Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
Self-learning fuzzy logic controllers based on reinforcement
International Nuclear Information System (INIS)
Wang, Z.; Shao, S.; Ding, J.
1996-01-01
This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance
Self-learning fuzzy controllers based on temporal back propagation
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Fuzzy self-learning control for magnetic servo system
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
Sensitivity-based self-learning fuzzy logic control for a servo system
Balenovic, M.
1998-01-01
Describes an experimental verification of a self-learning fuzzy logic controller (SLFLC). The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model related to the fuzzy controller parameters. The effectiveness of the proposed controller has been
Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller
Wang, Wei-Cheng; Tai, Cheng-Chi
2017-07-01
The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.
SVC control enhancement applying self-learning fuzzy algorithm for islanded microgrid
Directory of Open Access Journals (Sweden)
Hossam Gabbar
2016-03-01
Full Text Available Maintaining voltage stability, within acceptable levels, for islanded Microgrids (MGs is a challenge due to limited exchange power between generation and loads. This paper proposes an algorithm to enhance the dynamic performance of islanded MGs in presence of load disturbance using Static VAR Compensator (SVC with Fuzzy Model Reference Learning Controller (FMRLC. The proposed algorithm compensates MG nonlinearity via fuzzy membership functions and inference mechanism imbedded in both controller and inverse model. Hence, MG keeps the desired performance as required at any operating condition. Furthermore, the self-learning capability of the proposed control algorithm compensates for grid parameter’s variation even with inadequate information about load dynamics. A reference model was designed to reject bus voltage disturbance with achievable performance by the proposed fuzzy controller. Three simulations scenarios have been presented to investigate effectiveness of proposed control algorithm in improving steady-state and transient performance of islanded MGs. The first scenario conducted without SVC, second conducted with SVC using PID controller and third conducted using FMRLC algorithm. A comparison for results shows ability of proposed control algorithm to enhance disturbance rejection due to learning process.
Directory of Open Access Journals (Sweden)
C. Boldisor
2009-12-01
Full Text Available A self-learning based methodology for building the rule-base of a fuzzy logic controller (FLC is presented and verified, aiming to engage intelligent characteristics to a fuzzy logic control systems. The methodology is a simplified version of those presented in today literature. Some aspects are intentionally ignored since it rarely appears in control system engineering and a SISO process is considered here. The fuzzy inference system obtained is a table-based Sugeno-Takagi type. System’s desired performance is defined by a reference model and rules are extracted from recorded data, after the correct control actions are learned. The presented algorithm is tested in constructing the rule-base of a fuzzy controller for a DC drive application. System’s performances and method’s viability are analyzed.
Evaluation of a Multi-Variable Self-Learning Fuzzy Logic Controller ...
African Journals Online (AJOL)
In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of acceptable rules for multivariable ...
Kovacic, Z.; Bogdan, S.; Balenovic, M.
1999-01-01
In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model
evaluation of a multi-variable self-learning fuzzy logic controller
African Journals Online (AJOL)
Dr Obe
2003-03-01
Mar 1, 2003 ... The most challenging aspect of the design of a fuzzy logic controller is ... inaccuracy (or structured uncertainty) and unmodelled ... mathematical analysis on paper is impossible ... output (SISO) system that can self-construct ...
Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe
2013-12-01
The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Rahonis, George
The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.
Self-learning estimation of quantum states
International Nuclear Information System (INIS)
Hannemann, Th.; Reiss, D.; Balzer, Ch.; Neuhauser, W.; Toschek, P.E.; Wunderlich, Ch.
2002-01-01
We report the experimental estimation of arbitrary qubit states using a succession of N measurements on individual qubits, where the measurement basis is changed during the estimation procedure conditioned on the outcome of previous measurements (self-learning estimation). Two hyperfine states of a single trapped 171 Yb + ion serve as a qubit. It is demonstrated that the difference in fidelity between this adaptive strategy and passive strategies increases in the presence of decoherence
Relational Demonic Fuzzy Refinement
Directory of Open Access Journals (Sweden)
Fairouz Tchier
2014-01-01
Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.
Self-learning Monte Carlo (dynamical biasing)
International Nuclear Information System (INIS)
Matthes, W.
1981-01-01
In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)
Directory of Open Access Journals (Sweden)
Abdul Hameed Q. A. Al-Tai
2011-01-01
Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.
Juels, Ari
The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.
A self-learning rule base for command following in dynamical systems
Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander
1992-01-01
In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.
DEFF Research Database (Denmark)
Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas
2012-01-01
as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....
Simple Neuron-Fuzzy Tool for Small Control Devices
DEFF Research Database (Denmark)
Madsen, Per Printz
2008-01-01
Small control computers, running a kind of Fuzzy controller, are more and more used in many systems from household machines to large industrial systems. The purpose of this paper is firstly to describe a tool that is easy to use for implementing self learning Fuzzy systems, that can be executed...... can be described by four different kinds of membership functions. The output fuzzyfication is based on singletons. The rule base can be written in a natural language. The result of the learning is a new version of the Fuzzy system described in the FuNNy language. A simple shower control example...... is shown. This example shows that FuNNy is able to control the shower and that the learning is able to optimize the Fuzzy system....
Effect of clinical practice on self-learning development ability
International Nuclear Information System (INIS)
Kim, Jung Hyun; Yang, Han Joon; Kim, Nak Sang
2017-01-01
In order to analyze the degree of self-learning development ability after the clinical training curriculum, the results of 121 questionnaires were analyzed for 3rd and 4th grade students in radiology in the metropolitan area. The overall average of self-learning ability according to gender was 3.07±0.85, which was statistically significant according to gender. However, the results according to educational system showed that the overall average was 3.07±0.85, which was higher than the average level of self-learning development ability. There was no statistically significant difference according to educational system. The results of the self-learning development ability according to the motivation for selecting the department showed that the students who have chosen their department due to their higher employment rate after graduation had high self-development ability level(3.58±0.85) but the students who entered the school due to self-aptitude had relatively lower self-development ability level (2.30±0.40). The overall average of self-learning ability according to direction of career path was 3.08±0.76, which was over-average of self-learning development ability. Thus, there was statistically significant difference according to career path. It is necessary to improve the self-learning ability in clinical practice. In addition, the lack of statistical significance suggests problems and diversity
Effect of clinical practice on self-learning development ability
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Hyun; Yang, Han Joon [Dept. of International Radiological Science, Hallym University of Graduate Studies, Chuncheon (Korea, Republic of); Kim, Nak Sang [Dept. of Radiological Science, Songho College, Hoengseong (Korea, Republic of)
2017-09-15
In order to analyze the degree of self-learning development ability after the clinical training curriculum, the results of 121 questionnaires were analyzed for 3rd and 4th grade students in radiology in the metropolitan area. The overall average of self-learning ability according to gender was 3.07±0.85, which was statistically significant according to gender. However, the results according to educational system showed that the overall average was 3.07±0.85, which was higher than the average level of self-learning development ability. There was no statistically significant difference according to educational system. The results of the self-learning development ability according to the motivation for selecting the department showed that the students who have chosen their department due to their higher employment rate after graduation had high self-development ability level(3.58±0.85) but the students who entered the school due to self-aptitude had relatively lower self-development ability level (2.30±0.40). The overall average of self-learning ability according to direction of career path was 3.08±0.76, which was over-average of self-learning development ability. Thus, there was statistically significant difference according to career path. It is necessary to improve the self-learning ability in clinical practice. In addition, the lack of statistical significance suggests problems and diversity.
DEFF Research Database (Denmark)
Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan
2000-01-01
A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...
Directory of Open Access Journals (Sweden)
T. Pathinathan
2015-01-01
Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.
DEFF Research Database (Denmark)
Christensen, Line Hjorth
"Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...
Relational Demonic Fuzzy Refinement
Tchier, Fairouz
2014-01-01
We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...
Chen, Guanrong
2005-01-01
Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th
Intuitionistic supra fuzzy topological spaces
International Nuclear Information System (INIS)
Abbas, S.E.
2004-01-01
In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space
Xu, Zeshui
2014-01-01
This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Why fuzzy controllers should be fuzzy
International Nuclear Information System (INIS)
Nowe, A.
1996-01-01
Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries
Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations
Czech Academy of Sciences Publication Activity Database
Wiedermann, Jiří
2001-01-01
Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics
Investigation of a Reinforcement-Based Toilet Training Procedure for Children with Autism.
Cicero, Frank R.; Pfadt, Al
2002-01-01
This study evaluated the effectiveness of a reinforcement-based toilet training intervention with three children with autism. Procedures included positive reinforcement, graduated guidance, scheduled practice trials, and forward prompting. All three children reduced urination accidents to zero and learned to request bathroom use spontaneously…
Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion
Directory of Open Access Journals (Sweden)
Didier Kumwimba Seya
2015-11-01
Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.
"Accelerated Perceptron": A Self-Learning Linear Decision Algorithm
Zuev, Yu. A.
2003-01-01
The class of linear decision rules is studied. A new algorithm for weight correction, called an "accelerated perceptron", is proposed. In contrast to classical Rosenblatt's perceptron this algorithm modifies the weight vector at each step. The algorithm may be employed both in learning and in self-learning modes. The theoretical aspects of the behaviour of the algorithm are studied when the algorithm is used for the purpose of increasing the decision reliability by means of weighted voting. I...
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko
2005-01-01
Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Intuitionistic Fuzzy Subbialgebras and Duality
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2014-01-01
Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.
Probabilistic fuzzy systems as additive fuzzy systems
Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.
2014-01-01
Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the
Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients
Directory of Open Access Journals (Sweden)
Xue-Gang Zhou
2014-01-01
Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.
Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space
Directory of Open Access Journals (Sweden)
Apu Kumar Saha
2015-06-01
Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry
2014-01-01
This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem; the Gibbard-Satterthwaite theorem; and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...
Solving fully fuzzy transportation problem using pentagonal fuzzy numbers
Maheswari, P. Uma; Ganesan, K.
2018-04-01
In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.
A self-learning algorithm for biased molecular dynamics
Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele
2010-01-01
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences. PMID:20876135
Self-learning Monte Carlo with deep neural networks
Shen, Huitao; Liu, Junwei; Fu, Liang
2018-05-01
The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.
Introduction to Fuzzy Set Theory
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization
International Nuclear Information System (INIS)
Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.
2009-01-01
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.
International Nuclear Information System (INIS)
Markowski, Adam S.; Mannan, M. Sam
2008-01-01
A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated
DEFF Research Database (Denmark)
Jantzen, Jan
The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...
Lei, Qian
2017-01-01
This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.
FUZZY RINGS AND ITS PROPERTIES
Directory of Open Access Journals (Sweden)
Karyati Karyati
2017-01-01
One of algebraic structure that involves a binary operation is a group that is defined an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level and strong level as well as image and pre-image homomorphism fuzzy ring. Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
DEFF Research Database (Denmark)
Dotoli, M.; Jantzen, Jan
1999-01-01
The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Fuzzy control and identification
Lilly, John H
2010-01-01
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
Application of adaptive fuzzy control technology to pressure control of a pressurizer
Institute of Scientific and Technical Information of China (English)
YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai
2005-01-01
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
Relations Among Some Fuzzy Entropy Formulae
Institute of Scientific and Technical Information of China (English)
卿铭
2004-01-01
Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.
On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes
Directory of Open Access Journals (Sweden)
Rajesh K. Thumbakara
2013-01-01
Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.
Directory of Open Access Journals (Sweden)
Shawkat Alkhazaleh
2011-01-01
Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.
Properties of Bipolar Fuzzy Hypergraphs
Akram, M.; Dudek, W. A.; Sarwar, S.
2013-01-01
In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.
Comparing the Effectiveness of Self-Learning Java Workshops with Traditional Classrooms
Eranki, Kiran L. N.; Moudgalya, Kannan M.
2016-01-01
In this work, we study the effectiveness of a method called Spoken Tutorial, which is a candidate technique for self-learning. The performance of college students who self-learned Java through the Spoken Tutorial method is found to be better than that of conventional learners. Although the method evaluated in this work helps both genders, females…
Statistical Methods for Fuzzy Data
Viertl, Reinhard
2011-01-01
Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m
Construction of fuzzy automata by fuzzy experiments
International Nuclear Information System (INIS)
Mironov, A.
1994-01-01
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven
Construction of fuzzy automata by fuzzy experiments
Energy Technology Data Exchange (ETDEWEB)
Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science
1994-12-31
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
International Nuclear Information System (INIS)
Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T
2010-01-01
We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
Fuzzy Rough Ring and Its Prop erties
Institute of Scientific and Technical Information of China (English)
REN Bi-jun; FU Yan-ling
2013-01-01
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.
Investigation of a reinforcement-based toilet training procedure for children with autism.
Cicero, Frank R; Pfadt, Al
2002-01-01
Independent toileting is an important developmental skill which individuals with developmental disabilities often find a challenge to master. Effective toilet training interventions have been designed which rely on a combination of basic operant principles of positive reinforcement and punishment. In the present study, the effectiveness of a reinforcement-based toilet training intervention was investigated with three children with a diagnosis of autism. Procedures included a combination of positive reinforcement, graduated guidance, scheduled practice trials and forward prompting. Results indicated that all procedures were implemented in response to urination accidents. A three participants reduced urination accidents to zero and learned to spontaneously request use of the bathroom within 7-11 days of training. Gains were maintained over 6-month and 1-year follow-ups. Findings suggest that the proposed procedure is an effective and rapid method of toilet training, which can be implemented within a structured school setting with generalization to the home environment.
Bandemer, Hans
1992-01-01
Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.
Fuzzy stochastic multiobjective programming
Sakawa, Masatoshi; Katagiri, Hideki
2011-01-01
With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.
Self-learning health monitoring algorithm in composite structures
Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto
2018-02-01
The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.
Directory of Open Access Journals (Sweden)
Klaus-Dietrich Kramer
2016-05-01
Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Shapley's value for fuzzy games
Directory of Open Access Journals (Sweden)
Raúl Alvarado Sibaja
2009-02-01
Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.
CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS
El-Latif, Alaa Mohamed Abd
2015-01-01
− The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...
A neural fuzzy controller learning by fuzzy error propagation
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
The foundations of fuzzy control
Lewis, Harold W
1997-01-01
Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.
Directory of Open Access Journals (Sweden)
Abbas Parchami
2016-09-01
Full Text Available Such as other statistical problems, we may confront with uncertain and fuzzy concepts in quality control. One particular case in process capability analysis is a situation in which specification limits are two fuzzy sets. In such a uncertain and vague environment, the produced product is not qualified with a two-valued Boolean view, but to some degree depending on the decision-maker strictness and the quality level of the produced product. This matter can be cause to a rational decision-making on the quality of the production line. First, a comprehensive approach is presented in this paper for modeling the fuzzy quality concept. Then, motivations and advantages of applying this flexible approach instead of using classical quality are mentioned.
A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network
Directory of Open Access Journals (Sweden)
Linhui Li
2015-01-01
Full Text Available A lateral control method is proposed for intelligent vehicle to track the desired trajectory. Firstly, a lateral control model is established based on the visual preview and dynamic characteristics of intelligent vehicle. Then, the lateral error and orientation error are melded into an integrated error. Considering the system parameter perturbation and the external interference, a sliding model control is introduced in this paper. In order to design a sliding surface, the integrated error is chosen as the parameter of the sliding mode switching function. The sliding mode switching function and its derivative are selected as two inputs of the controller, and the front wheel angle is selected as the output. Next, a fuzzy neural network is established, and the self-learning functions of neural network is utilized to construct the fuzzy rules. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed method.
A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller
Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi
This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.
Directory of Open Access Journals (Sweden)
Fu-Gui Shi
2010-01-01
Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.
The first order fuzzy predicate logic (I)
International Nuclear Information System (INIS)
Sheng, Y.M.
1986-01-01
Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed
Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao
2017-08-01
Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.
Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638
Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.
Directory of Open Access Journals (Sweden)
Sarah J. Anderson
2018-02-01
Full Text Available In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT methods incorporate pre-class exercises (typically online meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.
Fuzzy efficiency without convexity
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Balezentis, Tomas
2014-01-01
approach builds directly upon the definition of Farrell's indexes of technical efficiency used in crisp FDH. Therefore we do not require the use of fuzzy programming techniques but only utilize ranking probabilities of intervals as well as a related definition of dominance between pairs of intervals. We...
Neuro-fuzzy system modeling based on automatic fuzzy clustering
Institute of Scientific and Technical Information of China (English)
Yuangang TANG; Fuchun SUN; Zengqi SUN
2005-01-01
A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
Hierarchical type-2 fuzzy aggregation of fuzzy controllers
Cervantes, Leticia
2016-01-01
This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.
Word Similarity from Dictionaries: Inferring Fuzzy Measures from Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Vicenc Torra
2008-01-01
Full Text Available WORD SIMILARITY FROM DICTIONARIES: INFERRING FUZZY MEASURES FROM FUZZY GRAPHS The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
Fuzzy control. Fundamentals, stability and design of fuzzy controllers
Energy Technology Data Exchange (ETDEWEB)
Michels, K. [Fichtner GmbH und Co. KG, Stuttgart (Germany); Klawonn, F. [Fachhochschule Braunschweig/Wolfenbuettel (Germany). Fachbereich Informatik; Kruse, R. [Magdeburg Univ. (Germany). Fakultaet Informatik, Abt. Wiss.- und Sprachverarbeitung; Nuernberger, A. (eds.) [California Univ., Berkeley, CA (United States). Computer Science Division
2006-07-01
The book provides a critical discussion of fuzzy controllers from the perspective of classical control theory. Special emphases are placed on topics that are of importance for industrial applications, like (self-) tuning of fuzzy controllers, optimisation and stability analysis. The book is written as a textbook for graduate students as well as a comprehensive reference book about fuzzy control for researchers and application engineers. Starting with a detailed introduction to fuzzy systems and control theory the reader is guided to up-to-date research results. (orig.)
Self-learning basic life support: A randomised controlled trial on learning conditions.
Pedersen, Tina Heidi; Kasper, Nina; Roman, Hari; Egloff, Mike; Marx, David; Abegglen, Sandra; Greif, Robert
2018-05-01
To investigate whether pure self-learning without instructor support, resulted in the same BLS-competencies as facilitator-led learning, when using the same commercially available video BLS teaching kit. First-year medical students were randomised to either BLS self-learning without supervision or facilitator-led BLS-teaching. Both groups used the MiniAnne kit (Laerdal Medical, Stavanger, Norway) in the students' local language. Directly after the teaching and three months later, all participants were tested on their BLS-competencies in a simulated scenario, using the Resusci Anne SkillReporter™ (Laerdal Medical, Stavanger, Norway). The primary outcome was percentage of correct cardiac compressions three months after the teaching. Secondary outcomes were all other BLS parameters recorded by the SkillReporter and parameters from a BLS-competence rating form. 240 students were assessed at baseline and 152 students participated in the 3-month follow-up. For our primary outcome, the percentage of correct compressions, we found a median of 48% (interquartile range (IQR) 10-83) for facilitator-led learning vs. 42% (IQR 14-81) for self-learning (p = 0.770) directly after the teaching. In the 3-month follow-up, the rate of correct compressions dropped to 28% (IQR 6-59) for facilitator-led learning (p = 0.043) and did not change significantly in the self-learning group (47% (IQR 12-78), p = 0.729). Self-learning is not inferior to facilitator-led learning in the short term. Self-learning resulted in a better retention of BLS-skills three months after training compared to facilitator-led training. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering
Institute of Scientific and Technical Information of China (English)
FENG Yu-hu
2005-01-01
By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.
Intuitionistic fuzzy aggregation and clustering
Xu, Zeshui
2012-01-01
This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.
On the mathematics of fuzziness
Energy Technology Data Exchange (ETDEWEB)
Chulichkov, A.I.; Chulichkova, N.M.; Pyt`ev, Y. P.; Smolnik, L.
1994-12-31
The problem of the minimax linear interpretation of stochastic measurements with fuzzy conditions on values of the object`s parameters is considered. The result of a measurement interpretation is the fuzzy element (u, h, alpha, mu(.,.,.)), where u is the object`s parameter estimation, h is the estimation accuracy and alpha is the reliability of interpretation, mu is the characteristic function of a fuzzy element. Reliability is the characteristic of the agreement between fuzzy a priori information and measuring data. The information on the values of the parameters of an object under investigation is interactively submitted to the computer.
International Nuclear Information System (INIS)
Baron, Jorge H.; Rivera, S.S.
2000-01-01
The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
Czech Academy of Sciences Publication Activity Database
Coufal, David
2017-01-01
Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...
Márquez, Manuel; Chaves, Beatriz
2016-01-01
The application of a methodology based on S.C. Dik's Functionalist Grammar linguistic principles, which is addressed to the teaching of Latin to secondary students, has resulted in a quantitative improvement in students' acquisition process of knowledge. To do so, we have used a self-learning tool, an ad hoc dictionary, of which the use in…
The United States History = Lich Su Hoa Ky. [34 Self-Learning Packets for Vietnamese Students.
Nhi, Do Dien; And Others
Designed primarily for Indochinese students in grades 9-12, 34 United States history self-learning packets are presented in eight sections. The publication could be used by mainstream teachers who have a number of limited English proficient (LEP) Vietnamese students in their classes or by parents to tutor their children. The packets were adapted…
PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila
Directory of Open Access Journals (Sweden)
Julien Colomb
2016-04-01
Full Text Available Tethering a fly for stationary flight allows for exquisite control of its sensory input, such as visual or olfactory stimuli or a punishing infrared laser beam. A torque meter measures the turning attempts of the tethered fly around its vertical body axis. By punishing, say, left turning attempts (in a homogeneous environment, one can train a fly to restrict its behaviour to right turning attempts. It was recently discovered that this form of operant conditioning (called operant self-learning, may constitute a form of motor learning in Drosophila. Previous work had shown that Protein Kinase C (PKC and the transcription factor dFoxP were specifically involved in self-learning, but not in other forms of learning. These molecules are specifically involved in various forms of motor learning in other animals, such as compulsive biting in Aplysia, song-learning in birds, procedural learning in mice or language acquisition in humans. Here we describe our efforts to decipher which PKC gene is involved in self-learning in Drosophila. We also provide evidence that motorneurons may be one part of the neuronal network modified during self-learning experiments. The collected evidence is reminiscent of one of the simplest, clinically relevant forms of motor learning in humans, operant reflex conditioning, which also relies on motorneuron plasticity.
Effects of Self-Perceptions on Self-Learning among Teacher Education Students
Liu, Shih-Hsiung
2015-01-01
This study evaluates the multivariate hypothesized model that predicts the significance of, and relationships among, various self-perception factors for being a qualified teacher and their direct and mediated effects on self-learning activities among teacher education students. A total of 248 teacher education students enrolled at an education…
2009-10-01
This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...
Fuzzy linguistic model for interpolation
International Nuclear Information System (INIS)
Abbasbandy, S.; Adabitabar Firozja, M.
2007-01-01
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method
Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong
2016-06-01
Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.
Fuzzy Logic in Medicine and Bioinformatics
Directory of Open Access Journals (Sweden)
Angela Torres
2006-01-01
Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.
Algebraic Aspects of Families of Fuzzy Languages
Asveld, P.R.J.; Heylen, Dirk K.J.; Nijholt, Antinus; Scollo, Giuseppe
2000-01-01
We study operations on fuzzy languages such as union, concatenation,Kleene $\\star$, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the
Fuzzy control in environmental engineering
Chmielowski, Wojciech Z
2016-01-01
This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...
Design of interpretable fuzzy systems
Cpałka, Krzysztof
2017-01-01
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
On Intuitionistic Fuzzy Sets Theory
Atanassov, Krassimir T
2012-01-01
This book aims to be a comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author´s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author´s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.
Safety critical application of fuzzy control
International Nuclear Information System (INIS)
Schildt, G.H.
1995-01-01
After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs
Image matching navigation based on fuzzy information
Institute of Scientific and Technical Information of China (English)
田玉龙; 吴伟仁; 田金文; 柳健
2003-01-01
In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.
Radiation protection and fuzzy set theory
International Nuclear Information System (INIS)
Nishiwaki, Y.
1993-01-01
In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains
Directory of Open Access Journals (Sweden)
Behrouz Fathi-Vajargah
2014-01-01
Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.
The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms
Yamakami, Tomoyuki
2015-01-01
We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomia...
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Fuzzy resource optimization for safeguards
International Nuclear Information System (INIS)
Zardecki, A.; Markin, J.T.
1991-01-01
Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab
Directory of Open Access Journals (Sweden)
Hudec Miroslav
2011-01-01
Full Text Available Structured Query Language (SQL is used to obtain data from relational databases. Fuzzy improvement of SQL queries has advantages in cases when the user cannot unambiguously define selection criteria or when the user wants to examine data that almost meet the given criteria. In this paper we examine a realization of the fuzzy querying concept. For this purposes the fuzzy generalized logical condition for the WHERE part of the SQL is created. It allows users to create queries by linguistic terms. The proposed model is an extension of the SQL so that no modification inside databases has to be undertaken.
Fuzzy expert systems using CLIPS
Le, Thach C.
1994-01-01
This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.
Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance
Directory of Open Access Journals (Sweden)
Abdolhamid Safaei Ghadikolaei
2014-09-01
Full Text Available Multi Criteria Decision Making (MCDM is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive and parts manufacturing industry of Tehran stock exchange (TSE.for this purpose Fuzzy analytic hierarchy process (FAHP is applied to determine the relative important of each criterion, then The companies are ranked according their financial performance by using fuzzy additive ratio assessment (Fuzzy ARAS method. The finding of this study showed effective of this approach in evaluating financial performance.
Multimedia radiology self-learning course on the world wide web
International Nuclear Information System (INIS)
Sim, Jung Suk; Kim, Jong Hyo; Kim, Tae Kyoung; Han, Joon Koo; Kang, Heung Sik; Yeon, Kyung Mo; Han, Man Chung
1997-01-01
The creation and maintenance of radiology teaching materials is both laborious and very time-consuming, but at a teaching hospital is important. Through use of the technology offered by today's worldwide web, this problem can be efficiently solved, and on this basis, we devised a multimedia radiology self-learning course for abdominal ultrasound and CT. A combination of video and audio tapes has been used as teaching material; the authors digitized and converted these to Hypertext Mark-up Language (HTML) format. films were digitized with a digital camera and compressed to joint photographic expert group (JPEG) format, while audio tapes were digitized with a sound recorder and compressed to real audio format. Multimedia on the worldwide web will facilitate easy management and maintenance of a self-learning course. To make this more suitable for practical use, continual upgrading on the basis of experience is needed. (author). 3 refs., 4 figs
Directory of Open Access Journals (Sweden)
Sri Huning Anwariningsih
2013-05-01
Full Text Available The implementation of information and comunication technology (ICT curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the description can be bocome one of the basic from the development of interactive study model base on student self learning. Besides, the arraging of this study model is hoped to make habitual and self learning.
User's manual of self learning gas puffing system for plasma density control
International Nuclear Information System (INIS)
Tanahashi, S.
1989-04-01
Pre-programmed gas puffing is often used to get adequet plasma density wave forms in the pulse operating devices for fusion experiments. This method has a defect that preset values have to be adjusted manually in accordance with changes of out gassing rate in successive shots. In order to remove this defect, a self learning system has been developed so as to keep the plasma density close to a given reference waveform. After a few succesive shots, it accomplishes self learning and is ready to keep up with a gradual change of the wall condition. This manual gives the usage of the system and the program list written in BASIC and ASSEMBLER languages. (author)
Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab
Directory of Open Access Journals (Sweden)
Afan Galih Salman
2010-12-01
Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
Fuzzy histogram for internal and external fuzzy directional relations
Salamat , Nadeem; Zahzah , El-Hadi
2009-01-01
5 Pages; Spatial relations have key point importance in image analysis and computer vision. Numerous technics have been developed to study these relations especially directional relations. Modern digital computers give rise to quantitative methods and among them fuzzy methods have core importance due to handling imprecise knowledge information and vagueness. In most fuzzy methods external directional relations are considered which are useful for small scale space image analysis but in large s...
Solution of Fuzzy Differential Equations Using Fuzzy Sumudu Transforms
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2018-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy differential equations (FDEs and the solutions of these equations are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by utilizing the fuzzy Sumudu transform (FST method. Significant theorems are suggested in order to explain the properties of FST. The proposed method is validated with three real examples.
Theta-Generalized closed sets in fuzzy topological spaces
International Nuclear Information System (INIS)
El-Shafei, M.E.; Zakari, A.
2006-01-01
In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)
Directory of Open Access Journals (Sweden)
Basem Mohamed Elomda
2013-07-01
Full Text Available This paper presents a new extension to Fuzzy Decision Maps (FDMs by allowing use of fuzzy linguistic values to represent relative importance among criteria in the preference matrix as well as representing relative influence among criteria for computing the steady-state matrix in the stage of Fuzzy Cognitive Map (FCM. The proposed model is called the Linguistic Fuzzy Decision Networks (LFDNs. The proposed LFDN provides considerable flexibility to decision makers when solving real world Multi-Criteria Decision-Making (MCDM problems. The performance of the proposed LFDN model is compared with the original FDM using a previously published case study. The result of comparison ensures the ability to draw the same decisions with a more realistic decision environment.
FUZZY LOGIC IN LEGAL EDUCATION
Directory of Open Access Journals (Sweden)
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
On the mathematics of fuzziness
Energy Technology Data Exchange (ETDEWEB)
Kerre, E. [Ghent Univ. (Belgium)
1994-12-31
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way.
On the mathematics of fuzziness
International Nuclear Information System (INIS)
Kerre, E.
1994-01-01
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way
International Nuclear Information System (INIS)
Liu, X.; Fang, K.
1986-01-01
A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format
A Fuzzy Query Mechanism for Human Resource Websites
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
International Nuclear Information System (INIS)
Piasecki, E.
2009-01-01
Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)
Luo, Hong; Wu, Cheng; He, Qian; Wang, Shi-Yong; Ma, Xiu-Qiang; Wang, Ri; Li, Bing; He, Jia
2015-01-01
Along with the advancement of information technology and the era of big data education, using learning process data to provide strategic decision-making in cultivating and improving medical students' self-learning ability has become a trend in educational research. Educator Abuwen Toffler said once, the illiterates in the future may not be the people not able to read and write, but not capable to know how to learn. Serving as educational institutions cultivating medical students' learning ability, colleges and universities should not only instruct specific professional knowledge and skills, but also develop medical students' self-learning ability. In this research, we built a teaching system which can help to restore medical students' self-learning processes and analyze their learning outcomes and behaviors. To evaluate the effectiveness of the system in supporting medical students' self-learning, an experiment was conducted in 116 medical students from two grades. The results indicated that problems in self-learning process through this system was consistent with problems raised from traditional classroom teaching. Moreover, the experimental group (using this system) acted better than control group (using traditional classroom teaching) to some extent. Thus, this system can not only help medical students to develop their self-learning ability, but also enhances the ability of teachers to target medical students' questions quickly, improving the efficiency of answering questions in class.
On Fuzzy β-I-open sets and Fuzzy β-I-continuous functions
International Nuclear Information System (INIS)
Keskin, Aynur
2009-01-01
In this paper, first of all we obtain some properties and characterizations of fuzzy β-I-open sets. After that, we also define the notion of β-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy β-I-continuity with the help of fuzzy β-I-open sets to obtain decomposition of fuzzy continuity.
On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions
Energy Technology Data Exchange (ETDEWEB)
Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail: akeskin@selcuk.edu.tr
2009-11-15
In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.
Supply chain management under fuzziness recent developments and techniques
Öztayşi, Başar
2014-01-01
Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.
Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method
Directory of Open Access Journals (Sweden)
Ken Yeh
2010-01-01
Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.
Fuzzy relational calculus theory, applications and software
Peeva, Ketty
2004-01-01
This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...
Compound Option Pricing under Fuzzy Environment
Directory of Open Access Journals (Sweden)
Xiandong Wang
2014-01-01
Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities
Dhruba Das; Hemanta K. Baruah
2015-01-01
In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM...
Fuzzy upper bounds and their applications
Energy Technology Data Exchange (ETDEWEB)
Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com
2008-04-15
This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.
Neuro-fuzzy Control of Integrating Processes
Directory of Open Access Journals (Sweden)
Anna Vasičkaninová
2011-11-01
Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
A SELF-ORGANISING FUZZY LOGIC CONTROLLER
African Journals Online (AJOL)
ES Obe
One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.
Forecasting Enrollments with Fuzzy Time Series.
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
On the intuitionistic fuzzy inner product spaces
International Nuclear Information System (INIS)
Goudarzi, M.; Vaezpour, S.M.; Saadati, R.
2009-01-01
In this paper, the definition of intuitionistic fuzzy inner product is given. By virtue of this definition, some convergence theorems, Schwarts inequality and the orthogonal concept for intuitionistic fuzzy inner product spaces are established and introduced. Moreover the relationship between this kind of spaces and intuitionistic fuzzy normed spaces is considered.
Fuzzy control of pressurizer dynamic process
International Nuclear Information System (INIS)
Ming Zhedong; Zhao Fuyu
2006-01-01
Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)
Possible use of fuzzy logic in database
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2011-04-01
Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.
Effectiveness of Securities with Fuzzy Probabilistic Return
Directory of Open Access Journals (Sweden)
Krzysztof Piasecki
2011-01-01
Full Text Available The generalized fuzzy present value of a security is defined here as fuzzy valued utility of cash flow. The generalized fuzzy present value cannot depend on the value of future cash flow. There exists such a generalized fuzzy present value which is not a fuzzy present value in the sense given by some authors. If the present value is a fuzzy number and the future value is a random one, then the return rate is given as a probabilistic fuzzy subset on a real line. This kind of return rate is called a fuzzy probabilistic return. The main goal of this paper is to derive the family of effective securities with fuzzy probabilistic return. Achieving this goal requires the study of the basic parameters characterizing fuzzy probabilistic return. Therefore, fuzzy expected value and variance are determined for this case of return. These results are a starting point for constructing a three-dimensional image. The set of effective securities is introduced as the Pareto optimal set determined by the maximization of the expected return rate and minimization of the variance. Finally, the set of effective securities is distinguished as a fuzzy set. These results are obtained without the assumption that the distribution of future values is Gaussian. (original abstract
The majority rule in a fuzzy environment.
Montero, Javier
1986-01-01
In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.
The fuzzy approach to statistical analysis
Coppi, Renato; Gil, Maria A.; Kiers, Henk A. L.
2006-01-01
For the last decades, research studies have been developed in which a coalition of Fuzzy Sets Theory and Statistics has been established with different purposes. These namely are: (i) to introduce new data analysis problems in which the objective involves either fuzzy relationships or fuzzy terms;
Fuzzy commutative algebra and its application in mechanical engineering
International Nuclear Information System (INIS)
Han, J.; Song, H.
1996-01-01
Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering
Fuzzy logic of Aristotelian forms
Energy Technology Data Exchange (ETDEWEB)
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR
Directory of Open Access Journals (Sweden)
Maria Cristina Floreno
1996-05-01
Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
On Intuitionistic Fuzzy Context-Free Languages
Directory of Open Access Journals (Sweden)
Jianhua Jin
2013-01-01
automata theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF and Greibach normal form grammar (IFGNF based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally, pumping lemma for intuitionistic fuzzy context-free languages is investigated.
International Nuclear Information System (INIS)
Schildt, G.H.
1997-01-01
A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs
International Nuclear Information System (INIS)
Schildt, G.H.
1996-01-01
After an introduction into safety terms a fuzzy controller for safety related process control will be presented, especially for applications in the field of NPPs. One can show that the size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage due to real-time behaviour, because program execution time can be much more planned than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principle, and quiescent current principle
Energy Technology Data Exchange (ETDEWEB)
Schildt, G H [Technische Univ., Vienna (Austria)
1997-07-01
A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs.
Combining fuzzy mathematics with fuzzy logic to solve business management problems
Vrba, Joseph A.
1993-12-01
Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
Frechet differentiation of nonlinear operators between fuzzy normed spaces
International Nuclear Information System (INIS)
Yilmaz, Yilmaz
2009-01-01
By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Application of fuzzy logic to social choice theory
Mordeson, John N; Clark, Terry D
2015-01-01
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's
Ellipsoidal fuzzy learning for smart car platoons
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
Fuzzy logic controller using different inference methods
International Nuclear Information System (INIS)
Liu, Z.; De Keyser, R.
1994-01-01
In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes
Introduction to fuzzy logic using Matlab
Sivanandam, SN; Deepa, S N
2006-01-01
Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
Morales, Francisco J.; Reyes, Antonio; Cáceres, Noelia; Romero, Luis M.; Benitez, Francisco G.; Morgado, Joao; Duarte, Emanuel; Martins, Teresa
2017-09-01
A large percentage of transport infrastructures are composed of linear assets, such as roads and rail tracks. The large social and economic relevance of these constructions force the stakeholders to ensure a prolonged health/durability. Even though, inevitable malfunctioning, breaking down, and out-of-service periods arise randomly during the life cycle of the infrastructure. Predictive maintenance techniques tend to diminish the appearance of unpredicted failures and the execution of needed corrective interventions, envisaging the adequate interventions to be conducted before failures show up. This communication presents: i) A procedural approach, to be conducted, in order to collect the relevant information regarding the evolving state condition of the assets involved in all maintenance interventions; this reported and stored information constitutes a rich historical data base to train Machine Learning algorithms in order to generate reliable predictions of the interventions to be carried out in further time scenarios. ii) A schematic flow chart of the automatic learning procedure. iii) Self-learning rules from automatic learning from false positive/negatives. The description, testing, automatic learning approach and the outcomes of a pilot case are presented; finally some conclusions are outlined regarding the methodology proposed for improving the self-learning predictive capability.
Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID
Wicaksono, H.; Yusuf, Y. G.; Kristanto, C.; Haryanto, L.
2017-11-01
This paper presents a design of altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID. This practical design is implemented outdoor. Barometric and sonar sensor were used in this experiment as an input for the controller YoHe. The throttle signal as a control input was provided by the controller to leveling QuadRotor in particular altitude and known well as altitude stabilization. The parameter of type-2 fuzzy and fuzzy PID was tuned in several heights to get the best control parameter for any height. Type-2 fuzzy produced better result than fuzzy PID but had a slow response in the beginning.
Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202
Directory of Open Access Journals (Sweden)
Bajat Branislav
2007-01-01
Full Text Available A period of fifty years has been reached since the introduction of the first applications based upon geographical information systems (GIS. GIS has not only influenced the development of methods, collection techniques, processing, manipulation and visualization of spatial data. It influenced also the expansion of scientific research in geosciences, as well as the technical disciplines that are engaged in spatial analysis. Nowadays, GIS is becoming the tool for verification and practical implementation of models and algorithms that have been developed within the frame of basic scientific disciplines. The meaning of the GIS acronym is becoming more and more related to term of Geographical or Geo Information Sciences. Scientific concepts that are increasingly applied in GIS are more emphasized in that way. GIS computational techniques, required also the development of geographical data models that should effectively support GIS operations. These models represent formal equivalents of conceptual models used by people in observing geographic phenomena. Spatial phenomena used to be mapped as clearly defined points with known coordinates, or as lines which connect the very same points, or as polygons with exactly defined borders. They were mapped previously in analog form and nowadays in digital format. This approach of perceiving a space, data analyses and visualization of spatial quires is limited on the application of basic rules of Boolean algebra and binary logic, with final results presented as classical thematic maps. The need for a mathematical model that would describe uncertainty of spatial data, resulted in the introduction of the theory of fuzzy sets in spatial analysis. Moreover, this model will provide a solution for visualization and grouping up of spatial phenomena in classes which do not have clearly defined borders.
Directory of Open Access Journals (Sweden)
JuanM. Medina
2012-08-01
Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.
Czech Academy of Sciences Publication Activity Database
Kroupa, Tomáš
2008-01-01
Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
Structural Completeness in Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Metcalfe, G.
2009-01-01
Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics
Fuzzy Querying: Issues and Perspectives..
Czech Academy of Sciences Publication Activity Database
Kacprzyk, J.; Pasi, G.; Vojtáš, Peter; Zadrozny, S.
2000-01-01
Roč. 36, č. 6 (2000), s. 605-616 ISSN 0023-5954 Institutional research plan: AV0Z1030915 Keywords : flexible querying * information retrieval * fuzzy databases Subject RIV: BA - General Mathematics http://dml.cz/handle/10338.dmlcz/135376
International Nuclear Information System (INIS)
Pilotto, F.; Vasconcellos, C.A.Z.; Coelho, H.T.
2001-01-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Energy Technology Data Exchange (ETDEWEB)
Pilotto, F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Coelho, H.T. [Pernambuco Univ., Recife, PE (Brazil). Inst. de Fisica
2001-07-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Fuzzy Evidence in Identification, Forecasting and Diagnosis
Rotshtein, Alexander P
2012-01-01
The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...
Fuzzy tree automata and syntactic pattern recognition.
Lee, E T
1982-04-01
An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.
On fuzzy quasi continuity and an application of fuzzy set theory
Mahmoud, R A
2003-01-01
Where as classical topology has been developed closely connected with classical analysis describing topological phenomena in analysis, fuzzy topology with its important application in quantum gravity indicated by Witten and Elnaschie, has only been introduced as an analogue of the classical topology. The development of fuzzy topology without close relations to analytical problems did not give the possibility of testing successfully the applicability of the new notions and results. Till now this situation did not change, essentially. Although, many types of fuzzy sets and fuzzy functions having the quasi-property in both of weak and strong than openness and continuity, respectively, have been studied in detail. Many properties on fuzzy topological spaces such as compactness are discussed via fuzzy notion. While others are far from being completely devoted in its foundation. So, this paper is devoted to present a new class of fuzzy quasi-continuous functions via fuzzy compactness has been defined. Some characte...
Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum
Gabriel, Thomas R.; Berthold, Michael R.
2008-01-01
We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
A three-dimensional self-learning kinetic Monte Carlo model: application to Ag(111)
International Nuclear Information System (INIS)
Latz, Andreas; Brendel, Lothar; Wolf, Dietrich E
2012-01-01
The reliability of kinetic Monte Carlo (KMC) simulations depends on accurate transition rates. The self-learning KMC method (Trushin et al 2005 Phys. Rev. B 72 115401) combines the accuracy of rates calculated from a realistic potential with the efficiency of a rate catalog, using a pattern recognition scheme. This work expands the original two-dimensional method to three dimensions. The concomitant huge increase in the number of rate calculations on the fly needed can be avoided by setting up an initial database, containing exact activation energies calculated for processes gathered from a simpler KMC model. To provide two representative examples, the model is applied to the diffusion of Ag monolayer islands on Ag(111), and the homoepitaxial growth of Ag on Ag(111) at low temperatures.
Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations
International Nuclear Information System (INIS)
Shah, Syed Islamuddin; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S
2012-01-01
We report the development of a pattern recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of every under-coordinated atom in an island is uniquely identified by grouping fcc sites, hcp sites and top-layer substrate atoms around it into hexagonal rings. As the simulation progresses, all possible processes, including those such as shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and fcc-hcp moves are automatically found, and their energetics calculated on the fly. In this article we present the results of applying this new pattern recognition scheme to the self-diffusion of 9-atom islands (M 9 ) on M(111), where M = Cu, Ag or Ni.
Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors
Directory of Open Access Journals (Sweden)
Monica Villaverde
2015-11-01
Full Text Available The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.
Villaverde, Monica; Perez, David; Moreno, Felix
2015-11-17
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Fuzzy systems for process identification and control
International Nuclear Information System (INIS)
Gorrini, V.; Bersini, H.
1994-01-01
Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Analysis of inventory difference using fuzzy controllers
International Nuclear Information System (INIS)
Zardecki, A.
1994-01-01
The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented
Fuzzy associative memories for instrument fault detection
International Nuclear Information System (INIS)
Heger, A.S.
1996-01-01
A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author)
Optical Generation of Fuzzy-Based Rules
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Logika Fuzzy untuk Audit Sistem Informasi
Directory of Open Access Journals (Sweden)
Hari Setiabudi Husni
2013-06-01
Full Text Available The aim of this research is to study and introduce fuzzy logic into audit information system. Fuzzy logic is already adopted in other field of study. It helps decision process that incorporates subjective information and transforms it to scientific objective information which is more accepted. This research implements simulation scenario to see how fuzzy logic concept should be used in audit information process. The result shows that there is a possible concept of fuzzy logic that can be used for helping auditor in making objective decision in audit information system process. More researches needed to further explore the fuzzy logic concept such as creating the system of fuzzy logic and build application that can be used for daily information system audit process.
On Algebraic Study of Type-2 Fuzzy Finite State Automata
Directory of Open Access Journals (Sweden)
Anupam K. Singh
2017-08-01
Full Text Available Theories of fuzzy sets and type-2 fuzzy sets are powerful mathematical tools for modeling various types of uncertainty. In this paper we introduce the concept of type-2 fuzzy finite state automata and discuss the algebraic study of type-2 fuzzy finite state automata, i.e., to introduce the concept of homomorphisms between two type-2 fuzzy finite state automata, to associate a type-2 fuzzy transformation semigroup with a type-2 fuzzy finite state automata. Finally, we discuss several product of type-2 fuzzy finite state automata and shown that these product is a categorical product.
Fuzzy weakly preopen (preclosed) function in Kubiak-Sostak fuzzy topological spaces
International Nuclear Information System (INIS)
Zahran, A.M.; Abd-Allah, M. Azab.; Abd El-Rahman, Abd El-Nasser G.
2009-01-01
In this paper, we introduce and characterize fuzzy weakly preopen and fuzzy weakly preclosed functions between L-fuzzy topological spaces in Kubiak-Sostak sense and also study these functions in relation to some other types of already known functions.
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
New Definition and Properties of Fuzzy Entropy
Institute of Scientific and Technical Information of China (English)
Qing Ming; Qin Yingbing
2006-01-01
Let X = (x1,x2 ,…,xn ) and F(X) be a fuzzy set on a universal set X. A new definition of fuzzy entropy about a fuzzy set A on F(X), e*, is defined based on the order relation "≤" on [0,1/2] n. It is proved that e* is a σ-entropy under an additional requirement. Besides, some entropy formulas are presented and related properties are discussed.
Simulasi Kecepatan Kendaraan dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2008-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Simulasi Kecepatan Kendaraan Dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2009-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Statistical convergence on intuitionistic fuzzy normed spaces
International Nuclear Information System (INIS)
Karakus, S.; Demirci, K.; Duman, O.
2008-01-01
Saadati and Park [Saadati R, Park JH, Chaos, Solitons and Fractals 2006;27:331-44] has recently introduced the notion of intuitionistic fuzzy normed space. In this paper, we study the concept of statistical convergence on intuitionistic fuzzy normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on intuitionistic fuzzy normed spaces
Recent advances in fuzzy preference modelling
International Nuclear Information System (INIS)
Van de Walle, B.; De Baets, B.; Kerre, E.
1996-01-01
Preference structures are well-known mathematical concepts having numerous applications in a variety of disciplines, such as economics, sociology and psychology. The generalization of preference structures to the fuzzy case has received considerable attention over the past years. Fuzzy preference structures allow a decision maker to express degrees of preference instead of the rigid classical yes-or-no preference assignment. This paper reports on the recent insights gained into the existence, construction and characterization of these fuzzy preference structures
Fuzzy Law and the Boundaries of Secularism
Directory of Open Access Journals (Sweden)
W Menski
2010-12-01
Full Text Available The author delivered a speech at a Religare Conference. Showing his distaste for fuzzy law, he argues that "moderate secularism" is not merely another fuzzy concept, but it is "super-fuzzy", and that lawyers claiming to love certainty "have a tendency to sit in judgment over matters and even pre-judge things they know little about, including legal pluralism" leading to much irritation.
Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance
Abdolhamid Safaei Ghadikolaei; Saber Khalili Esbouei
2014-01-01
Multi Criteria Decision Making (MCDM) is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive ...
Word Similarity From Dictionaries: Inferring Fuzzy Measures From Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Torra
2008-01-01
Full Text Available The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
Applying Social Tagging to Manage Cognitive Load in a Web 2.0 Self-Learning Environment
Huang, Yueh-Min; Huang, Yong-Ming; Liu, Chien-Hung; Tsai, Chin-Chung
2013-01-01
Web-based self-learning (WBSL) has received a lot of attention in recent years due to the vast amount of varied materials available in the Web 2.0 environment. However, this large amount of material also has resulted in a serious problem of cognitive overload that degrades the efficacy of learning. In this study, an information graphics method is…
Campos-Sánchez, Antonio; López-Núñez, Juan-Antonio; Scionti, Giuseppe; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Sola, Tomás
2014-01-01
Videos can be used as didactic tools for self-learning under several circumstances, including those cases in which students are responsible for the development of this resource as an audiovisual notebook. We compared students' and teachers' perceptions regarding the main features that an audiovisual notebook should include. Four…
Fuzzy logic control for camera tracking system
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Fuzzy sets, rough sets, multisets and clustering
Dahlbom, Anders; Narukawa, Yasuo
2017-01-01
This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.
Equipment Selection by using Fuzzy TOPSIS Method
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
A computationally efficient fuzzy control s
Directory of Open Access Journals (Sweden)
Abdel Badie Sharkawy
2013-12-01
Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Fuzzy logic control of nuclear power plant
International Nuclear Information System (INIS)
Yao Liangzhong; Guo Renjun; Ma Changwen
1996-01-01
The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Fuzzy set classifier for waste classification tracking
International Nuclear Information System (INIS)
Gavel, D.T.
1992-01-01
We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes
Application of fuzzy logic control in industry
International Nuclear Information System (INIS)
Van der Wal, A.J.
1994-01-01
An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing
Fuzzy control of small servo motors
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Fuzzy fractals, chaos, and noise
Energy Technology Data Exchange (ETDEWEB)
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint
2008-10-01
This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.
Directory of Open Access Journals (Sweden)
Dhruba Das
2015-04-01
Full Text Available In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM/M/1 and M/FM/1 has been studied and constructed their membership functions of the system characteristics based on the aforesaid principle. The former represents a queue with fuzzy exponential arrivals and exponential service rate while the latter represents a queue with exponential arrival rate and fuzzy exponential service rate.
Directory of Open Access Journals (Sweden)
Hongjun Guan
Full Text Available In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBPNeural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS. On this basis, the FTTS blur into fuzzy time series (FFTS based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Jiménez-Losada, Andrés
2017-01-01
This book offers a comprehensive introduction to cooperative game theory and a practice-oriented reference guide to new models and tools for studying bilateral fuzzy relations among several agents or players. It introduces the reader to several fuzzy models, each of which is first analyzed in the context of classical games (crisp games) and subsequently in the context of fuzzy games. Special emphasis is given to the value of Shapley, which is presented for the first time in the context of fuzzy games. Students and researchers will find here a self-contained reference guide to cooperative fuzzy games, characterized by a wealth of examples, descriptions of a wide range of possible situations, step-by-step explanations of the basic mathematical concepts involved, and easy-to-follow information on axioms and properties.
Directory of Open Access Journals (Sweden)
K. A. Halim
2011-01-01
Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.
Fuzzy Logic and Arithmetical Hierarchy III
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2001-01-01
Roč. 68, č. 1 (2001), s. 129-142 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * basic fuzzy logic * Lukasiewicz logic * Godel logic * product logic * arithmetical hierarchy Subject RIV: BA - General Mathematics
Fuzziness and randomness in an optimization framework
International Nuclear Information System (INIS)
Luhandjula, M.K.
1994-03-01
This paper presents a semi-infinite approach for linear programming in the presence of fuzzy random variable coefficients. As a byproduct a way for dealing with optimization problems including both fuzzy and random data is obtained. Numerical examples are provided for the sake of illustration. (author). 13 refs
Contraction theorems in fuzzy metric space
International Nuclear Information System (INIS)
Farnoosh, R.; Aghajani, A.; Azhdari, P.
2009-01-01
In this paper, the results on fuzzy contractive mapping proposed by Dorel Mihet will be proved for B-contraction and C-contraction in the case of George and Veeramani fuzzy metric space. The existence of fixed point with weaker conditions will be proved; that is, instead of the convergence of subsequence, p-convergence of subsequence is used.
FINDING STANDARD DEVIATION OF A FUZZY NUMBER
Fokrul Alom Mazarbhuiya
2017-01-01
Two probability laws can be root of a possibility law. Considering two probability densities over two disjoint ranges, we can define the fuzzy standard deviation of a fuzzy variable with the help of the standard deviation two random variables in two disjoint spaces.
Fuzzy Treatment of Candidate Outliers in Measurements
Directory of Open Access Journals (Sweden)
Giampaolo E. D'Errico
2012-01-01
Full Text Available Robustness against the possible occurrence of outlying observations is critical to the performance of a measurement process. Open questions relevant to statistical testing for candidate outliers are reviewed. A novel fuzzy logic approach is developed and exemplified in a metrology context. A simulation procedure is presented and discussed by comparing fuzzy versus probabilistic models.
A physical analogy to fuzzy clustering
DEFF Research Database (Denmark)
Jantzen, Jan
2004-01-01
This tutorial paper provides an interpretation of the membership assignment in the fuzzy clustering algorithm fuzzy c-means. The membership of a data point to several clusters is shown to be analogous to the gravitational forces between bodies of mass. This provides an alternative way to explain...
Mathematical Fuzzy Logic - State of Art 2001
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2003-01-01
Roč. 24, - (2003), s. 71-89 ISSN 0103-9059. [WOLLIC'2001. Brasília, 31.07.2001-03.08.2001] R&D Projects: GA MŠk LN00A056 Keywords : fuzzy logic * many valued logic * basic fuzzy logic BL Subject RIV: BA - General Mathematics http://www.mat.unb.br/~matcont/24_4.pdf
On the Power of Fuzzy Markup Language
Loia, Vincenzo; Lee, Chang-Shing; Wang, Mei-Hui
2013-01-01
One of the most successful methodology that arose from the worldwide diffusion of Fuzzy Logic is Fuzzy Control. After the first attempts dated in the seventies, this methodology has been widely exploited for controlling many industrial components and systems. At the same time, and very independently from Fuzzy Logic or Fuzzy Control, the birth of the Web has impacted upon almost all aspects of computing discipline. Evolution of Web, Web 2.0 and Web 3.0 has been making scenarios of ubiquitous computing much more feasible; consequently information technology has been thoroughly integrated into everyday objects and activities. What happens when Fuzzy Logic meets Web technology? Interesting results might come out, as you will discover in this book. Fuzzy Mark-up Language is a son of this synergistic view, where some technological issues of Web are re-interpreted taking into account the transparent notion of Fuzzy Control, as discussed here. The concept of a Fuzzy Control that is conceived and modeled in terms...
Modeling Research Project Risks with Fuzzy Maps
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Homeopathic drug selection using Intuitionistic fuzzy sets.
Kharal, Athar
2009-01-01
Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.
Parallel fuzzy connected image segmentation on GPU
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.
2011-01-01
Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...
International Nuclear Information System (INIS)
Aizawa, N; Chakrabarti, R
2007-01-01
We note that the recently introduced fuzzy torus can be regarded as a q-deformed parafermion. Based on this picture, classification of the Hermitian representations of the fuzzy torus is carried out. The result involves Fock-type representations and new finite-dimensional representations for q being a root of unity as well as already known finite-dimensional ones
Bounded Rationality of Generalized Abstract Fuzzy Economies
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available By using a nonlinear scalarization technique, the bounded rationality model M for generalized abstract fuzzy economies in finite continuous spaces is established. Furthermore, by using the model M, some new theorems for structural stability and robustness to (λ,ϵ-equilibria of generalized abstract fuzzy economies are proved.
Uzawa method for fuzzy linear system
Ke Wang
2013-01-01
An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
A NEW APPROACH ON SHORTEST PATH IN FUZZY ENVIRONMENT
A. Nagoorgani; A. Mumtaj Begam
2010-01-01
This paper introduces a new type of fuzzy shortest path network problem using triangular fuzzy number. To find the smallest edge by the fuzzy distance using graded mean integration representation of generalized fuzzy number for every node. Thus the optimum shortest path for the given problem is obtained.
Solution of a System of Linear Equations with Fuzzy Numbers
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
2008-01-01
Roč. 159, č. 14 (2008), s. 1788-1810 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy number * fuzzy interval * interval analysis * fuzzy arithmetic * fuzzy class theory * united solution set Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
Consolidity analysis for fully fuzzy functions, matrices, probability and statistics
Directory of Open Access Journals (Sweden)
Walaa Ibrahim Gabr
2015-03-01
Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...
Computing the eigenvalues and eigenvectors of a fuzzy matrix
Directory of Open Access Journals (Sweden)
A. Kumar
2012-08-01
Full Text Available Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system $widetilde{A}widetilde{X}= widetilde{lambda} widetilde{X}.$
Fuzzy modeling and control theory and applications
Matía, Fernando; Jiménez, Emilio
2014-01-01
Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.
Markowitz portfolio optimization model employing fuzzy measure
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
Integrated development environment for fuzzy logic applications
Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido; Lo Presti, Matteo
1993-12-01
During the last five years, Fuzzy Logic has gained enormous popularity, both in the academic and industrial worlds, breaking up the traditional resistance against changes thanks to its innovative approach to problems formalization. The success of this new methodology is pushing the creation of a brand new class of devices, called Fuzzy Machines, to overcome the limitations of traditional computing systems when acting as Fuzzy Systems and adequate Software Tools to efficiently develop new applications. This paper aims to present a complete development environment for the definition of fuzzy logic based applications. The environment is also coupled with a sophisticated software tool for semiautomatic synthesis and optimization of the rules with stability verifications. Later it is presented the architecture of WARP, a dedicate VLSI programmable chip allowing to compute in real time a fuzzy control process. The article is completed with two application examples, which have been carried out exploiting the aforementioned tools and devices.
Multi-dimensional Fuzzy Euler Approximation
Directory of Open Access Journals (Sweden)
Yangyang Hao
2017-05-01
Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.
Molecular processors: from qubits to fuzzy logic.
Gentili, Pier Luigi
2011-03-14
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flows in networks under fuzzy conditions
Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich
2017-01-01
This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
A study on generalized hesitant intuitionistic Fuzzy soft sets
Nazra, A.; Syafruddin; Wicaksono, G. C.; Syafwan, M.
2018-03-01
By combining the concept of hesitant intuitionistic fuzzy sets, fuzzy soft sets and fuzzy sets, we extend hesitant intuitionistic fuzzy soft sets to a generalized hesitant intuitionistic fuzzy soft sets. Some operations on generalized hesitant intuitionistic fuzzy soft sets, such as union, complement, operations “AND” and “OR”, and intersection are defined. From such operations the authors obtain related properties such as commutative, associative and De Morgan's laws. The authors also get an algebraic structure of the collection of all generalized hesitant intuitionistic fuzzy soft sets over a set.
Directory of Open Access Journals (Sweden)
Dr. Mahmoud Mohamed Ali
2015-08-01
Full Text Available This study aimed to reveal the most important difficulties that hinder the Arab Open University in Oman students for the practice of self-learning method in their studies has been rated difficulties to the three pillars namely difficulties related to students and the skills of self-learning and difficulties related to teachers and methods of teaching and difficulties related to the curriculum and learning resources and after the application of the study of the identification of the difficulties tool 200 of university students 697 study concluded that many of the results that were notably that the difficulties related to students and the skills of self-learning more difficulties impeding the exercise of self-learning compared to the difficulties related to the other two mentioned and the students ability to connect and communicate and to evaluate themselves and correct educational careers and their ability to control their behavior and direct their activities toward self-learning are more difficulties influential and disability for students on their ability to exercise self-learning in their study of the Arab open University and as for the axis of teachers and teaching methods has shown results weakness encourage teachers to students to apply and practice this kind of learning and focus on traditional methods and weak development of skills for self-learning is one of the more difficulties that limit the exercise of the students of this method of learning and for the focus of the curriculum and learning resources has shown results of the study that the lack of educational software miscellaneous non-availability of electronic research base and lack of stimulating courses on the exercise of self-learning method is one of the most difficulties that hinder students ability to exercise self-learning.
Fuzzy statistical decision-making theory and applications
Kabak, Özgür
2016-01-01
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimu...
East West Fuzzy colloquium 2000. 8. Zittau Fuzzy colloquium. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Wagenknecht, M; Chaker, N; Hampel, R [comps.
2000-07-01
The Zittau Colloquium is organized annually with the objective to stimulate contacts between scientists in academic research, industrial development and university teaching from Eastern and Western European countries and from other parts of the world. A further aim of the colloquium is the exchange of information about the state-of-the-art in the field of Fuzzy Logic basic investigation and application in connection with other theories, for example Neuronal Networks. Therefore, we want to stimulate the discussion about proposals for common national, bilateral and international supported projects to incite research, teaching, as well as mobility of students and teachers. (orig.)
Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory
Directory of Open Access Journals (Sweden)
Ya-jun Wang
2012-06-01
Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.
Designing PID-Fuzzy Controller for Pendubot System
Directory of Open Access Journals (Sweden)
Ho Trong Nguyen
2017-12-01
Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controller – PID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllers – PID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.
A study of fuzzy control in nuclear scale system
International Nuclear Information System (INIS)
Wang Yu; Zhang Yongming; Wu Ruisheng; Du Xianbin; Liu Shixing
2001-01-01
The new development of the nuclear scale system which uses fuzzy control strategy is presented. Good results have been obtained in using fuzzy control to solve the problems, such as un-linearities, instabilities, time delays, which are difficultly described by formula, etc. The fuzzy variance, membership function and fuzzy rules are given, and the noise disturbances of fuzzy control and PID control are also given
International Nuclear Information System (INIS)
Zazula, J.M.
1988-01-01
The self-learning Monte Carlo technique has been implemented to the commonly used general purpose neutron transport code MORSE, in order to enhance sampling of the particle histories that contribute to a detector response. The parameters of all the biasing techniques available in MORSE, i.e. of splitting, Russian roulette, source and collision outgoing energy importance sampling, path length transformation and additional biasing of the source angular distribution are optimized. The learning process is iteratively performed after each batch of particles, by retrieving the data concerning the subset of histories that passed the detector region and energy range in the previous batches. This procedure has been tested on two sample problems in nuclear geophysics, where an unoptimized Monte Carlo calculation is particularly inefficient. The results are encouraging, although the presented method does not directly minimize the variance and the convergence of our algorithm is restricted by the statistics of successful histories from previous random walk. Further applications for modeling of the nuclear logging measurements seem to be promising. 11 refs., 2 figs., 3 tabs. (author)
Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg
International Nuclear Information System (INIS)
Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish
2016-01-01
Vacancy-mediated diffusion of an Al atom in the pure Mg matrix is studied using the atomistic, on-lattice self-learning kinetic Monte Carlo (SLKMC) method. Activation barriers for vacancy-Mg and vacancy-Al atom exchange processes are calculated on the fly using the climbing image nudged-elastic-band method and binary Mg–Al modified embedded-atom method interatomic potential. Diffusivities of an Al atom obtained from SLKMC simulations show the same behavior as observed in experimental and theoretical studies available in the literature; that is, an Al atom diffuses faster within the basal plane than along the c-axis. Although the effective activation barriers for an Al atom diffusion from SLKMC simulations are close to experimental and theoretical values, the effective prefactors are lower than those obtained from experiments. We present all the possible vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers identified in SLKMC simulations. A simple mapping scheme to map an HCP lattice onto a simple cubic lattice is described, which enables simulation of the HCP lattice using the on-lattice framework. We also present the pattern recognition scheme which is used in SLKMC simulations to identify the local Al atom configuration around a vacancy. (paper)
Design and application of complementary educational resources for self-learning methodology
Andrés Gilarranz Casado, Carlos; Rodriguez-Sinobas, Leonor
2016-04-01
The main goal of this work is enhanced the student`s self-learning in subjects regarding irrigation and its technology. Thus, the use of visual media (video recording) during the lectures (master classes and practicum) will help the students in understanding the scope of the course since they can watch the recorded material at any time and as many times they wish. The study comprised two parts. In the first, lectures were video filmed inside the classroom during one semester (16 weeks and four hours per week) in the course "Irrigation Systems and Technology" which is taught at the Technical University of Madrid. In total, 200 videos, approximated 12 min long, were recorded. Since the You tube platform is a worldwide platform and since it is commonly used by students and professors, the videos were uploaded in it. Then, the URL was inserted in the Moodle platform which contains the materials for the course. In the second part, the videos were edited and formatted. Special care was taking to maintain image and audio quality. Finally, thirty videos were developed which focused on the different main areas of the course and containing a clear and brief explanation of their basis. Each video lasted between 30 and 45 min Finally, a survey was handled at the end of the semester in order to assess the students' opinion about the methodology. In the questionnaire, the students highlighted the key aspects during the learning process and in general, they were very satisfied with the methodology.
Directory of Open Access Journals (Sweden)
Vera V. Lyubchenko
2014-12-01
Full Text Available The adoption of Law of Ukraine “On Higher Education” (2014 involves the increase in students’ self-learning activity part in the curriculum. Therefore the self-learning activities’ arrangement in a way augmenting the result quality becomes a top priority task. This research objective consists in elaborating the scenario for organization of the students’ qualitative self-study, based on blended learning models. The author analyzes four blended learning models: the rotation model, flex-model, self-blend model and online driver model, and gives examples of their use. It is shown that first two models are the most suitable for full-time students. A general scenario for the use of blended learning models is described. Although the use of blended learning models causes several difficulties, it also essentially contributes into students’ self-study monitoring and control support.
Directory of Open Access Journals (Sweden)
Yann Blanco
2001-01-01
Full Text Available This paper outlines a methodology to study the stability of Takagi-Sugeno's (TS fuzzy models. The stability analysis of the TS model is performed using a quadratic Liapunov candidate function. This paper proposes a relaxation of Tanaka's stability condition: unlike related works, the equations to be solved are not Liapunov equations for each rule matrix, but a convex combination of them. The coefficients of this sums depend on the membership functions. This method is applied to the design of continuous controllers for the TS model. Three different control structures are investigated, among which the Parallel Distributed Compensation (PDC. An application to the inverted pendulum is proposed here.
Fuzzy methods and design; Fuzzy shuho to sekkei
Energy Technology Data Exchange (ETDEWEB)
Furuta, H. [Kwansei Gakuin Univ., Hyogo (Japan)
1996-03-05
This paper explains the application of the fuzzy theory to a design. A rational decision in design with only an objective logic requires conditions such that a set of selectable alternative plans and the results of executing them are known, and that a rule or a sequential relation exists to decide the order of preference of the alternative plans. In a case where the optimum anti-earthquake design was applied, for example, the seismic motion, subsoil and properties of materials or the like used to be treated stochastically and statistically as being of random nature. However, elements of uncertainty are actually involved other than the randomness, in consideration of cost effectiveness, safety and such. In the problems of anti-earthquake design by the fuzzy theory, the restrictive conditions are stipulated with a membership function respectively, such that the design earthquake motion is in a range larger than the maximum motion, and that the stress or displacement is each in the range smaller than the allowable stress or displacement of members; in addition, the weight is expressed to be the minimum as the objective function. 9 refs., 1 fig.
Huang, Yi-Chen; Hsu, Li-Ling
2011-02-01
Many nurses have difficulty learning to use the complex, non-traditional, and regularly-updated critical care equipment. Failure to use such equipment properly can seriously compromise treatment and endanger patient health and lives. New self-learning materials for novice nurses are necessary to provide essential and effective guidance as a part of formal nursing training. Such materials can enhance the capabilities of critical care nurses and, thus, improve the general quality of critical care. The purpose of this research was to develop a continuous renal replacement therapy (CRRT)-themed self-learning manual that would provide easily absorbed and understood knowledge in an easy-to-carry format for ICU nursing staff. This study also investigated CCRT skill learning efficacy. This study adopted a quasi-experimental design with pretests and posttests. Purposive sampling generated a sample of 66 critical care nurses currently working at one hospital in Taipei City. Participants submitted a completed self-assessment survey that rated their command of continuous renal replacement therapy before and after the self-learning manual intervention. Survey data were analyzed using SPSS Version 17.0 for Windows. The two major findings derived from the study included: (1) The mean response score from the self-assessment survey filled out after the intervention was 91.06 and 79.75 (SD = 9.49 and 11.65), respectively, for experimental and control groups. Such demonstrated significant difference. (2) The mean posttest score after the intervention for the experimental group was 91.06 ± 9.49. This represents a significant increase of 10.35 ± 10.35 over their mean pretest score (80.71 ± 11.82). The experimental group showed other significant differences in terms of the CRRT self-assessment survey posttest. Self-learning manuals may be introduced in nursing education as useful aids and catalysts to achieve more effective and satisfying learning experiences.
Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning
Directory of Open Access Journals (Sweden)
Ya’nan Wang
2016-01-01
Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.
Intelligent control-I: review of fuzzy logic and fuzzy set theory
International Nuclear Information System (INIS)
Nagrial, M.H.
2004-01-01
In the past decade or so, fuzzy systems have supplanted conventional technologies in many engineering systems, in particular in control systems and pattern recognition. Fuzzy logic has found applications in a variety of consumer products e.g. washing machines, camcorders, digital cameras, air conditioners, subway trains, cement kilns and many others. The fuzzy technology is also being applied in information technology, where it provides decision-support and expert systems with powerful reasoning capabilities. Fuzzy sets, introduced by Zadeh in 1965 as a mathematical way to represent vagueness in linguistics, can be considered a generalisation of classical set theory. Fuzziness is often confused with probability. This lecture will introduce the principal concepts and mathematical notions of fuzzy set theory. (author)
Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters
Directory of Open Access Journals (Sweden)
Fabian Andres Lara-Molina
Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.
Fuzzy Constraint-Based Agent Negotiation
Institute of Scientific and Technical Information of China (English)
Menq-Wen Lin; K. Robert Lai; Ting-Jung Yu
2005-01-01
Conflicts between two or more parties arise for various reasons and perspectives. Thus, resolution of conflicts frequently relies on some form of negotiation. This paper presents a general problem-solving framework for modeling multi-issue multilateral negotiation using fuzzy constraints. Agent negotiation is formulated as a distributed fuzzy constraint satisfaction problem (DFCSP). Fuzzy constrains are thus used to naturally represent each agent's desires involving imprecision and human conceptualization, particularly when lexical imprecision and subjective matters are concerned. On the other hand, based on fuzzy constraint-based problem-solving, our approach enables an agent not only to systematically relax fuzzy constraints to generate a proposal, but also to employ fuzzy similarity to select the alternative that is subject to its acceptability by the opponents. This task of problem-solving is to reach an agreement that benefits all agents with a high satisfaction degree of fuzzy constraints, and move towards the deal more quickly since their search focuses only on the feasible solution space. An application to multilateral negotiation of a travel planning is provided to demonstrate the usefulness and effectiveness of our framework.
Development of a new fuzzy exposure model
International Nuclear Information System (INIS)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart
2007-01-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Development of a new fuzzy exposure model
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Engenharia de Reatores], E-mail: wagner@ufpe.br, E-mail: cabol@ufpe.br; Texeira, Marcello Goulart [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Terrestrial Modelling Group], E-mail: marcellogt@ime.eb.br
2007-07-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Design of supply chain in fuzzy environment
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
Towards the future of fuzzy logic
Trillas, Enric; Kacprzyk, Janusz
2015-01-01
This book provides readers with a snapshot of the state-of-the art in fuzzy logic. Throughout the chapters, key theories developed in the last fifty years as well as important applications to practical problems are presented and discussed from different perspectives, as the authors hail from different disciplines and therefore use fuzzy logic for different purposes. The book aims at showing how fuzzy logic has evolved since the first theory formulation by Lotfi A. Zadeh in his seminal paper on Fuzzy Sets in 1965. Fuzzy theories and implementation grew at an impressive speed and achieved significant results, especially on the applicative side. The study of fuzzy logic and its practice spread all over the world, from Europe to Asia, America and Oceania. The editors believe that, thanks to the drive of young researchers, fuzzy logic will be able to face the challenging goals posed by computing with words. New frontiers of knowledge are waiting to be explored. In order to motivate young people to engage in the ...
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
Automatic approach to deriving fuzzy slope positions
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Sputtering properties of tungsten 'fuzzy' surfaces
International Nuclear Information System (INIS)
Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.
2011-01-01
Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .
Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma
International Nuclear Information System (INIS)
Wang Xingquan
2006-01-01
The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)
A new fuzzy Monte Carlo method for solving SLAE with ergodic fuzzy Markov chains
Directory of Open Access Journals (Sweden)
Maryam Gharehdaghi
2015-05-01
Full Text Available In this paper we introduce a new fuzzy Monte Carlo method for solving system of linear algebraic equations (SLAE over the possibility theory and max-min algebra. To solve the SLAE, we first define a fuzzy estimator and prove that this is an unbiased estimator of the solution. To prove unbiasedness, we apply the ergodic fuzzy Markov chains. This new approach works even for cases with coefficients matrix with a norm greater than one.
Managing Controversies in the Fuzzy Front End
DEFF Research Database (Denmark)
Christiansen, John K.; Gasparin, Marta
2016-01-01
This research investigates the controversies that emerge in the fuzzy front end (FFE) and how they are closed so the innovation process can move on. The fuzzy front has been characterized in the literature as a very critical phase, but controversies in the FFE have not been studied before....... The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...
Fuzzy stability and synchronization of hyperchaos systems
International Nuclear Information System (INIS)
Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin
2008-01-01
This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller
Using fuzzy arithmetic in containment event trees
International Nuclear Information System (INIS)
Rivera, S.S.; Baron, Jorge H.
2000-01-01
The use of fuzzy arithmetic is proposed for the evaluation of containment event trees. Concepts such as improbable, very improbable, and so on, which are subjective by nature, are represented by fuzzy numbers. The quantitative evaluation of containment event trees is based on the extension principle, by which operations on real numbers are extended to operations on fuzzy numbers. Expert knowledge is considered as state of the base variable with a normal distribution, which is considered to represent the membership function. Finally, this paper presents results of an example calculation of a containment event tree for the CAREM-25 nuclear power plant, presently under detailed design stage at Argentina. (author)
Relative aggregation operator in database fuzzy querying
Directory of Open Access Journals (Sweden)
Luminita DUMITRIU
2005-12-01
Full Text Available Fuzzy selection criteria querying relational databases include vague terms; they usually refer linguistic values form the attribute linguistic domains, defined as fuzzy sets. Generally, when a vague query is processed, the definitions of vague terms must already exist in a knowledge base. But there are also cases when vague terms must be dynamically defined, when a particular operation is used to aggregate simple criteria in a complex selection. The paper presents a new aggregation operator and the corresponding algorithm to evaluate the fuzzy query.
Fuzzy image processing and applications with Matlab
Chaira, Tamalika
2009-01-01
In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,
ps-ro Fuzzy Open(Closed Functions and ps-ro Fuzzy Semi-Homeomorphism
Directory of Open Access Journals (Sweden)
Pankaj Chettri
2015-11-01
Full Text Available The aim of this paper is to introduce and characterize some new class of functions in a fuzzy topological space termed as ps-ro fuzzy open(closed functions, ps-ro fuzzy pre semiopen functions and ps-ro fuzzy semi-homeomorphism. The interrelation among these concepts and also their relations with the parallel existing concepts are established. It is also shown with the help of examples that these newly introduced concepts are independent of the well known existing allied concepts.
Directory of Open Access Journals (Sweden)
Fajar Ibnu Tufeil
2009-06-01
Full Text Available Model fuzzy memiliki kemampuan untuk menjelaskan secara linguistik suatu sistem yang terlalu kompleks. Aturan-aturan dalam model fuzzy pada umumnya dibangun berdasarkan keahlian manusia dan pengetahuan heuristik dari sistem yang dimodelkan. Teknik ini selanjutnya dikembangkan menjadi teknik yang dapat mengidentifikasi aturan-aturan dari suatu basis data yang telah dikelompokkan berdasarkan persamaan strukturnya. Dalam hal ini metode pengelompokan fuzzy berfungsi untuk mencari kelompok-kelompok data. Informasi yang dihasilkan dari metode pengelompokan ini, yaitu informasi tentang pusat kelompok, digunakan untuk membentuk aturan-aturan dalam sistem penalaran fuzzy. Dalam skripsi ini dibahas mengenai penerapan fuzzy infereance system dengan metode pengelompokan fuzzy subtractive clustering, yaitu untuk membentuk sistem penalaran fuzzy dengan menggunakan model fuzzy Takagi-Sugeno orde satu. Selanjutnya, metode pengelompokan fuzzy subtractive clustering diterapkan dalam memodelkan masalah dibidang pemasaran, yaitu untuk memprediksi permintaan pasar terhadap suatu produk susu. Aplikasi ini dibangun menggunakan Borland Delphi 6.0. Dari hasil pengujian diperoleh tingkat error prediksi terkecil yaitu dengan Error Average 0.08%.
Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic
Verdegay, Jose; Esteva, Francesc
2015-01-01
This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
Construction of Fuzzy Sets and Applying Aggregation Operators for Fuzzy Queries
DEFF Research Database (Denmark)
Hudec, Miroslav; Sudzina, Frantisek
Flexible query conditions could use linguistic terms described by fuzzy sets. The question is how to properly construct fuzzy sets for each linguistic term and apply an adequate aggregation function. For construction of fuzzy sets, the lowest value, the highest value of attribute...... and the distribution of data inside its domain are used. The logarithmic transformation of domains appears to be suitable. This way leads to a balanced distribution of tuples over fuzzy sets. In addition, users’ opinions about linguistic terms as well as current content in database are merged. The second investigated...
Some fixed point theorems in fuzzy reflexive Banach spaces
International Nuclear Information System (INIS)
Sadeqi, I.; Solaty kia, F.
2009-01-01
In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910-31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271-89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it's topological structure. Chaos, Solitons and Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.
Approximate Solution of LR Fuzzy Sylvester Matrix Equations
Directory of Open Access Journals (Sweden)
Xiaobin Guo
2013-01-01
Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.
Developing a self-learning training program for RIS computer skills.
Stike, R; Olivi, P
2000-01-01
The demonstration of competency by healthcare professionals remains a priority for hospital administrators, as well as for the Joint Commission on Accreditation of Healthcare Organizations (JCAHO). Unfortunately, staff members who have to complete competency exercises often describe the process as a burden. Ineffective training processes may be the culprit. Our teaching hospital developed a training program for the radiology information system (RIS) computer system used by an imaging department of more than 200 staff members. The emphasis of our training program was on the design phase and the contribution of subject-matter experts (SMEs) to the content and testing of training materials, which included a computer-assisted, self-learning manual (SLM) and a pocket guide. The first step in the design process was to identify subject matter experts (SMEs) within the imaging department. Seven SMEs were shadowed by the IT educator. The role of the SME was to demonstrate current practices with RIS, to state principles involved and to serve as a reference for questions during training development. The steps that followed planning and design were: training delivery, evaluation and ongoing training. These steps were implemented in a series of workshops, which included soliciting feedback about the training program. Feedback was used to revise the SLM. The RIS SLM training project was a huge success for everyone involved. The average score for the core-skills test was higher than 90 percent. Seventy-five percent of the current staff was trained in the first phase, including radiology students. Our yearly cost savings using SLM workshops instead of on-the-job training will be about $35,000. We attribute the success of this project to a detailed timeline, SME contributions, the pilot testing phase, and the positive attitude of the imaging staff.
A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT
Directory of Open Access Journals (Sweden)
Yu Liu
2013-01-01
Full Text Available Many applications based on Internet of Things (IoT technology have recently founded in industry monitoring area. Thousands of sensors with different types work together in an industry monitoring system. Sensors at different locations can generate streaming data, which can be analyzed in the data center. In this paper, we propose a framework for online sensor fault detection. We motivate our technique in the context of the problem of the data value fault detection and event detection. We use the Statistics Sliding Windows (SSW to contain the recent sensor data and regress each window by Gaussian distribution. The regression result can be used to detect the data value fault. Devices on a production line may work in different workloads and the associate sensors will have different status. We divide the sensors into several status groups according to different part of production flow chat. In this way, the status of a sensor is associated with others in the same group. We fit the values in the Status Transform Window (STW to get the slope and generate a group trend vector. By comparing the current trend vector with history ones, we can detect a rational or irrational event. In order to determine parameters for each status group we build a self-learning worker thread in our framework which can edit the corresponding parameter according to the user feedback. Group-based fault detection (GbFD algorithm is proposed in this paper. We test the framework with a simulation dataset extracted from real data of an oil field. Test result shows that GbFD detects 95% sensor fault successfully.
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
Directory of Open Access Journals (Sweden)
Seng-Chi Chen
2014-01-01
Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.
Luo, Yi; Zhang, Tao; Li, Xiao-song
2016-05-01
To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.
IMPLEMENTATION OF FUZZY LOGIC BASED TEMPERATURE ...
African Journals Online (AJOL)
transfer function is derived based on process reaction curve obtained from a heat exchanger pilot plant ... The results show that the control performance for a Fuzzy controller is quite similar to ..... Process. Control Instrumentation Technology.
Fuzzy logic for structural system control
Directory of Open Access Journals (Sweden)
Herbert Martins Gomes
Full Text Available This paper provides some information and numerical tests that aims to investigate the use of a Fuzzy Controller applied to control systems. Some advantages are reported regarding the use of this controller, such as the characteristic ease of implementation due to its semantic feature in the statement of the control rules. On the other hand, it is also hypothesized that these systems have a lower performance loss when the system to be controlled is nonlinear or has time varying parameters. Numerical tests are performed using modal LQR optimal control and Fuzzy control of non-collocated systems with full state feedback in a two-dimensional structure. The paper proposes a way of designing a controller that may be a supervisory Fuzzy controller for a traditional controller or even a fuzzy controller independent from the traditional control, consisting on individual mode controllers. Some comments are drawn regarding the performance of these proposals in a number of arrangements.
Fuzzy logic applications to control engineering
Langari, Reza
1993-12-01
This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.
Reliability and safety analyses under fuzziness
International Nuclear Information System (INIS)
Onisawa, T.; Kacprzyk, J.
1995-01-01
Fuzzy theory, for example possibility theory, is compatible with probability theory. What is shown so far is that probability theory needs not be replaced by fuzzy theory, but rather that the former works much better in applications if it is combined with the latter. In fact, it is said that there are two essential uncertainties in the field of reliability and safety analyses: One is a probabilistic uncertainty which is more relevant for mechanical systems and the natural environment, and the other is fuzziness (imprecision) caused by the existence of human beings in systems. The classical probability theory alone is therefore not sufficient to deal with uncertainties in humanistic system. In such a context this collection of works will put a milestone in the arguments of probability theory and fuzzy theory. This volume covers fault analysis, life time analysis, reliability, quality control, safety analysis and risk analysis. (orig./DG). 106 figs
A COMPARISON OF TWO FUZZY CLUSTERING TECHNIQUES
Directory of Open Access Journals (Sweden)
Samarjit Das
2013-10-01
Full Text Available - In fuzzy clustering, unlike hard clustering, depending on the membership value, a single object may belong exactly to one cluster or partially to more than one cluster. Out of a number of fuzzy clustering techniques Bezdek’s Fuzzy C-Means and GustafsonKessel clustering techniques are well known where Euclidian distance and Mahalanobis distance are used respectively as a measure of similarity. We have applied these two fuzzy clustering techniques on a dataset of individual differences consisting of fifty feature vectors of dimension (feature three. Based on some validity measures we have tried to see the performances of these two clustering techniques from three different aspects- first, by initializing the membership values of the feature vectors considering the values of the three features separately one at a time, secondly, by changing the number of the predefined clusters and thirdly, by changing the size of the dataset.
Fuzzy controllers in nuclear material accounting
International Nuclear Information System (INIS)
Zardecki, A.
1994-01-01
Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored
reactor power control using fuzzy logic
International Nuclear Information System (INIS)
Ahmed, A.E.E.
2001-01-01
power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller
Supplier selection problem: A fuzzy multicriteria approach
African Journals Online (AJOL)
kirstam
simultaneously: maximising the total value of purchases, minimising ... Keywords: Supplier selection, multi-criteria decision-making, fuzzy logic, satisfaction ... includes both qualitative and quantitative factors, and it is necessary to make a.
Fuzzy logic guided inverse treatment planning
International Nuclear Information System (INIS)
Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho
2003-01-01
A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved
Fuzzy linear programming approach for solving transportation ...
Indian Academy of Sciences (India)
ALI EBRAHIMNEJAD
Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail: ..... est grade of membership at x are μ ˜AL (x) and μ ˜AU (x), respectively. ..... trapezoidal fuzzy numbers transportation problem (12) are.
Fuzzy logic applications in engineering science
Harris, J
2006-01-01
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.
On a Fuzzy Algebra for Querying Graph Databases
Pivert , Olivier; Thion , Virginie; Jaudoin , Hélène; Smits , Grégory
2014-01-01
International audience; This paper proposes a notion of fuzzy graph database and describes a fuzzy query algebra that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. The algebra, based on fuzzy set theory and the concept of a fuzzy graph, is composed of a set of operators that can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. In a s...
Fuzzy set theory for cumulative trauma prediction
Fonseca, Daniel J.; Merritt, Thomas W.; Moynihan, Gary P.
2001-01-01
A widely used fuzzy reasoning algorithm was modified and implemented via an expert system to assess the potential risk of employee repetitive strain injury in the workplace. This fuzzy relational model, known as the Priority First Cover Algorithm (PFC), was adapted to describe the relationship between 12 cumulative trauma disorders (CTDs) of the upper extremity, and 29 identified risk factors. The algorithm, which finds a suboptimal subset from a group of variables based on the criterion of...
Smart Spectrometer for Distributed Fuzzy Control
Benoit, Eric; Foulloy, Laurent
2009-01-01
Document rédigé sous FrameMaker (pas sous Latex); International audience; If the main use of colour measurement is the metrology, it is now possible to find industrial control applications which uses this information. Using colour in process control leads to specific problems where human perception has to be replaced by colour sensors. This paper relies on the fuzzy representation of colours that can be taken into account by fuzzy controllers. If smart sensors already include intelligent func...
On new solutions of fuzzy differential equations
International Nuclear Information System (INIS)
Chalco-Cano, Y.; Roman-Flores, H.
2008-01-01
We study fuzzy differential equations (FDE) using the concept of generalized H-differentiability. This concept is based in the enlargement of the class of differentiable fuzzy mappings and, for this, we consider the lateral Hukuhara derivatives. We will see that both derivatives are different and they lead us to different solutions from a FDE. Also, some illustrative examples are given and some comparisons with other methods for solving FDE are made
A FORMALISM FOR FUZZY BUSINESS RULES
Directory of Open Access Journals (Sweden)
Vasile Mazilescu
2015-05-01
Full Text Available The aim of this paper is to provide a formalism for fuzzy rule bases, included in our prototype system FUZZY_ENTERPRISE. This framework can be used in Distributed Knowledge Management Systems (DKMSs, real-time interdisciplinary decision making systems, that often require increasing technical support to high quality decisions in a timely manner. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques.
Aggregation Operator Based Fuzzy Pattern Classifier Design
DEFF Research Database (Denmark)
Mönks, Uwe; Larsen, Henrik Legind; Lohweg, Volker
2009-01-01
This paper presents a novel modular fuzzy pattern classifier design framework for intelligent automation systems, developed on the base of the established Modified Fuzzy Pattern Classifier (MFPC) and allows designing novel classifier models which are hardware-efficiently implementable....... The performances of novel classifiers using substitutes of MFPC's geometric mean aggregator are benchmarked in the scope of an image processing application against the MFPC to reveal classification improvement potentials for obtaining higher classification rates....
Fault Diagnosis in Deaerator Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
S Srinivasan
2007-01-01
Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.
Relational Compositions in Fuzzy Class Theory
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor; Daňková, M.
2009-01-01
Roč. 160, č. 8 (2009), s. 1005-1036 ISSN 0165-0114 R&D Pro jects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy relation * sup-T-composition * inf-R-composition * BK- pro duct * fuzzy class theory * formal truth value Subject RIV: BA - General Mathematics Impact factor: 2.138, year: 2009
Redundant sensor validation by using fuzzy logic
International Nuclear Information System (INIS)
Holbert, K.E.; Heger, A.S.; Alang-Rashid, N.K.
1994-01-01
This research is motivated by the need to relax the strict boundary of numeric-based signal validation. To this end, the use of fuzzy logic for redundant sensor validation is introduced. Since signal validation employs both numbers and qualitative statements, fuzzy logic provides a pathway for transforming human abstractions into the numerical domain and thus coupling both sources of information. With this transformation, linguistically expressed analysis principles can be coded into a classification rule-base for signal failure detection and identification
A Fuzzy Approach to Classify Learning Disability
Pooja Manghirmalani; Darshana More; Kavita Jain
2012-01-01
The endeavor of this work is to support the special education community in their quest to be with the mainstream. The initial segment of the paper gives an exhaustive study of the different mechanisms of diagnosing learning disability. After diagnosis of learning disability the further classification of learning disability that is dyslexia, dysgraphia or dyscalculia are fuzzy. Hence the paper proposes a model based on Fuzzy Expert System which enables the classification of learning disability...
A Fuzzy Aproach For Facial Emotion Recognition
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
Frontiers of higher order fuzzy sets
Tahayori, Hooman
2015-01-01
Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...
Driver's Behavior Modeling Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Sehraneh Ghaemi
2010-01-01
Full Text Available In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model called Model I is presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules called Model II and Model III by using Sugeno fuzzy inference. Model II and Model III have less linguistic terms than Model I for the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.
Fuzzy automata and pattern matching
Setzer, C. B.; Warsi, N. A.
1986-01-01
A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.
Directory of Open Access Journals (Sweden)
Angel Garrido
2010-04-01
Full Text Available The apparition of Fuzzy Logic has had a double repercussion on scientific research, and has provoked two types of reactions. From a theoretical point of view, it is indeed a very useful
generalization of the classical Set Theory proposed by Boole and Cantor, in this way making possible our analysis of uncertainty. But unfortunately, in his first steps it had to avoid the assaults of routine minds from the often too rigid mathematical field. This situation improved later, especially in nations with less deep-rooted prejudices. And by contrast, the new theory has obtained a strong rooting in nations with new and increasing scientific potential, such as China, Japan, and
South Korea. More recently it has also become rooted in European countries, such Hungary, Spain, and Romania, mainly due to its successful technical applications. We analyze some essential aspects of this new and powerful tool of Mathematical Analysis.
On rarely generalized regular fuzzy continuous functions in fuzzy topological spaces
Directory of Open Access Journals (Sweden)
Appachi Vadivel
2016-11-01
Full Text Available In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Directory of Open Access Journals (Sweden)
Rasim M. Alguliyev
2015-01-01
Full Text Available Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method.
Robust Fuzzy Controllers Using FPGAs
Monroe, Author Gene S., Jr.
2007-01-01
Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading
Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.
New fuzzy EWMA control charts for monitoring phase II fuzzy profiles
Directory of Open Access Journals (Sweden)
Ghazale Moghadam
2016-01-01
Full Text Available In many quality control applications, the quality of a process or product is explained by the relationship between response variable and one or more explanatory variables, called a profile. In this paper, a new fuzzy EWMA control chart for phase II fuzzy profile monitoring is proposed. To this end, we extend EWMA control charts to its equivalent Fuzzy type and then implement fuzzy ranking methods to determine whether the process fuzzy profile is under or out of control. The proposed method is capable of identifying small changes in process under condition of process profile explaining parameters vagueness, roughness and uncertainty. Determining the source of changes, this method provides us with the possibility of recognizing the causes of process transition from stable mode, removing these causes and restoring the process stable mode.
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Fuzzy randomness uncertainty in civil engineering and computational mechanics
Möller, Bernd
2004-01-01
This book, for the first time, provides a coherent, overall concept for taking account of uncertainty in the analysis, the safety assessment, and the design of structures. The reader is introduced to the problem of uncertainty modeling and familiarized with particular uncertainty models. For simultaneously considering stochastic and non-stochastic uncertainty the superordinated uncertainty model fuzzy randomness, which contains real valued random variables as well as fuzzy variables as special cases, is presented. For this purpose basic mathematical knowledge concerning the fuzzy set theory and the theory of fuzzy random variables is imparted. The body of the book comprises the appropriate quantification of uncertain structural parameters, the fuzzy and fuzzy probabilistic structural analysis, the fuzzy probabilistic safety assessment, and the fuzzy cluster structural design. The completely new algorithms are described in detail and illustrated by way of demonstrative examples.
Decision and game theory in management with intuitionistic fuzzy sets
Li, Deng-Feng
2014-01-01
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to us...
Human factors and fuzzy set theory for safety analysis
International Nuclear Information System (INIS)
Nishiwaki, Y.
1987-01-01
Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)
Application of Bipolar Fuzzy Sets in Graph Structures
Directory of Open Access Journals (Sweden)
Muhammad Akram
2016-01-01
Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.
A note on the L-fuzzy Banach's contraction principle
International Nuclear Information System (INIS)
Martinez-Moreno, J.; Roldan, A.; Roldan, C.
2009-01-01
Recently, Alaca et al. [Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;29:10738] proved fuzzy Banach fixed point theorem in intuitionistic fuzzy metric spaces and Saadati [Saadati R. Notes to the paper 'fixed points in intuitionistic fuzzy metric spaces' and its generalization to L-fuzzy metric spaces. Chaos, Solitions and Fractals 2008;35:80-176] extended it in generalized fuzzy metric spaces. The purpose of this paper is to give a correct proof of the main result in Saadati [Saadati R. Notes to the paper 'fixed points in intuitionistic fuzzy metric spaces' and its generalization to L-fuzzy metric spaces. Chaos, Solitions and Fractals 2008;35:80-176].
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Location Discovery Based on Fuzzy Geometry in Passive Sensor Networks
Directory of Open Access Journals (Sweden)
Rui Wang
2011-01-01
Full Text Available Location discovery with uncertainty using passive sensor networks in the nation's power grid is known to be challenging, due to the massive scale and inherent complexity. For bearings-only target localization in passive sensor networks, the approach of fuzzy geometry is introduced to investigate the fuzzy measurability for a moving target in R2 space. The fuzzy analytical bias expressions and the geometrical constraints are derived for bearings-only target localization. The interplay between fuzzy geometry of target localization and the fuzzy estimation bias for the case of fuzzy linear observer trajectory is analyzed in detail in sensor networks, which can realize the 3-dimensional localization including fuzzy estimate position and velocity of the target by measuring the fuzzy azimuth angles at intervals of fixed time. Simulation results show that the resulting estimate position outperforms the traditional least squares approach for localization with uncertainty.
Two New Measures of Fuzzy Divergence and Their Properties
Directory of Open Access Journals (Sweden)
Om Parkash
2006-06-01
Full Text Available Several measures of directed divergence and their corresponding measures of fuzzy divergence are available in the exiting literature. Two new measures of fuzzy divergence have been developed and their desirable properties have been discussed.
Solving Fully Fuzzy Linear System of Equations in General Form
Directory of Open Access Journals (Sweden)
A. Yousefzadeh
2012-06-01
Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
Bounded solutions for fuzzy differential and integral equations
Energy Technology Data Exchange (ETDEWEB)
Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es
2006-03-01
We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
New approach for solving intuitionistic fuzzy multi-objective ...
Indian Academy of Sciences (India)
SANKAR KUMAR ROY
2018-02-07
Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.
Research on Bounded Rationality of Fuzzy Choice Functions
Directory of Open Access Journals (Sweden)
Xinlin Wu
2014-01-01
Full Text Available The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
use of fuzzy logic to investigate weather parameter impact
African Journals Online (AJOL)
user
2016-07-03
Jul 3, 2016 ... developed in the Simulink environment of a MATLAB software. The model ... smoothing, stochastic process, ARMA (autoregressive integrated moving .... 2.3 Building of Fuzzy Logic Simulation Model. The fuzzy model is ...
A fuzzy MCDM framework based on fuzzy measure and fuzzy integral for agile supplier evaluation
Dursun, Mehtap
2017-06-01
Supply chains need to be agile in order to response quickly to the changes in today's competitive environment. The success of an agile supply chain depends on the firm's ability to select the most appropriate suppliers. This study proposes a multi-criteria decision making technique for conducting an analysis based on multi-level hierarchical structure and fuzzy logic for the evaluation of agile suppliers. The ideal and anti-ideal solutions are taken into consideration simultaneously in the developed approach. The proposed decision approach enables the decision-makers to use linguistic terms, and thus, reduce their cognitive burden in the evaluation process. Furthermore, a hierarchy of evaluation criteria and their related sub-criteria is employed in the presented approach in order to conduct a more effective analysis.
More on θ-compact fuzzy topological spaces
International Nuclear Information System (INIS)
Ekici, Erdal
2006-01-01
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε ∞ theory. In 2005, Caldas and Jafari have introduced θ-compact fuzzy topological spaces. The purpose of this paper is to investigate further properties of θ-compact fuzzy topological spaces. Moreover, the notion of θ-closed fuzzy topological spaces is introduced and properties of it are obtained
Fuzzy model-based control of a nuclear reactor
International Nuclear Information System (INIS)
Van Den Durpel, L.; Ruan, D.
1994-01-01
The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project
On the Difference between Traditional and Deductive Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor
2008-01-01
Roč. 159, č. 10 (2008), s. 1153-1164 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : deductive fuzzy logic * fuzzy elements * gradual sets * entropy of fuzzy sets * aggregation * membership degrees * methodology of fuzzy mathematics Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
Fuzzy One-Class Classification Model Using Contamination Neighborhoods
Directory of Open Access Journals (Sweden)
Lev V. Utkin
2012-01-01
Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.
Introduction to type-2 fuzzy logic control theory and applications
Mendel, Jerry M; Tan, Woei-Wan; Melek, William W; Ying, Hao
2014-01-01
Written by world-class leaders in type-2 fuzzy logic control, this book offers a self-contained reference for both researchers and students. The coverage provides both background and an extensive literature survey on fuzzy logic and related type-2 fuzzy control. It also includes research questions, experiment and simulation results, and downloadable computer programs on an associated website. This key resource will prove useful to students and engineers wanting to learn type-2 fuzzy control theory and its applications.
Efficient solution of a multi objective fuzzy transportation problem
Vidhya, V.; Ganesan, K.
2018-04-01
In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.
Make man-machine communication easier: fuzzy programming
Energy Technology Data Exchange (ETDEWEB)
Farreny, H; Prade, H
1982-06-01
Procedures and data used by the human brain are not always accurately specified; fuzzy programming may help in the realisation of languages for the manipulation of such fuzzy entities. After having considered fuzzy instruction and its requirements, arguments, functions, predicates and designations, the authors present the outlines of a fuzzy filtering system. Two applications are given as examples; these are the accessing of a database and an expert system which may be used to solve problems in robotics.
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....
Contributions to fuzzy polynomial techniques for stability analysis and control
Pitarch Pérez, José Luis
2014-01-01
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...
Optimization of Inventories for Multiple Companies by Fuzzy Control Method
Kawase, Koichi; Konishi, Masami; Imai, Jun
2008-01-01
In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...
Combined heuristic with fuzzy system to transmission system expansion planning
Energy Technology Data Exchange (ETDEWEB)
Silva Sousa, Aldir; Asada, Eduardo N. [University of Sao Paulo, Sao Carlos School of Engineering, Department of Electrical Engineering Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos, SP (Brazil)
2011-01-15
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (author)
Fuzzy Versions of Epistemic and Deontic Logic
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
A Brief History of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2012-04-01
Full Text Available
The problems of uncertainty, imprecision and vagueness have been discussed for many years. These problems have been major topics in philosophical circles with much debate, in particular, about the nature of vagueness and the ability of traditional Boolean logic to cope with concepts and perceptions that are imprecise or vague. The Fuzzy Logic (which is usually translated into Castilian by “Lógica Borrosa”, or “Lógica Difusa”, but also by “Lógica Heurística” can be considered a bypass-valued logics (Multi-valued Logic, MVL, its acronym in English. It is founded on, and is closely related to-Fuzzy Sets Theory, and successfully applied on Fuzzy Systems. You might think that fuzzy logic is quite recent and what has worked for a short time, but its origins date back at least to the Greek philosophers and especially Plato (428-347 B.C.. It even seems plausible
to trace their origins in China and India. Because it seems that they were the first to consider that all things need not be of a certain type or quit, but there are a stopover between. That is, be the pioneers in considering that there may be varying degrees of truth and falsehood. In case of colors, for example, between white and black there is a whole infinite scale: the shades of gray. Some recent theorems show that in principle fuzzy logic can be used to model any continuous system, be it based
in AI, or physics, or biology, or economics, etc. Investigators in many fields may find that fuzzy, commonsense models are more useful, and many more accurate than are standard mathematical ones. We analyze here the history and development of this problem: Fuzziness, or “Borrosidad” (in Castilian, essential to work with Uncertainty.
On Bipolar Valued Fuzzy k-Ideals in Hermirings
International Nuclear Information System (INIS)
Mahmood, T.; Ejaz, A.
2015-01-01
In this paper we discuss some results associated with bipolar valued fuzzy k -ideals of hermirings. We also define bipolar valued fuzzy k-intrinsic product and characterize k-hemiregular hermirings by using their bipolar valued fuzzy k -ideals. (author)
Intuitionistic fuzzy 2-metric space and its completion
International Nuclear Information System (INIS)
Mursaleen, M.; Lohani, Q.M. Danish; Mohiuddine, S.A.
2009-01-01
Recently, Mursaleen and Lohani [Mursaleen M, Lohani Danish. Intuitionistic fuzzy 2-normed space and some related concepts. Chaos, Solitons and Fractals (2008), doi:10.1016/j.chaos.2008.11.006] have introduced the concept of intuitionistic fuzzy 2-normed space. In this paper, we introduce the concept of intuitionistic fuzzy 2-metric space and study its completion.
Modified intuitionistic fuzzy metric spaces and some fixed point theorems
International Nuclear Information System (INIS)
Saadati, R.; Sedghi, S.; Shobe, N.
2008-01-01
Since the intuitionistic fuzzy metric space has extra conditions (see [Gregori V, Romaguera S, Veereamani P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;28:902-5]). In this paper, we consider modified intuitionistic fuzzy metric spaces and prove some fixed point theorems in these spaces. All the results presented in this paper are new
Fuzzy Reasoning Based on First-Order Modal Logic,
Zhang, Xiaoru; Zhang, Z.; Sui, Y.; Huang, Z.
2008-01-01
As an extension of traditional modal logics, this paper proposes a fuzzy first-order modal logic based on believable degree, and gives out a description of the fuzzy first-order modal logic based on constant domain semantics. In order to make the reasoning procedure between the fuzzy assertions
ST-intuitionistic fuzzy metric space with properties
Arora, Sahil; Kumar, Tanuj
2017-07-01
In this paper, we define ST-intuitionistic fuzzy metric space and the notion of convergence and completeness properties of cauchy sequences is studied. Further, we prove some properties of ST-intuitionistic fuzzy metric space. Finally, we introduce the concept of symmetric ST Intuitionistic Fuzzy metric space.
Operator’s Fuzzy Norm and Some Properties
Bag, T.; Samanta, S.K.
2015-01-01
In this paper, a concept of operator’s fuzzy norm is introduced for the first time in general t-norm setting. Ideas of fuzzy continuous operators, fuzzy bounded linear operators are given with some properties of such operators studied in this general setting.
Interpolation of fuzzy data | Khodaparast | Journal of Fundamental ...
African Journals Online (AJOL)
Considering the many applications of mathematical functions in different ways, it is essential to have a defining function. In this study, we used Fuzzy Lagrangian interpolation and natural fuzzy spline polynomials to interpolate the fuzzy data. In the current world and in the field of science and technology, interpolation issues ...
Fuzzy set theoretic approach to fault tree analysis | Tyagi ...
African Journals Online (AJOL)
This approach can be widely used to improve the reliability and to reduce the operating cost of a system. The proposed techniques are discussed and illustrated by taking an example of a nuclear power plant. Keywords: Fault tree, Triangular and Trapezoidal fuzzy number, Fuzzy importance, Ranking of fuzzy numbers ...
Minimal solution of linear formed fuzzy matrix equations
Directory of Open Access Journals (Sweden)
Maryam Mosleh
2012-10-01
Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.
Pragmatic functions of fuzzy language and translation in English advertisements
Institute of Scientific and Technical Information of China (English)
曾美林
2017-01-01
the application of fuzzy language in English advertisement is very broad, the application of fuzzy language can make advertising more attractive, so as to achieve the goal of advertising design companies.Paper discusses the application of fuzzy language and its translation, for the development of English advertising, creating a better path.
Efficient fuzzy logic controller for magnetic levitation systems | Shu ...
African Journals Online (AJOL)
In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...
Implementation of fuzzy logic control algorithm in embedded ...
African Journals Online (AJOL)
Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...
Soft ideal topological space and mixed fuzzy soft ideal topological space
Directory of Open Access Journals (Sweden)
Manash Borah
2019-01-01
Full Text Available In this paper we introduce fuzzy soft ideal and mixed fuzzy soft ideal topological spaces and some properties of this space. Also we introduce fuzzy soft $I$-open set, fuzzy soft $\\alpha$-$I$-open set, fuzzy soft pre-$I$-open set, fuzzy soft semi-$I$-open set and fuzzy soft $\\beta$-$I$-open set and discuss some of their properties.
Yashon O. Ouma; J. Opudo; S. Nyambenya
2015-01-01
For road pavement maintenance and repairs prioritization, a multiattribute approach that compares fuzzy Analytical Hierarchy Process (AHP) and fuzzy Technique for Order Preference by Ideal Situation (TOPSIS) is evaluated. The pavement distress data was collected through empirical condition surveys and rating by pavement experts. In comparison to the crisp AHP, the fuzzy AHP and fuzzy TOPSIS pairwise comparison techniques are considered to be more suitable for the subjective analysis of the pa...
Directory of Open Access Journals (Sweden)
Huu-Tho Nguyen
Full Text Available Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process and a fuzzy COmplex PRoportional ASsessment (COPRAS for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.
Multicriteria optimization in a fuzzy environment: The fuzzy analytic hierarchy process
Directory of Open Access Journals (Sweden)
Gardašević-Filipović Milanka
2010-01-01
Full Text Available In the paper the fuzzy extension of the Analytic Hierarchy Process (AHP based on fuzzy numbers, and its application in solving a practical problem, are considered. The paper advocates the use of contradictory test to check the fuzzy user preferences during fuzzy AHP decision-making process. We also propose consistency check and deriving priorities from inconsistent fuzzy judgment matrices to be included in the process, in order to check if the fuzzy approach can be applied in the AHP for the problem considered. An aggregation of local priorities obtained at different levels into composite global priorities for the alternatives based on weighted-sum method is also discussed. The contradictory fuzzy judgment matrix is analyzed. Our theoretical consideration has been verified by an application of commercially available Super Decisions program (developed for solving multi-criteria optimization problems using AHP approach on the problem previously treated in the literature. The obtained results are compared with those from the literature. The conclusions are given and the possibilities for further work in the field are pointed out.
Inference of RMR value using fuzzy set theory and neuro-fuzzy techniques
Energy Technology Data Exchange (ETDEWEB)
Bae, Gyu-Jin; Cho, Mahn-Sup [Korea Institute of Construction Technology, Koyang(Korea)
2001-12-31
In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR(Rock Mass Rating) value from the observation data. The correlation between original RMR value and inferred RMR{sub {sub F}U} and RMR{sub {sub N}F} values from fuzzy Set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and inferred RMR{sub {sub F}U} and RMR{sub {sub N}F} values is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. >From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mass classification is proved to be sufficiently high enough. (author). 17 refs., 5 tabs., 9 figs.
Fuzzy Uncertainty Evaluation for Fault Tree Analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki Beom; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of); Jae, Moo Sung [Hanyang University, Seoul (Korea, Republic of)
2015-05-15
This traditional probabilistic approach can calculate relatively accurate results. However it requires a long time because of repetitive computation due to the MC method. In addition, when informative data for statistical analysis are not sufficient or some events are mainly caused by human error, the probabilistic approach may not be possible because uncertainties of these events are difficult to be expressed by probabilistic distributions. In order to reduce the computation time and quantify uncertainties of top events when basic events whose uncertainties are difficult to be expressed by probabilistic distributions exist, the fuzzy uncertainty propagation based on fuzzy set theory can be applied. In this paper, we develop a fuzzy uncertainty propagation code and apply the fault tree of the core damage accident after the large loss of coolant accident (LLOCA). The fuzzy uncertainty propagation code is implemented and tested for the fault tree of the radiation release accident. We apply this code to the fault tree of the core damage accident after the LLOCA in three cases and compare the results with those computed by the probabilistic uncertainty propagation using the MC method. The results obtained by the fuzzy uncertainty propagation can be calculated in relatively short time, covering the results obtained by the probabilistic uncertainty propagation.
Decentralized fuzzy control of multiple nonholonomic vehicles
Energy Technology Data Exchange (ETDEWEB)
Driessen, B.J.; Feddema, J.T.; Kwok, K.S.
1997-09-01
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
Fuzzy Multi-objective Linear Programming Approach
Directory of Open Access Journals (Sweden)
Amna Rehmat
2007-07-01
Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.
Campos-Sánchez, Antonio; López-Núñez, Juan-Antonio; Scionti, Giuseppe; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Sola, Tomás
2014-01-01
Videos can be used as didactic tools for self-learning under several circumstances, including those cases in which students are responsible for the development of this resource as an audiovisual notebook. We compared students' and teachers' perceptions regarding the main features that an audiovisual notebook should include. Four questionnaires with items about information, images, text and music, and filmmaking were used to investigate students' (n = 115) and teachers' perceptions (n = 28) regarding the development of a video focused on a histological technique. The results show that both students and teachers significantly prioritize informative components, images and filmmaking more than text and music. The scores were significantly higher for teachers than for students for all four components analyzed. The highest scores were given to items related to practical and medically oriented elements, and the lowest values were given to theoretical and complementary elements. For most items, there were no differences between genders. A strong positive correlation was found between the scores given to each item by teachers and students. These results show that both students' and teachers' perceptions tend to coincide for most items, and suggest that audiovisual notebooks developed by students would emphasize the same items as those perceived by teachers to be the most relevant. Further, these findings suggest that the use of video as an audiovisual learning notebook would not only preserve the curricular objectives but would also offer the advantages of self-learning processes. © 2013 American Association of Anatomists.
A version of Stone-Weierstrass theorem in Fuzzy Analysis
Energy Technology Data Exchange (ETDEWEB)
Font, J.J.; Sanchis, D.; Sanchis, M.
2017-07-01
Fuzzy numbers provide formalized tools to deal with non-precise quantities. They are indeed fuzzy sets in the real line and were introduced in 1978 by Dubois and Prade , who also defined their basic operations. Since then, Fuzzy Analysis has developed based on the notion of fuzzy number just as much as classical Real Analysis did based on the concept of real number. Such development was eased by a characterization of fuzzy numbers provided in 1986 by Goetschel and Voxman leaning on their level sets. As in the classical setting, continuous fuzzy-valued functions (fuzzy functions) are the central core of the theory. The principal difference with regard to real-valued continuous functions is the fact that the fuzzy numbers do not form a vectorial space, which determines all the results, and, especially, the proofs. The study of fuzzy functions has developed, principally, about two lines of investigation: - Differential fuzzy equations, which have turned out to be the natural way of modelling physical and engineering problems in contexts where the parameters are vague or incomplete. - The problem of approximation of fuzzy functions, basically using the approximation capability of fuzzy neural networks. We will focus on this second line of investigation, though our approach will be more general and based on an adaptation of the famous Stone-Weierstrass Theorem to the fuzzy context. This way so, we introduce the concept of “multiplier” of a set of fuzzy functions and use it to give a constructive proof of a Stone-Weiestrass type theorem for fuzzy functions. (Author)
Directory of Open Access Journals (Sweden)
Sukhpreet Kaur Sidhu
2014-01-01
Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.
International Nuclear Information System (INIS)
Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng
2006-01-01
Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer
Influence of fuzzy norms and other heuristics on “Mixed fuzzy rule formation”
Gabriel, Thomas R.; Berthold, Michael R.
2004-01-01
In Mixed Fuzzy Rule Formation [Int. J. Approx. Reason. 32 (2003) 67] a method to extract mixed fuzzy rules from data was introduced. The underlying algorithm s performance is influenced by the choice of fuzzy t-norm and t-conorm, and a heuristic to avoid conflicts between patterns and rules of different classes throughout training. In the following addendum to [Int. J. Approx. Reason. 32 (2003) 67], we discuss in more depth how these parameters affect the generalization performance of the res...
Probabilistic Quadratic Programming Problems with Some Fuzzy Parameters
Directory of Open Access Journals (Sweden)
S. K. Barik
2012-01-01
making problem by using some specified random variables and fuzzy numbers. In the present paper, randomness is characterized by Weibull random variables and fuzziness is characterized by triangular and trapezoidal fuzzy number. A defuzzification method has been introduced for finding the crisp values of the fuzzy numbers using the proportional probability density function associated with the membership functions of these fuzzy numbers. An equivalent deterministic crisp model has been established in order to solve the proposed model. Finally, a numerical example is presented to illustrate the solution procedure.
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Application of ANNs approach for solving fully fuzzy polynomials system
Directory of Open Access Journals (Sweden)
R. Novin
2017-11-01
Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.
S-fuzzy Version of Stone's Theorem for Distributive Lattices
Institute of Scientific and Technical Information of China (English)
Y. S.Pawar; S. S.Khopade
2011-01-01
In this paper,we initiate a study of S-fuzzy ideal (filter) of a lattice where S stands for a meet semilattice.A S fuzzy prime ideal (filter) of a lattice is defined and it is proved that a S-fuzzy ideal (filter) of a lattice is S-fuzzy prime ideal (filter) if and only if any non-empty a-cut of it is a prime ideal (filter).Stone's theorem for a distributive lattice is extended by considering S-fuzzy ideals (filters).
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene......Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....
Fuzzy technology present applications and future challenges
Fedrizzi, Mario; Kacprzyk, Janusz
2016-01-01
This book provides readers with a timely and comprehensive yet concise view on the field of fuzzy logic and its real-world applications. The chapters, written by authoritative scholars in the field, report on promising new models for data analysis, decision making, and systems modeling, with a special emphasis on their applications in management science. The book is a token of appreciation from the fuzzy research community to Professor Christer Carlsson for his long time research and organizational commitment, which have among other things resulted in the foundation and success of the Institute for Advanced Management Systems Research (IAMSR) at Åbo Akademi University, in Åbo (Turku), Finland. The book serves as timely guide for the fuzzy logic and operations research communities alike. .
Intelligent control-III: fuzzy control system
International Nuclear Information System (INIS)
Nagrial, M.H.
2004-01-01
During the last decade or so, fuzzy logic control (FLC) has emerged as one of the most active and fruitful areas of research and development. The applications include industrial process control to medical diagnostic and financial markets. Many consumer products using this technology are available in the market place. FLC is best suited to complex ill-defined processes that can be controlled by a skilled human operator without much knowledge of their underlying dynamics. This lecture will cover the basic architecture and the design methodology of fuzzy logic controllers. FLC will be strongly based on the concepts of fuzzy set theory, introduced in first lecture. Some practical applications will also be discussed and presented. (author)
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)
1995-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
Fuzzy Logic Based Autonomous Traffic Control System
Directory of Open Access Journals (Sweden)
Muhammad ABBAS
2012-01-01
Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.
Genetic algorithms and fuzzy multiobjective optimization
Sakawa, Masatoshi
2002-01-01
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...
Analytical fuzzy approach to biological data analysis
Directory of Open Access Journals (Sweden)
Weiping Zhang
2017-03-01
Full Text Available The assessment of the physiological state of an individual requires an objective evaluation of biological data while taking into account both measurement noise and uncertainties arising from individual factors. We suggest to represent multi-dimensional medical data by means of an optimal fuzzy membership function. A carefully designed data model is introduced in a completely deterministic framework where uncertain variables are characterized by fuzzy membership functions. The study derives the analytical expressions of fuzzy membership functions on variables of the multivariate data model by maximizing the over-uncertainties-averaged-log-membership values of data samples around an initial guess. The analytical solution lends itself to a practical modeling algorithm facilitating the data classification. The experiments performed on the heartbeat interval data of 20 subjects verified that the proposed method is competing alternative to typically used pattern recognition and machine learning algorithms.
Fuzzy Logic Controller Design for Intelligent Robots
Directory of Open Access Journals (Sweden)
Ching-Han Chen
2017-01-01
Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.
FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES
Directory of Open Access Journals (Sweden)
Ebru Turano?lu
2012-02-01
Full Text Available Acceptance sampling is primarily used for the inspection of incoming or outgoing lots. Acceptance sampling refers to the application of specific sampling plans to a designated lot or sequence of lots. The parameters of acceptance sampling plans are sample sizes and acceptance numbers. In some cases, it may not be possible to define acceptance sampling parameters as crisp values. These parameters can be expressed by linguistic variables. The fuzzy set theory can be successfully used to cope with the vagueness in these linguistic expressions for acceptance sampling. In this paper, the main distributions of acceptance sampling plans are handled with fuzzy parameters and their acceptance probability functions are derived. Then the characteristic curves of acceptance sampling are examined under fuzziness. Illustrative examples are given.
Fuzzy Logic vs. Neutrosophic Logic: Operations Logic
Directory of Open Access Journals (Sweden)
Salah Bouzina
2016-12-01
Full Text Available The goal of this research is first to show how different, thorough, widespread and effective are the operations logic of the neutrosophic logic compared to the fuzzy logic’s operations logical. The second aim is to observe how a fully new logic, the neutrosophic logic, is established starting by changing the previous logical perspective fuzzy logic, and by changing that, we mean changing changing the truth values from the truth and falsity degrees membership in fuzzy logic, to the truth, falsity and indeterminacy degrees membership in neutrosophic logic; and thirdly, to observe that there is no limit to the logical discoveries - we only change the principle, then the system changes completely.
Fuzzy spheres from inequivalent coherent states quantizations
International Nuclear Information System (INIS)
Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques
2007-01-01
The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets
A fuzzy expert system based on relations
International Nuclear Information System (INIS)
Hall, L.O.; Kandel, A.
1986-01-01
The Fuzzy Expert System (FESS) is an expert system which makes use of the theory of fuzzy relations to perform inference. Relations are very general and can be used for any application, which only requires different types of relations be implemented and used. The incorporation of fuzzy reasoning techniques enables the expert system to deal with imprecision in a well-founded manner. The knowledge is represented in relational frames. FESS may operate in either a forward chaining or backward chaining manner. It uses primarily implication and factual relations. A unique methodology for combination of evidence has been developed. It makes uses of a blackboard for communication between the various knowledge sources which may operate in parallel. The expert system has been designed in such a manner that it may be used for diverse applications
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)
1996-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
IMPLEMENTING FUZZY LOGIC IN DETERMINING SELLING PRICE
Directory of Open Access Journals (Sweden)
Danny Prabowo Soetanto
2000-01-01
Full Text Available The determination of the price should meet certain criteria, both from the society and the company itself. The combination of various criteria will result in another problem. Fuzzy Logic covers all influencing factors and displays the membership function graphic. Furthermore, by implementing fuzzy rules and fuzzy operator, the right price can be determined which covers all the factors above. The determination of the rules is based on the raw material cost, direct labor cost, distribution cost and the customers' opinion regarding the appropriate price. Then, the model is designed with the help of Matlab software. The result is finally obtained in the form of a model performed by Matlab software. The model displays the output concerning the selling price of the product for each change in the dominant factors.
Answer Sets in a Fuzzy Equilibrium Logic
Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine
Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.
Resource integrated planning through fuzzy techniques
Energy Technology Data Exchange (ETDEWEB)
Haddad, J; Torres, G Lambert [Escola Federal de Engenharia de Itajuba, MG (Brazil); Jannuzzi, G de M. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica
1994-12-31
A methodology for decision-making in studies involving energy saving by using the Fuzzy Sets Theory is presented. The Fuzzy Sets Theory permits to handle and to operate exact and non-exact propositions, that is, to incorporate both numerical data (exact) and the knowledge of either the expert or the analyst (inexact). The basic concepts of this theory are presented with its main operations and properties. Following, some criteria and technical-economical parameters used in the planning of the generation expansion are shown and, finally, the Theory of the Fuzzy Sets is applied aiming to establish electrical power generation and conservation strategies considering the power demand. (author) 6 refs., 8 tabs.
Fuzzy Rule Suram for Wood Drying
Situmorang, Zakarias
2017-12-01
Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.
Optimal solution of full fuzzy transportation problems using total integral ranking
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data
Directory of Open Access Journals (Sweden)
Peter Hofmann
2016-06-01
Full Text Available The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification schemes in remote sensing allows each pixel or segment to be an incomplete member of more than one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any one of the classes and is member of more than one class simultaneously. This can lead to fuzzy, ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity (maximum method. The defuzzification of an uncertain or ambiguous fuzzy classification leads to a more or less reliable crisp classification. In this paper the most common parameters for expressing classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability to express the reliability of a crisp classification. This is done by means of a typical practical example from Object Based Image Analysis (OBIA.
Hesitant fuzzy methods for multiple criteria decision analysis
Zhang, Xiaolu
2017-01-01
The book offers a comprehensive introduction to methods for solving multiple criteria decision making and group decision making problems with hesitant fuzzy information. It reports on the authors’ latest research, as well as on others’ research, providing readers with a complete set of decision making tools, such as hesitant fuzzy TOPSIS, hesitant fuzzy TODIM, hesitant fuzzy LINMAP, hesitant fuzzy QUALIFEX, and the deviation modeling approach with heterogeneous fuzzy information. The main focus is on decision making problems in which the criteria values and/or the weights of criteria are not expressed in crisp numbers but are more suitable to be denoted as hesitant fuzzy elements. The largest part of the book is devoted to new methods recently developed by the authors to solve decision making problems in situations where the available information is vague or hesitant. These methods are presented in detail, together with their application to different type of decision-making problems. All in all, the book ...
Abrasive slurry jet cutting model based on fuzzy relations
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Qualitative assessment of environmental impacts through fuzzy logic
International Nuclear Information System (INIS)
Peche G, Roberto
2008-01-01
The vagueness of many concepts usually utilized in environmental impact studies, along with frequent lack of quantitative information, suggests that fuzzy logic can be applied to carry out qualitative assessment of such impacts. This paper proposes a method for valuing environmental impacts caused by projects, based on fuzzy sets theory and methods of approximate reasoning. First, impacts must be described by a set of features. A linguistic variable is assigned to each feature, whose values are fuzzy sets. A fuzzy evaluation of environmental impacts is achieved using rule based fuzzy inference and the estimated fuzzy value of each feature. Generalized modus ponens has been the inference method. Finally, a crisp value of impact is attained by aggregation and defuzzification of all fuzzy results
A new method for ordering triangular fuzzy numbers
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2010-09-01
Full Text Available Ranking fuzzy numbers plays a very important role in linguistic decision making and other fuzzy application systems. In spite of many ranking methods, no one can rank fuzzy numbers with human intuition consistently in all cases. Shortcoming are found in some of the convenient methods for ranking triangular fuzzy numbers such as the coefficient of variation (CV index, distance between fuzzy sets, centroid point and original point, and also weighted mean value. In this paper, we introduce a new method for ranking triangular fuzzy number to overcome the shortcomings of the previous techniques. Finally, we compare our method with some convenient methods for ranking fuzzy numbers to illustrate the advantage our method.
Operational budgeting using fuzzy goal programming
Directory of Open Access Journals (Sweden)
Saeed Mohammadi
2013-10-01
Full Text Available Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate operational budget. The proposed model uses fuzzy triangular as well as interval number to estimate budgeting expenses. The proposed study of this paper is implemented for a real-world case study in province of Qom, Iran and the results are analyzed.
Fuzzy logic application for extruders replacement problem
Directory of Open Access Journals (Sweden)
Edison Conde Perez dos Santos
2017-03-01
Full Text Available In a scenario of uncertainty and imprecision, before taking the replacement analysis, a manager needs to consider the uncertain reality of a problem. In this scenario, the fuzzy logic makes an excellent option. Therefore, it is necessary to make a decision based on the fuzzy model. This study is based on the comparison of two methodologies used in the problem of asset replacement. The study, thus, was based on a comparison between two extruders for polypropylene yarn bibliopegy, comparing mainly the costs involved in maintaining the equipment.
Human Error Analysis by Fuzzy-Set
International Nuclear Information System (INIS)
Situmorang, Johnny
1996-01-01
In conventional HRA the probability of Error is treated as a single and exact value through constructing even tree, but in this moment the Fuzzy-Set Theory is used. Fuzzy set theory treat the probability of error as a plausibility which illustrate a linguistic variable. Most parameter or variable in human engineering been defined verbal good, fairly good, worst etc. Which describe a range of any value of probability. For example this analysis is quantified the human error in calibration task, and the probability of miscalibration is very low
Signal trend identification with fuzzy methods
International Nuclear Information System (INIS)
Reifman, J.; Tsoukalas, L. H.; Wang, X.; Wei, T. Y. C.
1999-01-01
A fuzzy-logic-based methodology for on-line signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of on-line signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one
Portfolio optimization using fuzzy linear programming
Pandit, Purnima K.
2013-09-01
Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.
Application of fuzzy methods in tunnelling
Directory of Open Access Journals (Sweden)
Ľudmila Tréfová
2011-12-01
Full Text Available Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highwaytunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machinesand the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the determination ofchanges in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated bythe descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the designof fuzzy models and their verification.
Fuzzy Control in the Process Industry
DEFF Research Database (Denmark)
Jantzen, Jan; Verbruggen, Henk; Østergaard, Jens-Jørgen
1999-01-01
Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. Simple fuzzy controllers can...... be designed starting from PID controllers, and in more complex cases these can be used in connection with model-based predictive control. For high level control and supervisory control several simple controllers can be combined in a priority hierarchy such as the one developed in the cement industry...
Radiotherapy problem under fuzzy theoretic approach
International Nuclear Information System (INIS)
Ammar, E.E.; Hussein, M.L.
2003-01-01
A fuzzy set theoretic approach is used for radiotherapy problem. The problem is faced with two goals: the first is to maximize the fraction of surviving normal cells and the second is to minimize the fraction of surviving tumor cells. The theory of fuzzy sets has been employed to formulate and solve the problem. A linguistic variable approach is used for treating the first goal. The solutions obtained by the modified approach are always efficient and best compromise. A sensitivity analysis of the solutions to the differential weights is given
Using Fuzzy Lists for Playlist Management
DEFF Research Database (Denmark)
Deliege, Francois; Pedersen, Torben Bach
2008-01-01
The increasing popularity of music recommendation systems and the recent growth of online music communities further emphasizes the need for effective playlist management tools able to create, share, and personalize playlists. This paper proposes the development of generic playlists and presents...... a concrete scenario to illustrate their possibilities. Additionally, to enable the development of playlist management tools, a formal foundation is provided. Therefore, the concept of fuzzy lists is defined and a corresponding algebra is developed. Fuzzy lists offer a solution perfectly suited to meet...... the demands of playlist management....
a novel two – factor high order fuzzy time series with applications to ...
African Journals Online (AJOL)
HOD
objectively with multiple – factor fuzzy time series, recurrent number of fuzzy relationships, and assigning weights to elements of fuzzy forecasting rules. In this paper, a novel two – factor high – order fuzzy time series forecasting method based on fuzzy C-means clustering and particle swarm optimization is proposed to ...
a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation
Nadi, S.; Houshyaripour, A. H.
2017-09-01
This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.
A first course in fuzzy logic, fuzzy dynamical systems, and biomathematics theory and applications
de Barros, Laécio Carvalho; Lodwick, Weldon Alexander
2017-01-01
This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical...
An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques
Directory of Open Access Journals (Sweden)
Elid Rubio
2017-01-01
Full Text Available In this work an extension of the Fuzzy Possibilistic C-Means (FPCM algorithm using Type-2 Fuzzy Logic Techniques is presented, and this is done in order to improve the efficiency of FPCM algorithm. With the purpose of observing the performance of the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means (IT2FCM algorithm to observe if the proposed approach has better performance than this algorithm.
Deliktaş, Derya; ÜSTÜN, Özden
2018-01-01
In this study, a fuzzy multiple criteria decision-making approach is proposed to select an industrial engineer among ten candidates in a manufacturing environment. The industrial engineer selection problem is a special case of the personal selection problem. This problem, which has hierarchical structure of criteria and many decision makers, contains many criteria. The evaluation process of decision makers also includes ambiguous parameters. The fuzzy AHP is used to determin...
Solving fuzzy two-point boundary value problem using fuzzy Laplace transform
Ahmad, Latif; Farooq, Muhammad; Ullah, Saif; Abdullah, Saleem
2014-01-01
A natural way to model dynamic systems under uncertainty is to use fuzzy boundary value problems (FBVPs) and related uncertain systems. In this paper we use fuzzy Laplace transform to find the solution of two-point boundary value under generalized Hukuhara differentiability. We illustrate the method for the solution of the well known two-point boundary value problem Schrodinger equation, and homogeneous boundary value problem. Consequently, we investigate the solutions of FBVPs under as a ne...
Fuzzy species among recombinogenic bacteria
Directory of Open Access Journals (Sweden)
Fraser Christophe
2005-03-01
Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.
International Nuclear Information System (INIS)
Shah, Syed Islamuddin; Nandipati, Giridhar; Rahman, Talat S; Karim, Altaf
2016-01-01
We studied self-diffusion of small two-dimensional Ag islands, containing up to ten atoms, on the Ag(111) surface using self-learning kinetic Monte Carlo (SLKMC) simulations. Activation barriers are calculated using the semi-empirical embedded atom method (EAM) potential. We find that two- to seven-atom islands primarily diffuse via concerted translation processes with small contributions from multi-atom and single-atom processes, while eight- to ten-atom islands diffuse via single-atom processes, especially edge diffusion, corner rounding and kink detachment, along with a minimal contribution from concerted processes. For each island size, we give a detailed description of the important processes, and their activation barriers, responsible for its diffusion. (paper)
Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro
1995-02-01
We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
A logical approach to fuzzy truth hedges
Czech Academy of Sciences Publication Activity Database
Esteva, F.; Godo, L.; Noguera, Carles
2013-01-01
Roč. 232, č. 1 (2013), s. 366-385 ISSN 0020-0255 Institutional support: RVO:67985556 Keywords : Mathematical fuzzy logic * Standard completeness * Truth hedges Subject RIV: BA - General Mathematics Impact factor: 3.893, year: 2013 http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469148.pdf
Fuzzy TU games and their classes
Czech Academy of Sciences Publication Activity Database
Mareš, Milan
2001-01-01
Roč. 7, č. 13 (2001), s. 83-88 ISSN 1212-074X R&D Projects: GA ČR GA402/99/0032 Institutional research plan: AV0Z1075907 Keywords : fuzzy set * coalitional gam * fuzzification of game Subject RIV: BB - Applied Statistics, Operational Research
Indeterminacy, linguistic semantics and fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Novak, V. [Univ. of Ostrava (Czech Republic)
1996-12-31
In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.
Functional Equations in Fuzzy Banach Spaces
Directory of Open Access Journals (Sweden)
M. Eshaghi Gordji
2012-01-01
generalized Hyers-Ulam stability of the following additive-quadratic functional equation f(x+ky+f(x−ky=f(x+y+f(x−y+(2(k+1/kf(ky−2(k+1f(y for fixed integers k with k≠0,±1 in fuzzy Banach spaces.
Fuzzy knowledge bases integration based on ontology
Ternovoy, Maksym; Shtogrina, Olena
2012-01-01
the paper describes the approach for fuzzy knowledge bases integration with the usage of ontology. This approach is based on metadata-base usage for integration of different knowledge bases with common ontology. The design process of metadata-base is described.
Fuzzy Expert System to Characterize Students
Van Hecke, T.
2011-01-01
Students wanting to succeed in higher education are required to adopt an adequate learning approach. By analyzing individual learning characteristics, teachers can give personal advice to help students identify their learning success factors. An expert system based on fuzzy logic can provide economically viable solutions to help students identify…
Fuzzy modelling of Atlantic salmon physical habitat
St-Hilaire, André; Mocq, Julien; Cunjak, Richard
2015-04-01
Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.
Empirical Bayes Approaches to Multivariate Fuzzy Partitions.
Woodbury, Max A.; Manton, Kenneth G.
1991-01-01
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...
African Journals Online (AJOL)
This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...
FUZZY SLIDING MODE CONTROLLER FOR DOUBLY FED ...
African Journals Online (AJOL)
2010-12-31
Dec 31, 2010 ... against internal and external perturbations, but the FSMC is superior to ... controller, doubly fed induction motor, fuzzy logic control. 1. ... capabilities in accounting for modeling imprecision and bounded disturbances. It ..... To show the effect of the parameters uncertainties, we have simulated the system with.
Fuzzy cellular automata models in immunology
International Nuclear Information System (INIS)
Ahmed, E.
1996-01-01
The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level
Random Fuzzy Differential Equations with Impulses
Directory of Open Access Journals (Sweden)
Ho Vu
2017-01-01
Full Text Available We consider the random fuzzy differential equations (RFDEs with impulses. Using Picard method of successive approximations, we shall prove the existence and uniqueness of solutions to RFDEs with impulses under suitable conditions. Some of the properties of solution of RFDEs with impulses are studied. Finally, an example is presented to illustrate the results.
Financial Markets Analysis by Probabilistic Fuzzy Modelling
J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)
2003-01-01
textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno
The Dirac operator on the Fuzzy sphere
International Nuclear Information System (INIS)
Grosse, H.
1994-01-01
We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)
Automating Software Development Process using Fuzzy Logic
Marcelloni, Francesco; Aksit, Mehmet; Damiani, Ernesto; Jain, Lakhmi C.; Madravio, Mauro
2004-01-01
In this chapter, we aim to highlight how fuzzy logic can be a valid expressive tool to manage the software development process. We characterize a software development method in terms of two major components: artifact types and methodological rules. Classes, attributes, operations, and inheritance
Conditional density estimation using fuzzy GARCH models
Almeida, R.J.; Bastürk, N.; Kaymak, U.; Costa Sousa, da J.M.; Kruse, R.; Berthold, M.R.; Moewes, C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.
2013-01-01
Abstract. Time series data exhibits complex behavior including non-linearity and path-dependency. This paper proposes a flexible fuzzy GARCH model that can capture different properties of data, such as skewness, fat tails and multimodality in one single model. Furthermore, additional information and
Modeling investor optimism with fuzzy connectives
Lovric, M.; Almeida, R.J.; Kaymak, U.; Spronk, J.; Carvalho, J.P.; Dubois, D.; Kaymak, U.; Sousa, J.M.C.
2009-01-01
Optimism or pessimism of investors is one of the important characteristics that determine the investment behavior in financial markets. In this paper, we propose a model of investor optimism based on a fuzzy connective. The advantage of the proposed approach is that the influence of different levels
Information Clustering Based on Fuzzy Multisets.
Miyamoto, Sadaaki
2003-01-01
Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…
Financial markets analysis by probabilistic fuzzy modelling
Berg, van den J.; Kaymak, U.; Bergh, van den W.M.
2003-01-01
For successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (TS)
Spatial classification with fuzzy lattice reasoning
Mavridis, Constantinos; Athanasiadis, I.N.
2017-01-01
This work extends the Fuzzy Lattice Reasoning (FLR) Classifier to manage spatial attributes, and spatial relationships. Specifically, we concentrate on spatial entities, as countries, cities, or states. Lattice Theory requires the elements of a Lattice to be partially ordered. To match such
On the Expected Value of Fuzzy Events
Czech Academy of Sciences Publication Activity Database
Klement, E.P.; Mesiar, Radko
2015-01-01
Roč. 23, Supplement 1 (2015), s. 57-74 ISSN 0218-4885 Institutional support: RVO:67985556 Keywords : expected value * fuzzy event * Choquet integral Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2015 http://library.utia.cas.cz/separaty/2015/E/mesiar-0452568.pdf
Construction of fuzzy spaces and their applications to matrix models
Abe, Yasuhiro
Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.
Determination of interrill soil erodibility coefficient based on Fuzzy and Fuzzy-Genetic Systems
Directory of Open Access Journals (Sweden)
Habib Palizvan Zand
2017-02-01
Full Text Available Introduction: Although the fuzzy logic science has been used successfully in various sudies of hydrology and soil erosion, but in literature review no article was found about its performance for estimating of interrill erodibility. On the other hand, studies indicate that genetic algorithm techniques can be used in fuzzy models and finding the appropriate membership functions for linguistic variables and fuzzy rules. So this study was conducted to develop the fuzzy and fuzzy–genetics models and investigation of their performance in the estimation of soil interrill erodibility factor (Ki. Materials and Methods: For this reason 36 soil samples with different physical and chemical properties were collected from west of Azerbaijan province . soilsamples were also taken from the Ap or A horizon of each soil profile. The samples were air-dried , sieved and Some soil characteristics such as soil texture, organic matter (OM, cation exchange capacity (CEC, sodium adsorption ratio (SAR, EC and pH were determined by the standard laboratory methods. Aggregates size distributions (ASD were determined by the wet-sieving method and fractal dimension of soil aggregates (Dn was also calculated. In order to determination of soil interrill erodibility, the flume experiment performed by packing soil a depth of 0.09-m in 0.5 × 1.0 m. soil was saturated from the base and adjusted to 9% slope and was subjected to at least 90 min rainfall . Rainfall intensity treatments were 20, 37 and 47 mm h-1. During each rainfall event, runoff was collected manually in different time intervals, being less than 60 s at the beginning, up to 15 min near the end of the test. At the end of the experiment, the volumes of runoff samples and the mass of sediment load at each time interval were measured. Finally interrill erodibility values were calculated using Kinnell (11 Equation. Then by statistical analyses Dn and sand percent of the soils were selected as input variables and Ki as
A fuzzy logic based PROMETHEE method for material selection problems
Directory of Open Access Journals (Sweden)
Muhammet Gul
2018-03-01
Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.
New types of bipolar fuzzy sets in -semihypergroups
Directory of Open Access Journals (Sweden)
Naveed Yaqoob
2016-04-01
Full Text Available The notion of bipolar fuzzy set was initiated by Lee (2000 as a generalization of the notion fuzzy sets and intuitionistic fuzzy sets, which have drawn attention of many mathematicians and computer scientists. In this paper, we initiate a study on bipolar ( , -fuzzy sets in -semihypergroups. By using the concept of bipolar ( , -fuzzy sets (Yaqoob and Ansari, 2013, we introduce the notion of bipolar ( , -fuzzy sub -semihypergroups (-hyperideals and bi--hyperideals and discuss some basic results on bipolar ( , -fuzzy sets in -semihypergroups. Furthermore, we define the bipolar fuzzy subset , and prove that if , is a bipolar ( , -fuzzy sub -semihypergroup (resp., -hyperideal and bi--hyperideal of H; then , is also a bipolar ( , -fuzzy sub -semihypergroup (resp., -hyperideal and bi--hyperideal of H.
Fuzzy-based HAZOP study for process industry
Energy Technology Data Exchange (ETDEWEB)
Ahn, Junkeon; Chang, Daejun, E-mail: djchang@kaist.edu
2016-11-05
Highlights: • HAZOP is the important technique to evaluate system safety and its risks while process operations. • Fuzzy theory can handle the inherent uncertainties of process systems for the HAZOP. • Fuzzy-based HAZOP considers the aleatory and epistemic uncertainties and provides the risk level with less uncertainty. • Risk acceptance criteria should be considered regarding the transition region for each risk. - Abstract: This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.
Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems
Directory of Open Access Journals (Sweden)
Vasile MAZILESCU
2010-12-01
Full Text Available A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model when it is compared to the second part (the fuzzy facts for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs. The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler.
COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING
Directory of Open Access Journals (Sweden)
N. Mijani
2017-09-01
Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.
A new method for solving single and multi-objective fuzzy minimum ...
Indian Academy of Sciences (India)
in internet transmission (Liu & Kao 2004) petroleum industry (Ghatee ... A number has been proposed for the ranking of fuzzy numbers. ...... Chanas S and Kuchta D 1998 Fuzzy integer transportation problem. Fuzzy ... Model 32: 1289–1297.
New approach to solve fully fuzzy system of linear equations using ...
Indian Academy of Sciences (India)
Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.
Parallel fuzzy connected image segmentation on GPU.
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W
2011-07-01
Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.
Khan, Taimur; Cinnor, Birtukan; Gupta, Neil; Hosford, Lindsay; Bansal, Ajay; Olyaee, Mojtaba S; Wani, Sachin; Rastogi, Amit
2017-12-01
Background and study aim Experts can accurately predict diminutive polyp histology, but the ideal method to train nonexperts is not known. The aim of the study was to compare accuracy in diminutive polyp histology characterization using narrow-band imaging (NBI) between participants undergoing classroom didactic training vs. computer-based self-learning. Participants and methods Trainees at two institutions were randomized to classroom didactic training or computer-based self-learning. In didactic training, experienced endoscopists reviewed a presentation on NBI patterns for adenomatous and hyperplastic polyps and 40 NBI videos, along with interactive discussion. The self-learning group reviewed the same presentation of 40 teaching videos independently, without interactive discussion. A total of 40 testing videos of diminutive polyps under NBI were then evaluated by both groups. Performance characteristics were calculated by comparing predicted and actual histology. Fisher's exact test was used and P didactic training and 9 self-learning). A larger proportion of polyps were diagnosed with high confidence in the classroom group (66.5 % vs. 50.8 %; P didactic training for predicting diminutive polyp histology. This approach can help in widespread training and clinical implementation of real-time polyp histology characterization. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Laleh Hooshangian
2014-07-01
Full Text Available In this paper, fuzzy nth-order derivative for n in N is introduced. To do this, nth-order derivation under generalized Hukuhara derivative here in discussed. Calculations on the fuzzy nth-order derivative on fuzzy functions and their relationships, in general, are introduced. Then, the fuzzy nth-order differential equations is solved, for n in N.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree
Li, Fachao; Jin, Chenxia
In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.
FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES
Directory of Open Access Journals (Sweden)
Attila Nemes
2016-03-01
Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.
Solution of the fully fuzzy linear systems using iterative techniques
International Nuclear Information System (INIS)
Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi
2007-01-01
This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes
Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty
Starczewski, Janusz T
2013-01-01
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...
Self tuning fuzzy PID type load and frequency controller
International Nuclear Information System (INIS)
Yesil, E.; Guezelkaya, M.; Eksin, I.
2004-01-01
In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices
Design of a stable fuzzy controller for an articulated vehicle.
Tanaka, K; Kosaki, T
1997-01-01
This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle.
A fuzzy neural network for sensor signal estimation
International Nuclear Information System (INIS)
Na, Man Gyun
2000-01-01
In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique. Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors
Energy Technology Data Exchange (ETDEWEB)
Castro, Antonio Orestes de Salvo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2004-07-01
The hydraulic fracture operation is wide used to increase the oil wells production and to reduce formation damage. Reservoir studies and engineer analysis are made to select the wells for this kind of operation. As the reservoir parameters have some diffuses characteristics, Fuzzy Inference Systems (SIF) have been tested for this selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for hydraulic Fracture well selection, with knowledge acquisition from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, in despite of the genetic fuzzy system would be a younger process, it got better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variables linguistic values. (author)
5th International Conference on Fuzzy and Neuro Computing
Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai
2015-01-01
This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...
On logical, algebraic, and probabilistic aspects of fuzzy set theory
Mesiar, Radko
2016-01-01
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...
Sanitizing sensitive association rules using fuzzy correlation scheme
International Nuclear Information System (INIS)
Hameed, S.; Shahzad, F.; Asghar, S.
2013-01-01
Data mining is used to extract useful information hidden in the data. Sometimes this extraction of information leads to revealing sensitive information. Privacy preservation in Data Mining is a process of sanitizing sensitive information. This research focuses on sanitizing sensitive rules discovered in quantitative data. The proposed scheme, Privacy Preserving in Fuzzy Association Rules (PPFAR) is based on fuzzy correlation analysis. In this work, fuzzy set concept is integrated with fuzzy correlation analysis and Apriori algorithm to mark interesting fuzzy association rules. The identified rules are called sensitive. For sanitization, we use modification technique where we substitute maximum value of fuzzy items with zero, which occurs most frequently. Experiments demonstrate that PPFAR method hides sensitive rules with minimum modifications. The technique also maintains the modified data's quality. The PPFAR scheme has applications in various domains e.g. temperature control, medical analysis, travel time prediction, genetic behavior prediction etc. We have validated the results on medical dataset. (author)
Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Seyed Habib A. Rahmati; Mohsen Sadegh Amalnick
2015-01-01
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works b...
Success Factors of Biotechnology Industry Based on Triangular Fuzzy Number
Lei, Lei
2013-01-01
Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: â€œopen innovation capaci...
Point-like Particles in Fuzzy Space-time
Francis, Charles
1999-01-01
This paper is withdrawn as I am no longer using the term "fuzzy space- time" to describe the uncertainty in co-ordinate systems implicit in quantum logic. Nor am I using the interpretation that quantum logic can be regarded as a special case of fuzzy logic. This is because there are sufficient differences between quantum logic and fuzzy logic that the explanation is confusing. I give an interpretation of quantum logic in "A Theory of Quantum Space-time"
Intuitionistic fuzzy 2-normed space and some related concepts
International Nuclear Information System (INIS)
Mursaleen, M.; Danish Lohani, Q.M.
2009-01-01
Motivated by the notion of 2-norm due to Gaehler [Gaehler S. Lineare 2-normietre Raeume. Math Nachr 28;1965:1-43], in this paper we define the concept of intuitionistic fuzzy 2-normed space which is a generalization of the notion of intuitionistic fuzzy normed space due to Saadati and Park [Saadati R, Park JH, On the intuitionistic fuzzy topological spaces. Chaos Solitons and Fractals 2006;27:331-44]. Further we establish some topological results in this new set up.
Using fuzzy mathematics for decision making in economics
Directory of Open Access Journals (Sweden)
Pavkov Ivan
2012-01-01
Full Text Available Traditionally, economic models are based on classical mathematics and Aristotelian two-valued logic. Nevertheless, fuzzy mathematics, as a tool for modeling some types of uncertainties and incomplete phenomena, is a more appropriate framework for modeling in economics. New approach has resulted in approximate reasoning and fuzzy control systems, which proved to be an efficient tool for decision making in fuzzy environment.
Fuzzy logic and intelligent technologies in nuclear science
International Nuclear Information System (INIS)
Ruan, D.
1998-01-01
The research project on Fuzzy Logic and Intelligent technologies (FLINS) aims to bridge the gap between novel technologies and the nuclear industry. It aims to initiate research and development programs for solving intricate problems pertaining to the nuclear environment by using modern technologies as additional tool. The major achievements for 1997 include the application of the fuzzy-logic to the BR-1 reactor, the elaboration of a Fuzzy-control model as well as contributions to several workshops and publications
Application of the fuzzy theory to simulation of batch fermentation
Energy Technology Data Exchange (ETDEWEB)
Filev, D P; Kishimoto, M; Sengupta, S; Yoshida, T; Taguchi, H
1985-12-01
A new approach for system identification with a linguistic model of batch fermentation processes is proposed. The fuzzy theory was applied in order to reduce the uncertainty of quantitative description of the processes by use of qualitative characteristics. An example of fuzzy modeling was illustrated in the simulation of batch ethanol production from molasses after interpretation of the new method, and extension of the fuzzy model was also discussed for several cases of different measurable variables.
Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming
S. Fanati Rashidi; A. A. Noora
2010-01-01
Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...
An approach to solve replacement problems under intuitionistic fuzzy nature
Balaganesan, M.; Ganesan, K.
2018-04-01
Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.
Fuzzy Logic and Its Application in Football Team Ranking
Directory of Open Access Journals (Sweden)
Wenyi Zeng
2014-01-01
some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.
A Proposed Method for Solving Fuzzy System of Linear Equations
Directory of Open Access Journals (Sweden)
Reza Kargar
2014-01-01
Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.