    Rieve, J.J.

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised. (orig.) [de

  4. PERSPECTIVE REINFORCING MATERIAL FOR FIBRE CONCRETE

    Directory of Open Access Journals (Sweden)

    A. V. Vedeneev

    2011-01-01

    Full Text Available The different types of wire fiber are considered, advantages of fiber of high-modular wire with heightened bending stiffness are shown. analysis by volumes of fiber production in the world is carried out. Peculiarities of fiber production at RUP «BMZ» are shown. recommendations on correlation «wire diameter-fiber length» are given for different types of fiber for prevention of fiber caking at production of fibrous concrete are given.

  5. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    OpenAIRE

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...

  6. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  7. Estructura y propiedades del material compuesto de base cobre reforzado con partículas intermetálicas de TiB2. // Structure and properties of copper base reinforced with intermetallic particles of TiB2 material.

    Directory of Open Access Journals (Sweden)

    M. López J.

    2002-09-01

    copper base reinforced alloy by means ofdispersion of TiB2 intermetalic ceramic is carried out. The copper-ceramic mechanical mixture was obtainedalloying powdered copper of 140 mm size with 1% and 2% of TiB2 in volume, dispers e in a planetary mill ofmartens itic stainless of high energy, with 12 and 36 hours milling in argon atmosphere using reason ofbolls/mass load in 10:1 powder. The powdered alloy consolidation was carried out in two stages.The objective of the study, is to investigate the evolution of mechanical and electric properties associated tomicroestructure changes taken place by compactacion process and hot lamination.Key words. Copper alloy, mechanical properties, microestructure, hot rolling.

  8. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  9. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  10. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  11. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  12. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    Science.gov (United States)

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  13. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  14. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    Science.gov (United States)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  15. Confinement of Reinforced-Concrete Columns with Non-Code Compliant Confining Reinforcement plus Supplemental Pen-Binder

    Directory of Open Access Journals (Sweden)

    Anang Kristianto

    2012-11-01

    Full Text Available One of the important requirements for earthquake resistant building related to confinement is the use of seismic hooks in the hoop or confining reinforcement of reinforced-concrete column elements. However, installation of a confining reinforcement with a 135-degree hook is not easy. Therefore, in practice, many construction workers apply a confining reinforcement with a 90-degreehook (non-code compliant. Based on research and records of recent earthquakes in Indonesia, the use of a non-code compliant confining reinforcement for concrete columns produces structures with poor seismic performance. This paper presents a study that introduces an additional element that is expected to improve the effectiveness of concrete columns confined with a non-code compliant confining reinforcement. The additional element, named a pen-binder, is used to keep the non-code compliant confining reinforcement in place. The effectiveness of this element under pure axial concentric loading was investigatedcomprehensively.The specimens tested in this study were 18 concrete columns,with a cross-section of 170 mm x 170 mm and a height of 480 mm. The main test variables were the material type of the pen-binder, the angle of the hook, and the confining reinforcement configuration.The test results indicate that adding pen-binders can effectively improve the strength and ductility of the column specimens confined with a non-code compliant confining reinforcement

  16. The Reinforcing Event (RE) Menu

    Science.gov (United States)

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  17. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  18. Three-dimensional fabric reinforced concrete finds first use in reactor building

    International Nuclear Information System (INIS)

    Akihama, S.; Nakagava, H.

    1989-01-01

    It is reported about creation of concrete reinforced with synthetic fibers by Japanese firm Kadzima. Synthetic material with three-dimensional orientation of fibers is produced of roving impreganted with synthetic resin. The reinforcement produced is submerged into the concrete matrix. The compression strength of such a material makes up 58 MPa. The new material is used for constructing the nuclear reactor shielding containers

  19. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  20. Nonlinear analysis of reinforced concrete structures using software package abaqus

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available Reinforced concrete (AB is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP, Smeared Concrete Cracking (CSC, Cap Plasticity (CP and Drucker-Prager model (DPM. We performed a nonlinear analysis of two-storey reinforced concrete frame by applying CDP method for modeling material nonlinearity of concrete. We have analyzed damage zones, crack propagation and loading-deflection ratio.

  1. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  2. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  3. Total Strain FE Model for Reinforced Concrete Floors on Piles

    NARCIS (Netherlands)

    Hofmeyer, H.; Bos, van den A.A.

    2008-01-01

    A finite element (FE) model using a total strain material model has been developed to predict the behavior of warehouse reinforced concrete floors on piles. The material model (not the FE model itself) was calibrated to material tests. The FE model for the floor structure was checked with full-scale

  4. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  5. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  6. Behavior of reinforcement SCC beams under elevated temperatures

    Science.gov (United States)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  7. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  8. A shell approach for fibrous reinforcement forming simulations

    Science.gov (United States)

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  9. Deep Reinforcement Fuzzing

    OpenAIRE

    Böttinger, Konstantin; Godefroid, Patrice; Singh, Rishabh

    2018-01-01

    Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions...

  10. Sisal fibre pull-out behaviour as a guide to matrix selection for the production of sisal fibre reinforced cement matrix composites

    CSIR Research Space (South Africa)

    Mapiravana, Joe

    2011-12-01

    Full Text Available Natural fibre reinforced cement composites are promising potential materials for use in panelised construction. The structural properties of these composite materials are yet to be fully understood. As the role of the natural fibre is to reinforce...

  11. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  12. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  13. Mechanical characterization of sisal reinforced cement mortar

    OpenAIRE

    R. Fujiyama; F. Darwish; M.V. Pereira

    2014-01-01

    This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the eff...

  14. Gaudi and reinforced concrete in construction

    OpenAIRE

    Grima Lopez, Rosa; Aguado de Cea, Antonio; Gómez Serrano, José

    2013-01-01

    The first two decades of the 20th century witnessed the introduction and expansion of reinforced concrete as a building material in Spain. Few years passed between the introduction of the first patents in the most industrialized areas of the Iberian Peninsula and the subsequent generalization of the technique through scientific knowledge obtained in universities. This period coincides almost completely with the professional career of Antoni Gaudí, one of the most famous Catalan architects. Th...

  15. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishnan

    Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  16. Fundamentals of fibre-reinforced soil engineering

    CERN Document Server

    Shukla, Sanjay Kumar

    2017-01-01

    This book is intended to serve as a one-stop reference on fibre-reinforced soils. Over the past 30-35 years, the engineering behaviour of randomly distributed/oriented fibre-reinforced soil, also called simply fibre-reinforced soil, has been investigated in detail by researchers and engineers worldwide. Waste fibres (plastic waste fibres, old tyre fibres, etc.) create disposal and environmental problems. Utilization of such fibres in construction can help resolve these concerns. Research studies and some field applications have shown that the fibres can be utilized in large quantities in geotechnical and civil engineering applications in a cost-effective and environmentally friendly manner. This book covers a complete description of fibres, their effects when included within a soil or other similar materials such as the fly ash, and their field applications. It gives a detailed view of fibre-reinforced soil engineering. The book will be useful to students, professional, and researchers alike, and can also ser...

  17. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  18. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  19. The Efficiency of Basalt Fibres in Strengthening the Reinforced Concrete Beams

    OpenAIRE

    Şerbescu, Andreea; Kypros, Pilakoutas; Ţăranu, N.

    2006-01-01

    The technique of externally bonding fibre reinforced polymer (FRP) composite laminates on the tension side of reinforced concrete (RC) beams is already widely accepted as an easy to apply, corrosion resistant and effective solution due to the high strength as well as the low weight of the composite material. The basalt fibres are produced from volcano rocks by a simple process; their applicability as reinforcing material composites utilized for plate bonding of RC beams was not enough researc...

  20. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  1. Reinforced seal component

    International Nuclear Information System (INIS)

    Jeanson, G.M.; Odent, R.P.

    1980-01-01

    The invention concerns a seal component of the kind comprising a soft sheath and a flexible reinforcement housed throughout the entire length of the sheath. The invention enables O ring seals to be made capable of providing a radial seal, that is to say between two sides or flat collars of two cylindrical mechanical parts, or an axial seal, that is to say between two co-axial axisymmetrical areas. The seal so ensured is relative, but it remains adequately sufficient for many uses, for instance, to ensure the separation of two successive fixed blading compartments of axial compressors used in gas diffusion isotope concentration facilities [fr

  2. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  3. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  4. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    Akihiro Oshima; Akira Udagawa; Yousuke Morita

    1999-01-01

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  5. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  6. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  7. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  8. Multi-physics corrosion modeling for sustainability assessment of steel reinforced high performance fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Lepech, M.; Michel, Alexander; Geiker, Mette

    2016-01-01

    and widespread depassivation, are the mechanism behind experimental results of HPFRCC steel corrosion studies found in the literature. Such results provide an indication of the fundamental mechanisms by which steel reinforced HPFRCC materials may be more durable than traditional reinforced concrete and other......Using a newly developed multi-physics transport, corrosion, and cracking model, which models these phenomena as a coupled physiochemical processes, the role of HPFRCC crack control and formation in regulating steel reinforcement corrosion is investigated. This model describes transport of water...... and chemical species, the electric potential distribution in the HPFRCC, the electrochemical propagation of steel corrosion, and the role of microcracks in the HPFRCC material. Numerical results show that the reduction in anode and cathode size on the reinforcing steel surface, due to multiple crack formation...

  9. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  10. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  11. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  12. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Cătălina IANĂŞI

    2017-05-01

    Full Text Available : One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. The results obtained in this paper indicate that the behavior of reinforced beams is totally different from that of un-reinforced one. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it and easy to implement.

  13. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  14. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  15. [Fusion implants of carbon fiber reinforced plastic].

    Science.gov (United States)

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  16. Soil reinforcement with recycled carpet wastes.

    Science.gov (United States)

    Ghiassian, Hossein; Poorebrahim, Gholamreza; Gray, Donald H

    2004-04-01

    A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.

  17. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  18. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  19. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  20. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  1. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  3. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  4. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    .0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...

  5. Tangible Reinforcers: Bonuses or Bribes?

    Science.gov (United States)

    O'Leary, K. Daniel; And Others

    1972-01-01

    Objections to the use of tangible reinforcers, such as prizes, candy, cigarettes, and money, are discussed. Treatment programs using tangible reinforcers are recommended as powerful modifers of behavior to be implemented only after less powerful means of modification have been tried. (Author)

  6. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    Science.gov (United States)

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  7. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  8. Surface Heave Behaviour of Coir Geotextile Reinforced Sand Beds

    Science.gov (United States)

    Lal, Dharmesh; Sankar, N.; Chandrakaran, S.

    2017-06-01

    Soil reinforcement by natural fibers is one of the cheapest and attractive ground improvement techniques. Coir is the most abundant natural fiber available in India and due to its high lignin content; it has a larger life span than other natural fibers. It is widely used in India for erosion control purposes, but its use as a reinforcement material is rather limited. This study focuses on the use of coir geotextile as a reinforcement material to reduce surface heave phenomena occurring in shallow foundations. This paper presents the results of laboratory model tests carried out on square footings supported on coir geotextile reinforced sand beds. The influence of various parameters such as depth of reinforcement, length, and number of layers of reinforcement was studied. It was observed that surface heave is considerably reduced with the provision of geotextile. Heave reduction up to 98.7% can be obtained by the proposed method. Heave reduction is quantified by a non-dimensional parameter called heave reduction factor.

  9. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  10. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  11. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  12. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  13. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  14. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  15. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  16. Structural performance evaluation on aging underground reinforced concrete structures. Part 6. An estimation method of threshold value in performance verification taking reinforcing steel corrosion

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Miyagawa, Yoshinori

    2009-01-01

    This paper discusses applicability of material degradation model due to reinforcing steel corrosion for RC box-culverts with corroded reinforcement and an estimation method for threshold value in performance verification reflecting reinforcing steel corrosion. First, in FEM analyses, loss of reinforcement section area and initial tension strain arising from reinforcing steel corrosion, and deteriorated bond characteristics between reinforcement and concrete were considered. The full-scale loading tests using corroded RC box-culverts were numerically analyzed. As a result, the analyzed crack patterns and load-strain relationships were in close agreement with the experimental results within the maximum corrosion ratio 15% of primary reinforcement. Then, we showed that this modeling could estimate the load carrying capacity of corroded RC box-culverts. Second, a parametric study was carried out for corroded RC box culverts with various sizes, reinforcement ratios and levels of steel corrosion, etc. Furthermore, as an application of analytical results and various experimental investigations, we suggested allowable degradation ratios for a modification of the threshold value, which corresponds to the chloride induced deterioration progress that is widely accepted in maintenance practice for civil engineering reinforced concrete structures. Finally, based on these findings, we developed two estimation methods for threshold value in performance verification: 1) a structural analysis method using nonlinear FEM included modeling of material degradation, 2) a practical method using a threshold value, which is determined by structural analyses of RC box-culverts in sound condition, is multiplied by the allowable degradation ratio. (author)

  17. Zero-reinforcement vessel closures

    International Nuclear Information System (INIS)

    McClellan, G.; Mou, Y.

    1997-01-01

    Access to the secondary side of a nuclear steam generator is required in order to properly inspect and maintain critical components throughout the life. For the most part, it is only on newer units that sufficient openings have been provided. Older units must be field modified to provide access to the tube bundle and internal lateral support components for inspection and penetration by cleaning equipment. In order to avoid post weld heat treatment after welding on some materials it would be desirable to machine the opening directly into the pressure boundary without providing weld build-up to compensate for the material removed. In such a case, the pressure boundary may be locally thinned below the minimum thickness required by the ASME code. As a result it is not possible to meet reinforcement limits or elastic primary stress limited of the code. However, the ASME code permits justification of the design by utilizing elastic-plastic methods. Elastic-plastic analysis can be utilized to demonstrate shake-down to elastic action and to demonstrate that small deformations in the region of the gasket seating surfaces, or any loss of bolt preload, have not compromised leak tightness. Employing the technique developed by the authors for application in ANSYS, it is feasible to carry-out such a design analysis including the effects of time varying thermal stress. This paper presents the highlights of such an analysis. It is important to note that the method also permits the analysis of openings in locations formerly considered too restrictive, such as near support and major structural discontinuities. (author)

  18. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  19. Experiment and calculation of reinforced concrete at elevated temperatures

    CERN Document Server

    Guo, Zhenhai

    2011-01-01

    Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four par

  20. Strength behaviour of kerosene coated coir fiber-reinforced expansive soil

    OpenAIRE

    Ramasubbarao Godavarthi Venkata

    2014-01-01

    Coir fibers are extracted from the husks surrounding the coconut. Coir fibers can be effectively used as reinforcing material but it has less durability and hence coir fiber coated with kerosene is used as reinforcement in the present study. The objective of the present investigation is to study the strength behavior of expansive soil reinforced with 5mm long randomly distributed kerosene coated coir fibers in 0% (unreinforced), 0.5%, 1% and 1.5% by dry wei...

  1. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  2. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  3. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  4. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  5. Thermal support elements (TTE) made of high-tensile fibre-reinforced material and integrated vacuum-insulation panels (VIP) - Final report; Thermotragelemente (TTE) aus hochfestem Faserverbundstoff und integrierten Vakuumisolationspaneelen (VIP) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Motavalli, M.; Ghazi Wakili, K.; Gsell, D.; Herwig, A.

    2008-07-01

    In this project, the static and thermal characteristics of the balcony connection element TTE (load carrying thermo-element) of the Hitek Construction Company AG were investigated. The TTE is an innovative element, which minimises thermal bridges that always exist in the vicinity of balcony connections. The concept of the element relies of the ability of fibre reinforced composites with superior thermal and mechanical characteristics to transfer the high mechanical loads from the balcony, through the layer of insulation, to the building. From a mechanical point-of-view, only very limited use of fibre reinforced composites has been seen for this type of construction application, therefore necessitating a detailed investigation of the element. In a first step, component tests of the individual load carrying elements were carried out, in which the elements showed an entirely satisfactory short-term behaviour. Furthermore, several assembly tests were carried out whereby parts of the balcony were reproduced, loaded and observed over longer term. During the investigations it was seen that very high stresses occur in the compression zone of the concrete deck and that the element must be modified in the future. From a thermal point-of-view, the TTE element offers a considerable improvement as compared with concrete decks without a thermal discontinuity. The thermal properties of the TTE element can be considered similar to or slightly better than other thermally discontinuous systems with the same load carrying capacity. This is understandable, since a thicker insulating layer with a thermal resistance of 2.5 m{sup 2} K/W was partially replaced through a thinner, yet more efficient insulation with a thermal resistance of 1.9 m{sup 2} K/W. Moreover, the glass fibre reinforced polymer has a larger thermal resistance than steel. The results obtained from the mechanical and thermal tests point to the need for further optimisation of the TTE element. It has been seen, however

  6. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  7. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    Science.gov (United States)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  8. Designing bioinspired composite reinforcement architectures via 3D magnetic printing.

    Science.gov (United States)

    Martin, Joshua J; Fiore, Brad E; Erb, Randall M

    2015-10-23

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as '3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  9. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...

  10. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  11. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  12. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  13. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR) aerial...

  14. An innovative approach to control steel reinforcement corrosion by self-healing

    NARCIS (Netherlands)

    Koleva, D.A.

    2018-01-01

    The corrosion of reinforced steel, and subsequent reinforced concrete degradation, is a major concern for infrastructure durability. New materials with specific, tailor-made properties or the establishment of optimum construction regimes are among the many approaches to improving civil structure

  15. Finite element analysis and experimental verification of Polymer reinforced CRC improved for close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik

    2007-01-01

    Compact Reinforced Composite, CRC, is a high-strength cement-based composite that holds an enormous flexural and energy-absorbing capacity due to the close-spaced high strength steel reinforcement and a high-strength cement-based fiber DSP matrix. The material has been used in various constructions...

  16. Self-sensing CF-GFRP rods as mechanical reinforcement and sensors of concrete beams

    Science.gov (United States)

    Nanni, F.; Auricchio, F.; Sarchi, F.; Forte, G.; Gusmano, G.

    2006-02-01

    In this paper testing carried out on concrete beams reinforced with self-sensing composite rods is presented. Such concrete beams, whose peculiarity is to be reinforced by self-sensing materials able to generate an alarm signal when fixed loads are reached, were designed, manufactured and tested. The reinforcing rods were manufactured by pultrusion and consisted of self-sensing hybrid composites containing both glass and carbon fibres in an epoxy resin. The experimentation was carried out by performing simultaneously mechanical tests on the reinforced beams and electrical measurements on the composite rods. The results showed that the developed system reached the target proposed, giving an alarm signal.

  17. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  18. Electrochemical corrosion of carbon-fiber-reinforced plastic-metal electrode couples in corrosion media

    International Nuclear Information System (INIS)

    Chukalovskaya, T.V.; Shcherbakov, A.I.; Chigirinskaya, L.A.; Bandurkin, V.V.; Medova, I.L.; Chukalovskij, P.A.

    1995-01-01

    Polarization diagrams, obtained for carbon-fiber-reinforced plastic(cathode)-metallic material(anode) contact couples are analyzed to predict the corrosion behaviour of some technical metals and alloys (carbon steel, stainless steels, brass, aluminium, titanium) in contact with carbon-fiber-reinforced plastic in differen agressive media (H 2 SO 4 , HCl, H 3 PO 4 , NaOH solutions in wide temperature and concentration range, synthetic seawater at 30 and 50 deg C). The predicted behaviour was supported by direct investigation into carbon-fiber-reinforced plastic-titanium and carbon-fiber-reinforced plastic-aluminium contact couples at different square ratios. 6 refs.; 4 figs

  19. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  20. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  1. Contact and friction in systems with fibre reinforced elastomers

    NARCIS (Netherlands)

    Rodriguez Pareja, Natalia Valentina

    2012-01-01

    The tribological behaviour (contact and friction) of systems that include fibre reinforced elastomers is studied in this thesis. The elastomer composite is considered to behave as a viscoelastic anisotropic continuum material. In the defined tribo-system, the most influential friction mechanism is

  2. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    Wintec

    initiated in our laboratory on synthesis and study of pro- perties of Hibiscus sabdariffa fibre reinforced urea– formaldehyde (U–F) resin matrix based biocomposites. 2. Experimental. 2.1 Material and methods. Urea (Qualigens Chemicals Ltd), formaldehyde solution. (Qualigens Chemicals Ltd.) and sodium hydroxide (Quali-.

  3. Fabrication and characterization of S. cilliare fibre reinforced

    Indian Academy of Sciences (India)

    In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as ...

  4. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  5. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  6. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  7. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  8. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  9. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  10. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  11. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  12. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  13. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  14. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  15. UV-Curing of Nanoparticle Reinforced Acrylates

    International Nuclear Information System (INIS)

    Bauer, F.

    2006-01-01

    Polymer reinforcement by silica and alumina nanoparticles evidently yields improved surface hardness. Single mixing of nanoparticles into an acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification providing an interface between the two dissimilar materials. For example, vinyltrimethoxysilane (VTMO) can react via hydrolysis/condensation reactions with hydroxyl groups present on the inorganic surface and should bond via the polymerisation-active vinyl group to an acrylate resin through crosslinking reactions. Grafting reactions of surface OH groups and different trialkoxysilanes were studied by thermogravimetry, infrared, and multinuclear NMR spectroscopy. The copolymeri-zation of modified nanoparticles with the acrylate matrix has been investigated by 13 C NMR spectroscopy. UV curing under nitrogen inertization revealed a lower reactivity of vinyl groups of VTMO-modified silica compared to grafted methacryloxypropyl-trimethoxysilane (MEMO) which showed complete conversion of olefinic carbons (signals at 120 - 140 ppm). Under conditions of oxygen inhibition, the effect of the kind and the concentration of photoinitiator on the photopoly-merization reaction was studied. Compared to neat polyacrylate coatings the nanocomposite materials exhibit markedly improved properties, e.g., heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nano-particles and corundum microparticles. In particular cases, radiation curing with 172 nm photons generated by Xe excimer was performed to obtain structured polymer surfaces, i.e., matting of the reinforced acrylate coatings

  16. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  17. Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

    Directory of Open Access Journals (Sweden)

    O. V. Denisov

    2015-01-01

    Full Text Available Polymer composite materials (CM are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

  18. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  19. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  20. Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars

    Science.gov (United States)

    Naveen Kumar, G.; Sundaravadivelu, Karthik

    2017-07-01

    In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.

  1. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  2. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  3. Seismic fragility of reinforced concrete structures in nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1985-01-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions

  4. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  5. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  6. The power reinforcement framework revisited

    DEFF Research Database (Denmark)

    Nielsen, Jeppe; Andersen, Kim Normann; Danziger, James N.

    2016-01-01

    Whereas digital technologies are often depicted as being capable of disrupting long-standing power structures and facilitating new governance mechanisms, the power reinforcement framework suggests that information and communications technologies tend to strengthen existing power arrangements within...... public organizations. This article revisits the 30-yearold power reinforcement framework by means of an empirical analysis on the use of mobile technology in a large-scale programme in Danish public sector home care. It explores whether and to what extent administrative management has controlled decision......-making and gained most benefits from mobile technology use, relative to the effects of the technology on the street-level workers who deliver services. Current mobile technology-in-use might be less likely to be power reinforcing because it is far more decentralized and individualized than the mainly expert...

  7. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    International Nuclear Information System (INIS)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  8. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Science.gov (United States)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  9. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  10. Mechanical performance and sustainability assessment of reinforced soil walls

    OpenAIRE

    Puig Damians, Ivan

    2016-01-01

    Soil reinforced retaining wall structures are materiallymore efficientthan competing construction solutions such as gravity and cantilever walls. Nevertheless, the behaviour and interactions between the com ponent materials are com plex and not fully understood. Current design methods are typically limited to simple cases with respect to material properties, geometry, and boundary conditions. Advanced numerical models using finite element and/or finite difference methods offer the possibility...

  11. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  12. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  13. Reinforced concrete tomography; Tomografia de hormigon armado

    Energy Technology Data Exchange (ETDEWEB)

    Mariscotti, M A.J.; Morixe, M; Tarela, P A; Thieberger, P [Tomografia de Hormigon Armado S.A., Boulogne (Argentina)

    1998-12-31

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of {+-} 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) 8 refs., 12 figs. [Espanol] En este trabajo se describe la tecnica de tomografia de hormigon armado, sus antededentes, recientes desarrollos y aplicaciones mas importantes. Esta tecnica se basa en el uso de radiacion gamma para penetrar piezas de hormigon. Placas gammagraficas son sensibilizadas con la radiacion que atraviesa la pieza bajo estudio y luego procesadas para revelar la presencia de armadura e inhomogeneidades en la densidad del concreto. La reconstruccion tridimensional o tomografia, de la armadura a partir de una sola gammagrafia es un desarrollo original alternativo a los metodos convencionales. Diametros y posiciones de los hierros existentes en el interior de columnas, vigas y losas pueden ser determinados con precisiones de {+-} 1 mm y 0.5-1 cm, respectivamente. La condicion de no destructiva hace que esta tecnica sea particularmente apreciada en los casos de edificios habitados y sea insustituible para el diagnostico de balcones. (autor)

  14. Calculating the strength of a gas pipeline with a reinforced coating

    Energy Technology Data Exchange (ETDEWEB)

    Al' shanov, A P; Abdullaev, G T; Ali-Zade, A N

    1981-10-01

    Reinforcing the coatings of gas pipelines allows an increase in their operating pressure and thus their throughput; combined with strong insulation, such reinforcing materials as metal screens and fiberglass also protect the pipeline. Soviet analysts have mathematically derived the limiting internal pressure in a line with a reinforced coating as a function of the coating's thickness and mechanical properties. The method assumes that the pipe material is isotropic and elastic. The calculations help in determining (1) the dependence of the relative limiting pressure on the relative coating thickness and (2) the effect of the ratio of the Young's modulus of the reinforcing material to that of the pipe material upon the dependence of the relative limiting pressure on coating thickness. The analysis awaits experimental confirmation.

  15. Modeling the Structural Response of Reinforced Glass Beams using an SLA Scheme

    NARCIS (Netherlands)

    Louter, P.C.; Graaf, van de Anne; Rots, J.G.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates whether a novel computational sequentially linear analysis (SLA) technique, which is especially developed for modeling brittle material response, is applicable for modeling the structural response of metal reinforced glass beams. To do so, computational SLA results are

  16. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    Science.gov (United States)

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  17. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  18. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  19. The repair and protection of reinforced concrete with migrating corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.

    2016-01-01

    The concrete is a very durable construction material and his use is based on the principle that concrete is an ideal environment for steel if properly proportioned and placed. In general, reinforced concrete has proved to be successful in terms of both structural performance and durability. However, there are instances of premature failure of reinforced concrete components due to corrosion of the reinforcement. Experience has shown that there are certain portions of exposed concrete structures more vulnerable than others. Methodology for concrete repair it addresses to suggestions of the types of repair methods and materials and a detailed description of the uses, limitations, materials, and procedures for Repair of Concrete. At same the time the methodology presents recommendation on materials, methods of mixing, application, curing and precautions to be exercised during placement. This work presents guidelines for managing reinforced concrete components and specifies the repair strategy with inhibitors incorporating. (authors)

  20. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  1. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available Natural fibers are used as reinforcement material for number of thermoplastic/thermoset polymers. The interest in using polylactic acid (PLA) as thermoplastic matrix to produce composites completely from 100% renewable resources has increased...

  2. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  3. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... principles, which will be described in the first part of the paper along with an introduction of the relevant material properties of the resulting engineered cementitious composite (ECC). This class of composites is characterized by strain hardening and multiple cracking properties in uniaxial tension...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...

  4. Debonding failure and size effects in micro reinforced composites

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2010-01-01

    -plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface...... for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while...... a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one...

  5. Performance of Hydrophobisation Techniques in Case of Reinforced Concrete Structures

    Science.gov (United States)

    Błaszczyński, Tomasz; Osesek, Mateusz; Gwozdowski, Błażej; Ilski, Mirosław

    2017-10-01

    Concrete is, unchangeably, one of the most frequently applied building materials, also in the case of bridges, overpasses or viaducts. Along with the aging of such structures, the degradation of concrete, which may accelerate the corrosion of reinforcing steel and drastically decrease the load-bearing capacity of the structure, becomes an important issue. The paper analyzes the possibilities of using deep hydrophobisation in repairing reinforced concrete engineering structures. The benefits of properly securing reinforced concrete structures from the damaging effects of UV radiation, the influence of harmful gases, or progression of chlorine induced corrosion have been presented, especially in regards to bridge structures. The need to calculate the costs of carrying out investments along with the expected costs of maintaining such structures, as well as the high share of costs connected with logistics, has also been indicated in the total costs of repair works.

  6. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  7. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  8. Development of connecting method for mechanically cut reinforced concrete blocks

    International Nuclear Information System (INIS)

    Nishiuchi, Tatsuo

    2005-01-01

    The purpose of the study is to develop a practical method of disposing and recycling in dismantled reinforced concrete structures. We have devised a new method in which mechanically cut reinforced concrete blocks are connected and they are reused as a structural beam. In this method, concrete blocks are connected with several steel bars and the connected surface is wrapped with a fiber sheet. We verified that the load capacity of renewal beams was considerably large as same as that of continuous structural beams on the basis of experimental as well as numerical analysis results. As far as construction cost of reinforced concrete walls are concerned, we demonstrated that the cost of this method is slightly lower than that of the plan to use new and recycle materials. (author)

  9. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  10. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  11. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada)

    2015-10-15

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase. The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.

  12. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  13. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  14. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  15. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-01-01

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults. PMID:28793697

  16. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  17. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults.

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-11-27

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L'Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  18. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2015-11-01

    Full Text Available An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers. For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  19. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  20. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  1. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  2. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  3. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  4. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  5. Influence of fibre orientation on the performance of steel fibre-reinforced concrete

    OpenAIRE

    Grünewald, Steffen; Laranjeira de Oliveira, Filipe; Walraven, Joost; Aguado de Cea, Antonio; Molins i Borrell, Climent

    2012-01-01

    The performance of fibre-reinforced materials in the hardened state depends on the material behaviour, the production method and influences related to the structure. The position and the orientation of fibres in a structure can differ from the homogenous distribution and the random orientation in a mixer. Due to the flow of the concrete, fibres are able to orient which makes the prediction of the structural behaviour of fibre-reinforced concrete more complex, but it also offers the potential ...

  6. 221-U Facility concrete and reinforcing steel evaluations specification for the canyon disposition initiative (CDI)

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1998-01-01

    This describes a test program to establish the in-situ material properties of the reinforced concrete in Building 221-U for comparison to the original design specifications. Field sampling and laboratory testing of concrete and reinforcing steel structural materials in Building 221-U for design verification will be undertaken. Forty seven samples are to be taken from radiologically clean exterior walls of the canyon. Laboratory testing program includes unconfined compressive strength of concrete cores, tensile strength of reinforcing steel, and petrographic examinations of concrete cores taken from walls below existing grade

  7. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  8. Reinforcement learning in supply chains.

    Science.gov (United States)

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  9. Adaptive representations for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.

    2010-01-01

    This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own

  10. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  11. Fiber-Reinforced Origamic Robotic Actuator.

    Science.gov (United States)

    Yi, Juan; Chen, Xiaojiao; Song, Chaoyang; Wang, Zheng

    2018-02-01

    A novel pneumatic soft linear actuator Fiber-reinforced Origamic Robotic Actuator (FORA) is proposed with significant improvements on the popular McKibben-type actuators, offering nearly doubled motion range, substantially improved force profile, and significantly lower actuation pressure. The desirable feature set is made possible by a novel soft origamic chamber that expands radially while contracts axially when pressurized. Combining this new origamic chamber with a reinforcing fiber mesh, FORA generates very high traction force (over 150N) and very large contractile motion (over 50%) at very low input pressure (100 kPa). We developed quasi-static analytical models both to characterize the motion and forces and as guidelines for actuator design. Fabrication of FORA mostly involves consumer-grade three-dimensional (3D) printing. We provide a detailed list of materials and dimensions. Fabricated FORAs were tested on a dedicated platform against commercially available pneumatic artificial muscles from Shadow and Festo to showcase its superior performances and validate the analytical models with very good agreements. Finally, a robotic joint was developed driven by two antagonistic FORAs, to showcase the benefits of the performance improvements. With its simple structure, fully characterized mechanism, easy fabrication procedure, and highly desirable performance, FORA could be easily customized to application requirements and fabricated by anyone with access to a 3D printer. This will pave the way to the wider adaptation and application of soft robotic systems.

  12. Reinforcement and recovery of timber structures

    Directory of Open Access Journals (Sweden)

    Antonio Alves Dias

    2006-02-01

    Full Text Available Preservation of timber structures is a reason for constant concern because their deterioration often involves compromising the historical patrimony, besides endangering the safety of the structure, and consequently, of their users. Many are the examples of churches, residences or other constructions where this manifestation is a fact. The technique of reinforcing structurally endangered pieces with the addition of natural or synthetic fibers, is an alternative that has been researched. In the group of synthetic fibers, fiberglass, carbon and aramid ones are included. On the other hand, it has been frequent in the restoration of old buildings, especially in Europe, the employment of materials that were not available in the past, aiming to achieve structural, acoustic and aesthetic benefits. On an existing timber structure floor, a concrete slab has been carried out, with an appropriate connection system among the parts, constituting the composite timber-concrete structures. This alternative has been considered as extraordinarily viable, because it gathers a series of convenience related with the durability and it presents better mechanic performance than conventional timber structures. In this work, the state-of-the-art of the use of fibers as structural reinforcement and of the timber-concrete composite structures, is presented.

  13. Reinforcement of Aluminum Castings with Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  14. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  15. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  16. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  17. Superconducting properties and uniaxial strain characteristics of Nb3Sn fiber-reinforced superconductors with tantalum reinforcement fibers

    International Nuclear Information System (INIS)

    Arai, Kazuaki; Umeda, Masaichi; Agatsuma, Koh; Tateishi, Hiroshi

    1998-01-01

    We have been developing fiber-reinforced superconductors (FRS) for high-field and large-scale magnets. Tungsten fibers have been selected as the reinforcement fiber for FRS so far because tungsten has the highest elastic modulus of approximately 400 GPa which can minimize the strain from electromagnetic force. The preparation process of FRS consists of sputtering deposition and heat treatment because it may be difficult to apply drawing methods to materials of high-elastic modulus such as tungsten. Tantalum has high elastic modulus of 178 GPa and its thermal expansion coefficient that is closer to that of Nb 3 Sn than tungsten's, which means prestrain in Nb 3 Sn in FRS is reduced by adopting tantalum fibers. Tantalum has been used as barriers between bronze and copper in conventional Nb 3 Sn superconductors which are usually prepared with drawing process despite of the tantalum's high elastic modulus. That implies drawing process may be applied to prepare FRS with tantalum reinforcement fibers. In this paper, FRS using tantalum fibers prepared with sputtering process are described with making comparison with FRS of tungsten to clarify the basic properties of FRS using tantalum fibers. Depth profiles in Nb 3 Sn layer in FRS were measured to examine reaction between superconducting layers and reinforcement fibers. Superconducting properties including strain and stress characteristics were shown. Those data will contribute to design of FRS using tantalum reinforcement fibers with adopts the drawing processes. (author)

  18. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  19. Depression, Activity, and Evaluation of Reinforcement

    Science.gov (United States)

    Hammen, Constance L.; Glass, David R., Jr.

    1975-01-01

    This research attempted to find the causal relation between mood and level of reinforcement. An effort was made to learn what mood change might occur if depressed subjects increased their levels of participation in reinforcing activities. (Author/RK)

  20. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…