WorldWideScience

Sample records for reinforcement prestressing rod

  1. Constructive solutions for beamless capitalless floors with prestressed reinforcement

    Directory of Open Access Journals (Sweden)

    Bardysheva Yuliya Anatol'evna

    2014-07-01

    Full Text Available In the article the authors present advanced constructions of prestressed reinforced concrete flat ceiling, where high-strength ropes in elastic shell are used as stressed reinforcement. The novelty of the solution lays in diagonal arrangement of hard valves and use of high-strength ropes in a flexible shell of "Monostrand" type. This type of prestress, in our opinion, is the most acceptable from technical point of view for selective reinforcement of separate tense rods or cables. The use of pre-stressed reinforcement in the form of individual rods or cables increases the rigidity and crack resistance of concrete beamless slabs. The use of high-strength ropes in the monostrand-type shell makes it possible to prestress in frames of single cell plate or floor in general and to reduce labour input for stressing armature. The paper presents original solution with diagonal position of the valve. The authors suggest the use of prestressed diagonal valves as in all cells of the floor with the cells of the same or only slightly different size and in separate cells of the floor (for roofs with different cells. The diagonal location of stressed reinforcement proposed in the work is an efficient solution for extending the range of dimensions and loads size.

  2. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  3. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    Science.gov (United States)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  4. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rieve, J J [Beton- und Monierbau A.G., Duesseldorf (Germany, F.R.)

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised.

  5. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    International Nuclear Information System (INIS)

    Rieve, J.J.

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised. (orig.) [de

  6. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  7. Effects of prestressing on impact resistance of concrete beams

    International Nuclear Information System (INIS)

    Mikami, H.; Kishi, N.; Matsuoka, K.G.; Mikami, T.; Nomachi, S.G.

    1995-01-01

    In this paper, the effects of prestressing on impact resistance of concrete beams using two types of prestressed concrete (PC) tendons are discussed based on experimental results. Aramids Fiber Reinforced Plastic rods and PC steel strand were used as PC tendons. To clarify the effects of prestressing on concrete beam impact resistance, dynamic behavior of prestressed and/or non-prestressed concrete beams with different PC tendon arrangements were considered. Impact test were performed using a 200 kg f free falling steel weight on to the center of beam. (author). 10 refs., 5 figs., 2 tabs

  8. Researching on Control Device of Prestressing Wire Reinforcement

    Science.gov (United States)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  9. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  10. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  11. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor......Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...

  12. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  13. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  14. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  15. Effect of releasing pretension for Rc Beams Bonded with Prestressed Fr Strip

    International Nuclear Information System (INIS)

    Chao-yang, Z.; Xue-jun, H.; Xing-guo, W.; Fei-fei, X

    2007-01-01

    In this paper, the effect of releasing pretension is theoretically and experimentally investigated for flexural members externally bonded with prestressed FRP laminate or near-surface-mounted with prestressed FRP plate or rod. The stresses of FRP on the interface and at cross sections of a beam are analyzed on the basis of linear elastic theory. The expressions are derived for effective prestress, prestress loss and camber at the midspan of the beam. Tests are performed on two reinforced concrete beams bonded with prestressed GFRP plate. The comparison between the analytical and the measured results shows the analyses in this paper are rational and correct. (author)

  16. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  17. PARCS - A pre-stressed and reinforced concrete shell element for analysis of containment structures

    International Nuclear Information System (INIS)

    Buragohain, D.N.; Mukherjee, A.

    1993-01-01

    Containment structures are designed as pressure vessels against a huge internal pressure build up in the event of a postulated LOCA. In such situations the containment structures experience predominantly in-plane stress in tension. Therefore, pre-stressed concrete has been very frequently used for the construction of containment. For larger plants a dual containment with a pre-stressed concrete inner containment and a reinforced concrete outer containment has been adopted. These structures are required to perform within very stringent safety requirements under extremely severe loading. Naturally, their design has attracted a lot of investigators and a huge volume of literature has been published in previous SMiRT conferences. However, it seems that the structural modeling of the containment has not developed accordingly. It is a common practice to consider the concrete section only in the model and the effects of pre-stress and reinforcements are usually neglected. This is due to the difficulty in including these effects without generating an unduly large model. To include these effects using the existing software, the concrete can be modeled with 3D elements. The reinforcements can be included in the model as bar or cable elements. However, that would require a nodal line along every reinforcement. Therefore, this method would generate a huge model unmanageable even with modern computing facilities. Alternatively, the reinforcements can be assumed to be smeared uniformly within the structure and an average property can be included. This model is acceptable when the reinforcements are very closely spaced. However, for sparsely spaced reinforcements it would result in loss of accuracy, especially in important areas like the vicinity of large openings. In this paper a shell element for the analysis of pre-stressed and reinforced concrete structures has been proposed which alleviates this difficulty. This element can accommodate the reinforcing bars or cables anywhere

  18. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    Science.gov (United States)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  19. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Science.gov (United States)

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  20. Transient analysis of LMFBR reinforced/prestressed concrete containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Belytschko, T.B.; Bazant, Z.P.

    1979-01-01

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containments must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. Furthermore, for the sake of convenience, all of these features should be available in a single computer code. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. The use of explicit time integration has the advantage that it can easily treat the complicated constitutive model which arises from the considerations of concrete cracking and it can handle the slip between reinforcing tendons and the concrete through the use of the well known sliding interface options. However, explicit time integration programs are usually not well suited to the simulation of static processes such as prestressing. Nevertheless, explicit time integration programs can handle static processes through the introduction of damping by what is known as a dynamic relaxation procedure. For this reason, the dynamic relaxation procedure was refined through the introduction of lumped mass, viscous damping. This provision made the prestressing operation of the concrete structures by means of the explicit formulation rather convenient. (orig.)

  1. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    Science.gov (United States)

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  2. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  3. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Hyung Kui

    2015-01-01

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level

  4. Stress-based topology optimization of concrete structures with prestressing reinforcements

    Science.gov (United States)

    Luo, Yangjun; Wang, Michael Yu; Deng, Zichen

    2013-11-01

    Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker-Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker-Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ɛ -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.

  5. Nonlinear Analysis of External Prestressed Reinforced Concrete Beams with BFRP and CFRP

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2017-05-01

    Full Text Available The traditional strengthening methods for concrete structure (girders, beams, columns…. consuming time and could be an economical, a new modern repair methods using the Carbon Fiber Reinforced Polymers (CFRP and Basalt Fiber Reinforced Polymer (BFRP as a laminate strips or bars,and considered a competitive solution that will increase the life-cycle of repaired structures. This study investigated the strengthen reinforced concrete girder. Nonlinear analysis have been adopted to the models using FEM analysis (ANSYS to simulate the theoretical results compared with experimental results.Using finite element packages, more efficient and better analyses can be made to fully understand the response of individual structural components and their contribution to a structure as a whole.Three type of material are used in this study as an external prestressed wire (steel, CFRP and BFRP. The prestressed beam is modeled as simply supported beam with two concentrated point load. The results showed that all tested strengthening beam increased the load carryingcapacity of the beams depend on prestressing force. Obtained Result was compared for different type of beam.This study also was enlarged to include using CFRP and BFRPbarwhich are light weight and moredurable, lead to ease of handling and maintenance. The research conducted analytical work to evaluate the effectiveness of concrete beams reinforced normally by the use of CFRP and BFRP bars. The results showed a significant gain in the beam’s ultimate capacities using CFRP bars comparing with beam reinforced with BFRP bar and reference beam

  6. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    Science.gov (United States)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  7. Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Chengquan Wang

    2017-01-01

    Full Text Available Nonlinear numerical analysis of the structural behaviour of prestressed steel reinforced concrete (PSRC beams was carried out by using finite element analysis software ABAQUS. By comparing the load-deformation curves, the rationality and reliability of the finite element model have been confirmed; moreover, the changes of the beam stiffness and stress in the forcing process and the ultimate bearing capacity of the beam were analyzed. Based on the model, the effect of prestressed force, and H-steel to the stiffness, the ultimate bearing capacity and ductility of beam were also analyzed.

  8. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  9. Experimental research of slab cast over precast joists with prestressed reinforcement

    Directory of Open Access Journals (Sweden)

    Koyankin Aleksandr Aleksandrovich

    2016-03-01

    Full Text Available At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6. The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.

  10. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  11. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  12. Construction of reactor vessel bottom of prestressed reinforced concrete

    International Nuclear Information System (INIS)

    Sitnikov, M.I.; Metel'skij, V.P.

    1980-01-01

    Methods are described for building reactor vessel bottoms of prestressed reinforced concrete during NPPs construction in Great Britain, France, Germany (F.R.) and the USA. Schematic of operations performed in succession is presented. Considered are different versions of one of the methods for concreting a space under a facing by forcing concrete through a hole in the facing. The method provides tight sticking of the facing to the reactor vessel bottom concrete

  13. The design of bonded reinforcement for thermal stresses in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    This paper deals with examples of thermal loadings where instationary growth of tensile zones and redistribution of stresses by cracking are of importance. Temperatures produce, in addition to prestressing and internal pressure, the most important stresses in a prestressed concrete reactor pressure vessel. Characteristic of thermal stresses is that they are influenced to a large extent by creep of concrete and that they influence stress redistributions by temperature dependent creep data. Computations show that during the first instationary heating process of the vessel stresses are reduced by creep effects to about fifty percent of the values of the stationary elastic case at the hot face. With a following cooling, creep effects are generally much less, so this case may produce tensile stresses on the internal face of the wall which lead to cracking of the concrete. Tensile stresses first occur due to the instationary growth of the temperature field in a narrow zone near the liner. If outside this zone compressive stresses exist due to prestressing then crack spreading is limited and restraint by the parts of the wall under compression causes crack distribution even without reinforcement in this zone. Growth of cracks with the instationary spreading of tensile zones according to temperature development was calculated. These calculations take into account discrete cracks, reinforcement and different assumptions for tensile strength. Reinforcement of small diameter near the surface has the best influence on crack spacing. Calculations show that for the stationary state of cooling the forces in the reinforcement may be as low as twenty to thirty percent of the tensile force not taking into account cracking of the concrete

  14. Cracking and induced steel stresses of reinforced and prestressed piles during driving

    NARCIS (Netherlands)

    Zorn, N.F.

    1984-01-01

    The problem of steel stresses during driving of reinforced and prestressed piles in case of concrete failure is analysed in this report using a momentum trap model that includes amplitude and shape of the reflected compressive wave. Special reference is made to the different performance of

  15. Nonlinear finite element analysis of nuclear reinforced prestressed concrete containments up to ultimate load capacity

    International Nuclear Information System (INIS)

    Gupta, A.; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-01-01

    For safety evaluation of nuclear structures a finite element code ULCA (Ultimate Load Capacity Assessment) has been developed. Eight/nine noded isoparametric quadrilateral plate/shell element with reinforcement as a through thickness discrete but integral smeared layer of the element is presented to analyze reinforced and prestressed concrete structures. Various constitutive models such as crushing, cracking in tension, tension stiffening and rebar yielding are studied and effect of these parameters on the reserve strength of structures is brought out through a number of benchmark tests. A global model is used to analyze the prestressed concrete containment wall of a typical 220 MWe Pressurized Heavy Water Reactor (PHWR) up to its ultimate capacity. This demonstrates the adequacy of Indian PHWR containment design to withstand severe accident loads

  16. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  17. Additional vibration investigations on the prestressed tie rods attaching the no.1 lives team line clamps to the concrete structures at Paluel-1

    International Nuclear Information System (INIS)

    Guihot, P.; Le Picard, J.P.

    1993-12-01

    This test report presents vibration analysis results obtained on the prestressed tie rods attaching the N. 1 live steam line clamps to the concrete structures of the PALUEL-1 unit. The purpose of these tests was to assess the feasibility of using a vibration analysis to determine the effective prestress level in the tie rods. The previous investigations performed with an impact hammer yielded no definite conclusions as to the feasibility of the method. The new series of tests, performed with a sinusoidal scanning electro-dynamic exciter, gave far more accurate results. However, the eigenfrequencies characterizing the tie rod tension level were not evidenced. It would consequently not seem possible to identify the tightening level by monitoring the first resonant frequency with the equipment installed. There are alternative solutions, such as keeping the same principle and substantially increasing the excitation levels, thereby precluding a head and foot restraint response from the tie rod, or using an ultrasonic method. (authors). 2 figs., 3 refs., 2 annexes

  18. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Berg, S.; Loeseth, S.; Holand, I.

    1977-01-01

    A computational model for circular symmetric reinforced concrete shell problems is described. The model is based on the Finite Element Method. Non-linear stress-strain constitutive relations are used for the concrete, the reinforcement and for the liner. The reinforcement layers may be of different steel qualities. Each layer may be given a specified prestressing. This can be done at the beginning of the computations or the specific reinforcement layer can be considered inactive until a specified level of loading is reached. Thus, the prestressing procedure may also be analyzed in detail. Bond-slip effects are not accounted for. However, no bond may be assumed for prestressing cables by inserting special reinforcement elements. Several models of prestressed concrete reactor pressure vessels which have been tested up to rupture have been analysed. Analytical (numerical) models for reinforced concrete are also discussed on a more general basis. (Auth.)

  19. Prestress Loss of CFL in a Prestressing Process for Strengthening RC Beams

    Directory of Open Access Journals (Sweden)

    Xinyan Guo

    2017-01-01

    Full Text Available A prestressing system was designed to strengthen reinforced concrete (RC beams with prestressed carbon fiber laminate (CFL. During different prestressing processes, prestress loss was measured using strain gauges attached on the surface of CFL along the length direction. The prestress loss was 50–68% of the whole prestress loss, which is typically associated with CFL slipping between the grip anchors. Approximately 20–27% of the prestress loss was caused by the elastic shortening of the RC beam. An analytical model using linear-elastic theory was constructed to calculate the prestress loss caused by CFL slipping between the anchors and the elastic shortening of the strengthened beams. The compared results showed that the analytical model of prestress loss can describe the experimental data well. Methods of reducing the prestress loss were also suggested. Compared to other experiments, the prestressing system proposed by this research group was effective because the maximum percentage of prestress loss was 14.9% and the average prestress loss was 12.5%.

  20. Assessment of the behavior of reinforced concrete beams retrofitted with pre-stressed CFPR subjected to cyclic loading

    Science.gov (United States)

    Hojatkashani, Ata; Zanjani, Sara

    2018-03-01

    Rehabilitation of weak and damaged structures has been considered widely during recent years. A relatively modern way of strengthening concrete components is to confine parts under tension and shear by means of carbon fiber reinforce polymer (CFRP). This way of strengthening due to the conditions of composite materials such as light weight, linear elastic behavior until failure point, high tensile strength, high elastic modulus, resistance against corrosion, and high fatigue resistance has become so common. During structural strengthening by means of not pre-stressed FRP materials, usually, it is not possible to benefit from the maximum capacity of FRP materials. In addition, sometimes, the expensive cost of such materials will not make a suitable balance between rates of strengthening and consuming spending. Thus, pre-stressing CFRP materials has an undeniable role in the effective use of materials. In the current research, general procedure of simulation using finite-element method (FEM) by means of the numerical package ABAQUS has been presented. In this article, 12 reinforced concrete (RC) models in two states (strengthened with simple and pre-stressed CFRP) under cycling loading have been considered. A parametric study has been carried out in this research on the effects of parameters such as CFRP surface area, percentage of tensile steel rebar and pre-stressing stress on ultimate load carrying capacity (ULCC), stiffness, and the ability of depreciation energy for the samples. In the current article also, for design parameters, percentages of tensile steel rebars, surface area of CFPR sheets, and the effective pre-stressing stress in RC beams retrofitted with pre-stressed CFPR sheets have investigated. In this paper, it was investigated that using different amount of parameters such as steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing, the resulted ULCC and energy depreciation of the specimens was observed to be increasing and

  1. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  2. Economic viability of ultra high-performance fiber reinforced concrete in prestressed concrete wind towers to support a 5 MW turbine

    Directory of Open Access Journals (Sweden)

    P. V. C. N. GAMA

    Full Text Available Abstract The Ultra-High Performance Fiber-Reinforced Concrete is a material with remarkable mechanical properties and durability when compared to conventional and high performance concrete, which allows its use even without the reinforcement. This paper proposes the design of prestressed towers for a 5 MW turbine, through regulatory provisions and the limit states method, with UHPFRC and the concrete class C50, comparing the differences obtained in the design by parametric analysis, giving the advantages and disadvantages of using this new type of concrete. Important considerations, simplifications and notes are made to the calculation process, as well as in obtaining the prestressing and passive longitudinal and passive transverse reinforcement, highlighting the shear strength of annular sections comparing a model proposed here with recent experimental results present in the literature, which was obtained good agreement. In the end, it is estimated a first value within the constraints here made to ensure the economic viability of the use of UHPFRC in a 100 m prestressed wind tower with a 5 MW turbine.

  3. Nonlinear finite element analysis of reinforced and prestressed concrete shells with edge beams

    International Nuclear Information System (INIS)

    Srinivasa Rao, P.; Duraiswamy, S.

    1994-01-01

    The structural design of reinforced and prestressed concrete shells demands the application of nonlinear finite element analysis (NFEM) procedures to ensure safety and serviceability. In this paper the details of a comprehensive NFEM program developed are presented. The application of the program is highlighted by solving two numerical problems and comparing the results with experimental results. (author). 20 refs., 15 figs

  4. Pipes of glassfiber reinforced plastics and prestressed concrete for hot-water transportation

    International Nuclear Information System (INIS)

    Schmeling, P.; Roseen, R.

    1980-06-01

    The report constitutes stage 2-3 of a project for the evaluation of pipes made from glass reinforced plastics and prestressed concrete. This stage was made possible through funds from the Swedish National Board for Energy Source Development and the participation of three industrial firms. Experimental pipes of large dimensions (O.D. 0.5 m) were tested at elevated temperatures and pressures. The glass reinforced plastic tubes showed in general an acceptable short term strength at 100-110 degree C. Further long term testing is needed in order to predict the life time; their manufacture requires a strictrly controlled process. The pipes made from prestressed concrete were tested at 95 and 110 degree C for more than a year with good results, and their resistence to thermal shocks was shown to be acceptable. Long term stress relaxation of the EPDM rubber for the joints was measured at 125 and 110 degree C. The best rubbers can be used for 3 years at 110 degree C and a compression of 35 percent, a longer life time is most probable but cannot be foreseen until results from continued testing have been collected. It was demonstrated that the relaxation rate is lowered in water with low oxygen contents. (author)

  5. Shear design and assessment of reinforced and prestressed concrete beams based on a mechanical model

    OpenAIRE

    Marí Bernat, Antonio Ricardo; Bairán García, Jesús Miguel; Cladera Bohigas, Antoni; Oller Ibars, Eva

    2016-01-01

    Safe and economical design and assessment of reinforced (RC) and prestressed concrete (PC) beams requires the availability of accurate but simple formulations which adequately capture the structural response. In this paper, a mechanical model for the prediction of the shear-flexural strength of PC and RC members with rectangular, I, or T sections, with and without shear reinforcement, is presented. The model is based on the principles of concrete mechanics and on assumptions supported by the ...

  6. FINITE ELEMENT MODELING OF CAMBER OF PRESTRESSED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Peter P. Gaigerov

    2017-12-01

    Full Text Available For large-span reinforced concrete beam structures developed by the method of determining the camber due to the prestressing of a steel rope on the concrete. Performed numerical experiments to study the impact of various schemes layout prestressed reinforcement without bonding with concrete on the distribution of the relief efforts along the path of the reinforcement.

  7. Behavior of corroded bonded partially prestressed concrete beams

    Directory of Open Access Journals (Sweden)

    Mohamed Moawad

    2018-04-01

    Full Text Available Prestressed concrete is widely used in the construction industry in buildings. And corrosion of reinforcing steel is one of the most important and prevalent mechanisms of deterioration for concrete structures. Consequently the capacity of post-tension elements decreased after exposure to corrosion. This study presents results of the experimental investigation of the performance and the behavior of partially prestressed beams, with 40 and 80 MPa compressive strength exposed to corrosion. The experimental program of this study consisted of six partially prestressed beams with overall dimensions equal to 150 × 400 × 4500 mm. The variables were considered in terms of concrete compressive strength, and corrosion location effect. The mode of failure, and strain of steel reinforcement, cracking, yield, ultimate load and the corresponding deflection of each beam, and crack width and distribution were recorded. The results showed that the partially prestressed beam with 80 MPa compressive strength has higher resistance to corrosion exposure than that of partially prestressed concrete beam with 40 MPa compressive strength. Not big difference in deterioration against fully/partially corrosion exposure found between partially prestressed beams at the same compressive strength. The most of deterioration incident in partially prestressed beam acts on non prestressed steel reinforcement. Because the bonded tendons are less likely to corrode, cement grout and duct act as a barrier to moisture and chloride penetration, especially plastic duct without splices and connections. The theoretical analysis based on strain compatibility and force equilibrium gave a good prediction of the deformational behavior for high/normal partially prestressed beams. Keywords: Beam, Corrosion, Deterioration, Partially prestressed, High strength concrete

  8. Partial Prestress Concrete Beams Reinforced Concrete Column Joint Earthquake Resistant On Frame Structure Building

    Science.gov (United States)

    Astawa, M. D.; Kartini, W.; Lie, F. X. E.

    2018-01-01

    Floor Building that requires a large space such as for the meeting room, so it must remove the column in the middle of the room, then the span beam above the room will be long. If the beam of structural element with a span length reaches 15.00 m, then it is less effective and efficient using a regular Reinforced Concrete Beam because it requires a large section dimension, and will reduce the beauty of the view in terms of aesthetics of Architecture. In order to meet these criteria, in this design will use partial prestressing method with 400/600 mm section dimension, assuming the partial Prestressed Beam structure is still able to resist the lateral force of the earthquake. The design of the reinforcement has taken into account to resist the moment due to the gravitational load and lateral forces. The earthquake occurring on the frame structure of the building. In accordance with the provisions, the flexural moment capacity of the tendon is permitted only by 25% of the total bending moment on support of the beam, while the 75% will be charged to the reinforcing steel. Based on the analysis result, bring ini 1 (one) tendon contains 6 strand with diameter 15,2 mm. On the beam pedestal, requires 5D25 tensile reinforcement and 3D25 for the compression reinforcement, for shear reinforcement on the pedestal using Ø10-100 mm. Dimensional column section are 600/600 mm with longitudinal main reinforcement of 12D25, and transverse reinforcement Ø10-150. At the core of the beam-column joint, use the transversal reinforcement Ø10-100 mm. The moment of Column versus Beam Moment ∑Me > 1.2 Mg, with a value of 906.99 kNm > 832.25 kNm, qualify for ductility and Strong Columns-weak beam. Capacity of contribution bending moment of Strand Tendon’s is 23.95% from the total bending moment capacity of the beam, meaning in accordance with the provisions. Thus, the stability and ductility structure of Beam-Column joint is satisfy the requirements of SNI 2847: 2013 and ACI 318-11.

  9. Experimental study on flexural members strengthened with variable bonded pre-stressed CFRP plates

    Science.gov (United States)

    Zhang, Baojing; Shang, Shouping

    2017-08-01

    Aiming at the problem that the structural adhesive between CFRP and concrete interface is aging with time and then lost the bond strength, the concept of variable bond prestressed CFRP is put forward. In order to obtain the bearing capacity and failure pattern of the beam strengthened with variable bonding prestressed CFRP plate, three concrete beams of 5.6m long were strengthened by the technology of non-bonding, bonding and variable bonding strengthened with prestressed CFRP plates respectively, the mechanical properties and crack changes of the test beams under three conditions had been compared and analyzed. Test results show that the variable bond strengthened with prestressed CFRP plates with unbonded prestressed CFRP, cracking load was increased by 36%, yield load increased by 4%, the ultimate load increased by 12%; The reinforcement technology of variable bonding prestressed CFRP plate has the characteristics of non-bonding and bonding prestressed CFRP plate reinforcement, which is similar to that of the bonded reinforcement in the early stage of the development of the cracks, then is gradually developing into the non-bonding prestressed reinforcement, the crack spacing and width have the same characteristics as the bonding reinforcement (both crack spacing and width are small), which is more conducive to enhance the durability of the structure.

  10. Self-sensing CF-GFRP rods as mechanical reinforcement and sensors of concrete beams

    Science.gov (United States)

    Nanni, F.; Auricchio, F.; Sarchi, F.; Forte, G.; Gusmano, G.

    2006-02-01

    In this paper testing carried out on concrete beams reinforced with self-sensing composite rods is presented. Such concrete beams, whose peculiarity is to be reinforced by self-sensing materials able to generate an alarm signal when fixed loads are reached, were designed, manufactured and tested. The reinforcing rods were manufactured by pultrusion and consisted of self-sensing hybrid composites containing both glass and carbon fibres in an epoxy resin. The experimentation was carried out by performing simultaneously mechanical tests on the reinforced beams and electrical measurements on the composite rods. The results showed that the developed system reached the target proposed, giving an alarm signal.

  11. Prestressed CFRP Fabrics for Flexural Strengthening of Concrete Beams with an Easy Prestressing Technique

    Science.gov (United States)

    Şakar, G.; Tanarslan, H. M.

    2014-09-01

    It is proposed to use prestressed CFRP plates for strengthening in order to prevent their debonding and thus to increase their strengthening efficiency. For this purpose, and easy-to-use piece of equipment was created. To determine the effectiveness of this method, an experimental program was carried out, and the effect of prestressed CFRP on the behavior and ultimate strength of reinforced concrete beams was examined in threepoint bending tests. A remarkable increase in their strength with debonding was seen for every specimen to which a prestressed CFRP plate had been applied.

  12. Research on Buckling State of Prestressed Fiber-Strengthened Steel Pipes

    Science.gov (United States)

    Wang, Ruheng; Lan, Kunchang

    2018-01-01

    The main restorative methods of damaged oil and gas pipelines include welding reinforcement, fixture reinforcement and fiber material reinforcement. Owing to the severe corrosion problems of pipes in practical use, the research on renovation and consolidation techniques of damaged pipes gains extensive attention by experts and scholars both at home and abroad. The analysis of mechanical behaviors of reinforced pressure pipelines and further studies focusing on “the critical buckling” and intensity of pressure pipeline failure are conducted in this paper, providing theoretical basis to restressed fiber-strengthened steel pipes. Deformation coordination equations and buckling control equations of steel pipes under the effect of prestress is deduced by using Rayleigh Ritz method, which is an approximation method based on potential energy stationary value theory and minimum potential energy principle. According to the deformation of prestressed steel pipes, the deflection differential equation of prestressed steel pipes is established, and the critical value of buckling under prestress is obtained.

  13. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  14. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  15. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  16. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  17. Analysis and application of prestressed concrete reactor vessels for LMFBR containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Fistedis, S.H.; Bazant, Z.P.; Belytschko, T.B.

    1978-01-01

    An analytical model of a prestressed concrete reactor vessel (PCRV) for LMFBR and the associated finite element computer code, involving an explicit time integration procedure, is described. The model is axisymmetric and includes simulations of the tensile cracking of concrete, the reinforcement, and a prestressing capability. The tensile cracking of concrete and the steel reinforcement are both modeled as continuously distributed within the finite element. The stresses in the reinforcement and concrete are computed separately and combined to give an overall stress state of the composite material. Attention is given to the fact that cracks do not form instantaneously, but develop gradually. Thus, after crack initiation the normal stress is reduced to zero gradually as a function of time. Residual shear resistance of cracks due to aggregate interlock is also taken into account. Prestressing of the PCRV is modeled by special structural members which represent an averaged prestressing layer equivalent to an axisymmetric shell. The internal prestressing members are superimposed over the reinforced concrete body of the PCRV; they are permitted to stretch and slide in a predetermined path, simulating the actual tendons. The validity of the code is examined by comparison with experimental data. (Auth.)

  18. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  19. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  20. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  1. Theoretical model for the mechanical behavior of prestressed beams under torsion

    Directory of Open Access Journals (Sweden)

    Sérgio M.R. Lopes

    2014-12-01

    Full Text Available In this article, a global theoretical model previously developed and validated by the authors for reinforced concrete beams under torsion is reviewed and corrected in order to predict the global behavior of beams under torsion with uniform longitudinal prestress. These corrections are based on the introduction of prestress factors and on the modification of the equilibrium equations in order to incorporate the contribution of the prestressing reinforcement. The theoretical results obtained with the new model are compared with some available results of prestressed concrete (PC beams under torsion found in the literature. The results obtained in this study validate the proposed computing procedure to predict the overall behavior of PC beams under torsion.

  2. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  3. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  4. Evaluation of the Behavior of Technova Corporation Rod-Stiffened Stitched Compression Specimens

    Science.gov (United States)

    Jegley, Dawn C.

    2013-01-01

    Under Space Act Agreement 1347 between NASA and Technova Corporation, Technova designed and fabricated two carbon-epoxy crippling specimens and NASA loaded them to failure in axial compression. Each specimen contained a pultruded rod stiffener which was held to the specimen skin with through-the-thickness stitches. One of these specimens was designed to be nominally the same as pultruded rod stitched specimens fabricated by Boeing under previous programs. In the other specimen, the rod was prestressed in a Technova manufacturing process to increase its ability to carrying compressive loading. Experimental results demonstrated that the specimen without prestressing carried approximately the same load as the similar Boeing specimens and that the specimen with prestressing carried significantly more load than the specimen without prestressing.

  5. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.

    Science.gov (United States)

    Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F

    2016-05-28

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.

  6. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Sriram Krishnamurthy

    2016-05-01

    Full Text Available Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E

  7. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    Science.gov (United States)

    Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.

    2016-01-01

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID

  8. Mechanical properties of bioresorbable self-reinforced posterior cervical rods.

    Science.gov (United States)

    Savage, Katherine; Sardar, Zeeshan M; Pohjonen, Timo; Sidhu, Gursukhman S; Eachus, Benjamin D; Vaccaro, Alexander

    2014-04-01

    A biomechanical study. To test the mechanical and physical properties of self-reinforced copolymer bioresorbable posterior cervical rods and compare their mechanical properties to commonly used Irene titanium alloy rods. Bioresorbable instrumentation is becoming increasingly common in surgical spine procedures. Compared with metallic implants, bioresorbable implants are gradually reabsorbed as the bone heals, transferring the load from the instrumentation to bone, eliminating the need for hardware removal. In addition, bioresorbable implants produce less stress shielding due to a more physiological modulus of elasticity. Three types of rods were used: (1) 5.5 mm copolymer rods and (2) 3.5 mm and (3) 5.5 mm titanium alloy rods. Four tests were used on each rod: (1) 3-point bending test, (2) 4-point bending test, (3) shear test, and (4) differential scanning calorimeter test. The outcomes were recorded: Young modulus (E), stiffness, maximum load, deflection at maximum load, load at 1.0% strain of the rod's outer surface, and maximum bending stress. The Young modulus (E) for the copolymer rods (mean range, 6.4-6.8 GPa) was significantly lower than the 3.5 mm titanium rods (106 GPa) and the 5.5 mm titanium rods (95 GPa). The stiffness of the copolymer rods (mean range, 16.6-21.4 N/mm) was also significantly lower than the 3.5 mm titanium alloy rods (43.6 N/mm) and the 5.5 mm titanium alloy rods (239.6 N/mm). The mean maximum shear load of the copolymer rods was 2735 N and they had significantly lower mean maximum loads than the titanium rods. Copolymer rods have adequate shear resistance, but less load resistance and stiffness compared with titanium rods. Their stiffness is closer to that of bone, causing less stress shielding and better gradual dynamic loading. Their use in semirigid posterior stabilization of the cervical spine may be considered.

  9. Cylindrical prestressed concrete pressure vessel for a nuclear power plant

    International Nuclear Information System (INIS)

    Horner, M.; Hodzic, A.; Haferkamp, D.

    1976-01-01

    A prestressed concrete pressure vessel for a HTGR is proposed which encloses, in addition to the reactor core, not only the heat-exchanging facilities but also the turbine unit. The reinforcement of the cylindrical concrete body is to be carried out with special care, it is provided for horizontal tendons, the prestressed concrete pressure vessel has a wire-winding device, while the longitudinal reinforcement is achieved by tendous guided in parallel to the vesses axes through the interspaces between the pods. (UWI) [de

  10. Behavior of bonded and unbonded prestressed normal and high strength concrete beams

    Directory of Open Access Journals (Sweden)

    O.F. Hussien

    2012-12-01

    This paper presents an experimental program conducted to study the behavior of bonded and unbounded prestressed normal strength (NSC and high strength concrete (HSC beams. The program consists of a total of nine beams; two specimens were reinforced with non-prestressed reinforcement, four specimens were reinforced with bonded tendons, and the remaining three specimens were reinforced with unbonded tendons. The overall dimensions of the beams are 160 × 340 × 4400-mm. The beams were tested under cyclic loading up to failure to examine its flexural behavior. The main variables in this experimental program are nominal concrete compressive strength (43, 72 and 97 MPa, bonded and unbonded tendons and prestressing index (0%, 70% and 100%. Theoretical analysis using rational approach was also carried out to predict the flexural behavior of the specimens. Evaluation of the analytical work is introduced and compared to the results of the experimental work.

  11. Time-Dependent Topology of Railway Prestressed Concrete Sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.

  12. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  13. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    .0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...

  14. Composites reinforcement by rods a SAS study

    CERN Document Server

    Urban, V; Pyckhout-Hintzen, W; Richter, D; Straube, E

    2002-01-01

    The mechanical properties of composites are governed by size, shape and dispersion degree of so-called reinforcing particles. Polymeric fillers based on thermodynamically driven microphase separation of block copolymers offer the opportunity to study a model system of controlled rod-like filler particles. We chose a triblock copolymer (PBPSPB) and carried out SAS measurements with both X-rays and neutrons, in order to characterize separately the hard phase and the cross-linked PB matrix. The properties of the material depend strongly on the way that stress is carried and transferred between the soft matrix and the hard fibers. The failure of the strain-amplification concept and the change of topological contributions to the free energy and scattering factor have to be addressed. In this respect the composite shows a similarity to a two-network system, i.e. interpenetrating rubber and rod-like filler networks. (orig.)

  15. Prestressed Ring Beam in the Church of St. Peter’s and Paul’s in Bodzanow, Design and Realization

    Science.gov (United States)

    Szydlowski, Rafal; Labuzek, Barbara; Turcza, Monika

    2017-10-01

    The present trend in architecture is designing thin. slender and spacious architectural forms. It has become the reason for searching for new solutions and finding new ways of use of the existing construction ones. Recently, the first time in Poland, the post-tensioning has been used in realization of church building. In the Church of St. Peter’s and Paul’s in Bodzanow (near Cracow) was designed circumferential ring beam post-tensioned with 4 unbounded tendons to transfer peripheral tensile forces from the roof. Thanks to the use of a prestressed ring beam hidden in the wall, large cross-section of roof girders was possible to be avoided, as well as a massive reinforced concrete ring or additional steel tie-rods. The paper presents the applied solutions in details with the theoretical calculated results as well as the results of prestressing measured in site during tensioning of tendons. Based on presented results some conclusions have been drawn.

  16. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    Science.gov (United States)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  17. Compressive pre-stress effects on magnetostrictive behaviors of highly textured Galfenol and Alfenol thin sheets

    Directory of Open Access Journals (Sweden)

    Julia R. Downing

    2017-05-01

    Full Text Available Fe-Ga (Galfenol and Fe-Al (Alfenol are rare-earth-free magnetostrictive alloys with mechanical robustness and strong magnetoelastic coupling. Since highly textured Galfenol and Alfenol thin sheets along orientations have been developed with magnetostrictive performances of ∼270 ppm and ∼160 ppm, respectively, they have been of great interest in sensor and energy harvesting applications. In this work, we investigate stress-dependent magnetostrictive behaviors in highly textured rolled sheets of NbC-added Fe80Al20 and Fe81Ga19 alloys with a single (011 grain coverage of ∼90%. A compact fixture was designed and used to introduce a uniform compressive pre-stress to those thin sheet samples along a [100] direction. As compressive pre-stress was increased to above 100 MPa, the maximum observed magnetostriction increased 42% in parallel magnetostriction along the stress direction, λ//, in highly textured (011 Fe81Ga19 thin sheets for a compressive pre-stress of 60 MPa. The same phenomena were observed for (011 Fe80Al20 (maximum increase of 88% with a 49 MPa compressive stress. This trend is shown to be consistent with published results on the effect of pre-stress on magnetostriction in rods of single crystal and textured polycrystalline Fe-Ga alloy of similar compositions, and single crystal data gathered using our experimental set up. Interestingly, the saturating field (Hs does not vary with pre-stresses, while the saturating field in rod-shaped samples of Fe-Ga increases with an increase of pre-stress. This suggests that for a range of compressive pre-stresses, thin sheet samples have larger values of d33 transduction coefficients and susceptibility than rod-shaped samples of similar alloy compositions, and hence they should provide performance benefits when used in sensor and actuator device applications. Thus, we discuss potential reasons for the unexpected trends in Hs with pre-stress, and present preliminary results from tests conducted

  18. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 2 : stainless steel prestressing strand and wire.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  19. Flexural Strengthening of RC Slabs with Prestressed CFRP Strips Using Different Anchorage Systems

    Directory of Open Access Journals (Sweden)

    José Sena-Cruz

    2015-10-01

    Full Text Available Externally Bonded Reinforcement (EBR technique has been widely used for flexural strengthening of concrete structures by using carbon fiber-reinforced polymers (CFRP. EBR technique offers several structural advantages when the CFRP material is prestressed. This paper presents an experimental and numerical study on reinforced (RC slabs strengthened in flexure with prestressed CFRP strips as a structural strengthening system. The strips are applied as an externally bonded reinforcement (EBR and anchored with either a mechanical or a gradient anchorage. The former foresees metallic anchorage plates fixed to the concrete substrate, while the latter is based on an accelerated epoxy resin curing followed by a segment-wise prestress force decrease at the strip ends. Both anchorage systems, in combination with different CFRP strip geometries, were subjected to static loading tests. It could be demonstrated that the composite strip’s performance is better exploited when prestressing is used, with slightly higher overall load carrying capacities for mechanical anchorages than for the gradient anchorage. The performed investigations by means of a cross-section analysis supported the experimental observation that in case a mechanical anchorage is used, progressive strip debonding changes the fully bonded configuration to an unbonded end-anchored system. The inclusion of defined debonding criteria for both the anchorage zones and free length between the anchorage regions allowed to precisely capture the ultimate loading forces.

  20. The Influence of the Prestress of Reinforced Steel on the Behaviour of the Flexural Elements of Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Aidas Jokūbaitis

    2013-12-01

    Full Text Available This article briefly discusses the essence of prestressed concrete,its advantages and disadvantages. The analysis of prestress lossesis done according to different standards. The paper explainspretensioning force and selection of its eccentricity as well asanalyzes the influence of beam cracking according to limitationson concrete tensile and compressive stresses.

  1. Development of Lateral Prestress in High-Strength Concrete-Filled FRP Tubes

    Science.gov (United States)

    Vincent, T.; Ozbakkaloglu, T.

    2018-02-01

    This paper reports on an experimental investigation into the axial and lateral strain development of fiber reinforced polymer (FRP) confined high-strength concrete (HSC) with prestressed FRP shells. A total of 24 aramid FRP (AFRP)-confined concrete specimens were manufactured as concrete-filled FRP tubes (CFFTs) with instrumentation to measure the strain variations during application of prestress, removal of end constraints and progressive prestress losses. Prestressed CFFT specimens were prepared with three different dose rates of expansive mineral admixture to create a range of lateral prestress applied to AFRP tubes manufactured with sheet thicknesses of 0.2 or 0.3 mm/ply and referred to as lightly- or well-confined, respectively. In addition to these three levels of prestress, non-prestressed companion specimens were manufactured and tested to determine baseline performance. The experimental results from this study indicate that lateral prestressing of CFFTs manufactured with HSC can be achieved by varying the expansive mineral admixture dose rate with a lateral prestress of up to 7.3 MPa recorded in this study. Significant strain variations were measured during removal of the end constraints with up to 700 microstrain recorded in the axial direction. Finally, the measurement of prestress losses for the month following prestress application revealed minimal progressive losses, with only 250 and 100 με recorded for the axial and hoop strains, respectively.

  2. Testing of large prestressing tendon end anchorage regions

    International Nuclear Information System (INIS)

    Johnson, T.E.

    1976-01-01

    Tests were performed on concrete end anchorage regions for prestressing tendons with ultimate strengths of approximately 8,900 kN. One test structure simulated a full scale concrete containment buttress and the other two test specimens were concrete blocks. The behavior of the test structure and specimens, when subjected to loading, was monitored by strain gages and dial gages. The testing illustrated that all of the amounts of reinforcing tested should be acceptable for the end anchor zones of large tendons presently used in prestressed concrete containment structures. (author)

  3. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  4. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  5. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    Science.gov (United States)

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  6. Prestressed CFRP Strips with Gradient Anchorage for Structural Concrete Retrofitting: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Julien Michels

    2014-01-01

    Full Text Available This paper presents a study on the load carrying capacity of reinforced concrete (RC beams strengthened with externally bonded (EB carbon fiber reinforced polymer (CFRP strips prestressed up to 0.6% in strain. At the strip ends, the innovative gradient anchorage is used instead of conventional mechanical fasteners. This method, based on the epoxy resin’s ability to rapidly cure under high temperatures, foresees a sector-wise heating followed by a gradual decrease of the initial prestress force towards the strip ends. The experimental investigation shows a promising structural behavior, resulting in high strip tensile strains, eventually almost reaching tensile failure of the composite strip. Additionally, ductility when considering deflection at steel yielding and at ultimate load is satisfying, too. From a practical point of view, it is demonstrated that premature strip grinding in the anchorage zone is not beneficial. In addition, a non-commercial 1D finite element code has been enlarged to an EB reinforcement with prestressed composite strips. A bilinear bond stress-slip relation obtained in earlier investigations is introduced as an additional failure criterion to the code. The numerical code is able to almost perfectly predict the overall structural behavior. Furthermore, the calculations are used for comparison purposes between an initially unstressed and a prestressed externally bonded composite reinforcement. The increase in cracking and yielding load, as well as differences in structural stiffness are apparent.

  7. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  8. Strength Enhancement of Prestressed Concrete Dapped-End Girders

    Directory of Open Access Journals (Sweden)

    Shatha Dhia Mohammed

    2015-10-01

    Full Text Available This paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped. The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experimental, but; there were a good agreements in both trends and values. The difference varies in the range (5-12% for the deflection. Results have shown that the pre-stress force has increased the static ultimate load capacity by (35% in case of straight strand and by (97% in case of draped strand

  9. Design optimization of continuous partially prestressed concrete beams

    Science.gov (United States)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  10. Behaviour of Prestressed CFRP Anchorages during and after Freeze-Thaw Cycle Exposure

    Directory of Open Access Journals (Sweden)

    Yunus Emre Harmanci

    2018-05-01

    Full Text Available The long-term performance of externally-bonded reinforcements (EBR on reinforced concrete (RC structures highly depends on the behavior of constituent materials and their interfaces to various environmental loads, such as temperature and humidity exposure. Although significant efforts have been devoted to understanding the effect of such conditions on the anchorage resistance of unstressed EBR, with or without sustained loading, the effect of a released prestressing has not been thoroughly investigated. For this purpose, a series of experiments has been carried out herein, with concrete blocks strengthened with carbon fiber-reinforced polymer (CFRP strips, both unstressed, as well as prestressed using the gradient anchorage. The gradient anchorage is a non-mechanical technique to anchor prestressed CFRP by exploiting the accelerated curing property of epoxy under higher temperatures and segment-wise prestress-force releasing. Subsequently, strengthened blocks are transferred into a chamber for exposure in dry freeze-thaw cycles (FTC. Following FTC exposure, the blocks are tested in a conventional lap-shear test setup to determine their residual anchorage resistance and then compared with reference specimens. Blocks were monitored during FTC by conventional and Fabry–Pérot-based fiber optic strain (FOS sensors and a 3D-digital image correlation (3D-DIC system during gradient application and lap-shear testing. Results indicate a reduction of residual anchorage resistance, stiffness and deformation capacity of the system after FTC and a change in the failure mode from concrete substrate to epoxy-concrete interface failure. It was further observed that all of these properties experienced a more significant reduction for prestressed specimens. These findings are presented with a complementary finite element model to shed more light onto the durability of such systems.

  11. Development and investigation of the prestressed reinforced concrete vessels for the water cooled reactors in the FRG

    International Nuclear Information System (INIS)

    Medovikov, A.I.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Konevskij, V.N.

    1980-01-01

    An analysis of calculation results for characteristics of stress-strained state of reactor vessel made of prestressed reinforced concrete is presented. Experimental data obtained during the investigation into a model of reactor vessel top cover are given. Thermal shielding system both for boiling water and pressurized-water reactors has been considered and its working capacity has been evaluated. An analysis of experimental data show correctness of the method assumed for calculation of the reactor top cover which permits to exactly determine its stressed-strained state as well as the nature of crack propagation in the vessel and the structure supporting power. Ceramics is suggested to be used as a heat-insulating material

  12. Capacity of Prestressed Concrete Containment Vessels with Prestressing Loss

    International Nuclear Information System (INIS)

    SMITH, JEFFREY A.

    2001-01-01

    Reduced prestressing and degradation of prestressing tendons in concrete containment vessels were investigated using finite element analysis of a typical prestressed containment vessel. The containment was analyzed during a loss of coolant accident (LOCA) with varying levels of prestress loss and with reduced tendon area. It was found that when selected hoop prestressing tendons were completely removed (as if broken) or when the area of selected hoop tendons was reduced, there was a significant impact on the ultimate capacity of the containment vessel. However, when selected hoop prestressing tendons remained, but with complete loss of prestressing, the predicted ultimate capacity was not significantly affected for this specific loss of coolant accident. Concrete cracking occurred at much lower levels for all cases. For cases where selected vertical tendons were analyzed with reduced prestressing or degradation of the tendons, there also was not a significant impact on the ultimate load carrying capacity for the specific accident analyzed. For other loading scenarios (such as seismic loading) the loss of hoop prestressing with the tendons remaining could be more significant on the ultimate capacity of the containment vessel than found for the accident analyzed. A combination of loss of prestressing and degradation of the vertical tendons could also be more critical during other loading scenarios

  13. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  14. Assessing the need for intermediate diaphragms in prestressed concrete bridges.

    Science.gov (United States)

    2008-03-01

    Reinforced concrete intermediate diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community; the use of IDs increases the cost and t...

  15. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  16. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  17. Repair of prestressed concrete cylinder with localized delamination

    International Nuclear Information System (INIS)

    Wang, Shen; Munshi, Javeed A.

    2015-01-01

    For prestressed concrete cylindrical structures such as nuclear containments, tanks and silos, the curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. For example, many prestressed concrete nuclear containments in US, especially those which were not designed following radial reinforcement requirement of ACI-359, are reinforced only in the circumferential (hoop) and meridional (vertical) directions but not in the radial direction. This leaves these structures vulnerable to potential laminar cracking and delamination, especially during post-tensioning and/or detensioning process. Should delamination occur, the structure needs to be repaired by either replacing cracked concrete or by “pinning” the delaminated concrete layers together by post-installed anchors. The latter option of post-installed anchors is less invasive from construction stand point and generally suitable for repairing small or localized delamination only. A comprehensive study is undertaken to explore various aspects and design consideration of post-installed anchors for prestressed concrete cylinders. The radial tension demand is first established by combining a mechanical based model with a detailed finite element analysis. With such design demand for post-installed anchors established, the next step aims at developing the tightness requirement of existing delamination cracks for effective use of post-installed anchors. A comprehensive literature search and evaluation is carried out for shear transfer capacity across cracks of various widths. The findings are used to develop specific recommendations for acceptable crack widths to ensure adequate in-plane shear transfer capacity for various design load conditions. A design process for post-installed anchors is proposed for repairing a delaminated prestressed concrete cylindrical structure at the end of the paper, supplemented by an illustrative

  18. Repair of prestressed concrete cylinder with localized delamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com; Munshi, Javeed A., E-mail: jamunshi@bechtel.com

    2015-12-15

    For prestressed concrete cylindrical structures such as nuclear containments, tanks and silos, the curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. For example, many prestressed concrete nuclear containments in US, especially those which were not designed following radial reinforcement requirement of ACI-359, are reinforced only in the circumferential (hoop) and meridional (vertical) directions but not in the radial direction. This leaves these structures vulnerable to potential laminar cracking and delamination, especially during post-tensioning and/or detensioning process. Should delamination occur, the structure needs to be repaired by either replacing cracked concrete or by “pinning” the delaminated concrete layers together by post-installed anchors. The latter option of post-installed anchors is less invasive from construction stand point and generally suitable for repairing small or localized delamination only. A comprehensive study is undertaken to explore various aspects and design consideration of post-installed anchors for prestressed concrete cylinders. The radial tension demand is first established by combining a mechanical based model with a detailed finite element analysis. With such design demand for post-installed anchors established, the next step aims at developing the tightness requirement of existing delamination cracks for effective use of post-installed anchors. A comprehensive literature search and evaluation is carried out for shear transfer capacity across cracks of various widths. The findings are used to develop specific recommendations for acceptable crack widths to ensure adequate in-plane shear transfer capacity for various design load conditions. A design process for post-installed anchors is proposed for repairing a delaminated prestressed concrete cylindrical structure at the end of the paper, supplemented by an illustrative

  19. Proceedings of the joint WANO/OECD-NEA workshop on pre-stress loss in NPP containments

    International Nuclear Information System (INIS)

    1997-01-01

    This joint WANO/OECD-NEA workshop on pre-stress loss in NPP containments started with Opening Remarks (by OECD and EDF) and two presentations on 'Creep and Shrinkage of Concrete: Physical Origins, Practical Measurements', and 'Past, Present and Future Techniques for Predicting Creep and Shrinkage of Concrete'. It was then followed by papers and presentations from 12 countries, which titles are: Assessment of Creep Methodologies for Predicting Prestressing Forces Losses in Nuclear Power Plant Containments; Prestress Behaviour in Belgian NPP Containments; Presentation of Gentilly 2 NPP Containment (abstract only); Containment Structure Monitoring and Prestress Losses; Experience from Daya Bay Nuclear Power Plant (China); Prestress losses in NPP containments - the EDF experience; Prestress Force Monitoring on the THTR Prestressed Concrete Reactor Vessel During 19 Years; NPP Containment Design: Evolution and Indian Experience; In-Service Inspections and R and D of PCCVs in Japan; Comparison of Grouted and Un-grouted Tendons in NPP Containments; Prestress Losses in Containment of VVER 1000 Units; Prestressing in Nuclear Power Plants; Anchor Lift-off Measuring System for 37 T 15 Tendons; Monitoring of Stressed-Strained State and Forces in Reinforcing Cables of Prestressed Containment Shells of Nuclear Power Plants; Long-Term In-Service Monitoring of Pre-stressing in Magnox Pre-stressed Concrete Pressure Vessels; The Measurement of Un-bonded Tendon Loads in PCPV and Primary Containment Buildings; The Long Term In-service Performance of Corrosion Protection to Prestressing Tendons in AGR Prestressed Concrete Pressure Vessels; Prestress Force Losses in Containments of U.S. Nuclear Power Plants. Discussions and a synthesis are also presented

  20. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  1. Preparation and Properties of Self-reinforced L- and D,L-lactide Copolymer Rods

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Since highly crystalline poly (L-lactide) (PLLA) degrades rather slowly in a biological environment and the crystalline domains remaining after partial degradation of the implant material give rise to an inflammatory response of the surrounding tissue, L- and D,L-lactide copolymer [P(L-DL)LA] having a low crystallinity is preferred in surgical applications. The thermal transitions and the mechanical properties of P(L-DL)LA rods were discussed in this paper. It was found that the self-reinforced P(L-DL)LA [SR-P(L-DL)LA] was strong enough in terms of mechanical properties compared with the self-reinforced PLLA [SR-PLLA].

  2. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  3. The PACE-1450 experiment - Crack and leakage behavior of a pre-stressed concrete containment wall considering ageing

    International Nuclear Information System (INIS)

    Hermann, N.; Mueller, H.S.; Niklasch, C.; Michel-Ponnelle, S.; Bento, C.; Masson, B.

    2015-01-01

    As an intermediate sized experiment the PACE-1450 experiment aims to investigate the behavior of a curved specimen (length: 3.5 m, width: 1.8 m, height: 1.2 m) which is representative for a 1450 MWe nuclear power plant containment under accidental loading conditions. One focus of this experimental test campaign is the consideration of the ageing of the structure which among other effects leads to a pre-stressing loss. The crack behavior of the realistically reinforced specimen is of as much interest as it is the leakage behavior when an inner pressure occurs within the containment. The reinforcement layout of the specimen is very similar to the original geometry and consists mainly of reinforcement meshes of bars near the inner and outer surface and four pre-stressing cables in the circumferential direction. During the tests the specimen is loaded by pressure which simulates the internal accidental containment pressure of up to 6 bars (absolute pressure). The resulting ring tensile stress in the cylindrical part of the containment is externally applied by hydraulic jacks. An initial pre-stressing of the specimen of 12 MPa is realized in such a way that decreasing the pre-stressing force for the purpose of simulating the ageing of the structure is possible. The facility allows for the cracking of the pre-stressed specimen and for leakage measurements at different controlled crack widths. The specimen is equipped with embedded optical fiber strain and temperature sensors and a sound detection system to record the initiation of cracks. The paper explains the test set-up and presents results of the ongoing test series regarding the cracking and leakage behavior of the specimen

  4. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  5. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  6. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Täljsten, Björn

    2012-01-01

    force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...... similar effects on the structural behavior of the strengthened beams; the minor differences that were observed are attributed to the difference between the modulus of elasticity of the CFRP and the steel used in the tests. The models predicted the beams' load-bearing behavior accurately but were less...

  7. Estudio del comportamiento en zonas sísmicas del hormigón pretensado con refuerzo de fibras = Study of the behavior in seismic zones of reinforced prestressed concrete

    Directory of Open Access Journals (Sweden)

    Eugenia Soledad Carbel

    2016-12-01

    Full Text Available El hormigón pretensado reforzado con fibras, presenta simultáneamente las ventajas de los hormigones pretensados y de los reforzados con fibras. Se consigue un material de altas prestaciones en cuanto a su tenacidad, ductilidad y resistencia a la tracción, como así también para mejorar las características de agrietamiento y de deformación de los elementos estructurales del hormigón causados por solicitaciones sísmicas. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón pretensado reforzado con fibras de acero y de poliamida , y su capacidad de resistir las grandes fuerzas de inercia causadas por las solicitaciones sísmicas. Para una evaluación comparativa se presentan ensayos de corte cíclico entre muros estructurales construidos con hormigón convencional y los reforzados con fibras, mediante modelos de histéresis. Los resultados muestran la variación de respuesta del hormigón con el tiempo, la diferencia existente con los hormigones tradicionales y la viabilidad del empleo de fibras. Comprobando que la adición de fibras en el hormigón armado convencional puede mejorar las actuaciones estructurales y funcionales, de las estructuras de hormigón relacionadas a las acciones sísmicas, a su vez las fibras de acero son más eficaces en mejorar el rendimiento de corte de PCCV que fibras de poliamida. Abstract Prestressed concrete reinforced with fibers, simultaneously presents the advantages of prestressed concrete and reinforced with fibers. It achieves a high performance material in terms of its toughness, ductility and tensile strength, as well as to improve the cracking and deformation characteristics of the structural elements of the concrete caused by seismic stresses. In this work the mechanical behavior of a prestressed concrete reinforced with steel and polyamide fibers and its ability to withstand the large forces of inertia caused by seismic stresses has been studied. For a comparative evaluation

  8. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 1 : concrete.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  9. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  10. The Overall Research Results of Prestressed I-beams Made of Ultra-high Performance Concrete

    Science.gov (United States)

    Tej, P.; Kolísko, J.; Kněž, P.; Čech, J.

    2017-09-01

    The design process of short-term and long-term loading of prestressed I-beams made of ultra-high performance concrete (UHPC) and the overall research results are presented in this article. The prestressed I-beams are intended and designed to replace steel HEB beams mainly in the construction of railway bridges with fully concreted height of the beams. These types of structures have the advantage of a low construction height. The prestressed I-beams were made of UHPC with dispersed steel fibres and are reinforced by prestressing cables in the bottom flange. Two specimens of 9 m span, three specimens of 7 m span and two specimens of 12 m span were made for the short-term loading. For the purpose of the long-term loading, two specimens of 12 m span were made and subsequently loaded for 450 days. All specimens were tested in four-point bending tests in the laboratory. The article presents also comparison of results of the experiments with computer simulations.

  11. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  12. Determining prestressing forces for inspection of prestressed concrete containments

    International Nuclear Information System (INIS)

    1990-07-01

    General Design Criterion 53, ''Provisions for Containment Testing and Inspection,'' of Appendix A, ''General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, ''Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. Regulatory Guide 1.35, ''Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures,'' describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. This guide expands and clarifies the NRC staff position on determining prestressing forces to be used for inservice inspections of prestressed concrete containment structures

  13. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    International Nuclear Information System (INIS)

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock

  14. Evaluation of prestress losses in nuclear reactor containments

    International Nuclear Information System (INIS)

    Lundqvist, Peter; Nilsson, Lars-Olof

    2011-01-01

    Research highlights: → Prestress losses in reactor containments were estimated using prediction models. → The predicted prestress losses were compared to long-term measurements. → The accuracy of the models was improved by considering actual drying conditions. → Predictions by CEB/FIP MC 1999 and ACI 209 were closest to the measured losses. - Abstract: The most critical safety barrier in a nuclear power plant, the concrete containment, is prestressed by hundreds of tendons, both horizontally and vertically. The main purpose of the containment is to prevent radioactive discharge to the environment in the case of a serious internal accident. Due to creep and shrinkage of concrete and relaxation of the prestressing steel, tendon forces decrease with time. These forces are thus measured in Swedish containments with unbonded tendons at regular in-service inspections. In this paper, the prestress losses obtained from these in-service inspections are compared to losses estimated using several prediction models for creep, shrinkage and relaxation. In an attempt to increase the accuracy of these models, existing expressions for the development of shrinkage were modified using previous findings on the humidity and temperature inside two Swedish containments. The models which were used and modified for predicting creep and shrinkage were CEB-FIP Model Codes 1990 and 1999, ACI 209, Model B3 and GL2000. Eurocode 2 was used for the prediction of relaxation. The results show that the most accurate of the models were CEB/FIP MC 99 and ACI 209. Depending on the model, the accuracy of the prediction models was increased by 0.5-1.2 percentage points of prestress losses when using the modified development of shrinkage. Furthermore, it was found that the differences between the different models depend mainly on the prediction of creep. Possible explanations for the deviation between the calculated and measured models can be the influence of reinforcement on creep and shrinkage

  15. Evaluation of prestress losses in nuclear reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Peter, E-mail: peter.lundqvist@kstr.lth.s [Div. of Structural Engineering, Lund University, Lund (Sweden); Nilsson, Lars-Olof [Div. of Building Materials, Lund University, Lund (Sweden)

    2011-01-15

    Research highlights: Prestress losses in reactor containments were estimated using prediction models. The predicted prestress losses were compared to long-term measurements. The accuracy of the models was improved by considering actual drying conditions. Predictions by CEB/FIP MC 1999 and ACI 209 were closest to the measured losses. - Abstract: The most critical safety barrier in a nuclear power plant, the concrete containment, is prestressed by hundreds of tendons, both horizontally and vertically. The main purpose of the containment is to prevent radioactive discharge to the environment in the case of a serious internal accident. Due to creep and shrinkage of concrete and relaxation of the prestressing steel, tendon forces decrease with time. These forces are thus measured in Swedish containments with unbonded tendons at regular in-service inspections. In this paper, the prestress losses obtained from these in-service inspections are compared to losses estimated using several prediction models for creep, shrinkage and relaxation. In an attempt to increase the accuracy of these models, existing expressions for the development of shrinkage were modified using previous findings on the humidity and temperature inside two Swedish containments. The models which were used and modified for predicting creep and shrinkage were CEB-FIP Model Codes 1990 and 1999, ACI 209, Model B3 and GL2000. Eurocode 2 was used for the prediction of relaxation. The results show that the most accurate of the models were CEB/FIP MC 99 and ACI 209. Depending on the model, the accuracy of the prediction models was increased by 0.5-1.2 percentage points of prestress losses when using the modified development of shrinkage. Furthermore, it was found that the differences between the different models depend mainly on the prediction of creep. Possible explanations for the deviation between the calculated and measured models can be the influence of reinforcement on creep and shrinkage of concrete and

  16. Application of pre-stressed technology in the crossing construction of the China–Myanmar Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Xuejun Wang

    2015-01-01

    Full Text Available Concrete structure is commonly used in the anchorages of a large cable-suspended pipeline crossing construction. With the increase of span and load, the stress on the concrete anchorages may rise rapidly. In case of traditional anchoring structure fixed by anchor rods, concrete cracking will occur, thereby reducing the anchorage life. To solve this problem, the pre-stressed structure was designed to effectively improve the efficiency of anchoring and reduce engineering cost. In the crossing construction of China–Myanmar Gas Pipeline, the pre-stressed technology was used to establish an effective pre-stressed anchoring system, which integrates the pre-stressed structures (e.g. tunnel anchorages in the anchors and the optimization measures (e.g. positioning mode, anchorage structure, concrete placement, pre-stressed, and medium injection, in line with the crossing structure and load features of this project. The system can delay the occurrence of concrete cracking and enhance the stress durability of the structure and anchoring efficiency. This technology has been successfully applied in the crossing construction of China–Myanmar Gas Pipeline, with good economic and social benefits, indicating that this technology is a new effective solution to the optimization of suspended pipeline anchorage structures, providing technical support for the development of pipeline crossing structure.

  17. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    Science.gov (United States)

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  18. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Keunhee Cho

    2015-06-01

    Full Text Available Prestressed concrete (PSC is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM sensors to develop a method for tracking representative indicators of the prestress force using smart strands.

  19. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures.

    Science.gov (United States)

    Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan

    2015-06-15

    Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands.

  20. Instrumentation of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Rightley, M.J.; Matsumoto, T.

    1995-01-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. At present, two tests are being planned: a test of a model of a steel containment vessel (SCV) that is representative of an improved, boiling water reactor (BWR) Mark II design; and a test of a model of a prestressed concrete containment vessel (PCCV). This paper discusses plans and the results of a preliminary investigation of the instrumentation of the PCCV model. The instrumentation suite for this model will consist of approximately 2000 channels of data to record displacements, strains in the reinforcing steel, prestressing tendons, concrete, steel liner and liner anchors, as well as pressure and temperature. The instrumentation is being designed to monitor the response of the model during prestressing operations, during Structural Integrity and Integrated Leak Rate testing, and during test to failure of the model. Particular emphasis has been placed on instrumentation of the prestressing system in order to understand the behavior of the prestressing strands at design and beyond design pressure levels. Current plans are to place load cells at both ends of one third of the tendons in addition to placing strain measurement devices along the length of selected tendons. Strain measurements will be made using conventional bonded foil resistance gages and a wire resistance gage, known as a open-quotes Tensmegclose quotes reg-sign gage, specifically designed for use with seven-wire strand. The results of preliminary tests of both types of gages, in the laboratory and in a simulated model configuration, are reported and plans for instrumentation of the model are discussed

  1. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  2. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  3. Analysis of prestressed concrete wall segments

    International Nuclear Information System (INIS)

    Koziak, B.D.P.; Murray, D.W.

    1979-06-01

    An iterative numerical technique for analysing the biaxial response of reinforced and prestressed concrete wall segments subject to combinations of prestressing, creep, temperature and live loads is presented. Two concrete constitutive relations are available for this analysis. The first is a uniaxially bilinear model with a tension cut-off. The second is a nonlinear biaxial relation incorporating equivalent uniaxial strains to remove the Poissons's ratio effect under biaxial loading. Predictions from both the bilinear and nonlinear model are compared with observations from experimental wall segments tested in tension. The nonlinear model results are shown to be close to those of the test segments, while the bilinear results are good up to cracking. Further comparisons are made between the nonlinear analysis using constant membrane force-moment ratios, constant membrane force-curvature ratios, and a nonlinear finite difference analysis of a test containment structure. Neither nonlinear analysis could predict the reponse of every wall segment within the structure, but the constant membrane force-moment analysis provided lower bound results. (author)

  4. Structure and hot-rolled reinforcement rods properties evolution in the process of long service life

    International Nuclear Information System (INIS)

    Mikryukov, V.R.; Syomin, A.P.; Konovalov, S.V.; Ivanov, Yu.F.; Gromov, V.E.

    2006-01-01

    The physical nature of mechanical properties of hot-rolled reinforcement rods degradation during long-life operation is established by methods of transmission diffraction electron microscopy. It is shown that strength and plasticity properties decrease is due to cementite plates cutting and dissolution, microcracks formation process as a result of interstitial phase inclusions creation in the near-surface layer of material

  5. Structure and hot-rolled reinforcement rods properties evolution in the process of long service life

    Energy Technology Data Exchange (ETDEWEB)

    Mikryukov, V R [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Syomin, A P [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Konovalov, S V [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Ivanov, Yu F [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Gromov, V E [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation)

    2006-08-25

    The physical nature of mechanical properties of hot-rolled reinforcement rods degradation during long-life operation is established by methods of transmission diffraction electron microscopy. It is shown that strength and plasticity properties decrease is due to cementite plates cutting and dissolution, microcracks formation process as a result of interstitial phase inclusions creation in the near-surface layer of material.

  6. Prestress in

    Directory of Open Access Journals (Sweden)

    Vychytil J.

    2007-10-01

    Full Text Available Fibres in living cells carry the pre-existing tension (so-called prestress even without external loading. By changing the prestress, cells are able to control actively their overall mechanical response; it is therefore an important element in cell elasticity. To capture this feature, we propose the hyperelastic model of living tissues composed of balls and springs. The prestress in fibres is maintained due to the assumption of the constant volume of cells (it does not allow the springs to relax. Even if the structure is simple, the determination of reference configuration leads to non-unique solutions and bifurcations.

  7. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  8. Shear or bending? Experimental results on large t-shaped prestressed conrete beams

    NARCIS (Netherlands)

    Ensink, S.W.H.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Experimental results of four shear tests on two large prestressed concrete beams are compared to nonlinear analysis and design code calculations. The beams have a length of 12 m and a depth of 1.3 m and are reinforced with stirrups and pre-tensioning. The four tests consist of a single point load at

  9. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  10. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  11. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    Science.gov (United States)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  12. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  13. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Connor, J.J.

    1975-01-01

    The numerical procedures for predicting the nonlinear behavior of a prestressed concrete reactor vessel over its design life are discussed. The numerical models are constructed by combining three-dimensional isoparametric finite elements which simulate the concrete, thin shell elements which simulate steel linear plates, and layers of reinforcement steel, and axial elements for discrete prestressing cables. Nonlinearity under compressive stress, multi-dimensional cracking, shrinkage and stress/temperature induced creep of concrete are considered in addition to the elasti-plastic behavior of the liner and reinforcing steel. Various failure theories for concrete have been proposed recently. Also, there are alternative strategies for solving the discrete system equations over the design life, accounting for test loads, pressure and temperature operational loads, creep unloading and abnormal loads. The proposed methods are reviewed, and a new formulation developed by the authors is described. A number of comparisons with experimental tests results and other numerical schemes are presented. These examples demonstrate the validity of the formulation and also provide valuable information concerning the cost and accuracy of the various solution strategies i.e., total vs. incremental loading and initial vs. tangent stiffness. Finally, the analysis of an actual PCRV is described. Stress contours and cracking patterns in the region of cutouts corresponding to operational pressure and temperature loads are illustrated. The effects of creep, unloading, and creep recovery are then shown. Lastly, a strategy for assessing the performance over its design life is discussed

  14. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-10-10

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  15. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  16. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  17. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil

    2010-01-01

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  18. Comparison of the design rules for the end of the prestressed concrete double tee component between China and the United States

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Precast prestressed concrete double tee is an economic bearing component which can be made into a large span, large coverage area .From the angle of the design for the end of the precast prestressed concrete double tee component, flexure and axial tension in extended end, direct shear, diagonal tension at re-entrant corner, diagonal tension in extended end and the connection of the end of precast prestressed double tee component in China and the United States are compared. The comparative study provide the direction for the future development of China in the double tee,including strengthening the end reinforcement and increasing end connections.

  19. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  20. Prestressed Containments - Prestress losses and the effects of re-tensioning tendons

    International Nuclear Information System (INIS)

    Lundqvist, P.; Edin, M.; Persson, P.; Frisk, A.

    2015-01-01

    In Sweden the design of nuclear reactor containments, the structure which encloses the reactor vessel, is that of a concrete cylinder prestressed both horizontally and vertically. The main purpose of the containment is to prevent any radioactive discharge to the environment in case of e.g. an internal accident mainly through the induced compressive forces from the prestressing system. Since the tendon forces decrease with time due to long-term mechanism in the materials the remaining tendon forces are measured at regular intervals. In this paper the results from these measurements in the Swedish nuclear power plant Forsmark are presented. In addition, the losses in the cylinder walls were calculated using the models in Eurocode 2, which were modified based on the climatic conditions inside the reactor building. The results from the tendon force measurements showed that the prestress losses are low, between 5 % and 10 %, i.e. the margin to the lowest acceptable limit is currently sufficient. The effects of increasing the tendon forces were also investigated. Results from subsequent measurements on tendons where the tendon forces have been increased indicate that the development of the prestress losses may increase significantly when the tendon forces are increased to levels exceeding those of the original tensioning. The calculated prestress losses were in relatively good agreement with the measured losses, generally, the models somewhat overestimated the measured losses. (authors)

  1. Evaluation of anodes for galvanic cathodic prevention of steel corrosion in prestressed concrete piles in marine environments in Virginia.

    Science.gov (United States)

    1999-07-01

    Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...

  2. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2014-10-01

    Full Text Available With the extensive use of self-consolidating concrete (SCC worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  3. Reinforcement Data for Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2004-01-01

    Idealized materials data are derived from a number of test series reported in the literature and made by the author. The data cover a variety of reinforcing steels from mild steel, deformed bars and cold worked bars to cold drawn prestressing steels. Processes are described, which are responsible...

  4. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  5. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  6. Optimum Prestress of Tanks with Pinned Base

    DEFF Research Database (Denmark)

    Brøndum-Nielsen, Troels

    1998-01-01

    Amin Ghali and Eleanor Elliott presented in their paper an interesting suggestion for prestressing of circular tanks without sliding joints. For many prestressed tanks the following construction procedure is adopted:In order to ensure compressive hoop forces in the wall near the base, the wall...... is allowed to slide freely in the radial direction during tensioning (free base).After tensioning such displacements are prevented (pinned base). The present paper addresses the problem of prestress of such tanks.Keywords: circular prestressing; creep properties; prestressed concrete; redistribution...

  7. Analysis of initial prestress force of spatial tendon prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Shiau, H.-S.

    1975-01-01

    A theoretical investigation is presented of the initial stage of prestressed tendon and prestressed concrete before and after jacking force of tendon anchorage released. A method is developed that is applicable to any kind of spatial tendon considering frictional loss due to length and curvature effects. A triple integral equation of one independent variable and jacking force is derived to represent an exact solution of tendon force along the whole tendon which may have reverse curvatures. In order to analyze the stress response of concrete due to this prestress force by using existing finite element computer program or any other kind of computer program, a systematic method is suggested to obtain tendon force components, which are represented by a series of equations of one independent variable, in any coordinate system as external force applied on the concrete. The resulting systems of the equations are then solved by numerical mathematic and computer techniques. Two numerical examples are represented. The first example is, dome prestress analysis of containment building by the proposed method and Kalnins' computer program for shell of revolution. Results are discussed. The second example is picked from prestress analysis for personnel air lock of containment building by using proposed method and FELAP finite element Computer program. It includes two different tendon arrangements around the opening. The results of these two different arrangements are compared and discussed

  8. Evaluate the capability and accuracy of response-2000 program in prediction of the shear capacities of reinforced and prestressed concrete members

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2012-08-01

    Member response analysis and sectional analysis were both used in Response-2000 to predict the behavior of the beams. Member response calculates the full member behavior including the deflection and curvature along the member length, as well as predicted failure modes. The analysis was performed by specifying the length subjected to shear and any constant moment region. Response-2000 provided a very good prediction of experimental behavior when compared to a database of 534 beams tested in shear. These include prestressed and reinforced sections, very large footing-like sections, sections made with very high strength concrete and elements with unusual geometry. All are predicted well. The results include that Response-2000 can predict the failure shear with an average experimental over predicted shear ratio of 1.05 with a coefficient of variation of 12%. This compares favorably to the ACI 318-08 [2] Code prediction ratios that have an average of 1.20 and a coefficient of variation of 32%.

  9. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.

    Science.gov (United States)

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-08-18

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures.

  10. DYNAPCON: a computer code for dynamic analysis of prestressed concrete structures

    International Nuclear Information System (INIS)

    Marchertas, A.H.

    1982-09-01

    A finite element computer code for the transient analysis of prestressed concrete reactor vessels (PCRVs) for LMFBR containment is described. The method assumes rotational symmetry of the structure. Time integration is by an explicit method. The quasistatic prestressing operation of the PCRV model is performed by a dynamic relaxation technique. The material model accounts for the crushing and tensile cracking in arbitrary direction in concrete and the elastic-plastic behavior of reinforcing steel. The variation of the concrete tensile cracking and compressive crushing limits with strain rate is taken into account. Relative slip is permitted between the concrete and tendons. Several example solutions are presented and compared with experimental results. These sample problems range from simply supported beams to small scale models of PCRV's. It is shown that the analytical methods correlate quite well with experimental results, although in the vicinity of the failure load the response of the models tend to be quite sensitive to input parameters

  11. Analysis of instability of tall buildings with prestressed and waffle slabs

    Directory of Open Access Journals (Sweden)

    V. M. Passos

    Full Text Available ABSTRACT The construction system of prestressed flat slabs has been gaining market in Brazil, since it eliminates the use of beams, allows you to perform structures under coluns by area and reduces the cycle of concrete slabs. Thus the analysis of global stability of buildings, takes into account the effects of 2nd order, and these additional effects to the structure obtained from the deformation thereof, calculated by the iterative method P-Delta. The Brazilian ABNT NBR 6118: 2014 [2] assesses the overall stability of reinforced concrete structures through practical parameters, which are the parameter a (Alpha and gz (Gamma z coefficient. In this research we seek to study the global stability of slender buildings consist of flat slabs, with slenderness (ratio of the smaller width with the height of the building approximately one to six, from the modeling of a building with prestressed slabs nonadherent and waffle slabs. To model will use the commercial software CAD / TQS.

  12. The prestress-dependent mechanical response of magnetorheological elastomers

    International Nuclear Information System (INIS)

    Feng, Jiabin; Xuan, Shouhu; Liu, Taixiang; Ge, Lin; Zhou, Hong; Gong, Xinglong; Yan, Lixun

    2015-01-01

    Magnetorheological elastomers (MREs) are intelligent materials consisting of a rubber matrix filled with magnetizable particles. In many engineering applications, MREs are usually pre-confined and work with constraint-induced prestress. The prestress can significantly change the mechanical properties of MREs. In this work, the influence of prestress on the mechanical response of MREs is studieds both experimentally and theoretically. The storage modulus as well as the magneto-induced modulus change non-linearly with increasing prestress and three regions can be found in the non-linear change. In the non-full contact region, the MREs present poor mechanical properties at small prestress due to the unevenness of the sample surface. In the full contact region, the MREs are under suitable prestress, thus they present good mechanical properties. In the overload region, the pre-configured microstructure of the MREs is destroyed under the large prestress. Moreover, an analytical model is proposed to study the prestress-dependent mechanical properties of MREs. It is revealed that the prestress can change the inter-particle distance, thus further affecting the mechanical response of MREs. (paper)

  13. Fuel rod for liquid metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Vinz, P.

    1976-01-01

    In fuel rods for nuclear reactors with liquid-metal cooling (sodium), with stainless steel tubes with a nitrated surface as canning, superheating or boiling delay should be avoided. The inner wall of the can is provided along its total length with a helical fin of stainless steel wire (diameter 0.05 to 0.5 mm) to be wetted by hot sodium. This fin is mounted under prestressing and has a distance in winding of 1/10 of the wire diameter. (UWI) [de

  14. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  15. Development, testing and installation of prestressing of the PCPV's at Hinkley Point B and Hunterston B

    International Nuclear Information System (INIS)

    Taylor, S.J.; Eadie, D.McD.

    1976-01-01

    In order to keep the walls of the PCPVs at Hinkley Point B and Hunterston B as thin as possible it was desirable to have a prestressing system which permitted close spacing of the tendons and anchorages. A seven strand tendon system was adopted in which the strands are individually anchored by the well-established wedge and barrel system. The seven anchorages bear on to a square plate which transmits the anchorage load to the concrete via a cast steel trumpet. These seven strand anchorages are arranged in groups of four and precast into a steel box as an anchorage unit with an ultimate tendon load of about 1050 tonnes. The development leading up to the adoption of this prestressing system and anchorage arrangement is described. Full size proving tests were carried out on the four tendon anchorage box unit, together with an alternative arrangement using a square helix of bonded reinforcement. Information is given on the friction tests carried out on the completed vessel, prestressing of the PCPVs and the corrosion prevention methods adopted. (author)

  16. Study of Interaction of Reinforcement with Concrete by Numerical Methods

    Science.gov (United States)

    Tikhomirov, V. M.; Samoshkin, A. S.

    2018-01-01

    This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.

  17. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  18. Fracture detection in concrete by glass fiber cloth reinforced plastics

    Science.gov (United States)

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  19. Design study of prestressed rotor spar concept

    Science.gov (United States)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  20. Design of punching shear for prestressed slabs with unbonded tendons on internal columns

    Directory of Open Access Journals (Sweden)

    L. A. R. Luchi

    Full Text Available ABSTRACT This paper is related to the punching shear in prestressed slabs with unbonded tendons for interior columns calculated by the codes ABNT NBR 6118:2007, ABNT NBR 6118:2014, EN 1992-1-1:2004 e ACI 318-11. To calculate the punching shear resistance the formulations of the NBR 6118:07, effective until April/2014, did not consider the compression of the concrete in the plane of the slab, due to prestressing. Just the inclined components of some tendons were considered for total load applied relief, but this fact did not generate a significant difference, compared to reinforced concrete, because the inclination angle is very close to zero. The American and European provisions consider a portion related to the compression of the concrete in the planeof the slab. Differences in the results obtained by the four design codes will be exposed, showing that the EC2:04 and the NBR6118:14 achieved the best results.

  1. Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonino Recupero

    2014-01-01

    Full Text Available External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportation system, there was a steady increase in the weight and volume of traffic throughout the world. Besides increases in legal vehicle loads, the overloading of vehicles is a common problem and it must also be considered when designing or assessing bridges. As a result, many bridges are now required to carry loads significantly greater than their original design loads; and their deck results still deteriorated by cracking of concrete, corrosion of rebars, snapping of tendons, and so forth. In the following, a case study about a railway bridge retrofitted by external posttensioning technique will be illustrated.

  2. Investigations related to failure of prestressing tendons

    International Nuclear Information System (INIS)

    Boyadjiev, Z.

    1995-01-01

    Kozloduy NPP units 5 and 6 containment cladding shells are prestressed by the use of tendons 450 φ 5, made of high strength wires, class B-II. The prestressing force for each tendon is 10000 kN and the calculated breakdown force - 14000 kN. There are 96 tendons in the cylindrical part of the shell and 36 ones located in the containment dome. They are located in channel forming tubes of inner diameter of 200 mm, made of dense polyethylene. In order to assure biaxial prestressed condition, the prestressing tendons are located on screw shaped lines, both left and right, with declination to the horizon 35 degrees and 15 minutes. Each prestressing tendon initially forms a knee and following the bending at elevation + 10.80 m forms the other knee, in such a way, that its two ends are anchored in one and the same area-in a common or adjacent upper anchor boxes. The prestressing tendons in the containment dome are located in two perpendicular rows. Both ends of each tendon are anchored in a common fixing, the tendon being bent to the opposite side of the dome. During construction and operation of units 5 and 6, it was found, that the design prestressing force of 10000 kN can not be reached with some tendons, due to separate wires ruptures or due to the anchoring screw spent thread. The 1992 preliminary wires tests on a failed tendon found out deformation properties, different from the systematically obtained ones for the initial steel. Taking into consideration this fact, together with the IAEA regional project, concerning WWER-1000 seismic safety and items 4 and 6 of Kozloduy NPP Technical Council decisions of 10 June 1993, brought to delegation to the Research Construction Institute the performance of the technical analysis of the applied system for shell prestressing of containments of of units 5 and 6. The analysis comprises physical-mechanical and rheological properties of the high strength wires, used for containment shell prestressing and the over all technological

  3. Radiographic inspection of prestressed concrete up to 1600 mm wall thicnkess using a 9 MeV linear accelerator

    International Nuclear Information System (INIS)

    Niehus, F.; Coen, G.; Kretschmer, R.; Biercher, M.

    1985-01-01

    The time since 1950 brought much effort for the NDT-industry, essentially originated by the growing of the metal producing and manufacturing industry. Contrarily in other industries, e.g. the cement and concrete manufacturing industry, NDT methods were not widely used. In the last 10 years defects in buildings of prestressed or reinforced concrete became a worldwide problem. The worse accident in the Federal Republic of Germany was the collapse of the front structure of the Berlin Congress Hall. Because of such experiences there is a great demand for non-destructive testing methods which help to check bridges, houses, buildings etc. This report deals with the unsufficient state of injection of tendons in prestressed concrete detected by a radiographic method

  4. Highly radioresistant aramid fiber as a concrete-reinforcing material. Development of reinforced compound materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Moriya, Toshio.

    1997-01-01

    Nuclear installations, such as nuclear fusion reactor always receive strong influence from magnetic field. There, stray current is induced by the changes in magnetic fields among iron rods of the construction, resulting that the plasma control magnetic field might be disturbed. As the countermeasures for these troubles, iron rods mixed with non-magnetic Mn-steel have been used in JAERI, but it is insufficient to completely prevent such electromagnetic damages. Thus, aramid fiber reinforced plastics (ArFRP) was paid an attention as a concrete-reinforcing material. JAERI has been attempting to develop a radioresistant ArFRP jointly with Mitsui Construction Co., Ltd. and a highly efficient producing process of ArFRP was developed. The product had superior properties in respects of radioresistancy, heat-resistancy and durability. The properties of newly developed ArFRP rods were compared with those of the conventional ArFRP and iron rods. (M.N.)

  5. Acoustic Emission Analysis of Prestressed Concrete Structures

    Science.gov (United States)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  6. Acoustic Emission Analysis of Prestressed Concrete Structures

    International Nuclear Information System (INIS)

    Elfergani, H A; Pullin, R; Holford, K M

    2011-01-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  7. PACE 1450 EXP an experimental setup to study the mechanical behaviour of a standard zone of prestressed reinforced concrete containment

    International Nuclear Information System (INIS)

    Hermann, N.; Kiefer, D.; Gerlach, L.; Niklasch, C.; Le Pape, Y.; Bento, C.; Michel-Ponnelle, S.

    2009-01-01

    The PACE 1450 experimental project is an intermediate sized experiment to investigate the behaviour of a curved specimen which is representative for the prestressed containment of a 1450 MWe nuclear power plant. The specimen is loaded by air pressure simulating the internal pressure within the reactor containment under inspection and accidental conditions. The resulting ring tensile stresses of the cylindrical part of the containment are applied externally by eight hydraulic jacks. The initial prestressing of the specimen is realised in such a way that a decreasing of the prestressing force for the purpose of simulating the aging of the structure is possible. The mechanical part of the facility is designed in a way that with only slight modification also specimen with a different curvature can be tested under similar conditions within the capabilities of the set-up. The test campaign has been successfully started and is still running. Within the current project the specimen will be tested in 4 Runs which will culminate in a test with a pressure of 7 bar absolute at a temperature of 180 Celsius degrees. Further tests with air-steam-mixtures are possible but not yet decided

  8. A phenomenological model for pre-stressed piezoelectric ceramic stack actuators

    International Nuclear Information System (INIS)

    Wang, D H; Zhu, W

    2011-01-01

    In order to characterize the hysteretic characteristics between the output displacement and applied voltage of pre-stressed piezoelectric ceramic stack actuators (PCSAs), this paper considers that a linear force and a hysteretic force will be generated by a linear extension and a hysteretic extension, respectively, due to the applied voltage to a pre-stressed PCSA and the total force will result in the forced vibration of the single-degree-of-freedom (DOF) system composed of the mass of the pre-stressed PCSA and the equivalent spring and damper of the pre-stressed mechanism, which lets the PCSA be pre-stressed to endure enough tension. On this basis, the phenomenological model to characterize the hysteretic behavior of the pre-stressed PCSA is put forward by using the Bouc–Wen hysteresis operator to model the hysteretic extension. The parameter identification method in a least-squares sense is established by identifying the parameters for the linear and hysteretic components separately with the step and periodic responses of the pre-stressed PCSA, respectively. The performance of the proposed phenomenological model with the corresponding parameter identification method is experimentally verified by the established experimental set-up. The research results show that the phenomenological model for the pre-stressed PCSA with the corresponding parameter identification method can accurately portray the hysteretic characteristics of the pre-stressed PCSA. In addition, the phenomenological model for PCSAs can be deduced from the phenomenological model for pre-stressed PCSAs by removing the terms related to the pre-stressed mechanisms

  9. Temperature effects on loss of prestress due to relaxation of steel

    International Nuclear Information System (INIS)

    Appa Rao, G.; Yamini Sreevalli, I.; Meher Prasad, A.; Reddy, G.R.; Prabhakar, G.

    2007-01-01

    Prestressed concrete is used in general civil engineering applications and in nuclear power plants for a number of structures such as containments, reactor pressure vessels, missile shield members, reactor cavity walls etc. Loss of prestress in containment structures is a serious concern for the longevity rather than serviceability. Loss of prestress higher than the initially designed values has been reported by various agencies at a number of nuclear power plants with prestressed concrete containment structures. At present the codes specify the prestress losses in Nuclear Power Plant Containment (NPPC) structures for 50 years. However there is a continuous effort to improve the life of NPPC particularly for a design life of 100 years. The long-term losses are mainly due to relaxation of prestressing cables, creep and shrinkage of concrete. The loss of prestress due to relaxation of prestressing cables is considered to be severe due to temperature effects. In this paper an effort has been made to understand the loss of prestress due to relaxation of steel at different temperatures namely 20 degC, 25 degC, 30 degC, 35 degC, 40 degC and 45 degC and the results up to 1000 hrs to estimate the losses over longer life of structures. The initial prestress was maintained at 0.70 times guaranteed ultimate tensile strength (GUTS) of cables. The prestressing loss due to relaxation of prestressing cables increases as the temperature increases. (author)

  10. Failure modes of prestressed CFRP rods in a wedge anchored set-up

    DEFF Research Database (Denmark)

    Bennitz, Anders; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    : soft slip, power slip, cutting of fibres, crushing of rod, bending of fibres, frontal overload and intermediate rupture. In this paper the failure modes are discussed further. The failures are documented with explanatory figures and their backgrounds are found in the theory. Suggestions are given...

  11. Structural model testing for prestressed concrete pressure vessels: a study of grouted vs nongrouted posttensioned prestressing tendon systems

    International Nuclear Information System (INIS)

    Naus, D.J.

    1979-04-01

    Nongrouted tendons are predominantly used in this country as the prestressing system for prestressed concrete pressure vessels (PCPVs) because they are more easily surveyed to detect reductions in prestressing level and distress such as results from corrosion. Grouted tendon systems, however, offer advantages which may make them cost-effective for PCPV applications. Literature was reviewed to (1) provide insight on the behavior of grouted tendon system, (2) establish performance histories for structures utilizing grouted tendons, (3) examine corrosion protection procedures for prestressing tendons, (4) identify arguments for and against using grouted tendons, and (5) aid in the development of the experimental investigation. The experimental investigation was divided into four phases: (1) grouted-nongrouted tendon behavior, (2) evaluation of selected new material systems, (3) bench-scale corrosion studies, and (4) preliminary evaluation of acoustic emission techniques for monitoring grouted tendons in PCPVs. The groutability of large tendon systems was also investigated

  12. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  13. Steel fiber replacement of mild steel in prestressed concrete beams

    Science.gov (United States)

    2010-10-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...

  14. Steel fiber replacement of mild steel in prestressed concrete beams.

    Science.gov (United States)

    2011-01-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and transverse mild : steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams exhibit early-...

  15. On topology optimization of plates with prestress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2001-01-01

    of the sensitivities is complicated because of the initial stress stiffness matrix, but the computational cost can be kept low by using the adjoint method. The topology optimization problem is solved using the solid isotropic material with penalization (SIMP) method in combination with method of moving asymptotes (MMA......In this work, topology optimization is used to optimize the compliance or eigenvalues of prestressed plates. The prestress is accounted for by including the force equivalent to the prestressing and adding the initial stress stiffness matrix to the original stiffness matrix. The calculation...

  16. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  17. Core reilforced braided composite armour as a substitute to steel in concrete reinforcement

    OpenAIRE

    Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Araújo, Mário Duarte de; Pereira, C. Gonilho; Jalali, Said

    2006-01-01

    This paper presents the work that is being done at the University of Minho concerning the development of brainded rods concrete reinforcement. Several samples of core reinforced braided fabrics have been produced varying the type of braided fabric (core reinforced and hybrid), the linear density of the core reinforcing yarns and the type of braiding structure (with or without ribs). The tensile properties of braided fabrics has also been analysed. Core reinforced braided composites rods were ...

  18. Development of prestressed concrete containment vessels

    International Nuclear Information System (INIS)

    Yuji, Hideo; Kuniyoshi, Mutsumu; Nagata, Kaoru

    1983-01-01

    This paper presents a summary of evaluations for the selection of the structural and prestressing system type to be employed for the first domestic Prestressed Concrete Containment Vessel (PCCV) in Japan. This paper also discusses characteristic features in the design of the liner plate system provided on the PCCV inner surface to assure its leak-tight integrity. Prestressed concrete containment vessels so far constructed in foreign countries are to a considerable extent of different structural types, depending on differences in dome shapes, prestressing systems and number of buttresses. These differences are caused not only by differences in design philosophy and construction practices, but also by difference in the level of technology of the times when the individual containment vessels are being constructed. In the investigation reported herein, the most suitable types of PCCV and Prestressing Systems were determined as the results of an overall comparative evaluation of data and information obtained from PCCV's so far constructed from the design, construction and cost aspects, taking into consideration the seismic criteria, available technology, construction practices, regulations and technical standards in Japan. The function of the liner plate system requires the liner to have enough deformability so that the liner deformation can be consistent with the PCCV concrete deformation. Therefore, in the design of the liner plate system a method for evaluating liner deformability was employed, instead of the stress evaluation method which is widely used in the design of ordinary structures. (author)

  19. Investigation of long-term prestress losses in pretensioned high performance concrete girders.

    Science.gov (United States)

    2005-01-01

    Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress loss...

  20. Construction method with prestressed connection of precast prestressed concrete using composite slab with multi-round opening web. Bibai factory office building of Dopi Kensetsu Kogyo Co; Web bu ni renzoku enkei kaiko wo yusuru PC gosei yukaita wo mochiita PC kumitate koho. Dopi kensetsu kogyo (kabu) Bibai kojo jimushoto shinchiku koji

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, H.; Nakai, J.; Arai, S.; Toriya, T.

    1997-07-31

    This report summarizes the experimental result on the structural performance of precast prestressed concrete (PC) composite slab work, and a construction method with prestressed connection of PC. Although a double T type precast PC slab (DT board) is frequently used as buried form for slabs, it requires extremely complex bar arrangement and complicated works. The reinforcement method of supports using deformed hair pin type bars was thus devised which has a structural performance higher than that of the previous methods as well as simple bar arrangement and superior workability. For the reinforced DT board (DP slab) and the composite slab construction method using the DP slab, the structural safety and retained use environment were confirmed by structural performance test and construction test. The foundation and footing beam of the Bibai factory office building were constructed by the conventional method considering the construction method, while the column, beam and floor by this method using PCa members. The upper building frame was thus completed for as short as 23 days. 5 refs., 15 figs., 4 tabs.

  1. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  2. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-01-26

    ... retarded, by reason of subsidized and less-than-fair-value imports from China of prestressed concrete steel... in prestressed concrete (both pre-tensioned and post- tensioned) applications. The product definition..., producers, or exporters in China of prestressed concrete steel wire strand, and that such products are being...

  3. Experimental Research on Destruction Mode and Anchoring Performance of Carbon Fiber Phyllostachys pubescens Anchor Rod with Different Forms

    Directory of Open Access Journals (Sweden)

    Wang Yulan

    2018-01-01

    Full Text Available The anchoring technology is extensively applied in reinforcing protection of the earth relics. Now that no specification is available for different new anchor rods in earth relics protection due to diversified destruction modes of earth relics and complexity of engineering technology conditions, it is urgent to guide reinforcing design and construction with a complete detailed anchor rod research document. With the new carbon fiber Phyllostachys pubescens anchor rod as the research object, six lots of in situ tests are designed to, respectively, study the destruction mode and anchoring performance of the carbon fiber Phyllostachys pubescens anchor rod under different anchor length L, anchor rod diameter D, bore diameter H, grouting material S, rib spacing R, and inclination angle A in this paper. By studying load shift curve experiment in drawing of the anchor rod, the destruction mode and ultimate bearing capacity of the carbon fiber Phyllostachys pubescens anchor rod in different experiment lots are obtained, and the concept of permitted application value N in anchor rod design is proposed. By studying strain distribution characteristics of anchor rods in experimental lots along the length direction under action of the permitted application value N and combining the existing destruction mode and ultimate bearing capacity, this paper analyzes influences of L, D, H, S, R, and A on anchoring effect of the carbon fiber Phyllostachys pubescens anchor rod; gives the reasonable value range of L, D, H, and R when the carbon fiber Phyllostachys pubescens anchor rod is used for reinforcing design of the earth relics; and provides favorable experiment basis for reinforcing design of the earth relics based on the carbon fiber Phyllostachys pubescens anchor rod.

  4. Machine for winding under tension a prestressing wire

    International Nuclear Information System (INIS)

    Perez, M.A.; Thillet, Georges.

    1975-01-01

    This invention concerns a machine for winding under tension a prestressing wire or cable. It is used in the wrapping of cylindrical structures, particularly concrete vessels, for the purpose of achieving radial prestressing in them [fr

  5. Crack analysis of multicavity prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Gallix, R.; Liu, T.C.; Lu, S.C.H.

    1975-01-01

    A new method to perform the crack analysis of non-axisymmetric, multicavity prestressed concrete reactor vessels (PCRV's) subjected to hypothetical overpressure by using an axisymmetric two-dimensional finite element computer code is presented. Concrete, steel liner, bonded reinforcing steel and prestressing steel elements are modeled. The limiting tensile strain criterion is adopted for concrete cracking. The steel elements are assumed to be elastic/perfectly plastic. Von Mises yield criterion and Prandtl-Reuss flow equations define the behavior of the liner in the range of plastic deformations. An orthotropic stress-strain constitutive law is utilized for cracked concrete elements. To account for the presence of penetrations and secondary cavities in the PCRV, a modified finite element model based on the concept of effective moduli is adopted. The pressure in these cavities is simulated by equivalent axisymmetric pressure distributions. In the analysis, the pressure is applied incrementally. For a given pressure, the displacements, strains, and stresses are computed. The state of strains or stresses is then examined against the cracking or yield criteria. If cracking or yield is indicated, the stiffness and load matrices for the cracked and yielding elements are recomputed and a new equilibrium is sought. This procedure is repeated until the desired convergence of the solution is achieved. The validity of the adopted approach utilizing the two-dimensional finite element method for overpressure analyses of non-axisymmetric PCRV's is demonstrated through comparisons with two multicavity PCRV scale models. A reliable and conservative estimate of PCRV behavior under overpressure is obtained

  6. Alternative materials for the reinforcement and prestressing of concrete

    National Research Council Canada - National Science Library

    Clarke, John L

    1993-01-01

    ... and bridges subjected to de-icing salts. Many approaches are being tried to inhibit the corrosion mechanism in aggressive environments. Most involve protective systems of some sort, applied either to the reinforcement directly or to the exposed concrete surface. One alternative approach being developed worldwide at an increasing pace is the replacement of...

  7. Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Yamada, Kazuie.

    1983-01-01

    Reactor containment vessels have been made of steel so far, but since it was decided to adopt a prestressed concrete vessel in the Tsuruga No. 2 plant of Japan Atomic Power Co., the construction of the containment vessels made of prestressed concrete and reinforced concrete has been studied by various electric power companies. However in Japan, there is no standard for the design and construction of concrete structures of this kind. In the standard of foreign countries used for reference, the basis of the stipulation concerning the aseismatic design of concrete containment vessels is not distinct. In this study, the clarification of the strength and deformation when RC vessels are subjected to seismic force only or to internal pressure and seismic force was aimed at, and the result of the loading test by one or two-direction in-plane forces on RC shell elements was examined. Based on this, the method of estimating the strength and deformation of RC shell elements was proposed. The orthogonal reinforcement was adopted, and the strength of shell elements was determined by the yielding of reinforcing bars. (Kako, I.)

  8. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin [DAEWOO E and C, Institute of Construction Technology, 60 Songjook-dong, Jangan-gu, Suwon, Kyonggi 440-210 (Korea, Republic of)]. E-mail: jsj@dwconst.co.kr; Chung, Chul-Hun [Department of Civil and Environmental Engineering, Dankook University, San 8, Hannam-dong, Youngsan-gu, Seoul 140-714 (Korea, Republic of)

    2005-12-15

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results.

  9. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Chung, Chul-Hun

    2005-01-01

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results

  10. A Review on the Development of New Materials for Construction of Prestressed Concrete Railway Sleepers

    Science.gov (United States)

    Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.

  11. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    International Nuclear Information System (INIS)

    El-Tahan, M; Dawood, M; Song, G

    2015-01-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements. (paper)

  12. Thirty years of measured prestress at Swedish nuclear reactor containments

    International Nuclear Information System (INIS)

    Anderson, Patrick

    2005-01-01

    The main function of the reactor containment, i.e. to ensure tightness at a major internal accident, depends directly on the prestressing system. To secure that the prestress level is sufficient, the tendon force has been measured during the whole time of operation. The general results from these measurements show that the loss of prestress 30 years after tensioning is between 5 and 10%. This is much lower loss than predicted initially at the design stage. More advanced and today commonly used models for predicting prestress loss show better agreement with the results. The main reasons for the relatively low loss are assumed to be: (1) the confirmed slow drying process of the concrete and (2) the high concrete age at the initial tensioning. The results also indicate that the temperature has a major influence on the loss of prestress

  13. Monitoring of prestress losses using long-gauge fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2017-04-01

    Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.

  14. 75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations

    Science.gov (United States)

    2010-06-28

    ... prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of the Harmonized... Publication 4162 (June 2010), entitled Prestressed Concrete Steel Wire Strand from China: Investigation Nos... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed...

  15. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte, R.; Marchand, J. D. [Bonnard et Gardel, Ingenieurs-Conseil, Lausanne (Switzerland)

    1981-01-15

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed.

  16. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1981-01-01

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed

  17. Synthesis of concrete bridge piles prestressed with CFRP systems.

    Science.gov (United States)

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  18. Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members

    Science.gov (United States)

    Caro, L. A.; Martí-Vargas, J. R.; Serna, P.

    2013-11-01

    For design purposes, it is generally considered that prestressing strand transfer length does not change with time. However, some experimental studies on the effect of time on transfer lengths show contradictory results. In this paper, an experimental research to study transfer length changes over time is presented. A test procedure based on the ECADA testing technique to measure prestressing strand force variation over time in pretensioned prestressed concrete specimens has been set up. With this test method, an experimental program that varies concrete strength, specimen cross section, age of release, prestress transfer method, and embedment length has been carried out. Both the initial and long-term transfer lengths of 13-mm prestressing steel strands have been measured. The test results show that transfer length variation exists for some prestressing load conditions, resulting in increased transfer length over time. The applied test method based on prestressing strand force measurements has shown more reliable results than procedures based on measuring free end slips and longitudinal strains of concrete. An additional factor for transfer length models is proposed in order to include the time-dependent evolution of strand transfer length in pretensioned prestressed concrete members.

  19. Study on effective prestressing effects on concrete containment under the design-basis pressure condition

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Wang Lu; Mao Huan; Yang Yu

    2013-01-01

    Prestressing technology is widely used in nuclear power plant containment building, and the durability of containment structure is affected directly by the distribution and loss of prestressing value under design-basis pressure. Containment structure and the distribution of prestressing system are introduced briefly. Furthermore, the calculating process of horizontal prestressing bunch loss near the equipment hatch hole is put forward in details, and the containment structure prestressing loss when 5-year pressure test is obtained. Based above analysis, the finite element model of the prestressed concrete containment structure is built by using ANSYS code, the prestressing effect on concrete containment is analysed. The results show that most of the design pressure is bore by the prestressing system under the design-basis pressure, so the containment structure is safe. These conclusions are consistent with prestressing containment system design concepts, which can provide reference to the engineering staff. (authors)

  20. NPP containment pre-stress loss - summary statement

    International Nuclear Information System (INIS)

    1999-01-01

    Principal Working Group 3 of the CSNI deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal structures and components, ageing of concrete structures, and the seismic behaviour of structures. A status report on the ageing of concrete structures was prepared during 1995 by a task group to initiate activities in this field under PWG3. Tendon prestress loss was the first topic addressed by the group, with a workshop organised jointly by IPSN and EDF, and sponsored jointly by WANO and OECD-NEA. RILEM, FIB and IASMiRT also co-sponsored the workshop. Present experience suggests that the current methods for the prediction of the loss of tendon prestress are generally satisfactory. The nuclear industry has adopted regulatory and codified methods for predicting the loss of prestress in nuclear power plant (NPP) prestressed concrete containments from international and national standards that are not necessarily specific to nuclear design. The application of the different methods to a specific case is likely to lead to significant differences in the predicted losses. Theoretical and experimental research have established the importance of understanding how chemical, hygro, mechanical and thermal factors influence the short term and long term behaviour of prestressed concrete. Improved and simplified simulations of creep and shrinkage phenomena that can account for the environment and loading history of prestressed concrete containments and pressure vessels will assist: the development of design regulations/standards; the choice of concrete mix; the development of relevant monitoring programmes, and ageing management including plant life extension. Prestressed concrete containments and pressure vessels use both grouted (bonded) tendons and un-grouted (un-bonded) tendons. The workshop considered the relative merits of both systems. Experience presented at the workshop indicates that comprehensive and regular

  1. Fabrication and testing of prestressed composite rotor blade spar specimens

    Science.gov (United States)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  2. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  3. Finite element investigation of the prestressed jointed concrete ...

    African Journals Online (AJOL)

    Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...

  4. Development of guidelines for transportation of prestressed concrete girders.

    Science.gov (United States)

    2011-11-01

    "Prestressed concrete girders are an economical superstructure system for bridges. With the : advent of higher strength concretes and more effi cient cross sections, the use of long span (>100 : ft.) prestressed girders are now specifi ed. Such long ...

  5. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Stuessi, U.

    1996-01-01

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  6. Determination of prestress and elastic properties of virus capsids

    Science.gov (United States)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  7. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    This paper discusses the development of a finite element code suitable for the safety analysis of prestressed concrete reactor vessels. The project has involved modification of a general purpose computer code to handle reinforced concrete structures as well as comparison of results obtained with the code against published experimental data. The NONSAP nonlinear structural analysis program was selected for the ease with which it can be modified to encompass problems peculiar to nuclear reactors. Pre- and post-processors have been developed for mesh generation and for graphical display of response variables. An out-of-core assembler and solver have been developed for the analysis of large three dimensional problems. The constitutive model for short term loads forms an orthotropic stress-strain relationship in which the concrete and the reinforcing steel are treated as a composite. The variation of stiffness and strength of concrete under multiaxial stress states is accounted for. Cracks are allowed to form at element integration points based on a three dimensional failure envelope in stress space. Composite tensile and shear properties across a crack are modified to account for bond degradation and for dowel action of the reinforcement. The constitutive law for creep is base on the expansion of the usual creep compliance function in the form of a Dirichlet exponential series. Empirical creep data are then fit to the Dirichlet series approximation by means of a least squares procedure. The incremental deformation process is subsequently reduced to a series of variable stiffness elasticity problems in which the past stress history is represented by a finite number of hidden material variables

  8. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  9. Warm pre-stressing

    International Nuclear Information System (INIS)

    Hedner, G.

    1983-01-01

    Literature survey and critical evaluation of the phenomenon of warm pre-stressing (WPS) is presented. It is found that the cause of it is not clear and a calculated control is missing. The effect of irradiation is unknown, and the influence of WPS on the behaviour of reactor vessels is discussed. (G.B.)

  10. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  11. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  12. Energy-efficiency increase of reinforced concrete columns with recessed working fittings

    Science.gov (United States)

    Muradyan, Viktor; Mailyan, Dmitry; Lyapin, Alexander; Chubarov, Valery

    2017-10-01

    One of the most important ways of increasing the energy-efficiency of the construction industry is the reduction of the material capacity of structures and labour intensity of their manufacturing. Since manufacturing of reinforced concrete structures requires considerable financial and energy expenses, then reduction of technological cycle operations is sure to be the urgent task today. It is well known, that in the recessed reinforced concrete elements the transverse reinforcement is fixed for the purpose of ensuring the longitudinal rods fixity. Besides, the thickness of the protective layer, as a rule, is taken the minimum. The authors proposed to increase the protective layer, and that will reduce the amount of transverse reinforcement rods significantly and will make the technological process of structures manufacturing easier.

  13. The risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Isecke, B.; Mietz, J. (Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany))

    1993-01-01

    High strength prestressing steels in prestressed concrete structures are protected against corrosion due to passivation resulting from the high alkalinity of the concrete. If depassivation of the prestressing steel occurs due to the ingress of chlorides the corrosion risk can be minimized by application of cathodic protection with impressed current. The risk of hydrogen embrittlement of the prestressing steel is especially pronounced if overprotection is applied due to hydrogen evolution in the cathodic reaction. The present work considers this risk by hydrogen activity measurements under practical conditions and application of different levels of cathodic protection potentials. Information on threshold potentials in prestressed concrete structures is provided, too. (orig.).

  14. Super-light Structures with Pearl-chain Reinforcement

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2010-01-01

    Steel structures are considered to be light compared to concrete structures. This paper presents a newly invented type of structure which is often light compared to steel structures, and therefore it is called "Super-light Structures", or SLS. The basic idea of SLS is to build a skeleton...... of prefabricated segments of a strong material, assembled by one or more prestressing wires. By means of pearl-chain reinforcement, it becomes affordable to provide structures with a wide variety of shapes. This allows a more resource-economical design, because it removes practical hindrances for application...

  15. The measurement of stresses in prestressed concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Dincmen, T.

    1978-03-01

    This report deals with the measurement of stresses in the prestressed concrete vessel at the research center Seibersdorf during the prestressing and the thermal stabilization period. The thermal stabilization was carried out at 120 0 C. (author)

  16. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  17. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  18. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  19. Structural health monitoring methods for the evaluation of prestressing forces and pre-release cracks

    Directory of Open Access Journals (Sweden)

    Hiba Abdel-Jaber

    2016-08-01

    Full Text Available Prestressed concrete bridges currently account for 45% of bridges built in the last five years in the United States. This has resulted in an increase in the number of deficient bridges composed of prestressed concrete, which requires a better understanding of the on-site performance of this building material. The use of new materials, such as high performance concrete, in conjunction with prestressing provides additional motivation for the creation of structural health monitoring (SHM methods for prestressed concrete. This paper identifies two parameters relevant to prestressed concrete, along with methods for their evaluation. The parameters evaluated are the prestressing force value at transfer and the width of pre-release cracks, both of which are indicators of structural performance. Improper transfer of the prestressing force can result in tensile stresses in the concrete that exceed capacity and result in cracks and/or excessive deflections. Pre-release cracks occur in the concrete prior to transfer of the prestressing force and are mainly caused by autogenous shrinkage and thermal gradients. Closure of the cracks is expected by virtue of prestressing force transfer. However, the extent of crack closure is important in order to guarantee durability and structural integrity. This paper presents an integral overview of two novel methods for the statistical evaluation of the two monitored parameters: prestressing forces and the width of pre-release cracks. Validation of the methods is performed through application to two structures, both of which are components of Streicker Bridge on the Princeton University campus. Uncertainties are evaluated and thresholds for unusual behavior are set through the application.

  20. Experience in surveillance of the prestress of concrete reactor vessels in Wylfa nuclear power station

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Walsh, S.R.

    1989-01-01

    This paper describes experience gained in the in-service surveillance of the prestressing system for the prestressed concrete reactor vessels (PCRVs) at Wylfa nuclear power station. The paper gives details of results for the prestressing system obtained from the statutory in-service inspection program of the PCRVs. The program includes a detailed examination of a selection of prestressing tendon anchorages, anchorage load checks using a lift-off technique on a one percent sample of tendons and corrosion inspection of samples of prestressing strand and determination of their mechanical properties. The results obtained from the above in-service inspections have shown that the prestressing system continues to function within its design limits

  1. Constitutive equations for cracked reinforced concrete based on a refined model

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)

  2. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  3. Civil engineering: calculations of pre-stressed concrete structures using CodeAster

    International Nuclear Information System (INIS)

    Gerard, B.; Ulm, F.

    1997-11-01

    This document presents an analysis of the different calculation methods for pre-stressed concrete structure which can be performed by using finite element methods. Two methods of calculating the pre-stressing of concrete structures with finite elements have been determined. The equivalent method which consists of replacing the action of pre-stressing the concrete by equivalent forces. These method is well suited to dimensioning and studying the overall stability of a structure. It is not an easy matter to take into account the coupled or time-varying phenomena. This approach ignores the evolution of the interaction between the pre-stressing and the concrete. The explicit method which consists of including the mechanical resolution of the pre-stressed cables in that of a concrete structure. Not only does this allow a local study of the pre-stressed to be made, it also allows the coupling which developed over time to be determined, e.g. slip, deferred deformation and coupling between the steel and concrete behaviours. This method enables non-linear phenomena with varying degrees of complexity, such as fracture or yielding of the steels, drying out of the concrete, creep, etc to be described. The two methods are complementary. This document presents the mathematical and computer developments relating to each of this method. In the case of the explicit method, certain of the Code-Aster functions already make it possible to meet several EDF application requirements. Several couplings can be taken into account, such as thermomechanical, shrinkage in drying, creep, relaxation and injection of the cables. Three immediate developments of Code-Aster are proposed for the following applications: - a procedure for calculating the pre-stress losses along the pre-stressing cables; - a command to allocate these forces in the form of an initial force field in the bar elements associated with the cables; - a procedure for linking elements whose nodes do not coincide with each other

  4. Overview of the use of prestressed concrete in U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; Naus, D.J.

    1983-01-01

    The extent of the use of prestressed concrete in nuclear power plants is outlined. Evolution of large size prestressing systems and corrosion inhibiting materials is described. A summary of major problems which have been encountered with prestressed concrete construction at nuclear power plant containments in the United States is presented; that is, dome delamination, cracking of anchorheads, settlement of bearing plates, etc. Guidelines for a tendon inservice inspection program are described as well as the effectiveness of these programs. The paper concludes with an assessment of the overall effectiveness of the prestressed concrete containments. (orig.)

  5. Closure system of a vessel made of prestressed concrete

    International Nuclear Information System (INIS)

    Audibert, Alain

    1974-01-01

    The present invention relates to removable plugs of prestressed concrete which can be fitted to every type of closed high pressure vessels and especially to the cylindrical vessels of nuclear reactors. The method involved permits the plug to be fitted to the vessel through both radial and axial prestress. In this purpose, said invention proposes removable prestress ribs fitted inside sheaths in the plug and extending throughout the upper part of the bearing surfaces of the plug, said ribs being regularly arranged along the generators of an hyperboloid of one sheet. Owing to this important feature, that is to say said inclination of the ribs in accordance with the generators of said hyperboloid, said rib inclination can be changed on requirement for each realization [fr

  6. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  7. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  8. Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng

    2018-01-01

    Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.

  9. Numerical models for prestressing tendons in containment structures

    International Nuclear Information System (INIS)

    Kwak, Hyo-Gyoung; Kim, Jae Hong

    2006-01-01

    Two modified stress-strain relations for bonded and unbonded internal tendons are proposed. The proposed relations can simulate the post-cracking behavior and tension stiffening effect in prestressed concrete containment structures. In the case of the bonded tendon, tensile forces between adjacent cracks are transmitted from a bonded tendon to concrete by bond forces. Therefore, the constitutive law of a bonded tendon stiffened by grout needs to be determined from the bond-slip relationship. On the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. It means that the tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. In advance, the prediction of cracking behavior and ultimate resisting capacity of prestressed concrete containment structures using the introduced numerical models are succeeded, and the need for the consideration of many influencing factors such as the tension stiffening effect, plastic hinge length and modification of stress-strain relation of tendon is emphasized. Finally, the developed numerical models are applied to prestressed concrete containment structures to verify the efficiency and applicability in simulating the structural behavior with bonded and/or unbonded tendons

  10. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    Science.gov (United States)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  11. An experiment on the use of disposable plastics as a reinforcement in concrete beams

    Science.gov (United States)

    Chowdhury, Mostafiz R.

    1992-01-01

    Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.

  12. Production and testing of flexible welding flux rods, used for protecting briquetting press molds from wear

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, B.; Czerwinski, M.; Dittrich, V.

    1985-11-01

    Production, properties and trial application are discussed for the Feroplast ZIS 218 welding powder rod, developed for automated surface armouring of brown coal briquetting press moulds by arc welding. The welding rod has a diameter of 8 mm and can be bent to a radius of less than 150 mm for reeling. The welding rod is produced by mixing 9% plasticizer (Miravithen and polyisobutylene according to GDR patent 203 269) to the steel welding powder. Weldability of the rod proved to be favourable; there was no emission of toxic fumes during welding. Microscopic studies of the welded surface coating showed that welding with 650A achieved the best coat pore structure. At the Schwarze Pumpe Gasworks the trial service life of various briquet press moulds, reinforced with Ferroplast ZIS 218, proved to be not shorter than that of moulds reinforced with the conventional ZIS powder welding method. 1 reference.

  13. Design of the containment structure in prestressed concrete for the Embalse-Cordoba Nuclear Power Plant

    International Nuclear Information System (INIS)

    Godoy, A.R.; Marinelli, C.A.; Gruenbaum, C.E.

    1978-01-01

    The design of a typical prestressed concrete containment structure for a 600 MW Candu - PHW Reactor, presently under construction at Embalse - Cordoba, Argentina is briefly described. The structural behaviour , adcpted prestressing system and tendon pattern are described. Afterwards the evaluation of the prestressing forces as well as the losses assessment and the prestressing sequence are discussed. Finally, some conclusions are drawn in the light of the experience gained at different stages of the construction. (Author)

  14. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1984-10-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present 'rule of thumb art' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and Advanced Gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French Gas Graphite reactors and the biological shields of Light Water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield. (author)

  15. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1985-01-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present ''rule of thumb art'' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and advanced gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French gas graphite reactors and the biological shields of light water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield

  16. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    Science.gov (United States)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  17. Self-monitoring surveillance system for prestressing tendons. Phase I small business innovation research

    International Nuclear Information System (INIS)

    Tabatabai, H.

    1995-12-01

    Assured safety and operational reliability of post-tensioned concrete components of nuclear power plants are of great significance to the public, electric utilities, and regulatory agencies. Prestressing tendons provide principal reinforcement for containment and other structures. In this phase of the research effort, the feasibility of developing a passive surveillance system for identification of ruptures in tendon wires was evaluated and verified. The concept offers high potential for greatly increasing effectiveness of presently-utilized periodic tendon condition surveillance programs. A one-tenth scale ring model of the Palo Verde nuclear containment structure was built inside the Structural Laboratory. Dynamic scaling (similitude) relationships were used to relate measured sensor responses recorded during controlled wire breakages to the expected prototype containment tendon response. Strong and recognizable signatures were detected by the accelerometers used. It was concluded that the unbonded prestressing tendons provide an excellent path for transmission of stress waves resulting from wire breaks. Accelerometers placed directly on the bearing plates at the ends of tendons recorded high-intensity waveforms. Accelerometers placed elsewhere on concrete surfaces of the containment model revealed substantial attenuation and reduced intensities of captured waveforms. Locations of wire breaks could be determined accurately through measurement of differences in arrival times of the signal at the sensors. Pattern recognition systems to be utilized in conjunction with the proposed concept will provide a basis for an integrated and automated tool for identification of wire breaks

  18. Experimental Verification Of Secondary Effect Due To Prestressing

    Directory of Open Access Journals (Sweden)

    Pažma Peter

    2015-12-01

    Full Text Available The aim of this article is to describe an experimental program at Slovak University of Technology in Bratislava, Department of concrete structures and bridges and its results. This experimental program was focused on two main subjects. The first one, which is also the topic of this article was an analysis of prestressing effects on the statically indeterminate structures, where the redundancy had been changed up to the kinematic mechanism development. The second topic was an analysis of behaviour of the prestressing units with different bond.

  19. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets

    Directory of Open Access Journals (Sweden)

    Patrik Lundberg

    2016-06-01

    Full Text Available Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity, i.e., the impact velocity at which interface defeat ceases and ceramic penetration occurs, decreased as the length scale increased. A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper. Here, the influence of confinement and prestress on cone cracking and transition velocity is investigated. The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress. A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined. The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material. Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration, although the model underestimates the influence of prestress.

  20. Assessment of Effective Prestressed Force of Nuclear Containment Building using SI Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. P.; Jang, J. B.; Hwang, K. M.; Song, Y. C. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Bonded tendons have been used in reactor buildings of heavy water reactors and the light water reactors of some nuclear power plants operating in Korea. The assessment of prestressed forces on those bonded tendons is becoming an important issue in assuring their continuous operation beyond their design life. In order to assess the effective prestressed force on the bonded tendon, indirect assessment techniques have been applying to the test beams which were manufactured on construction time. Therefore, this research mainly forced to establish the assessment methodology to measure directly the effective prestressed force on the bonded tendon of containment buildings using System Identification (SI) technique. To accomplish this purpose, simple SI method was proposed and adapted three dimensional finite element analysis of the 1:4 scale prestressed concrete containment vessel (PCCV) tested by Sandia National Laboratory in 2000

  1. 75 FR 28560 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Final Determination...

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel... antidumping investigation of prestressed concrete steel strand (``PC strand'') from the People's Republic of... are shown in the ``Final Determination Margins'' section of this notice. \\1\\ See Prestressed Concrete...

  2. Condition Assessment of PCI Bridge Girder a Result of The Reduction Prestressing Force

    Directory of Open Access Journals (Sweden)

    Suangga Made

    2014-03-01

    Full Text Available PCI bridge girders is known and widely used for many construction e.g.: bridge, wharf, flyover, and other application. PC Bridge girders have two types: Pre - tensioned girders and post - tensioned girders. In pre tensioned girders, prestressing in carried out first then after that the fresh concrete poured. The prestressing process in only carried off after the concrete has sufficient strength. In this study, analysis was conducted for PCI bridge girder with span is 40 meters. Based on the data geometry bridge dimension girder, material girder, and material strands cable, it will be analyzed to calculate the natural frequencies and moment capacity using finite element program (Midas/Civil program. So it can be estimated how much the percentage reduction prestress force on the bridge until PCI bridge structure collapses. From the calculation, it found that the pattern comparison between reduction prestressing force and natural frequency are linear. These results are also similar for natural frequency versus moment capacity.PCI bridge will collapse when the reduction prestreesing force of 45 % to 50 % from the total loss of prestressing.

  3. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  4. Flexural repair/strengthening of pre-damaged R.C. beams using embedded CFRP rods

    Directory of Open Access Journals (Sweden)

    Alaa M. Morsy

    2015-12-01

    Full Text Available Many reinforced concrete R.C. elements need either strengthening due to the need of increasing the service loads or repair due to overloading stress or environmental deterioration affecting these elements. In this paper an experimental program is presented to investigate the effect of using embedded CFRP rod as NSM reinforcement for strengthening/repairing R.C. beams pre-damaged by loading to different loading levels and comparing the results to those of non-preloaded beams. A total of five beams were cast and six beams were tested under four point loading. The main objective of this paper was to investigate the effect of providing one 12 mm diameter CFRP rod in addition to the existing steel reinforcement. Three beams were tested to failure directly without any preloading, whereas the other three beams were firstly subjected to preloading to different load levels. Following that these three beams were strengthened and were tested up to failure.

  5. The evolution and structural design of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Hannah, I.W.

    1978-01-01

    The introduction of the prestressed concrete pressure vessel to contain the main gas coolant circuit of nuclear reactors has marked a major step forward. This chapter traces the evolution and development of the PCPV, and lists the principal parameters adopted. Current design and loading standards are discussed in relation to the two main limit states of serviceability and safety. Prestressed concrete pressure vessel analysis has called for very extensive adaptation and expansion of conventional finite element and finite difference methods in order to deal with the elevated temperature of operation, together with extensive concrete testing at temperature and under multi-directional stressing. These new methods and extra data are being adopted in prestressed applications in other fields and may well prove to be of much wider significance than is presently appreciated. (author)

  6. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  7. 78 FR 75545 - Prestressed Concrete Steel Rail Tie Wire From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-990] Prestressed Concrete Steel... (``Department'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from... prestressed tendons in concrete railroad ties (``PC tie wire''). High carbon steel is defined as steel that...

  8. High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M., E-mail: marcus.perry@strath.ac.uk [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Yan, Z.; Sun, Z.; Zhang, L. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Niewczas, P. [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Johnston, M. [Civil Design Group, EDF Energy, Nuclear Generation, East Kilbride G74 5PG (United Kingdom)

    2014-03-15

    Highlights: • We weld radiation-resistant optical fibre strain sensors to steel prestressing tendons. • We prove the sensors can survive 1300 MPa stress (80% of steel's tensile strength). • Mechanical relaxation of sensors is characterised under 1300 MPa stress over 10 h. • Strain transfer between tendon and sensor remains at 69% after relaxation. • Sensors can withstand and measure deflection of tendon around a 4.5 m bend radius. - Abstract: Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels.

  9. Serviceability and Prestress Loss Behavior of SCC Prestressed Concrete Girders Subjected to Increased Compressive Stresses at Release

    Science.gov (United States)

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...

  10. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning

    2005-01-01

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  11. A fracture mechanics approach to predicting the effects of warm prestressing and its applications to pressure vessels

    International Nuclear Information System (INIS)

    Chell, G.G.

    1979-01-01

    A theory of warm prestressing based on the J-integral is described. The theory is validated using experimental warm pre-stressing data obtained on a carbon-manganese steel, two pressure vessel steels and mild steel. The theory is applied to the pressurised water reactor and the effects of warm prestressing evaluated after irradiation damage to the pressure vessel, and in the case of a loss of coolant accident. Warm prestressing increases the resistance to inhibits the initiation and propagation of the cracks. The benefits of warm prestressing for shallow cracks is less certain and a more detailed analysis is required. (orig.)

  12. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  13. 77 FR 69508 - Inservice Inspection of Prestressed Concrete Containment Structures With Grouted Tendons

    Science.gov (United States)

    2012-11-19

    ... Containment Structures With Grouted Tendons AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... (RG) 1.90, ``Inservice Inspection of Prestressed Concrete Containment Structures with Grouted Tendons... appropriate surveillance program for prestressed concrete containment structures with grouted tendons...

  14. Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Mao; Doshida, Tomoki [Graduate School of Science and Technology, Sophia University, Tokyo 102-8554 (Japan); Takai, Kenichi, E-mail: takai@me.sophia.ac.jp [Department of Engineering and Applied Science, Sophia University, Tokyo 102-8554 (Japan)

    2016-09-30

    Changes in the states of nondiffusible hydrogen and mechanical properties after cyclic prestressing in the presence of only nondiffusible hydrogen were examined for martensitic steel containing vanadium carbide. The relationship between the change in the state of nondiffusible hydrogen and mechanical properties was also investigated. The hydrogen desorption profile in the high-temperature range decreased and that in the low-temperature range increased with increasing stress amplitude during cyclic prestressing in the presence of only nondiffusible hydrogen. Thus, the application of cyclic prestressing changed the state of hydrogen from a stable to an unstable one because of vacancies and their clusters. Hydrogen embrittlement susceptibility after cyclic prestressing increased with increasing stress amplitude and number of prestressing cycles in the presence of only nondiffusible hydrogen. This relationship indicates that hydrogen embrittlement susceptibility increased with the increasing amount of hydrogen detrapped from trap sites of nondiffusible hydrogen during cyclic prestressing. These results revealed that nondiffusible hydrogen easily detrapped from vanadium carbide due to the application of cyclic prestress and probably interacted with vacancies and their clusters, thus increasing hydrogen embrittlement susceptibility. The change of nondiffusible hydrogen to diffusible hydrogen and accumulation of vacancies and their clusters during cyclic prestressing are concluded to be the dominant factors in hydrogen embrittlement after the application of cyclic prestress.

  15. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  16. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    Science.gov (United States)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  17. Prediction of prestressing losses for long term operation of nuclear reactor buildings

    Directory of Open Access Journals (Sweden)

    Thillard G.

    2011-04-01

    Full Text Available Prestressed concrete is used in nuclear reactor buildings to guarantee containment and structural integrity in case of an accident. Monitoring and operating experience over 40 years has shown that prestressing losses can be much greater than the design estimation based on the usual standard laws. A method was developed to determine the realistic residual prestress level in structures, in particular for those where no embedded instrumentation was installed, taking into account in situ measurement results rather than design characteristics. The results can enable the owner to justify extending the lifespan while guaranteeing adequate safety and to define and plan adequate maintenance actions.

  18. Recent design methods for prestressed concrete cable stayed bridge; PC shachokyo no sekkei gijutsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, K. [Kajima Corp., Tokyo (Japan)

    1995-02-01

    The number of constructed prestressed concrete cable stayed bridges reached nearly 100 in Japan, and the technique has greatly developed. In this article, the current status of design techniques for prestressed concrete cable stayed bridges were introduced along with the examples of constructed bridges for the analysis method and the design method for each structure part while introducing the current examples of constructed bridges. Also, this kind of extra-dosed prestressed concrete bridge and prestressed concrete bridge with prestressed concrete stays were reported. Standards have been prepared including a chapter for the prestressed concrete cable stayed bridges in the Road Bridge Guideline document in February 1990. Load to be noticed as the characteristics peculiar to the prestressed concrete cable stayed bridges includes the shock due to live load, temperature change, and execution error of a tower. For example, 1/1000 of the total tower height is generally considered as the execution error of the tower. A diagonal member is manufactured at factories and in fields and has both advantages and disadvantages. The linear analysis of plane framework is general. Damping of and earthquakeproof designs against the wind and earthquake of the diagonal member were also provided. 11 refs., 17 figs., 2 tabs.

  19. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  20. Design and analysis of a lightweight prestressed antenna back-up structure

    Science.gov (United States)

    Ma, Zengxiang; Yang, Dehua; Cheng, Jingquan

    2010-07-01

    The planned Square Kilometer Array (SKA) includes three thousand 15m antennas. The radio flux density from the sun is stronger, so that a solar array, such as Frequency-Agile Solar Radiotelescope (FASR) with hundreds of dishes can have smaller dish size. Therefore, light weight, low cost dish design is of vital importance. The reflecting surface supported by an antenna back-up structure, generally, should have an RMS surface error less than λ/20 (λ. is the operating wavelength). For resisting gravitational, wind, and ice-snow loadings, an antenna dish also requires reasonable mode frequencies. In this paper, different low cost small or medium back-up structure designs are discussed, including double-layer truss design and prestressed dish design. Based on discussion, an innovative light weight, prestressed back-up structure is proposed for small or medium aperture antennas. Example of a small 4.5m aperture dish design working below 3GHz is presented. This design is a one-layer prestressed truss structure with low weight, ease installation, and low manufacture cost. Structural analysis and modal extraction results show the structure is much stiffer than the same structure without prestressed loading.

  1. Dynamic prestress in a globular protein.

    Directory of Open Access Journals (Sweden)

    Scott A Edwards

    Full Text Available A protein at equilibrium is commonly thought of as a fully relaxed structure, with the intra-molecular interactions showing fluctuations around their energy minimum. In contrast, here we find direct evidence for a protein as a molecular tensegrity structure, comprising a balance of tensed and compressed interactions, a concept that has been put forward for macroscopic structures. We quantified the distribution of inter-residue prestress in ubiquitin and immunoglobulin from all-atom molecular dynamics simulations. The network of highly fluctuating yet significant inter-residue forces in proteins is a consequence of the intrinsic frustration of a protein when sampling its rugged energy landscape. In beta sheets, this balance of forces is found to compress the intra-strand hydrogen bonds. We estimate that the observed magnitude of this pre-compression is enough to induce significant changes in the hydrogen bond lifetimes; thus, prestress, which can be as high as a few 100 pN, can be considered a key factor in determining the unfolding kinetics and pathway of proteins under force. Strong pre-tension in certain salt bridges on the other hand is connected to the thermodynamic stability of ubiquitin. Effective force profiles between some side-chains reveal the signature of multiple, distinct conformational states, and such static disorder could be one factor explaining the growing body of experiments revealing non-exponential unfolding kinetics of proteins. The design of prestress distributions in engineering proteins promises to be a new tool for tailoring the mechanical properties of made-to-order nanomaterials.

  2. 78 FR 75544 - Prestressed Concrete Steel Rail Tie Wire From Mexico: Preliminary Determination of Sales at Less...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-843] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico is being... element levels; suitable for use as prestressed tendons in concrete railroad ties (``PC tie wire''). High...

  3. 78 FR 75547 - Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-829] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tire wire (``PC tie wire'') from Thailand is not... shape, size or alloy element levels; suitable for use as prestressed tendons in concrete railroad ties...

  4. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  5. Minimum weight design of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Boes, R.

    1975-01-01

    A method of non-linear programming for the minimization of the volume of rotationally symmetric prestressed concrete reactor pressure vessels is presented. It is assumed that the inner shape, the loads and the degree of prestressing are prescribed, whereas the outer shape is to be detemined. Prestressing includes rotational and vertical tension. The objective function minimizes the weight of the PCRV. The constrained minimization problem is converted into an unconstrained problem by the addition of interior penalty functions to the objective function. The minimum is determined by the variable metric method (Davidson-Fletcher-Powell), using both values and derivatives of the modified objective function. The one-dimensional search is approximated by a method of Kund. Optimization variables are scaled. The method is applied to a pressure vessel like for THTR. It is found that the thickness of the cylindrical wall may be reduced considerably for the load cases considered in the optimization. The thickness of the cover is reduced slightly. The largest reduction in wall thickness occurs at the junction of wall and cover. (Auth.)

  6. 78 FR 57619 - Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of...

    Science.gov (United States)

    2013-09-19

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of China... prestressed concrete steel rail tie wire from Mexico, Thailand, and the People's Republic of China. See Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation...

  7. Reactors with pressure vessel in pre-stressed concrete

    International Nuclear Information System (INIS)

    Devillers, Christian; Lafore, Pierre

    1964-12-01

    After having proposed a general description of the evolution of the general design of reactors with a vessel in pre-stressed concrete, this report outlines the interest of this technical solution of a vessel in pre-stressed concrete with integrated exchangers, which is to replace steel vessel. This solution is presented as much safer. The authors discuss the various issues related to protection: inner and outer biological protection of the vessel, material protection (against heating, steel irradiation, Wigner effect, and moderator radiolytic corrosion). They report the application of calculation methods: calculation of vessel concrete heating, study of the intermediate zone in integrated reactors, neutron spectrum and flows in the core of a graphite pile

  8. The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators

    International Nuclear Information System (INIS)

    Jin, Ke; Kou, Yong; Zheng, Xiaojing

    2012-01-01

    This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems. (paper)

  9. 78 FR 29325 - Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and...

    Science.gov (United States)

    2013-05-20

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation... of prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico, the PRC, and Thailand... Prestressed Concrete Steel Rail Tie Wire from the PRC, Mexico, and Thailand, filed on April 23, 2013 (the...

  10. Self-Consolidating Concrete for Prestressed Bridge Girders

    Science.gov (United States)

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  11. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study

    Science.gov (United States)

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-01

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811

  12. Tensile tests of 2500-kip prestressing tendons for the PCRV

    International Nuclear Information System (INIS)

    Nicolayeff, V.

    1978-05-01

    A 2500-kip (11-MN) capacity prestressing tendon consisting of sixty 0.5-in. (12.7-mm) strands was designed and tested for General Atomic Company by VSL Corporation of Los Gatos, California. Results of the static tensile test described in this report, and of dynamic tensile tests conducted by VSL in 1968 and 1969, indicate that the tendon system satisfies the requirements of the ASME Boiler and Pressure Vessel Code, Section III, Division 2, and so can be used for prestressing concrete reactor vessels

  13. Performance evaluation of precast prestressed concrete pavement.

    Science.gov (United States)

    2007-11-01

    This report describes in detail an experimental investigation of an innovative precast prestressed concrete pavement (PPCP) system used to rehabilitate a 1,000 ft. section of interstate highway located on the northbound lanes of I-57 near Charleston,...

  14. Design and analysis of prestressed reactor vessels

    International Nuclear Information System (INIS)

    Burrow, R.E.D.

    1978-01-01

    This review is intended to draw attention to subjects of interest from papers given at two sessions of the SMiRT 4 conference. The first of these is the structural engineering of prestressed reactor vessels. The topics include developments in the general design of prestressed vessels, structural analysis of PCVRs, model tests and design of penetration, closures and liners for PCVRs. The question of gas cracks was amongst other issues raised. The second of the sessions was concerned with loading conditions and structural analysis of reactor containment. Reference is made to a variety of topics discussed in this session. Particular attention is given to the effects caused by missiles. In concluding, the reviewer suggests the need for a critical assessment of the existing mass of information to sort out the essentials and to bring back some simplicity into design analysis. (UK)

  15. Shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Reins, J.D.; Quiros, J.L. Jr.; Schnobrich, W.C.; Sozen, M.A.

    1976-07-01

    The report summarizes the experimental and part of the analytical work carried out in connection with an investigation of the structural strength of prestressed concrete reactor vessels. The project is part of the Prestressed Concrete Reactor Vessel Program of the Oak Ridge National Laboratory sponsored by ERDA. The objective of the current phase of the work is to develop procedures to determine the shear strength of flat end slabs of reactor vessels with penetrations

  16. 78 FR 25303 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-04-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-1207-1209 (Preliminary)] Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Institution of antidumping duty..., by reason of imports from prestressed concrete steel rail tie wire from China, Mexico, and Thailand...

  17. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    International Nuclear Information System (INIS)

    Abdel-Jaber, H; Glisic, B

    2014-01-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper. (papers)

  18. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  19. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    Halvoník Jaroslav

    2018-03-01

    Full Text Available Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s in a critical cross-section(s or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS.

  20. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Science.gov (United States)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  1. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  2. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  3. Reflective Cracking between Precast Prestressed Box Girders

    Science.gov (United States)

    2017-06-30

    The adjacent precast prestressed concrete box-beam bridge is the bridge of choice for short and short-to-medium span bridges. This choice is because of the ease of construction, favorable span-to-depth ratios, aesthetic appeal, and high torsional sti...

  4. Comparative Study on Different Slot Forms of Prestressed Anchor Blocks

    Science.gov (United States)

    Fan, Rong; Si, Jianhui; Jian, Zheng

    2018-03-01

    In this paper, two models of prestressed pier, rectangular cavity anchor block and arch hollow anchor block are established. The ABAQUS software was used to calculate the stress of the surface of the neck of the pier and the cavity of the anchor block, through comparative analysis. The results show that compared with the rectangular cavity anchor block, the stress of the pier and the cavity can be effectively reduced when the arch hole is used, and the amount of prestressed anchor can be reduced, so as to obtain obvious economic benefits.

  5. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Mayer, N.; Amberg, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel and a comparison of the distribution of temperature, strain and stress within the concrete member to the optimized statical predictions and the criterions of layout yield to an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed on the prototype vessel at Seibersdorf Research Center during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C/50 bar). (Author)

  6. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Weissbacher, L.; Mayer, N.; Amberge, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel, and comparison with the design predictions of the distribution of temperature, strain and stress within the concrete member and the criteria of layout, provide an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed with reference to the prototype vessel at Seibersdorf Research Centre during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C, 50 bar). (author)

  7. UK regulatory aspects of prestressed concrete pressure vessels for gas-cooled reactor nuclear power stations

    International Nuclear Information System (INIS)

    Watson, P.S.

    1990-01-01

    Safety assessment principles for nuclear power plants and for nuclear chemical plants demand application of best proven techniques, recognised standards, adequacy margins, inspection and maintenance of all the components including prestressed concrete pressure vessels. In service inspection of prestressed concrete pressure vessels includes: concrete surface examination; anchorage inspection; tendon load check; tendon material examination; foundation settlement and tilt; log-term deformation; vessel temperature excursions; coolant loss; top cap deflection. Hartlepool and Heysham 1 power plants prestress shortfall problem is discussed. Main recommendations can be summarised as follows: at all pressure vessel stations prestress systems should be calibrated in a manner which results in all load bearing components being loaded in a representative manner; at all pressure vessel stations load measurements during calibration should be verified by a redundant and diverse system

  8. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  9. To the problem of reinforced concrete reactor vessel design and calculation

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Artem'ev, V.P.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Paushkin, A.G.

    1980-01-01

    Modern methods for calculating reactor vessels of prestressed reinforced concrete are analyzed. It is shown that during the stage of technical and economical substantiation of reactor vessel structure for determining its stressed-deformed state engineering methods of calculation must be used, in particular, fragmentation method, method of rings and plates, and during the stages of contract and detail designs - method of finite elements and dynamic relaxation method. It is concluded that when solving cyclic symmetrical problems as well as asymmetrical problems, calculational algorithms for axis-symmetrical distributions of stresses in the vessel with provision for elastic properties of structural material may be used

  10. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    Science.gov (United States)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  11. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  12. Prestressed pressure vessel for nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    The pressure vessel consists of a wall, a bottom, and a closure head, the wall being composed of annular segments. The closure head can be seated on the edge of the wall. Wall and closure head have got axial prestressing channels in which through-going steel tendons are arranged. They are concentrated in bundles and held above the head by anchoring devices. Within the prestressing channels of the head there are supporting jackets attached to the edge of the wall and projecting from the head through a coller. The anchoring devices, e.g. anchoring plates, may be optionally supported on the collars of the supporting jackets or on the closure head by means of auxiliary devices. The auxiliary devices for this purpose consist of extension nuts attached to the anchoring plates and closure head connecting shells. The closure head therefore may be drawn off over the anchoring devices. (DG) [de

  13. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  14. An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings

    International Nuclear Information System (INIS)

    Zhou, Hao-Miao; Qu, Shao-Xing; Ou, Xiao-Wei; Xiao, Ying; Wu, Hua-Ping

    2013-01-01

    Based on the equivalent circuit method, this paper adopts the nonlinear magnetostrictive constitutive relations to establish an analytical nonlinear magnetoelectric coefficient model for magnetostrictive/piezoelectric/magnetostrictive laminated magnetoelectric composites. When the pre-stress is set to zero in the model, the predicted results of the magnetoelectric coefficient coincide well with the available experimental results both qualitatively and quantitatively. Using the model, we can qualitatively predict the influence of the pre-stress, magnetic bias fields and the volume fraction of the magnetostrictive material on the magnetoelectric coefficient. The predicted results show that the influences of the pre-stress on the magnetoelectric coefficient, which varies with the magnetic bias field, before and after reaching the magnetoelectric coefficient maximum, are opposite. That is, the influence of the pre-stress on curves of the magnetoelectric coefficient reverses when the magnetoelectric coefficient reaches its maximum. Therefore, the correct setting of the pre-stress can lower the applied magnetic bias field and improve the magnetoelectric coefficient. The established nonlinear magnetoelectric effect model can provide a theoretical basis for regulating the magnetoelectric coefficient by the pre-stress and magnetic bias field and make it possible to design high-precision miniature magnetoelectric devices. (paper)

  15. Evaluation of continuity detail for precast prestressed girders.

    Science.gov (United States)

    2011-08-01

    The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...

  16. 75 FR 32747 - Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF COMMERCE INTERNATIONAL TRADE ADMINISTRATION [A-201-831] Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand...

  17. Performance of self-consolidating concrete in prestressed girders.

    Science.gov (United States)

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  18. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  19. Design of the prestressed concrete reactor vessel for gas-cooled heating reactors

    International Nuclear Information System (INIS)

    Becker, G.; Notheisen, C.; Steffen, G.

    1987-01-01

    The GHR pebble bed reactor offers a simple, safe and economic possibility of heat generation. An essential component of this concept is the prestressed concrete reactor vessel. A system of cooling pipes welded to the outer surface of the liner is used to transfer the heat from the reactor to the intermediate circuit. The high safety of this vessel concept results from the clear separation of the functions of the individual components and from the design principle of the prestressed conncrete. The prestressed concrete structure is so designed that failure can be reliably ruled out under all operating and accident conditions. Even in the extremely improbable event of failure of all decay heat removal systems when decay heat and accumulated heat are transferred passively by natural convection only, the integrity of the vessel remains intact. For reasons of plant availability the liner and the liner cooling system shall be designed so as to ensure safe elimination of failure over the total operating life. The calculations which were peformed partly on the basis of extremely adverse assumption, also resulted in very low loads. The prestressed concrete vessel is prefabricated to the greatest possible extent. Thus a high quality and optimized fabrication technology can be achieved especially for the liner and the liner cooling system. (orig./HP)

  20. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    Science.gov (United States)

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  1. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    International Nuclear Information System (INIS)

    Balomenos, Georgios P.; Pandey, Mahesh D.

    2017-01-01

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  2. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    Energy Technology Data Exchange (ETDEWEB)

    Balomenos, Georgios P., E-mail: gbalomen@uwaterloo.ca; Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca

    2017-01-15

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  3. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  4. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  5. Effect of residual stresses induced by prestressing on rolling element fatigue life

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  6. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  7. CFRP-Strengthening and Long-Term Performance of Fatigue Critical Welds of a Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Roland E. Koller

    2014-02-01

    Full Text Available Empa’s research efforts in the 1990s provided evidence that a considerable increase of the fatigue strength of welded aluminum beams can be achieved by externally bonding pultruded carbon fiber reinforced polymer (CFRP laminates using rubber-toughened epoxies over the fatigue-weak welding zone on their tensile flange. The reinforcing effect obtained is determined by the stiffness of the unidirectional CFRP laminate which has twice the elastic modulus of aluminum. One can therefore easily follow that an unstressed CFRP laminate reinforcement of welded beams made of steel will not lead to a substantial increase in fatigue strength of the steel structure. This consideration led to the idea of prestressing an external reinforcement of the welded zone. The present investigation describes experimental studies to identify the adhesive system suitable for achieving high creep and fatigue strength of the prestressed CFRP patch. Experimental results (Wöhler-fields of shear-lap-specimens and welded steel beams reinforced with prestressed CFRP laminates are presented. The paper concludes by presenting a field application, the reinforcement of a steel pendulum by adhesively bonded prestressed CFRP laminates to the tensile flanges of the welded box girder. Inspections carried out periodically on this structure revealed neither prestress losses nor crack initiation after nine years of service.

  8. Magnetic-based NDE of steel in prestressed and post-tensioned concrete bridges

    Science.gov (United States)

    Ghorbanpoor, Al

    1998-03-01

    This paper addresses a study, funded by the Federal Highway Administration (FHWA), the U.S. Department of Transportation (DOT), that is currently underway at the University of Wisconsin-Milwaukee. The objective of the study is to develop an automated non-destructive testing system based on the magnetic flux leakage principle that would allow assessment of the condition of reinforcing and prestressing steels in concrete bridge components. Corrosion or cracking of steel within concrete members will be detected and evaluated. The system will be used as a self clamping and moving sensing device that can be installed on a concrete girder. Data from the sensing device is transmitted via a wireless communication system to data recording/analysis equipment on the ground. The sensing device may also be operated manually to allow inspection of local areas such as the end bearing or cable anchorage locations in cable bridges. Through performing a correlation analysis of recorded data, an assessment of the condition of the member under test is made. Reference data base for the correlation analysis is established through laboratory and field testing with known conditions.

  9. Determination method of optimum pre-stress in cables of cable-stayed bridges by using fuzzy sets theory; Fuzzy riron wo mochiita shachokyo cable no saiteki prestress chikara ketteiho

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, H. [Kansai Univ., Osaka (Japan); Kaneyoshi, M.; Tanaka, H. [Hitachi Zosen Corp., Osaka (Japan); Kamei, M.

    1996-06-20

    Generally in cable-stayed bridges, optimum pre-stress is introduced into cables to achieve reducing weight of the cable cross section by reducing and equalizing the cross sectional force of the main girders. However, the conventional optimum stress determining methods require setting the cross section to be repeated. Therefore, in order to omit iterative calculations and derive rational pre-stress, a fuzzy sets theory was introduced. With this method, if upper and lower limits of design values (targeted design values) are inputted, which are desired by a designer to be realized as cross sectional force such as in main girders and towers and cable tension, an optimum stress can be derived automatically by means of a fuzzy linearity regression analysis. The targeted design values are given by experience and engineering judgment, and resetting the cross section is not required as long as a target value which can be tolerated by a hypothetical cross section is given. Since the theory used is a fuzzy sets theory, the derived pre-stress may not be guaranteed as a truly optimum pre-stress. In order to have the result approach an optimum solution, it is important to set adequate upper and lower limits of the targeted design values referring to examples of constructions in the past and experience. 10 refs., 11 figs., 7 tabs.

  10. Control rod

    International Nuclear Information System (INIS)

    Kawakami, Kazuo; Shimoshige, Takanori; Nishimura, Akira

    1979-01-01

    Purpose: A control rod has been developed, which provided a plurality of through-holes in the vicinity of the sheath fitting position, in order to flatten burn-up, of fuel rods in positions confronting a control rod. Thereby to facilitate the manufacture of the control rods and prevent fuel rod failures. Constitution: A plurality of through-holes are formed in the vicinity of the sheath fitting position of a central support rod to which a sheath for the control rod is fitted. These through-holes are arranged in the axial direction of the central support rod. Accordingly, burn-up of fuel rods confronting the control rods can be reduced by through-holes and fuel rod failures can be prevented. (Yoshino, Y.)

  11. Overview of the use of prestressed concrete in US nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; Naus, D.J.

    1983-01-01

    In the United States it is required that the condition and functional capability of the ungrouted post-tensioning systems of prestressed-concrete nuclear-power-plant containments be periodically assessed. This is accomplished, in part, systematically through an inservice tendon inspection program which must be developed and implemented for each containment. An overview of the essential elements of the inservice inspection requirements is presented, and the effectiveness of these requirements is demonstrated through presentation of some of the potential problem areas which have been identified through the periodic assessments of the structural integrity of containments. Also, a summary of general problems which have been encountered with prestressed-concrete construction at nuclear-power-plant containments in the United States is presented: that is, dome delamination, cracking of anchorheads, settlement of bearing plates, etc. The paper will conclude with an assessment of the overall effectiveness of the prestressed-concrete containments

  12. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    International Nuclear Information System (INIS)

    Abdel-Jaber, H; Glisic, B

    2015-01-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper. (paper)

  13. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    Science.gov (United States)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  14. Concrete and prestressing process, container made with this concrete

    International Nuclear Information System (INIS)

    Gerard, M.

    1992-01-01

    Shape memory alloy fibers or heat shrinking fibers are encapsulated in a standard concrete. Prestressed concrete is obtained by heat treatment. Application is made to the fabrication of radioactive waste containers

  15. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-820] Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To Request Administrative Review AGENCY... prestressed concrete steel wire strand (``PC Strand'') from Thailand. See Antidumping or Countervailing Duty...

  16. Dynamic behaviour of prestressed concrete bridges

    International Nuclear Information System (INIS)

    Javor, T.

    1982-01-01

    The paper presents the results of experimental research of dynamic effects on prestressed concrete bridges in dynamic load tests using testing vehicles. The bridges were passed over in both directions at various speeds also running over an artificial unevenness to produce impact loads. From investigated bridges are shown the dynamic quantities such as dynamic coefficients, natural frequency, logarithmical decrement of damping, etc. (orig.) [de

  17. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  18. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  19. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  20. Stress recovery behaviour of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy used for prestressing

    International Nuclear Information System (INIS)

    Lee, W J; Weber, B; Feltrin, G; Czaderski, C; Motavalli, M; Leinenbach, C

    2013-01-01

    This paper describes the stress recovery behaviour of an Fe–17Mn–5Si–10Cr–4Ni–1(V, C) (mass%) shape memory alloy used for prestressing of civil structures. The prestressing due to the shape memory effect was simulated by a series of tests with pre-straining of the material followed by heating and cooling back at constant strain. Different pre-strain and heating conditions were examined. Moreover, the response due to additional mechanical and thermal cyclic loading has been investigated. These results were used to predict the partial prestress loss in a structure due to variable loading during operation. Finally, a heating test at constant strain was performed after the cyclic loading to check the possibility of reactivating the prestress lost during an exceptionally high load. (paper)

  1. Review of inservice inspections of greased tendons in prestressed-concrete containments

    International Nuclear Information System (INIS)

    Dougan, J.R.; Ashar, H.

    1983-01-01

    Prestressed-concrete containments in the United States using greased prestressing tendons are inspected periodically to ensure structural integrity and to identify and correct problem areas before they become critical. An analysis of the available utility inspection data and an evaluation of the current and proposed guidelines were conducted to provide a measure of the reliability of the inspection process. Comments from utility and industry personnel were factored into the analysis. The results indicated that the majority of the few incidences of problems or abnormalities which occurred were minor in nature and did not threaten the structural integrity of the containment

  2. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  3. An effective uniaxial tensile stress-strain relationship for prestressed concrete

    International Nuclear Information System (INIS)

    Chitnuyanondh, L.; Rizkalla, S.; Murray, D.W.; MacGregor, J.G.

    1979-02-01

    This report evaluates the direct tensile strength and an equivalent uniaxial tensile stress-strain relationship for prestressed concrete using data from specimens tested at the University of Alberta which represent segments from the wall of a containment vessel. The stress-strain relationship, when used in conjunction with the BOSOR5 program, enables prediction of the response of prestressed concrete under any biaxial combination of compressive and/or tensile stresses. Comparisons between the experimental and analytical (BOSOR5) load-strain response of the wall segments are also presented. It is concluded that the BOSOR5 program is able to predict satisfactorily the response of the wall segments and multi-layered shell structures. (author)

  4. Instrument to determine prestress remaining in a damaged bridge girder

    Science.gov (United States)

    Civjan, Scott A.; Jirsa, James O.; Carrasquillo, Ramon L.; Fowler, David W.

    1998-03-01

    An instrument has been developed to estimate stress levels in prestress strands in existing members. The prototype instrument applies a lateral load to an exposed prestressing strand and measures the resulting displacements. The instrument was calibrated for 0.5-inch (12.7 mm) diameter seven-wire strand with exposed lengths of 1.5 feet (0.46 m) to 3.75 feet (1.14 m). It was tested to determine its accuracy, precision, and usefulness in the field. Strand forces were consistently estimated to within ten percent of the actual load. The device was also utilized in the placement of strand splices and was found to be more reliable in checking induced strand tensions than the standard torque wrench method.

  5. Periodic Safety Review of Tendon Pre-stress of Concrete Containment Building for a CA U-Type clear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kwang Ho; Lim, Woo Sang [Korea Hydro and clear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    Generally, as the tendon pre-stress of concrete containment buildings at nuclear power plants decreases as time passes due to the concrete creep, concrete shrinkage and the relaxation of tendon strands, the tendon pre-stress must secure the structural integrity of these buildings by maintaining its value higher than that of the designed pre-stress during the overall service life of the nuclear power plants. Moreover, if necessary, the degree of tendon pre-stress must also guarantee the structural integrity of concrete containment buildings over their lifetimes. This paper evaluated the changes in the tendon pre-stress of a concrete containment building subject to time-limited aging as an item in a periodic safety review (PSR) of Wolsong unit 1, a CANDU-type nuclear power plant to ensure that the structural integrity can be maintained until the next PSR period after the designed lifetime.

  6. Recent investigations and tests with the BBR winding system for circumferential prestressing of concrete vessels and containments

    International Nuclear Information System (INIS)

    Schuett, K.; Speck, F.E.

    1993-01-01

    Prestressed concrete pressure vessels for nuclear power stations need post-tensioning systems of large capacity. For the circumferential prestressing, the continuous winding of prestressing steel has several advantages when compared to the use of large numbers of single tendons. About 15 years ago Bureau BBR Ltd (Zuerich) developed the winding system SW 8500. The further development work interrupted at that time for lack of immediate applications was resumed 4 years ago by Bureau BBR together with SUSPA on the ground of new projects being evaluated

  7. Laterally Loaded Partially Prestressed Concrete Piles

    Science.gov (United States)

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the

  8. Analytical design method for a truss-bolt system for reinforcement of fractured coal mine roofs - illustrated with a case study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Yue, Z.Q.; Tham, L.G. [University of Hong Kong, Hong Kong (China). Dept. of Civil Engineering

    2005-02-01

    This paper presents an analytical design method for the truss-bolt system in reinforcing underground fractured rock roofs in coal mines. The analytical design method is based on the mechanical analysis of the fractured rock roof with reinforcement by inclined roof bolts and a horizontal tie-rod. The mechanical analysis for the system includes a non-linear bending model for the laterally inclined roof bolts and three upper and lower bounds. The lateral resistance of the inclined roof bolts in a truss-bolt-supported roadway is examined using classical theory of a non-linear beam in bending. The paper analyses the arching action by lateral behavior of the inclined roof bolts in reinforcing the fractured roof. Based on mechanical models, the design formula concerning the lateral bolt forces, tensions in the tie-rod in the truss system, as well as the reinforcement behavior have been derived. In order to ensure that the roof truss-bolt system reinforces the coal roof effectively, a lower bound of pre-tightening forces must be applied on the tie-rod for stabilizing the fractured roof by arching action. The pre-tightening forces exerted via the tie-rod also cannot be greater than its upper bound, since the excessive tightening force will cause localized failure in the rock near the bolt tail at the abutment of the fractured roof beam. The analytical formulas for both lower and upper bounds for truss pre-tightening forces are put forward in this paper. Furthermore, the paper also presents analytical equations for designing the axial forces and dimensions for bolts in this kind of system.

  9. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  10. Analyses and testing of model prestressed concrete reactor vessels with built-in planes of weakness

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Fleischer, C.C.

    1990-01-01

    This paper describes the design, construction, analyses and testing of two small scale, single cavity prestressed concrete reactor vessel models, one without planes of weakness and one with planes of weakness immediately behind the cavity liner. This work was carried out to extend a previous study which had suggested the likely feasibility of constructing regions of prestressed concrete reactor vessels and biological shields, which become activated, using easily removable blocks, separated by a suitable membrane. The paper describes the results obtained and concludes that the planes of weakness concept could offer a means of facilitating the dismantling of activated regions of prestressed concrete reactor vessels, biological shields and similar types of structure. (author)

  11. Reinforced concrete design to Eurocode 2

    CERN Document Server

    Toniolo, Giandomenico

    2017-01-01

    This textbook describes the basic mechanical features of concrete and explains the main resistant mechanisms activated in the reinforced concrete structures and foundations when subjected to centred and eccentric axial force, bending moment, shear, torsion and prestressing,. It presents a complete set of limit-state design criteria of the modern theory of RC incorporating principles and rules of the final version of the official Eurocode 2. This textbook examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relative numerical applications. These practical end-of-chapter appendices and intuitive flow-charts ensure a smooth learning experience. The book stands as an ideal learning resource for students of structural design and analysis cou...

  12. Comparison Between PCI and Box Girder in BridgesPrestressed Concrete Design

    Science.gov (United States)

    Rahmawati, Cut; Zainuddin, Z.; Is, Syafridal; Rahim, Robbi

    2018-04-01

    This research is done by comparing PCI and Box Girder types of prestressed concrete design. The method used is load balance. Previous studies have just discussed the differences in terms of effectiveness and economics. In this study, the researchers want to know the design process by comparing the working forces, the resulting moment, and the losses of the prestressed. As the case in this study, the researchers used the bridge with the span of 31 meters. The tendon pulling system was conducted with post-tensioning system The analysis result showed that prestressed of the Girder box type sustained the greatest moment due to the combination of its own weight, additional dead load, lane load, and wind load of 44,029 kNm, while the biggest moment of PCI Girder was 7,556.75 KNm The Girder beam box experiences greater moment and shear force than PCI Girder. This is the effect of the weight of its own Girderboxwaslarger than PCI Girder. The losses ofprestressed style of Girderboxand PCI Girder type were 24.85% and 26.32%, respectively.Moreover, it showed that the type of Girder box is cheaper, easier, and more efficient than PCI Girder.

  13. Measurements of resonance frequencies on prestressed concrete beams during post-tensioning

    International Nuclear Information System (INIS)

    Lundqvist, P.; Ryden, N.

    2011-01-01

    The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency

  14. Impact capacity reduction in railway prestressed concrete sleepers with vertical holes

    Science.gov (United States)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground as well as to secure rail gauge for dynamic safe movements of trains. In spite of the most common use of the prestressed concrete sleepers in railway tracks, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. This is because those signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. It is thus necessary to modify concrete sleepers to cater cables internally so that the cables or drainage pipes would not experience detrimental or harsh environments. Accordingly, this study will extend from the previous study into the design criteria of holes and web openings. This paper will highlight structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will improve the understanding into dynamic behavior of prestressed concrete sleepers with vertical holes. The insight will enable predictive track maintenance regime in railway industry.

  15. Static and dynamic behaviours of railway prestressed concrete sleepers with longitudinal through hole

    Science.gov (United States)

    Ngamkhanong, C.; Kaewunruen, S.; Remennikov, A. M.

    2017-10-01

    As the crosstie beam in railway track systems, the prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground. Their design takes into account static and dynamic loading conditions. It is evident that prestressed concrete has played a significant role as to maintain the high endurance of the sleepers under low to moderate repeated impact loads. In spite of the most common use of the prestressed concrete sleepers in railway tracks, there have always been many demands from rail engineers to improve serviceability and functionality of concrete sleepers. For example, signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. There has been a need to re-design concrete sleeper to cater cables internally so that they would not experience detrimental or harsh environments. Accordingly, this study will investigate the effects of through hole or longitudinal hole on static and dynamic behaviours of concrete sleepers under rail shock loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will enable the new design and calculation methods for prestressed concrete sleepers with holes and web opening that practically benefits civil, track and structural engineers in railway industry.

  16. Shear capacity of in service prestressed concrete bridge girders.

    Science.gov (United States)

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...

  17. Control rod

    International Nuclear Information System (INIS)

    Igarashi, Takao; Sugawara, Satoshi; Yoshimoto, Yuichiro; Saito, Shozo; Fukumoto, Takashi.

    1987-01-01

    Purpose: To reduce the weight and thereby obtain satisfactory operationability of control rods by combining absorbing nuclear chain type neutron absorbers and conventional type neutron absorbers in the axial direction of blades. Constitution: Neutron absorber rods and long life type neutron absorber rods are disposed in a tie rod and a sheath. The neutron absorber rod comprises a poison tube made of stainless steels and packed with B 4 C powder. The long life type neutron absorber rod is prepared by packing B-10 enriched boron carbide powder into a hafnium metal rod, hafnium pipe, europium and stainless made poison tube. Since the long life type absorber rod uses HF as the absorbing nuclear chain type neutron absorber, it absorbs neutrons to form new neutron absorbers to increase the nuclear life. (Yoshino, Y.)

  18. Control rods

    International Nuclear Information System (INIS)

    Maruyama, Hiromi.

    1984-01-01

    Purpose: To realize effective utilization, cost reduction and weight reduction in neutron absorbing materials. Constitution: Residual amount of neutron absorbing material is averaged between the top end region and other regions of a control rod upon reaching to the control rod working life, by using a single kind of neutron absorbing material and increasing the amount of the neutron absorber material at the top end region of the control rod as compared with that in the other regions. Further, in a case of a control rod having control rod blades such as in a cross-like control rod, the amount of the neutron absorbing material is decreased in the middle portion than in the both end portions of the control rod blade along the transversal direction of the rod, so that the residual amount of the neutron absorbing material is balanced between the central region and both end regions upon reaching the working life of the control rod. (Yoshihara, H.)

  19. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  20. Prestressed concrete reactor vessel thermal cylinder model study

    International Nuclear Information System (INIS)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.

    1977-01-01

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a 1 / 6 -scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating

  1. Control rod calibration including the rod coupling effect

    International Nuclear Information System (INIS)

    Szilard, R.; Nelson, G.W.

    1984-01-01

    In a reactor containing more than one control rod, which includes all reactors licensed in the United States, there will be a 'coupling' or 'shadowing' of control rod flux at the location of a control rod as a result of the flux depression caused by another control rod. It was decided to investigate this phenomenon further, and eventually to put calibration table data or formulae in a small computer in the control room, so once could insert the positions of the three control rods and receive the excess reactivity without referring to separate tables. For this to be accomplished, a 'three control- rod reactivity function' would be used which would include the flux coupling between the rods. The function is design and measured data was fitted into it to determine the calibration constants. The input data for fitting the trial functions consisted of 254 data points, each consisting of the position of the reg, shim, and transient rods, and the total excess reactivity. (About 200 of these points were 'critical balance points', that is the rod positions for which reactor was critical, and the remainder were determined by positive period measurements.) Although this may be unrealistic from a physical viewpoint, the function derived gave a very accurate recalculation of the input data, and thus would faithfully give the excess reactivity for any possible combination of the locations of the three control rods. The next step, incorporation of the three-rod function into the minicomputer, will be pursued in the summer and fall of 1984

  2. Influence of vertical holes on creep and shrinkage of railway prestressed concrete sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) must successfully perform two critical duties: first, to carry wheel loads from the rails to the ground; and second, to secure rail gauge for dynamic safe movements of trains. The second duty is often fouled by inappropriate design of the time-dependent behaviors due to their creep, shrinkage and elastic shortening responses of the materials. In addition, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. Accordingly, this study is the world first to investigate creep and shrinkage effects on the railway prestressed concrete sleepers with vertical holes. This paper will highlight constitutive models of concrete materials within the railway sleepers under different environmental conditions over time. It will present a comparative investigation using a variety of methods to evaluate shortening effects in railway prestressed concrete sleepers. The outcome of this study will improve material design, which is very critical to the durability of railway track components.

  3. Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    Ballasted railway track is very suitable for heavy-rail networks because of its many superior advantages in design, construction, short- and long-term maintenance, sustainability, and life-cycle cost. The sleeper, which supports rail and distributes loads from rail to ballast, is a very important component of rail track system. Prestressed concrete is very popular used in manufacturing sleepers. Therefore, improved knowledge about design techniques for prestressed concrete (PC) sleepers has been developed. However, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers. Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of abrasions in concrete sleepers. This paper presents a comparative investigation using a variety of methods to evaluate creep and shrinkage effects in railway prestressed concrete sleepers. The outcome of this study will improve the material design, which is very critical to the durability of railway track components.

  4. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand.

    Science.gov (United States)

    2011-08-01

    This is a report describing the activities and accomplishments in this project, completed through November 30, 2009. The overall goal of this project is to investigate the feasibility of a magnetic sensor to detect in-situ corrosion of prestressing s...

  5. Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction

    Science.gov (United States)

    2000-08-01

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  6. Prestressed concrete pressure vessels for nuclear reactors - 1973

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This standard deals with the design, construction, inspection and testing of prestressed concrete pressure vessels for nuclear reactors. Such pressure vessels serve the dual purpose of shielding and containing gas cooled nuclear reactors and are a form of civil engineering structure requiring particularly high integrity, and ensured leak tightness. (Metric)

  7. Compressive Membrane Action in Prestressed Concrete Deck Slabs

    NARCIS (Netherlands)

    Amir, S.

    2014-01-01

    One of the most important questions that structural engineers all over the world are dealing with is the safety of the existing structures. In the Netherlands, there are a large number of transversely prestressed bridge decks that have been built in the last century and now need to be investigated

  8. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad Amin [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States); Le Pape, Yann, E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Balaji, Rajagopalan [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States)

    2016-12-15

    Highlights: • Alkali–silica reaction (ASR) affects reinforced structures shear strength. • Statistical analysis indicates large scattering of post-ASR strength losses/gains. • Competitive structural and materials mechanisms affect the residual shear strength. - Abstract: The residual structural shear resistance of concrete members without shear reinforcement and subject to alkali–aggregate reaction (ASR) is investigated by finite element analysis. A parametric numerical study of 648 analyses considering various structural members’ geometries, boundary conditions, ASR-induced losses of materials properties, ASR expansions and reinforcement ratios is conducted. As a result of competitive mechanisms (e.g., ASR-induced prestressing caused by the longitudinal reinforcement) and loss of concrete materials properties, important scatter in terms of gain or loss of shear strength is observed: about 50% of the studied configurations lead to a degradation of structural performance. The range of variation in terms of post-ASR shear resistance is extremely scattered, in particular, when ASR results in out-of-plane expansion only. Influencing factors are derived by two methods: (i) visual inspection of boxplots and probability distributions, and (ii) information criteria within multiple-linear regression analysis.

  9. Time varying stress in ligaments of perforated plates with reference to prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1978-01-01

    The work described herein relates to the prediction of stresses in materials which exhibit time varying strains with particular reference to the ligaments of perforated circular concrete slabs, subjected to long-term radial prestress and uniform elevated temperature. The perforations are reinforced with steel liners and arranged in a square central lattice symmetrical about two orthogonal axes. Special reference is made to the distribution of stress in the standpipe region of prestressed concrete cylindrical pressure or containment vessels for gas cooled reactors. In order to assess the stress distribution around the perforated zone of a circular slab, a method of analysis was developed by the author, based on the ''Equivalent Elastic Modulus'' of the perforated zone and the ''Effective Modulus Method'', utilizing experimental data obtained from tests performed on model specimens. The object of this paper is to extend the above method of analysis into the perforated region, and assess the long-term stresses in the ligaments. The proposed method is accomplished by an application of the Finite Element Method for the elastic plane stress case. Comparisons of experimental results and theoretical predictions by the proposed method, and other analytical methods are made for a series of perforated concrete slabs subjected to radial in-plane loading: 10,342 kN/m 2 (1,5000 psi), and uniform elevated temperature of 80 0 C. The investigation, though in general terms, could be applied to the perforated region of cylindrical pressure vessels for nuclear reactors. Finally the paper describes briefly in Appendix 3 a direct solution procedure for calculating time dependent stresses in concrete structures based on the principles of variational calculus. Analytical predictions obtained by the proposed method which is a step-by-step analysis, are compared with the variational principle method. (author)

  10. Positioning of supporting-cable ducts in a prestressed concrete bridge

    International Nuclear Information System (INIS)

    Roetzer, H.

    1981-01-01

    Before inserting the supporting cables positioning of cable ducts in prestressed concrete bridges can be performed with the aid of radiation sources hauled through the ducts and localized by means of radiation monitors

  11. Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.

    Science.gov (United States)

    2011-07-01

    Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...

  12. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  13. The Prestressed Track Beam Testing Technology of Shanghai Electromagnetic Levitation Train

    Directory of Open Access Journals (Sweden)

    Qing-biao WANG

    2013-07-01

    Full Text Available Shanghai electromagnetic levitation train (maglev is the first one that is constructed and operated commercially in the world. Many technological problems have to be tackled during its construction, and the most difficult problem in the civil engineering part is the making of prestressed track beam. It requires high precision because of its special function. The stretching control of the pre-tensioning force and the post-tensioning force in the making of prestressed track beam is most important during the construction. This paper introduces and analyses the technical features of vibrating wire sensors as well as the development, the research and the application of force sensor for pulling force measurement of anchor cable.

  14. Automatic design of prestressed concrete vessels

    International Nuclear Information System (INIS)

    Sotomura, Kentaro; Murazumi, Yasuyuki

    1984-01-01

    Prestressed concrete appeared after high strnegth steel had been produced, therefore it has the history of only 40 years even in Europe where it was developed. High compressive force is given to concrete beforehand by high strength steel to resist tensile force. It is superior to ordinary steel in strength, economy, rust prevention, fire protection and workability, and it competes with ordinary steel in the fields of bridges, towers, water tanks, water pipes, barges, LPG and LNG tanks, reactor pressure vessels, reactor containment vessels and so on. The design of prestressed concrete containment vessels (PCCV) being constructed in Japan adopts the form of mounting a semi-spherical dome on a cylindrical wall of 43m inside diameter and about 1.5m thickness, and the steel pipe sheaths for inserting tendons are arranged in the wall. The Taisei Construction Co. has developed the PC-ADE system which enables the optimum design of PCCVs. The outline of the automatic design system, the design of tendon arrangement, the preparation of the data on the load for stress analysis, the stress analysis by axisymmetric finite element method and the calculation of cross sections are explained. Design is a creative activity, and in the design of PCCVs also, the intention of designers should be materialized when this program is utilized. (Kako, I.)

  15. Control rod drives

    International Nuclear Information System (INIS)

    Nakamura, Akira.

    1984-01-01

    Purpose: To enable to monitor the coupling state between a control rod and a control rod drive. Constitution: After the completion of a control rod withdrawal, a coolant pressure is applied to a control rod drive being adjusted so as to raise only the control rod drive and, in a case where the coupling between the control rod drive and the control rod is detached, the former is elevated till it contacts the control rod and then stopped. The actual stopping position is detected by an actual position detection circuit and compared with a predetermined position stored in a predetermined position detection circuit. If both of the positions are not aligned with each other, it is judged by a judging circuit that the control rod and the control rod drives are not combined. (Sekiya, K.)

  16. Development of guidelines for transportation of long prestressed concrete girders.

    Science.gov (United States)

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  17. Behavior of prestressing steels after fire

    OpenAIRE

    Atienza Riera, José Miguel; Elices Calafat, Manuel

    2008-01-01

    Even if a fire does not give rise to apparent damage in a prestressed structure, mechanical properties of materials as well as load distribution can be affected. A verification of residual load bearing capacity after fire is necessary to determine if the structure can be maintained in use. Mechanical properties of structural steels at high temperatures have been extensively studied. However, no attention has been paid to the behavior of steel wires after fire. This paper seeks to give a simpl...

  18. Evaluation of continuity detail for precast prestressed girders : tech summary.

    Science.gov (United States)

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  19. Corrosion performance of prestressing strands in contact with dissimilar grouts.

    Science.gov (United States)

    2013-01-01

    To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...

  20. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    Science.gov (United States)

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  1. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  2. Control rod assembly

    International Nuclear Information System (INIS)

    Takahashi, Akio.

    1982-01-01

    Purpose: To enable reliable insertion and drops of control rods, as well as insure a sufficient flow rate of coolants flowing through the control rods for attaining satisfactory cooling thereof to enable relexation of thermal stress resulted to rectifying mechanisms or the likes. Constitution: To the outer circumference of a control rod contained vertically movably within a control rod guide tube, resistive members are retractably provided in such a way as to project to close the gap between outer circumference of the control rod and the inner surface of the control rod guide tube upon engagement of a gripper of control rod drives, and retract upon release of the engagement of the gripper. Thus, since the resistive members project to provide a greater resistance to the coolants flowing between them and the control rod guide tube in the normal operation where the gripper is engaged to drive the control rod by the control rod drives, a major part of the coolant flowing into the control rod guide tube flows into the control rod. This enables to cool the control rod effectively and make the temperature distribution uniform for the coolant flowing from the upper end of the control rod guide tube to thereby attain the relaxation of the thermal stress resulted in the rectifying mechanisms or the likes. (Moriyama, K.)

  3. Device for coupling a control rod and control rod drive

    International Nuclear Information System (INIS)

    Nishioka, Kazuya.

    1975-01-01

    Object: To obtain simple and reliable coupling between a control rod and control rod drive by equipping the lower end of the control rod with an extension provided with lateral protuberances and forming the upper end of an index tube with a recess provided with lateral holes. Structure: The tapering central extension of the control rod is inserted into the recess by lowering the control rod, and then it is further inserted by causing frictional movement of the inclined surfaces of lateral protuberances in frictional contact with guide surfaces. When the lateral protuberances are brought into contact with a stepped portion, the control rod is rotated to fit the lateral protuberances into the lateral holes. In this way, the control rod is coupled to the index tube of the control rod drive. (Yoshino, Y.)

  4. The effect of the fuel rod friction force to the fuel assembly lateral mechanical characteristics

    International Nuclear Information System (INIS)

    Ha, Dong Geun; Jeon, Sang Youn; Suh, Jung Min

    2012-01-01

    The Fuel Assembly (FA) for light water reactor consists of hundreds of fuel rods, guide tubes, spacer grids, top/bottom nozzles. The guide tubes transmit vertical loads between the top and bottom nozzles, position the fuel rod support grids vertically, react the loads from the fuel rods that are applied to the grids, and provide some of the lateral load capability for the overall fuel assembly. The guide tubes are the structural members of the skeleton assembly. And the spacer grids maintain the fuel rod array by providing positive lateral restraint to the fuel rod but only frictional restraint in the axial direction. Figure 1 shows the outline of skeleton, FA and the location of guide tubes in the view of cross section. 17x17 FA has 24 guide tubes and one instrumentation tube. When the FA is in reactor, the lateral stiffness is one of very important factors from the view point of in reactor integrity of fuel assembly such as guarantee of the cool able geometry, the control rod insertion etc. The lateral stiffness of FA is mainly determined by skeleton lateral stiffness. And the fuel rods loaded in the spacer grids reinforce the FA lateral stiffness. Generally, fuel rods and spacer grids create the nonlinear friction force between fuel rod tube and grid spring/dimple against external lateral force of FA. Thus, it is necessary to study the contribution of the fuel rods friction force to the FA lateral stiffness. So, this paper is to show how much amount of the fuel rod grid interaction contributes to the FA lateral stiffness based on the test results

  5. A study on the improvement of ISI methods for a prestressed concrete containment building

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choi, In Kil

    2001-12-01

    The ISI (In-Service Inspection) of a PCCV (Prestressed Concrete Containment Vessel) consists of the tendon ISI and the SIT (Structural Integrity Test) which evaluate the effective or residual prestress in the post-tensioned prestress system, and of the ILRT (Integrated Leakage Rate Test) which ensures the leak-tightness of a PCCV. The tendon system adopted in Korean PCCVs is either grouted or ungrouted one. The grouted tendon system was used in the Ulchin Unit 1 and 2 and the Wolsong Units 1-4, whereas the rest NPPs except Kori Unit 1 and 2 adopted an ungrouted tendon system. In this report, the issues were identified on the ISI of ungrouted tendon system and on the SIT of all the PCCVs. The ILRT issues are implicitly included in the SIT issues as the ILRT is performed in parallel with the SIT. Improvements were suggested on the issues identified after the analyses of the domestic and foreign experiences and researches.

  6. Experimental and analytical studies on the vibration serviceability of long-span prestressed concrete floor

    Science.gov (United States)

    Cao, Liang; Liu, Jiepeng; Li, Jiang; Zhang, Ruizhi

    2018-04-01

    An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor's modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients β rp is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.

  7. Control rod displacement

    International Nuclear Information System (INIS)

    Nakazato, S.

    1987-01-01

    This patent describes a nuclear reactor including a core, cylindrical control rods, a single support means supporting the control rods from their upper ends in spaced apart positions and movable for displacing the control rods in their longitudinal direction between a first end position in which the control rods are fully inserted into the core and a second end position in which the control rods are retracted from the core, and guide means contacting discrete regions of the outer surface of each control rod at least when the control rods are in the vicinity of the second end position. The control rods are supported by the support means for longitudinal movement without rotation into and out of the core relative to the guide means to thereby cause the outer surface of the control rods to experience wear as a result of sliding contact with the guide means. The support means are so arranged with respect to the core and the guide means that it is incapable of rotation relative to the guide means. The improvement comprises displacement means being operatively coupled to a respective one of the control rods for periodically rotating the control rod in a single angular direction through an angle selected to change the locations on the outer surfaces of the control rods at which the control rods are contacted by the guide means during subsequent longitudinal movement of the control rods

  8. Morphoelastic rods. Part I: A single growing elastic rod

    KAUST Repository

    Moulton, D.E.

    2013-02-01

    A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between the attachment site and the growing rod inducing stress. This stress can eventually lead to instability, bifurcation, and buckling. © 2012 Elsevier Ltd. All rights reserved.

  9. Morphoelastic rods. Part I: A single growing elastic rod

    KAUST Repository

    Moulton, D.E.; Lessinnes, T.; Goriely, A.

    2013-01-01

    A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between the attachment site and the growing rod inducing stress. This stress can eventually lead to instability, bifurcation, and buckling. © 2012 Elsevier Ltd. All rights reserved.

  10. Influence of the storage conditions on prestressing steel relaxation losses

    Directory of Open Access Journals (Sweden)

    Suárez, F.

    2012-12-01

    Full Text Available Stress relaxation losses on active reinforcement have significant impact on prestressed concrete structures. This is why relaxation tests are carried out on prestressing steel wires and strands after being manufactured. Then, these materials are coiled and stored for a long-term period, sometimes in excess of one year. The influence of these operations, carried out after manufacturing, is usually neglected. Nevertheless, some manufacturers and contractors have noticed that, sometimes, when relaxation tests are carried out after a long-term storage, the relaxation losses found are higher than those measured immediately after manufacturing. In this work, lab tests are performed to check the influence of the coiling radius and the period of storage on the relaxation test. In addition to this, an analytical model is presented to predict the results of a relaxation test carried out on a wire coiled and stored for a long-term period. This model explains the evolution on the cross-sectional stress profile along the coiling-storing-uncoiling process, as well as the influence of the residual stresses on it.

    La pérdida de tensión por relajación en las armaduras activas afecta de forma importante a las estructuras de hormigón pretensado. Por ello se realizan ensayos de relajación de los alambres y cordones de pretensado tras su fabricación. Después, el material es enrollado y almacenado durante periodos que en ocasiones pueden superar el año de duración. Generalmente se desprecia la influencia que estas operaciones posteriores a la fabricación pueden tener sobre el material. Sin embargo, diversos fabricantes y suministradores han constatado experimentalmente que, en ocasiones, el material almacenado durante un periodo prolongado presenta pérdidas de relajación mayores que inmediatamente tras su fabricación. En este trabajo se realizan ensayos de laboratorio para comprobar la influencia que el radio de enrollamiento y el periodo de

  11. anisotropic crack modelling of reinforced concrete structures with an enhanced kinematics: application to bidimensional elements under cyclic loading

    International Nuclear Information System (INIS)

    Kishta, Ejona

    2016-01-01

    Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting model as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading. (author) [fr

  12. Control rod drive

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1986-01-01

    A reactor core, one or more control rods, and a control rod drive are described for selectively inserting and withdrawing the one or more control rods into and from the reactor core, which consists of: a support structure secured beneath the reactor core; control rod positioning means supported by the support structure for movably supporting the control rod for movement between a lower position wherein the control rod is located substantially beneath the reactor core and an upper position wherein at least an upper portion of the control rod extends into the reactor core; transmission means; primary drive means connected with the control rod positioning means by the transmission means for positioning the control rod under normal operating conditions; emergency drive means for moving the control rod from the lower position to the upper position under emergency conditions, the emergency drive means including a weight movable between an upper and a lower position, means for movably supporting the weight, and means for transmitting gravitational force exerted on the weight to the control rod positioning means to move the control rod upwardly when the weight is pulled downwardly by gravity; the transmission means connecting the control rod positioning means with the emergency drive means so that the primary drive means effects movement of the weight and the control rod in opposite directions under normal conditions, thus providing counterbalancing to reduce the force required for upward movement of the control rod under normal conditions; and restraint means for restraining the fall of the weight under normal operating conditions and disengaging the primary drive means to release the weight under emergency conditions

  13. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    Science.gov (United States)

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  14. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  15. General stability of composite panels reinforced with flexible rods taking account of the side boundary conditions

    Science.gov (United States)

    Dudchenko, A. A.; Elpat'evskii, A. N.

    1995-07-01

    Reinforced panels are the basic load-bearing elements of various structures. Optimization of massive structures requires consideration of deformation of the panel cross-sections. This is particularly important in determining the bearing strength at buckling. The load scheme, conditions for fixation of the panel cross-section, and bend-torsional stiffness taking account of the deformation of the rod cross-section affect the buckling load in real structures. The stress distribution prior to buckling must be known to solve the buckling problem properly. The stress in the panel is proportional to the active load. The stress distribution is assumed to be known according to our previous method [1]. The load scheme and panel dimensions are shown in Fig. 1. The stress distribution in the panel prior to buckling can be found using Eqs. (1)-(3). A view of the cross-section is given in Fig. 1. The displacements in the panel at buckling for the boundary area are found using Eqs. (4)-(6), while the stresses in the skin and stiffness are found using Eq. (7). Roots k1 and k2 are those of the characteristic equation and β is a dimensionless coordinate. The problem was solved using variational theory. The potential energy is given by Eqs. (8) and (9) by orihogonalization of Eqs. (5). The basic equations are converted to Eqs. (10) by evaluation of the components in Eqs. (8) and (9). Its calculation (11) gives the compression load. Optimization of parameter α gives the critical strength P1 = 6.93 kN (without taking account of the boundary area) and P2 = 5.31 kN (taking account of the boundary area).

  16. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  17. Existence of longitudinal waves in pre-stressed anisotropic elastic ...

    Indian Academy of Sciences (India)

    waves is truly longitudinal. Longitudinal wave in an anisotropic elastic medium is defined as the wave motion in which the particle motion (i.e., the. Keywords. General anisotropy; elastic stiffness; pre-stress; group velocity; ray direction; longitudinal waves; polarization. J. Earth Syst. Sci. 118, No. 6, December 2009, pp. 677– ...

  18. Effect of prestress on performance of a 1.8 m SSC R ampersand D dipole

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, G.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.; Sampson, W.; Shutt, R.; Thompson, P.; Willen, E.; Goodzeit, C.

    1991-01-01

    A series of 1.8 SSC dipoles is being built and tested as part of the R ampersand D program. One of the 40 mm - aperture magnets was tested with a standard assembly and then reassembled and retested in a special configuration which had significantly less azimuthal prestress than the initial assembly. We report quench, coil stress, end force, and harmonics data for each of the assemblies. Quench performance was not degraded for the low-prestress assembly. 4 refs., 5 figs., 5 tabs

  19. Experience of in-service surveillance and monitoring of prestressed concrete pressure vessels for nuclear reactors

    International Nuclear Information System (INIS)

    Irving, J.; Smith, J.R.; Eadie, D.McD.; Hornby, I.W.

    1976-01-01

    Details are given of the statutory requirements for the inspection of prestressed concrete pressure vessels in the United Kingdom, with particular emphasis on the prestressing system. The results of periodic examinations under the Licencing Conditions of the Oldbury and Wylfa vessels are presented and discussed in relation to design expectations and future requirements. Strain, moisture and temperature records obtained from the Oldbury PCPV's over a 10 year period are compared with prediction and new developments in vessel instrumentation are discussed. (author)

  20. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  1. Multi-scale approach of the mechanical behaviour of reinforced concrete structures - Application to nuclear plant containment buildings

    International Nuclear Information System (INIS)

    David, M.

    2012-01-01

    This thesis develops a multi-scale strategy to describe the mechanical behaviour of steel reinforcements and prestressing tendons in a reinforced concrete structure. This strategy is declined in several steps, which allow gradual integration of new physical phenomena. The first asymptotic model represents the effective elastic behaviour of heterogeneities periodically distributed on a surface. It combines an elastic interface behaviour and a membrane behaviour. A second asymptotic model then focuses on the behaviour of rigid fibers distributed on a surface, which may slide with respect to the surrounding volume. These models induce less stress concentrations than the usual truss models. They are implemented in the finite element code Code-Aster, and validated with respect to reference three-dimensional simulations. Their interaction with a macroscopic crack is studied. Finally, this strategy allows the modeling of experimental tests carried out on a portion of a containment building in real scale. (author)

  2. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  3. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  4. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  5. Replacement rod

    International Nuclear Information System (INIS)

    Hatfield, S.C.

    1989-01-01

    This patent describes in an elongated replacement rod for use with fuel assemblies of the type having two end fittings connected by guide tubes with a plurality of rod and guide tube cell defining spacer grids containing rod support features and mixing vanes. The grids secured to the guide tubes in register between the end fittings at spaced intervals. The fuel rod comprising: an asymmetrically beveled tip; a shank portion having a straight centerline; and a permanently diverging portion between the tip and the shank portion

  6. Water rod

    International Nuclear Information System (INIS)

    Kashiwai, Shin-ichi; Yokomizo, Osamu; Orii, Akihito.

    1992-01-01

    In a reactor core of a BWR type reactor, the area of a flow channel in a lower portion of a downcoming pipe for downwardly releasing steams present at the top portion in a water rod is increased. Further, a third coolant flow channel (an inner water rod) is disposed in an uprising having an exit opened near the inlet of the water rod and an inlet opened at the outside near the top portion of the water and having an increase flow channel area in the upper portion. The downcoming pipe in the water rod is filled with steams, and the void ratio is increased by so much as the flow channel area of the downcoming pipe is increased. Since the pressure difference between the inlet and the exit of the inner water rod is greater than the pressure difference between the inlet and the exit of the water rod, most of water flown into the inner water rod is discharged out of the exit in the form of water as it is. Since the area of the flow channel is increased in the portion of the inner water rod, void efficiency in the upper portion of the reactor core is decreased by so much. Since the void ratio is thus increased in the lower portion and the void efficiency is decreased in the upper portion of the reactor core, axial void distribution can be flattened. (N.H.)

  7. High temperature helium test rig with prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schmidl, H.

    1975-10-01

    The report gives a short description of the joint project prestressed concrete vessel-helium test station as there is the building up of the concrete structure, the system of instrumentation, the data processing, the development of the helium components as well as the testing programs. (author)

  8. Towards a simple method of analysis for partially prestressed concrete

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1983-01-01

    This report examines the question whether, and to what extent, it is possible to leave the time-dependent effects out of account in the analysis of partially prestressed concrete, at least in so far as they relate to the redistribution of the stresses over the cross-section.

  9. Effect of pre-stressing on the behaviour of CFRP under gamma irradiation

    International Nuclear Information System (INIS)

    Burnay, S.G.

    1992-01-01

    The effect of pre-stressing on the behaviour of CFRP composites under gamma irradiation has been studied for three materials: 0 deg carbon/epoxy, 0 deg carbon/toughened epoxy and 0 deg/90 deg carbon/PES. Irradiation was carried out at room temperature and at 77 K. Preliminary results illustrate that pre-stressing can significantly affect the degradation of these materials, particularly after irradiation at room temperature. The data indicate that stress cannot be ignored when assessing the durability of structural composites for space applications. This work, which completes the preliminary assessment of low-temperature irradiation effects, has highlighted a number of queries which should be of concern to those using structural composites in space applications. (Author). 15 refs., 17 figs

  10. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  11. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  12. On the prestressing and deformation of rectangular particle detector frames

    International Nuclear Information System (INIS)

    Margulies, S.

    1978-01-01

    Particle detectors such as spark chambers and multiwire proportional chambers (MWPC) generally contain planar electrodes stretched across rectangular frames. For detectors of reasonable size, this can result in fairly large forces acting on the frames. To maintain the electrode planes under uniform tension and to prevent sagging, the frames must be prestressed. This paper contains a detailed examination of the deformation of rectangular frames under stress. A simple model for this phenomenon is presented. The model consists of treating each side of the frame as an elastic beam subject to the condition that the sides remain perpendicular at the corners. The predictions of the model are in good agreement with measured deflections of a MWPC frame. The model is used to determine the optimum value of a single concentrated prestressing force F to best approximate the total distributed force W of a uniformly tensed electrode plane. For most geometries it is found that F is about 62% of W. (Auth.)

  13. Review of analysis methods for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Dodge, W.G.; Bazant, Z.P.; Gallagher, R.H.

    1977-02-01

    Theoretical and practical aspects of analytical models and numerical procedures for detailed analysis of prestressed concrete reactor vessels are reviewed. Constitutive models and numerical algorithms for time-dependent and nonlinear response of concrete and various methods for modeling crack propagation are discussed. Published comparisons between experimental and theoretical results are used to assess the accuracy of these analytical methods

  14. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part II. Practical applications

    International Nuclear Information System (INIS)

    Saetta, Anna V.; Vitaliani, Renato V.

    2005-01-01

    The mathematical-numerical method developed by the authors to predict the corrosion initiation time of reinforced concrete structures due to carbonation process, recalled in Part I of this work, is here applied to some real cases. The final aim is to develop and test a practical method for determining the durability characteristics of existing buildings liable to carbonation, as well as estimating the corrosion initiation time of a building at the design stage. Two industrial sheds with different ages and located in different areas have been analyzed performing both experimental tests and numerical analyses. Finally, a case of carbonation-induced failure in a prestressed r.c. beam is presented

  15. Control rod

    International Nuclear Information System (INIS)

    Igarashi, Takao; Yoshimoto, Yuichiro; Sugawara, Satoshi; Fukumoto, Takashi; Endo, Zen-ichiro; Saito, Shozo; Shinpo, Katsutoshi; Nishimura, Akira; Ozawa, Michihiro

    1988-01-01

    Purpose: To provide a sufficient shutdown margin upon reactor shutdown, prevent sheath deformation without decreasing neutron absorbents and prevent impact shocks exerted to structural materials. Constitution: The control rod of the present invention comprises a neutron absorption region, a sheath deformation means attached to the side wall and means for restricting and supporting axial movement of the neutron absorbent rod. Then, the amount of absorptive nuclei chained absorbents in the lower region is reduced than that in the upper region. In this way, effective neutron absorbing performance can be obtained relative to the neutron importance distribution during reactor shutdown. In addition, since the operationability is improved by reducing the weight of the control rod and the absorptive nuclei chained neutron abosrbers are used, mechanical nuclear life of the control rod can be increased. Thus, it is possible to prevent the outward deformation of the sheath, as well as prevent collision between the neutron absorber rod and the structural material on the side of inserting the control rod generated upon reactor scram by a simple structure. (Kamimura, M.)

  16. Design and construction of the prestressed concrete boiler closures for the Hartlepool and Heysham pressure vessels

    International Nuclear Information System (INIS)

    Crowder, R.; Howells, R.M.; Paton, A.A.

    1976-01-01

    At a relatively late stage in the station design, the boiler closures for the reactor vessels at Hartlepool and Heysham were changed from steel to prestressed concrete. This paper sets out the criteria which were finally evolved for the new style of closure and describes the way in which the prestressed concrete closure's parts were designed to satisfy these criteria. With both the civil and mechanical components of the closure having their own specific requirements, close co-operation was necessary between these disciplines to ensure that a compatible and practical closure design resulted. This close interrelationship has been carried through into the construction stage and a special concreting and prestressing factory has been built adjacent to the works of the mechanical component fabricator. This enabled an optimum manufacturing cycle to be followed and the important aspects of this are described in the paper. (author)

  17. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  18. Control rod drives

    International Nuclear Information System (INIS)

    Futatsugi, Masao.

    1980-01-01

    Purpose: To secure the reactor operation safety by the provision of a fluid pressure detecting section for control rod driving fluid and a control rod interlock at the midway of the flow pass for supplying driving fluid to the control rod drives. Constitution: Between a driving line and a direction control valve are provided a pressure detecting portion, an alarm generating device, and a control rod inhibition interlock. The driving fluid from a driving fluid source is discharged by way of a pump and a manual valve into the reactor in which the control rods and reactor fuels are contained. In addition, when the direction control valve is switched and the control rods are inserted and extracted by the control rod drives, the pressure in the driving line is always detected by the pressure detection section, whereby if abnormal pressure is resulted, the alarm generating device is actuated to warn the abnormality and the control rod inhibition interlock is actuated to lock the direction control valve thereby secure the safety operation of the reactor. (Seki, T.)

  19. Control rod drives

    International Nuclear Information System (INIS)

    Oonuki, Koji.

    1981-01-01

    Purpose: To increase the driving speed of control rods at rapid insertion with an elongate control rod and an extension pipe while ensuring sufficient buffering performance in a short buffering distance, by providing a plurality of buffers to an extension pipe between a control rod drive source and a control rod in LMFBR type reactor. Constitution: First, second and third buffers are respectively provided to an acceleration piston, an extension pipe and a control rod respectively and the insertion positions for each of the buffers are displaced orderly from above to below. Upon disconnection of energizing current for an electromagnet, the acceleration piston, the extension pipe and the control rod are rapidly inserted in one body. The first, second and third buffers are respectively actuated at each of their falling strokes upon rapid insertion respectively, and the acceleration piston, the extension pipe and the control rod receive the deceleration effect in the order correspondingly. Although the compression force is applied to the control rod only near the stroke end, it does not cause deformation. (Kawakami, Y.)

  20. Structural analysis of cellular blocks for a prestressed cast iron reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.; Head, J.L.

    1979-01-01

    The cast segments from which the prestressed cast iron nuclear reactor pressure vessel may be constructed are not readily amenable to detailed three-dimensional finite element analysis because their complex internal web structure requires a very large number of elements if reasonable aspect ratios are to be retained. A technique has been developed of modelling these blocks using plate bending elements from the ASKA code. By this means it has been possible to study in detail several designs of casting and to identify favourable features. The results of these studies, and others in which assessments are made of the sensitivity of the structure to prestressing load changes and machining errors, are reported. (orig.)

  1. Determination of service stresses in pretensioned beams, final report, December 2009.

    Science.gov (United States)

    2009-12-01

    This report presents research on the evaluation of service flexural stresses and cracking moment in prestressed concrete members and on the minimum reinforcement requirements that are currently controlled by the flexural cracking moment. In prestress...

  2. Control rod cluster with removable rods for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Denizou, J.P.

    1989-01-01

    For each removable control rod, the open end section of the sleeve has a certain length of reduced diameter with openings in its wall. The top end of the rod is joined to an extension tube that surrounds the shaft over part of its lenght. This extension tube fits over the reduced part of the sleeve when the shaft is screwed into the bore of the sleeve. Rotation of the rod in the sleeve is prevented by deforming the extension tube locally in the openings of the end part of the sleeve. The rod is dismantled by exerting a torque on it using a gripping area near the end of the rod [fr

  3. Unbonded prestressing tendons and their role in the construction of slender elements of buildings

    Science.gov (United States)

    Mieszczak, M.

    2018-03-01

    Steel unbonded tendons have been introduced in Europe for construction prestressing many years later than in the USA, Honkong, Singapore or Australia. In Poland, they appeared in the early 1990s. Despite their short application, in the last decade, the Institute of Materials and Building Constructions of the Cracow University of Technology in cooperation with the TCE Structural Design & Consulting company has developed and implemented several interesting and unique designs of building components, using the advantages of this type of prestressing. In the author’s work, apart from the short description of these tendons, several selected (own and foreign) projects of unique character have been presented.

  4. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Nakamura, Akira.

    1981-01-01

    Purpose: To ensure the scram operation of a control rod by the reliable detection for the position of control rods. Constitution: A permanent magnet is provided to the lower portion of a connecting rod in engagement with a control rod and a tube having a plurality of lead switches arranged axially therein in a predetermined pitch is disposed outside of the control rod drives. When the control rod moves upwardly in the scram operation, the lead switches are closed successively upon passage of the permanent magnet to operate the electrical circuit provided by way of each of the lead switches. Thus, the position for the control rod during the scram can reliably be determined and the scram characteristic of the control rod can be recognized. (Furukawa, Y.)

  5. Method of inserting fuel rod

    International Nuclear Information System (INIS)

    Kamimoto, Shuji; Imoo, Makoto; Tsuchida, Kenji.

    1991-01-01

    The present invention concerns a method of inserting a fuel rod upon automatic assembling, automatic dismantling and reassembling of a fuel assembly in a light water moderated reactor, as well as a device and components used therefor. That is, a fuel rod is inserted reliably to an aimed point of insertion by surrounding the periphery of the fuel rod to be inserted with guide rods, and thereby suppressing the movement of the fuel rod during insertion. Alternatively, a fuel rod is inserted reliably to a point of insertion by inserting guide rods at the periphery of the point of insertion for the fuel rod to be inserted thereby surrounding the point of insertion with the guide rods or fuel rods. By utilizing fuel rods already present in the fuel assembly as the guide rods described above, the fuel rod can be inserted reliably to the point of insertion with no additional devices. Dummy fuel rods are previously inserted in a fuel assembly which are then utilized as the above-mentioned guide rods to accurately insert the fuel rod to the point of insertion. (I.S.)

  6. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  7. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu.

    1979-01-01

    Purpose: To enable rapid control in a simple circuit by providing a motor control device having an electric capacity capable of simultaneously driving all of the control rods rapidly only in the inserting direction as well as a motor controlling device capable of fine control for the insertion and extraction at usual operation. Constitution: The control rod drives comprise a first motor control device capable of finely controlling the control rods both in inserting and extracting directions, a second motor control device capable of rapidly driving the control rods only in the inserting direction, and a first motor switching circuit and a second motor switching circuit switched by switches. Upon issue of a rapid insertion instruction for the control rods, the second motor switching circuit is closed by the switch and the second motor control circuit and driving motors are connected. Thus, each of the control rod driving motors is driven at a high speed in the inserting direction to rapidly insert all of the control rods. (Yoshino, Y.)

  8. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  9. Latest developments in prestressed concrete vessels for gas-cooled reactors

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1979-01-01

    This paper is an update of the design development of prestressed concrete vessels, commonly referred to as 'PCRVs' starting with the first single-cavity PCRV for the Fort St. Vrain Nuclear Generating Station to the latest multi-cavity PCRV configurations being utilized as the primary reactor vessels for both the High Temperature Gas-Cooled Reactor (HTGR) and the Gas-Cooled Fast Breeder Reactor (GCFR) in the U.S.A. The complexity of PCRV design varies not only due to the type of vessel configuration (single versus multi-cavity) but also on the application to the specific type of reactor concept. PCRV technology as applied to the Steam Cycle HTGR is fairly well established; however, some significant technical complexities are associated with PCRV design for the Gas Turbine HTGR and the GCFR. For the Gas Turbine HTGR, for instance, the fluid dynamics of the turbo-machinery cause multi-pressure conditions to exist in various portions of the power conversion loops during operation. This condition complicates the design approach and the proof test specification for the PCRV. The geometric configuration of the multi-cavity PCRV is also more complex due to the introduction of large horizontal cylindrical cavities (housing the turbo/machines for the Gas Turbine HTGR and circulators for the GCFR) in addition to the vertical cylindrical cavities for the core and heat exchangers. Because of this complex geometry, it becomes difficult to achieve an optimum prestressing arrangement for the PCRV. Other novel features of the multi-cavity PCRV resulting from the continuing design optimization effort are the incorporation of an asymmetric (offset core) configuration and the use of large vessel cavity/penetration concrete closures directly held down by prestressing tendons for both economic and safety reasons. (orig.)

  10. Improving the state of the art in FEM analysis of PCCVs with bonded and unbonded prestress tendons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher A., E-mail: cajone@sandia.gov [Sandia National Laboratories, PO Box 5800, MS 0744, Albuquerque, NM 87125-0744 (United States); Dameron, Robert, E-mail: rdameron@moffattnichol.com [Moffatt and Nichol, 1660 Hotel Cir N, San Diego, CA 92108 (United States); Sircar, Madhumita, E-mail: Madhumita.sircar@nrc.gov [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2015-12-15

    Highlights: • A novel method for FE modeling of bonded and unbonded tendons was developed. • Bonded and unbonded tendon models were compared for use in PCCVs. • For internal overpressurization, unbonded tendons perform slightly better. • Tendon slip and load redistribution are credited for the increased performance. - Abstract: In order to assess the structural performance of grouted prestressing systems in nuclear power containment vessels, a full containment vessel was modeled using the finite element program, ABAQUS. Both bonded (grouted) and unbonded (ungrouted) prestressing systems were modeled. Prior to simulation of grouting, both models were identical, with the prestressing stages modeled explicitly, and friction represented along the tendons. The results indicate higher peak stresses and strains in the bonded model since the tendon system is not permitted to slip and redistribute forces as the vessel deforms. Correspondingly, it is noted that the analysis predicts failure of the vessel at a lower internal pressure in the case of the bonded system. This work is an extension of a collaborative study of finite element analysis (FEA) of prestressed concrete containment vessels (PCCVs) sponsored by the United States Nuclear Regulatory Commission (USNRC) and the Atomic Energy Regulatory Board (AERB) of India. Particular emphasis was placed on advancing the state of the art in modeling tendons (Akin et al., 2013a; Heitman et al., 2014).

  11. Fission reactor control rod

    International Nuclear Information System (INIS)

    Irie, Tomoo.

    1991-01-01

    The present invention concerns a control rod in a PWR type reactor. A control rod has an inner cladding tube and an outer cladding tube disposed coaxially, and a water draining hole is formed at the inside of the inner cladding tube. Neutron absorbers are filled in an annular gap between the outer cladding tube and the inner cladding tube. The water draining hole opens at the lower end thereof to the top end of the control rod and at the upper end thereof to the side of the upper end plug of the control rod. If the control rod is dropped to a control rod guide thimble for reactor scram, coolants from the control rod guide thimble are flown from the lower end of the water draining hole and discharged from the upper end passing through the water draining hole. In this way, water from the control rod guide thimble is removed easily when the control rod is dropped. Further, the discharging amount of water itself is reduced by the provision of the water draining hole. Accordingly, sufficient control rod dropping speed can be attained. (I.N.)

  12. Fuel rod simulator effects in flooding experiments single rod tests

    International Nuclear Information System (INIS)

    Nishida, M.

    1984-09-01

    The influence of a gas filled gap between cladding and pellet on the quenching behavior of a PWR fuel rod during the reflood phase of a LOCA has been investigated. Flooding experiments were conducted with a short length electrically heated single fuel rod simulator surrounded by glass housing. The gap of 0.05 mm width between the Zircaloy cladding and the internal Al 2 O 3 pellets of the rod was filled either wit helium or with argon to vary the radial heat resistance across the gap. This report presents some typical data and an evaluation of the reflood behavior of the fuel rod simulator used. The results show that the quench front propagates faster for increasing heat resistance in the gap between cladding and heat source of the rod. (orig.) [de

  13. Overview of experimental results obtained under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Naus, D.J.

    1978-01-01

    Under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory, various aspects of Prestressed Concrete Pressure Vessels (PCPVs) are investigated and evaluated with respect to reliability, structural performance, constructability, and economy. Based upon identified needs, analytical and experimental investigations are conducted. Areas of interest include finite-element analysis development, materials and structural behavior tests, instrumentation evaluation and development, and structural model tests. Studies have been recently completed in the following areas: concrete embedment instrumentation systems for PCPVs, grouted-nongrouted prestressing systems, acoustic emission as a technique for structural integrity monitoring, and model tests of steam-generator cavity closure plugs for a Gas-Cooled Fast Reactor (GCFR). An overview of results is presented

  14. An international survey of in-service inspection experience with prestressed concrete pressure vessels and containments for nuclear reactors

    International Nuclear Information System (INIS)

    1982-04-01

    An international survey is presented of experience obtained from the in-service surveillance of prestressed concrete pressure vessels and containments for nuclear reactors. Some information on other prestressed concrete structures is also given. Experience has been gained during the working life of such structures in Western Europe and the USA over the years since 1967. For each country a summary is given of the nuclear programme, national standards and Codes of Practice, and the detailed in-service inspection programme. Reports are then given of the actual experience obtained from the inspection programme and the methods of measurement, examination and reporting employed in each country. A comprehensive bibliography of over 100 references is included. The appendices contain information on nuclear power stations which are operating, under construction or planned worldwide and which employ either prestressed concrete pressure vessels or containments. (U.K.)

  15. Maximum/minimum asymmetric rod detection

    International Nuclear Information System (INIS)

    Huston, J.T.

    1990-01-01

    This patent describes a system for determining the relative position of each control rod within a control rod group in a nuclear reactor. The control rod group having at least three control rods therein. It comprises: means for producing a signal representative of a position of each control rod within the control rod group in the nuclear reactor; means for establishing a signal representative of the highest position of a control rod in the control rod group in the nuclear reactor; means for establishing a signal representative of the lowest position of a control rod in the control rod group in the nuclear reactor; means for determining a difference between the signal representative of the position of the highest control rod and the signal representative of the position of the lowest control rod; means for establishing a predetermined limit for the difference between the signal representative of the position of the highest control rod and the signal representative of the position of the lowest control rod; and means for comparing the difference between the signals with the predetermined limit. The comparing means producing an output signal when the difference between the signals exceeds the predetermined limit

  16. Usage of prestressed vertical bolts for retrofitting flat slabs damaged due to punching shear

    Directory of Open Access Journals (Sweden)

    Hamed S. Askar

    2015-09-01

    An experimental investigation with the objective of retrofitting flat slabs damaged due to punching shear using prestressed vertical bolts is presented in this paper. The parameters examined in this study are vertical prestressed bolts with different ratios within the slab thickness, slab thickness and central column size. Through the experimental tests the load carrying capacity, deformation characteristics and the cracking behavior have been investigated. A comparison between the behavior of retrofitted slabs and their references showed that the proposed system of repair is effective and could be used in practice. A comparison between the experimental results and calculated punching failure load based on the formulas adopted by different codes, showed a reasonable agreement.

  17. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    Science.gov (United States)

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  18. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Kawamura, Atsuo.

    1979-01-01

    Purpose: To reduce pellet-clad mechanical interactions, as well as improve the fuel safety. Constitution: In the rod drive of a bwr type reactor, an electric motor operated upon intermittent input such as of pulse signals is connected to a control rod. A resolver for converting the rotational angle of the motor to electric signals is connected to the rotational shaft of the motor and the phase difference between the output signal from the resolver and a reference signal is adapted to detect by a comparator. Based on the detection result, the controller is actuated to control a motor for control rod drive so that fine control for the movement of the control rod is made possible. This can reduce the moving distance of the control rod, decrease the thermal stress applied to the control rod and decrease the pellet clad mechanical interaction failures due to thermal expansion between the cladding tube and the pellets caused by abrupt changes in the generated power. (Furukawa, Y.)

  19. Pre-test analysis results of a PWR steel lined pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Basha, S.M.; Ghosh, Barnali; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-02-01

    Pre-stressed concrete nuclear containment serves as the ultimate barrier against the release of radioactivity to the environment. This ultimate barrier must be checked for its ultimate load carrying capacity. BARC participated in a Round Robin analysis activity which is co-sponsored by Sandia National Laboratory, USA and Nuclear Power Engineering Corporation Japan for the pre-test prediction of a 1:4 size Pre-stressed Concrete Containment Vessel. In house finite element code ULCA was used to make the test predictions of displacements and strains at the standard output locations. The present report focuses on the important landmarks of the pre-test results, in sequential terms of first crack appearance, loss of pre-stress, first through thickness crack, rebar and liner yielding and finally liner tearing at the ultimate load. Global and local failure modes of the containment have been obtained from the analysis. Finally sensitivity of the numerical results with respect to different types of liners and different constitutive models in terms of bond strength between concrete and steel and tension-stiffening parameters are examined. The report highlights the important features which could be observed during the test and guidelines are given for improving the prediction in the post test computation after the test data is available. (author)

  20. Ductility in high performance concrete structures:an experimental investigation and a theoretical study of prestressed hollow core slabs and prestressed cylindrical poles

    OpenAIRE

    Gabrielsson, Henrik

    1999-01-01

    The thesis presents results from a project dealing with ductility in high performance concrete structures. The main objectives were to investigate the material and structural ductility/brittleness of prestressed structural elements of High Performance Concrete (HPC). The aim was to get a better understanding of the fracture process and to study sudden and brittle failures formed by shear stresses. The project was split into three parts: (I) Torsion of cylindrical pole elements, (II) Shear, to...

  1. A comparison of elastic-plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1979-01-01

    Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)

  2. FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    Directory of Open Access Journals (Sweden)

    Ruitao Peng

    2016-01-01

    Full Text Available Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear.

  3. Status of rod consolidation

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1985-04-01

    Two of the factors that need to be taken into account with rod consolidation are (1) the effects on rods from their removal from the fuel assembly and (2) the effects on rods as a result of the consolidation process. Potential components of both factors are described in the report. Discussed under (1) are scratches on the fuel rod surfaces, rod breakage, crud, extended burnup, and possible cladding embrittlement due to hydrogen injection at BWRs. Discussed under (2) are the increased water temperature (less than 10 0 C) because of closer packing of the rods, formation of crevices between rods in the close-packed mode, contact with dissimilar metals, and the potential for rapid heating of fuel rods following the loss of water from a spent fuel storage pool. Another factor that plays an important role in rod consolidation is the cost of disposal of the nonfuel-bearing components of the fuel assembly. Also, the dose rate from the components - especially Inconel spacer grids - can affect the handling procedures. Several licensing issues that exist are described. A list of recommendations is provided. 98 refs., 5 figs., 5 tabs

  4. Prestressed reactor vessel for nuclear power plants

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1982-01-01

    With usual pressure vessels for nuclear reactor plants, especially for gas-cooled nuclear reactors, the load occurring due to the inner overpressure, especially the tensile load affecting the vessel top and/or bottom, their axis of inertia being horizontal, shall be compensated without a supplementary modification in design of the top and/or the bottom. This is attained by choosing an appropriate prestressing system of the vessel wall in the field the top and/or the bottom, so that the top and/or the bottom form a tension vault directed towards the interior of the vessel. (orig.) [de

  5. Control rod drive

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1988-01-01

    Purpose: To provide a simple and economical control rod drive using a control circuit requiring no pulse circuit. Constitution: Control rods in a BWR type reactor are driven by hydraulic pressure and inserted or withdrawn in the direction of applying the hydraulic pressure. The direction of the hydraulic pressure is controlled by a direction control valve. Since the driving for the control rod is extremely important in view of the operation, a self diagnosis function is disposed for rapid inspection of possible abnormality. In the present invention, two driving contacts are disposed each by one between the both ends of a solenoid valve of the direction control valve for driving the control rod and the driving power source, and diagnosis is conducted by alternately operating them. Therefore, since it is only necessary that the control circuit issues a driving instruction only to one of the two driving contacts, the pulse circuit is no more required. Further, since the control rod driving is conducted upon alignment of the two driving instructions, the reliability of the control rod drive can be improved. (Horiuchi, T.)

  6. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  7. Control rod withdrawal monitoring device

    International Nuclear Information System (INIS)

    Ebisuya, Mitsuo.

    1984-01-01

    Purpose: To prevent the power ramp even if a plurality of control rods are subjected to withdrawal operation at a time, by reducing the reactivity applied to the reactor. Constitution: The control rod withdrawal monitoring device is adapted to monitor and control the withdrawal of the control rods depending on the reactor power and the monitoring region thereof is divided into a control rod group monitoring region a transition region and a control group monitoring not interfere region. In a case if the distance between a plurality of control rods for which the withdrawal positions are selected is less than a limiting value, the coordinate for the control rods, distance between the control rods and that the control rod distance is shorter are displayed on a display panel, and the withdrawal for the control rods are blocked. Accordingly, even if a plurality of control rods are subjected successively to the withdrawal operation contrary to the control rod withdrawal sequence upon high power operation of the reactor, the power ramp can be prevented. (Kawakami, Y.)

  8. Thermal behavior simulation of a nuclear fuel rod through an eletrically heated rod

    International Nuclear Information System (INIS)

    Lima, R. de C.F. de.

    1984-01-01

    In thermalhydraulic loops the nuclear industry often uses electrically heated rods to simulate power transients, which occur in nuclear fuel rods. The development and design of a electrically heated rod, by supplying the dimensions and materials which should be used in order to yeld the same temperature and heat flux at the surfaces of the nuclear rod and the electrically heated rod are presented. To a given nuclear transient this equality was obtained by fitting the linear power through the lumped parameters technique. (Author) [pt

  9. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  10. Control rod shutdown system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Higashigawa, Yuichi.

    1996-01-01

    The present invention provides a control rod terminating system in a BWR type nuclear power plant, which stops an induction electric motor as rapidly as possible to terminate the control rods. Namely, the control rod stopping system controls reactor power by inserting/withdrawing control rods into a reactor by driving them by the induction electric motor. The system is provided with a control device for controlling the control rods and a control device for controlling the braking device. The control device outputs a braking operation signal for actuating the braking device during operation of the control rods to stop the operation of the control rods. Further, the braking device has at least two kinds of breaks, namely, a first and a second brakes. The two kinds of brakes are actuated by receiving the brake operation signals at different timings. The brake device is used also for keeping the control rods after the stopping. Even if a stopping torque of each of the breaks is small, different two kinds of brakes are operated at different timings thereby capable of obtaining a large stopping torque as a total. (I.S.)

  11. EDF reactor building containment: Monitoring of the pre-stressed concrete structure

    International Nuclear Information System (INIS)

    Badez, N.

    2009-01-01

    The concrete containments of the EDF PWR are pre-stressed, and are monitored to observe the ageing effects on the structure, in particular the evolutions of creep, shrinkage, pre-stress loss, and air leakage tightness. Monitoring devices are installed during construction period, and measurements are checked, stored on a data base, and analysed during all the plant operating life time. The topic of the presentation is to present each part of the EDF monitoring organisation. A continuous monitoring makes it possible to produce periodical comprehensive reports about the mechanical analysis of the structure, the strain stabilisation,... Periodical tests (each 10 years) are planned. They consist to submit the containment to an internal air pressure at the accidental pressure level. The monitoring system gives the strain values in order to check their linearity and reversibility with decreasing pressure. At the same time, the containment tightness is checked with a specific instrumentation to verify that leak rate is lower than the required level. A general view of instrumentation implemented on the containment (sensors, data acquisition), and a data analysis are presented

  12. Ultimate load design and testing of a cylindrical prestressed concrete vessel

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1982-01-01

    The object of this research was to design, construct and test to failure a prestressed concrete pressure vessel model that could be used to investigate the behavior of a full scale structure underworking and ultimate load. The properties and the design of the model was based generally on full scale vessels already constructed to house the nuclear reactors used in atomic power stations. To design the model the ultimate load approach was adopted throughout. All load factors associated with the prestressing have been defined and kept to a minimum in order that the vessel's behavior may be predicted. The tests on the vessel were carried out first on the elastic range to observe its behavior at working load and then at the ultimate range to observe the modes of failure and compare the actual results in both cases with the predicted values. Although full agreement between observed results and predicted values was not obtained, the conclusions drawn from the study were useful for the design of full scale vessels. (author)

  13. Analysis of prestressed concrete slab-and-beam structures

    Science.gov (United States)

    Sapountzakis, E. J.; Katsikadelis, J. T.

    In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.

  14. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  15. Precast, Prestressed Concrete Bent Caps : Volume 1, Preliminary Design Considerations and Experimental Test Program

    Science.gov (United States)

    2018-04-01

    Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...

  16. The role of ductile ligaments and warm prestress on the re-initiation of fracture from a crack arrested during thermal shock

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    The protection offered by warm prestress can be important for preserving a nuclear pressure vessel's integrity during a postulated emergency condition involving a loss of coolant, when the emergency core cooling water subjects the pressure vessel to a thermal shock. There are two aspects to the problem: (a) the initial extension of a defect into the vessel wall, and (b) the subsequent re-initiation of fracture at an arrested crack tip. This note considers the effect of warm prestress on the re-initiation of fracture from an arrested crack, and emphasizes the role of ductile ligaments. It is argued that the warm prestress concept is applicable, thus complementing the limited experimental results provided by the HSST Thermal Shock experimental programme. (orig.)

  17. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  18. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  19. Development of partial safety factors for the design of partially prestressed rectangular sections in biaxial flexure

    International Nuclear Information System (INIS)

    Chatterjee, Aritra; Bhattacharya, Baidurya; Agrawal, Gunjan; Mondal, Apurba

    2011-01-01

    Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class of structural components in the given load combination and limit state. This paper describes the methodology in detail for developing a set of optimal reliability-based PSFs for the design of rectangular partially prestressed concrete sections subjected to biaxial flexure. The mechanical formulation of the flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16 and failure is defined as tensile cracking of concrete extending beyond the depth of cover. The applied moments are combined according to Wood's criteria. The optimization of the PSFs is based on reliability indices obtained from first order reliability analysis of the structural components; Monte Carlo simulations are performed in each run to determine the capacity statistics and dependence between capacity and applied loads (effected through the axial loads influencing moment capacity corresponding to cracking). Numerical examples involving flexural design of partially prestressed concrete shell elements in nuclear power plant containments under accidental pressure load combination are provided. (author)

  20. Design recommendations for the optimized continuity diaphragm for prestressed concrete bulb-T beams.

    Science.gov (United States)

    2008-01-01

    This research focused on prestressed concrete bulb-T (PCBT) beams made composite with a cast-in-place concrete deck and continuous over several spans through the use of continuity diaphragms. The current design procedure in AASHTO states that a conti...

  1. Experimental investigations on the mechanisms of the warm prestress effect; Experimentelle Untersuchungen zu den Mechanismen des WPS-Effekts

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Alsmann, U. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    The Government-supported, joint project by IWW Freiburg, BAM Berlin, IWW Magdeburg, and MPA Stuttgart is intended to yield insight into the mechanisms underlying the WPS, warm prestress effect, and to derive on this basis a quantitative description of the WPS effect. (orig./CB) [Deutsch] Ziel eines durch das BMBF gefoerderten Gemeinschaftsprojekts von IWW Freiburg, BAM Berlin, IWW Magdeburg und MPA Stuttgart ist es, die Mechanismen des WPS-(warm prestress)-Effekts zu erklaeren und auf dieser Basis eine quantitative Beschreibung des WPS-Effekts zu ermoeglichen. (orig./MM)

  2. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  3. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  4. The development of natural-draught cooling towers of prestressed wire-rope network construction of aerodynamic design

    International Nuclear Information System (INIS)

    Braun, R.; Jasch, E.

    1975-01-01

    Natural-draught cooling towers carried to a height of up to 200 m will be required for the dissipation of the residual heat from the thermal processes of large-capacity power stations to be erected in future. The structural problems involved in such large-size towers can be overcome by using prestressed wire-rope network construction. A structural concept is discussed which proposes to use a cooling tower shell constructed of a prestressed, planked wire-rope network of circular hyperbolic form carried by a spacer ring attached to the central mast. Comments are given on the ensuing problems of aerodynamics, stress-strength assessment, and erection. (orig.) [de

  5. Multiple fuel rod gripper

    International Nuclear Information System (INIS)

    Shields, E.P.

    1987-01-01

    An apparatus is described for gripping an array of rods comprising: (a) gripping members grippingly engageable with the rods, each of which has a hollow portion terminating in an open end for receiving the end of one of the rods; (b) a closing means for causing the hollow portion of each of the gripping members to apply substantially the same gripping force onto the end of its respective rod, including (i) a locking plate having a plurality of tapered holes registrable with the array of rods, wherein the exterior of each of the gripping members is tapered and nested within one of the tapered holes, (ii) a withdrawing means having a hydraulic plunger operatively connected to each of the gripping members for applying a substantially identical withdrawing force on each of the gripping members, whereby the hollow portion of each of the gripping members applies substantially the same gripping force on its respective rod, and (c) means for detecting whether each of the gripping members has grippingly engaged its respective rod

  6. High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Moresco, Jacob Lange

    2011-01-01

    A as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant RodA and native...

  7. Prestressed concrete vessels suitable for helium high temperature reactors

    International Nuclear Information System (INIS)

    Lockett, G.E.; Kinkead, A.N.

    1967-02-01

    In considering prestressed concrete vessels for use with helium cooled high temperature reactors, a number of new problems arise and projected designs involve new approaches and new solutions. These reactors, having high coolant outlet temperature from the core and relatively high power densities, can be built into compact designs which permit usefully high working pressures. Consequently, steam generators and circulating units tend to be small. Although circuit activity can be kept quite low with coated particle fuels, designs which involve entry for subsequent repair are not favoured, and coupled with the preferred aim of using fully shop fabricated units within the designs with removable steam generators which involve no tube welding inside the vessel. A particular solution uses a number of slim cylindrical assemblies housed in the wall of the pressure vessel and this vessel design concept is presented. The use of helium requires very high sealing standards and one of the important requirements is a vessel design which permits leak testing during construction, so that a repair seal can be made to any faulty part in a liner seam. Very good demountable joint seals can be made without particular difficulty and Dragon experience is used to provide solutions which are suitable for prestressed concrete vessel penetrations. The concept layout is given of a vessel meeting these requirements; the basis of design is outlined and special features of importance discussed. (author)

  8. Containers, particularly prestressed concrete pressure vessels for nuclear reactor plants

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.; Mitterbacher, P.

    1986-01-01

    Pressure and temperature changes act on the liner, which cause differential expansion between the liner and the prestressed concrete. So that there will be no overload or damage to the liner, its anchoring or the concrete structure, cutouts are provided in the concrete at deflection positions of the steel cladding, connections and penetrations. These cut-outs are filled with inserts made of elastic or plastic material. (DG) [de

  9. Prestressed concrete reactor vessels: review of design and failure criteria

    International Nuclear Information System (INIS)

    Endebrock, E.G.

    1975-03-01

    The design and failure criteria of prestressed concrete reactor vessels (PCRVs) are reviewed along with the analysis methods. The mechanical properties of concrete under multiaxial stresses are not adequately quantified or described to permit an accurate analysis of a PCRV. Structural analysis of PCRVs almost universally utilizes a finite element which encounters difficulties in numerical solution of the governing equations and in treatment of fractured elements. (U.S.)

  10. COED Transactions, Vol. IX, No. 7, July 1977. Heuristic Design of Prestressed Concrete Beams.

    Science.gov (United States)

    Marcovitz, Alan B., Ed.

    This document provides a computer program which produces a graphical determination of admissible solutions for engineering problems relating to the design of prestressed concrete beams. Included is a generalized section for describing beam sections. (Author/SL)

  11. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.

    Science.gov (United States)

    Stockman, Andrew; Henning, G Bruce; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Cammack, Jocelyn; Ripamonti, Caterina

    2014-02-10

    We report a psychophysical investigation of 5 observers with the retinal disorder "cone dystrophy with supernormal rod ERG," caused by mutations in the gene KCNV2 that encodes a voltage-gated potassium channel found in rod and cone photoreceptors. We compared losses for rod- and for cone-mediated vision to further investigate the disorder and to assess whether the supernormal ERG is associated with any visual benefit. L-cone, S-cone, and rod temporal acuity (critical flicker fusion frequency) were measured as a function of target irradiance; L-cone temporal contrast sensitivity was measured as a function of temporal frequency. Temporal acuity measures revealed that losses for vision mediated by rods, S-cones, and L-cones are roughly equivalent. Further, the gain in rod function implied by the supernormal ERG provides no apparent benefit to near-threshold rod-mediated visual performance. The L-cone temporal contrast sensitivity function in affected observers was similar in shape to the mean normal function but only after the mean function was compressed by halving the logarithmic sensitivities. The name of this disorder is potentially misleading because the comparable losses found across rod and cone vision suggest that the disorder is a generalized cone-rod dystrophy. Temporal acuity and temporal contrast sensitivity measures are broadly consistent with the defect in the voltage-gated potassium channel producing a nonlinear distortion of the photoreceptor response but after otherwise normal transduction processes.

  12. Flexural Strength Of Prestressed Concrete Beams With Openings And Strengthened With CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Dr. Mustafa B. Dawood

    2015-06-01

    Full Text Available Abstract This paper presents an experimental investigation of flexural strength of pretensioned prestressed concrete beams with openings and strengthened with CFRP sheets tested as simply supported span subjected under two-point loading. The experimental work includes testing of nine prestressed concrete beams specimens with dimensions effective length 1800mm depth 300mm width 130mm two of which were without openings as a control beams one without and the other with strengthening by CFRP three were with openings and the remaining four with openings and strengthened with CFRP sheets. The opening was made at square shape 100100 mm in flexure zone at mid span of beam. Several design parameters were varied such as opening width opening depth and strengthening of openings of beams by CFRP sheets at compression and tension zone. Experimental results showed that the presence of square opening with ratio hH 0.333 and rectangular opening with ratio hH from 0.333-0.5 at mid span of beams decreased the ultimate load about 5.5 and 5.5-33.1 respectively when compared with beam without openings control beam. The externally strengthened prestressed concrete beams with bonded CFRP sheets showed a significant increase at the ultimate load this increase was about 10.9-28.8 for flexure beams when compared with the unstrengthened beams. Moreover the load-deflection curves for flexure beams strengthened with CFRP sheets were stiffer than the unstrengthened beams. Therefore this results gave a good indication about using CFRP sheets in improvement of deflection.

  13. Warm pre-stressing, preliminary experiments

    International Nuclear Information System (INIS)

    Hedner, G.

    1984-09-01

    The beneficial effect of warm pre-stressing, WPS, on apparent fracture thoughness at low temperature is well established. Tests are usually performed with constant load during the cooling part of the load cycle. In practice load variations may occur during this part. The present paper reports a preliminary study of the influence of superimposed fatigue loads. It is found that if crack propagation occurs during cooling+fatigue loading, then the maximum load during the fatigue load cycle is the preload to be used for WPS consideration. A few tests were preformed to study the effect of preload reversal. Tensile preload was followed by a compressive load and after unloading the specimens were cooled and fractured. It was found that for the high preload level used in the tests, the beneficial effect of the tensile preload could be totally annihilated by the compressive preload. (author)

  14. Control rod drive for vertical movement

    International Nuclear Information System (INIS)

    Suskov, I.I.; Gorjunov, V.S.; Zajcev, B.I.; Derevjankin, N.E.; Petrov, V.A.; Istomin, S.D.; Kovalencik, D.I.; Archipov, E.A.; Serebrjakov, V.I.; Kacalin, V.S.

    1982-01-01

    The control of the rod repositioning gear unit and the control unit of the profile grab of the control rod drive for the alkali metal-cooled fast breeder reactor is achieved by an electromotor being arranged outside the hermetic drive casing. The guide tube is directly repositioned by the rod repositioning gear unit. Coupling control of the drive with the control rod is done in the lower operative position of the control rod and that because of the interaction of the tie rod arranged on the spring-mounted control rod with the induction transmitter for the lower position of the control rod. In the transfer position the rod is fixed within the guide tube. (orig.)

  15. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  16. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV

  17. Safety rod driving device

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Kurosaki, Akira.

    1988-01-01

    Purpose: To rapidly insert safety rods for a criticality experiment device into a reactor core container to stop the criticality reaction thereby prevent reactivity accidents. Constitution: A cylinder device having a safety rod as a cylinder rod attached with a piston at one end is constituted. The piston is elevated by pressurized air and attracted and fixed by an electromagnet which is a stationary device disposed at the upper portion of the cylinder. If the current supply to the electromagnet is disconnected, the safety rod constituting the cylinder rod is fallen together with the piston to the lower portion of the cylinder. Since the cylinder rod driving device has neither electrical motor nor driving screw as in the conventional device, necessary space can be reduced and the weight is decreased. In addition, since the inside of the nuclear reactor can easily be shielded completely from the external atmosphere, leakage of radioactive materials can be prevented. (Horiuchi, T.)

  18. Study of global stability of tall buildings with prestressed slabs

    Directory of Open Access Journals (Sweden)

    L. A. Feitosa

    Full Text Available The use of prestressed concrete flat slabs in buildings has been increasing in recent years in the Brazilian market. Since the implementation of tall and slender buildings a trend in civil engineering and architecture fields, arises from the use of prestressed slabs a difficulty in ensuring the overall stability of a building without beams. In order to evaluate the efficiency of the main bracing systems used in this type of building, namely pillars in formed "U" in elevator shafts and stairs, and pillars in which the lengths are significantly larger than their widths, was elaborated a computational models of fictional buildings, which were processed and analyzed using the software CAD/TQS. From the variation of parameters such as: geometry of the pillars, thick slabs, characteristic strength of the concrete, reduceofthe coefficient of inertia for consideration of non-linearities of the physical elements, stiffness of the connections between slabs and pillars, among others, to analyze the influence of these variables on the overall stability of the building from the facing of instability parameter Gama Z, under Brazilian standard NBR 6118, in addition to performing the processing of building using the P-Delta iterative calculation method for the same purpose.

  19. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    Science.gov (United States)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  20. Testing device for control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1992-01-01

    A testing device for control rod drives comprises a logic measuring means for measuring an output signal from a control rod drive logic generation circuit, a control means for judging the operation state of a control rod and a man machine interface means for outputting the result of the judgement. A driving instruction outputted from the control rod operation device is always monitored by the control means, and if the operation instruction is stopped, a testing signal is outputted to the control rod control device to simulate a control rod operation. In this case, the output signal of the control rod drive logic generation circuit is held in a control rod drive memory means and intaken into a logic analysis means for measurement and an abnormality is judged by the control means. The stopping of the control rod drive instruction is monitored and the operation abnormality of the control rod is judged, to mitigate the burden of an operator. Further, the operation of the control rod drive logic generation circuit can be confirmed even during a nuclear plant operation by holding the control rod drive instruction thereby enabling to improve maintenance efficiency. (N.H.)

  1. The Hysteretic Behavior of Partially Pre-Stressed Beam-Column Joint Sub-assemblages Made of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Nurjannah

    2016-11-01

    Full Text Available Reactive powder concrete (RPC is an alternative to normal concrete (NC allowing for significantly higher strength of partially pre-stressed concrete structures. In the Indonesian national standard SNI 03-2847-2013 (2013 and the American standard ACI 318-14 (2014, the partial pre-stressed ratio (PPR is limited to a maximum of 25.0 percent to ensure that pre-stressed concrete structures remain ductile and capable to dissipate seismic energy sufficiently. The objective of this experimental study was to investigate the hysteretic performance of partially pre-stressed-RPC (PP-RPC for both interior and exterior beam-column joint sub-assemblages. Four specimens with different levels of PPR were tested with a combination of constant axial compression and cyclic lateral loads. The PPR used for the first and the second two specimens were 22.8% and 33.8%, respectively. The strength of the RPC was 101.60 MPa for all specimens. The results showed that increasing the PPR of PP-RPC improves its hysteretic performance. The best performing specimen, with a PPR of 33.8%, had a ductility that was 1.97 times that of the specimen with a PPR of 22.8%.

  2. Waves in nonlinear pre-stressed materials

    CERN Document Server

    Schneider, Wilhelm; Saccomandi, G

    2007-01-01

    The papers in this book provide a unique state-of-the-art multidisciplinary overview on the subject of waves in pre-stressed materials through the interaction of several topics, ranging from the mathematical modelling of incremental material response (elastic and inelastic), to the analysis of the governing differential equations and boundary-value problems, and to computational methods for the solution to these problems, with particular reference to industrial, geophysical, and biomechanical applications. A complete view on the title subject is proposed, including: The basic and fundamental theoretical issues (mechanical modelling, exact solutions, asymptotic methods, numerical treatment); A unified introduction to wave propagation (small on large and large on large); A look toward classical (such as geophysics and the mechanics of rubber-like solids) and emergent (such as biomechanics) applications.

  3. Development of large diamond-tipped saws and their application to cutting large radioactive reinforced concrete structures

    International Nuclear Information System (INIS)

    Rawlings, G.W.

    1985-01-01

    The object of this research was to develop a large circular saw, capable of cutting away, by remote control, the inner radio-activated layer of reinforced concrete biological shields or pre-stressed concrete pressure vessel of gas-cooled reactors. Initial investigations and enquiries put to the existing saw industry established although there were blades in use approaching the size and type required, the development of large machines was restricted to the fixed-bed type because there was little demand for deep sawing in the construction or demolition industry. Preliminary work was carried out in 1981 to demonstrate the largest available wall saw at that time which showed that by changing the blade three times, a kerf 810 mm deep could be achieved. From this demonstration, the design and development of a 'free frame saw' and construction of a 660 mm blade as well as a 2500 mm blade, were performed. Initially, the 660 mm blade was used to cut the concrete and reinforcement, followed by the 2500 mm blade to produce a 1 m kerf. Subsequent development and testing demonstrated that the 2500 mm blade could be controlled to ''plunge cut'', that is to cut straight down in the reinforced concrete to a depth of 1 m in 7 minutes and would then advance at 160 mm/min; this is a work rate of 10 m 2 /hr. The final demonstration was to mount the saw on an extendible boom and remove a 1 m 3 block of reinforced concrete from the vertical face of a test wall

  4. Surface Crack Detection in Prestressed Concrete Cylinder Pipes Using BOTDA Strain Sensors

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available Structural deterioration after a period of service can induce the failure of prestressed concrete cylinder pipes (PCCPs, with microcracks in the coating leading to the corrosion of the prestressed wires. In this paper, we propose the use of Brillouin optical time-domain analysis (BOTDA strain sensors for detecting the onset of microcracking in PCCP coating: the BOTDA strain sensors are mounted on the surface of the PCCP, and distributed strain measurements are employed to assess the cracks in the mortar coating and the structural state of the pipe. To validate the feasibility of the proposed approach, experimental investigations were conducted on a prototype PCCP segment, wherein the inner pressure was gradually increased to 1.6 MPa. Two types of BOTDA strain sensors—the steel wire packaged fiber optic sensor and the polyelastic packaged fiber optic sensor—were employed in the experiments. The experimental distributed measurements agreed well with the finite element computations, evidencing that the investigated strain sensors are sensitive to localized deterioration behaviors such as PCCP microcracking.

  5. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  6. RodPilotR - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    International Nuclear Information System (INIS)

    Baron, Clemens

    2008-01-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  7. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  8. Rod drive and latching mechanism

    International Nuclear Information System (INIS)

    Veronesi, L.; Sherwood, D.G.

    1982-01-01

    Hydraulic drive and latching mechanisms for driving reactivity control mechanisms in nuclear reactors are described. Preferably, the pressurized reactor coolant is utilized to raise the drive rod into contact with and to pivot the latching mechanism so as to allow the drive rod to pass the latching mechanism. The pressure in the housing may then be equalized which allows the drive rod to move downwardly into contact with the latching mechanism but to hold the shaft in a raised position with respect to the reactor core. Once again, the reactor coolant pressure may be utilized to raise the drive rod and thus pivot the latching mechanism so that the drive rod passes above the latching mechanism. Again, the mechanism pressure can be equalized which allows the drive rod to fall and pass by the latching mechanism so that the drive rod approaches the reactor core. (author)

  9. Control rods

    International Nuclear Information System (INIS)

    Koga, Isao; Masuoka, Ryuzo.

    1979-01-01

    Purpose: To prevent fuel element failures during power conditioning by removing liquid absorbents in poison tubes of control rods in a fast power up step and extracting control rods to slightly increase power in a medium power up step. Constitution: A plurality of poison tubes are disposed in a coaxial or plate-like arrangement and divided into a region capable of compensating the reactivity from the initial state at low temperature to 40% power operation and a region capable of compensating the reactivity in the power up above 40% power operation. Soluble poisons are used as absorbers in the poison tubes corresponding to above 40% power operation and they are adapted to be removed independently from the driving of control rods. The poison tubes filled with the soluble absorbers are responsible for the changes in the reactivity from the initial state at low temperature to the medium power region and the reactivity control is conducted by the elimination of liquid absorbers from the poison tubes. In the succeeding slight power up region above the medium power, power up is proceeding by extracting the control rods having remaining poison tubes filled with solid or liquid absorbers. (Seki, T.)

  10. Simulation of nuclear fuel rods by using process computer-controlled power for indirect electrically heated rods

    International Nuclear Information System (INIS)

    Malang, S.

    1975-11-01

    An investigation was carried out to determine how the simulation of nuclear fuel rods with indirect electrically heated rods could be improved by use of a computer to control the electrical power during a loss-of-coolant accident (LOCA). To aid in the experiment, a new version of the HETRAP code was developed which simulates a LOCA with heater rod power controlled by a computer that adjusts rod power during a blowdown to minimize the difference in heat flux of the fuel and heater rods. Results show that without computer control of heater rod power, only the part of a blowdown up to the time when the heat transfer mode changes from nucleate boiling to transition or film boiling can be simulated well and then only for short times. With computer control, the surface heat flux and temperature of an electrically heated rod can be made nearly identical to that of a reactor fuel rod with the same cooling conditions during much of the LOCA. A small process control computer can be used to achieve close simulation of a nuclear fuel rod with an indirect electrically heated rod

  11. Nuclear power plant design resistance to earthquakes. Pt. 3

    International Nuclear Information System (INIS)

    1990-01-01

    The rule specifies the standards to be met by the architectural design for building structures in order to ensure that they will not collapse during an earthquake. Building structures including the sub-structures covered by the rule are understood as buildings and building sections made of steel-reinforced concrete, prestressed concrete, steel and masoury (brickwork). They include i.a. crane tracks and gantries. For reactor safety containment buildings constructed of steel, steel-reinforced concrete or prestressed concrete, this rule applies for the calculation of section size. (orig./HP) [de

  12. Fuel rod technology

    International Nuclear Information System (INIS)

    Bezold, H.; Romeiser, H.J.

    1979-07-01

    By extensive mechanization and automation of the fuel rod production, also at increasing production numbers, an efficient production shall be secured, simultaneously corresponding to the high quality standard of the fuel rods. The works done up to now concentrated on the lay out of a rough concept for a mechanized production course. Detail-studies were made for the problems of fuel rod humidity, filling and resistance welding. Further promotion of this project and thus further report will be stopped, since the main point of these works is the production technique. (orig.) [de

  13. Structure simulation of a pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Grebner, H.; Sievers, J.

    2004-01-01

    An axisymmetric Finite-Element-Model of the 1:4 pre-stressed containment model tested at SANDIA was developed. The model is loaded by the pre-stressing of the tendons and by increasing internal pressure (up to 1.3 MPa). The analyses results in terms of displacements and strains in the liner, the rebars, the tendons and the concrete of the cylindrical part agree well with measured data up to about 0.6 MPa internal pressure (i.e. 1.5 times design pressure). First circumferential micro-cracks in the concrete are found at about 0.75 MPa. With increasing pressure micro-cracks are present through the whole wall. Above about 0.9 MPa the formation of micro-cracks in radial and meridional direction is calculated. At the maximum load (1.3 MPa) almost all concrete parts of the model have micro-cracks which may cause leaks. Nevertheless the failure of the containment model is not expected for loads up to 1.3 MPa without consideration of geometric inhomogeneities due to penetrations in the wall. Although the calculated strains in liner, rebars and tendons show some plastification, the maximum values are below the critical ones. The safety margin against failure is smallest in some hoop tendons. At present parametric studies are performed to investigate the differences between calculations and measured data. Furthermore three-dimensional models are developed for a better simulation of the meridional tendons in the dome region. (orig.)

  14. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  15. Instrumentation and testing of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Pace, D.W.; Klamerus, E.W.

    1997-01-01

    Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs

  16. Analysis of prestressed double-wall tubing for LMFBR steam generators

    International Nuclear Information System (INIS)

    Uber, C.F.; Langford, P.J.

    1981-01-01

    A radial interface pressure is provided between the inner and outer tubes of each double-wall tube in a steam generator design now being developed for commercial breeder reactor plants. This paper describes a finite element analysis of the manufacturing technique used to prestress the double-wall tube. The analytical predictions are compared with experimental measurements of the residual interface pressure. Resulting residual stress states are used as the starting point for operating condition analyses. 9 refs

  17. Experimental verification of secondary effects of prestressed beam at ULS

    Directory of Open Access Journals (Sweden)

    Peter Pažma

    2016-03-01

    Full Text Available The paper deals with secondary effects of prestressing at ultimate limit state when statically indeterminate structure has changed its structural form due to development of plastic hinges in critical cross-sections. The article presents results of an experimental program which was carried out at Slovak University of Technology in Bratislava on two span continuous beams post-tensioned by two single-strand tendons subjected to experimental load which has changed structural system into kinematic mechanism.

  18. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  19. The BWR Hybrid 4 control rod

    International Nuclear Information System (INIS)

    Gross, H.; Fuchs, H.P.; Lippert, H.J.; Dambietz, W.

    1988-01-01

    The service life of BWR control rods designed in the past has been unsatisfactory. The main reason was irradiation assisted stress corrosion cracking of B 4 C rods caused by external swelling of the B 4 C powder. By this reason KWU developed an improved BWR control rod (Hybrid 4 control rod) with extended service life and increased control rod worth. It also allows the procedure for replacing and rearranging fuel assemblies to be considerably simplified. A complete set of Hydbrid 4 control rods is expected to last throughout the service life of a plant (assumption: ca. 40 years) if an appropriate control rod reshuffling management program is used. (orig.)

  20. Prestressed concrete reactor vessel for the HHT-670 MW(e) demonstration plant. Pt.1. Design of the multi-cavity prestressed concrete reactor vessel with warm liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1979-01-01

    The design studies and tests described in this paper were undertaken as part of ''PROJECT HHT'', a German-Swiss joint effort for the development of high-temperature helium cooled reactors with direct-cycle turbine. The prestressed concrete reactor pressure vessel encloses the core of the reactor itself, the heat exchangers (coolers and recuperators), the helium turbine, the main helium circuit, all nuclear and thermal equipment, and auxiliary reactor cooling equipment. In order to make the liner accessible for inspection, no thermal insulation is provided between the coolant and the liner. The temperature of the helium in contact with the liner is limited to 200 0 C, under all normal operation conditions of the reactor. In the HHT reactor pressure vessel, the resisting structure is protected thermally by a layer of warm concrete between the liner and the structural prestressed concrete. The main features of this pressure vessel are the marked pressure differences in the cavities during normal operation, and the use of warm liner. The objectives of the reference design were chiefly related to the sizing up of the main structure, taking into account the modifications to be expected in the material characteristics as a result of the high temperatures developed

  1. Burnable poison rod

    International Nuclear Information System (INIS)

    Natsume, Tomohiro.

    1988-01-01

    Purpose: To decrease the effect of water elimination and the effect of burn-up residue boron, thereby reduce the effect of burnable poison rods as the neutron poisons at the final stage of reactor core lifetime. Constitution: In a burnable poison rod according to the present invention, a hollow burnable poison material is filled in an external fuel can, an inner fuel can mounted with a carbon rod is inserted to the hollow portion of the burnable poison material and helium gases are charged in the outer fuel can. In such a burnable poison rod, the reactivity worths after the burning are reduced to one-half as compared with the conventional case. Accordingly, since the effect of the burnable poison as the neutron poisons is reduced at the final stage of the reactor core of lifetime, the excess reactivity of the reactor core is increased. (Horiuchi, T.)

  2. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  3. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls

    Science.gov (United States)

    Lu, Xilin; Yang, Boya; Zhao, Bin

    2018-04-01

    The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.

  4. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support.

    Science.gov (United States)

    Perez-Orribo, Luis; Kalb, Samuel; Reyes, Phillip M; Chang, Steve W; Crawford, Neil R

    2013-04-15

    Seven different combinations of posterior screw fixation, with or without interbody support, were compared in vitro using nondestructive flexibility tests. To study the biomechanical behavior of a new cortical screw (CS) fixation construct relative to the traditional pedicle screw (PS) construct. The CS is an alternative to the PS for posterior fixation of the lumbar spine. The CS trajectory is more sagittally and cranially oriented than the PS, being anchored in the pars interarticularis. Like PS fixation, CS fixation uses interconnecting rods fastened with top-locking connectors. Stability after bilateral CS fixation was compared with stability after bilateral PS fixation in the setting of intact disc and with direct lateral interbody fixation (DLIF) or transforaminal lateral interbody fixation (TLIF) support. Standard nondestructive flexibility tests were performed in cadaveric lumbar specimens, allowing non-paired comparisons of specific conditions from 28 specimens (4 groups of 7) within a larger experiment of multiple hardware configurations. Condition tested and group from which results originated were as follows: (1) intact (all groups); (2) with L3-L4 bilateral PS-rods (group 1); (3) with bilateral CS-rods (group 2); (4) with DLIF (group 3); (5) with DLIF + CS-rods (group 4); (6) with DLIF + PS-rods (group 3); (7) with TLIF + CS-rods (group 2), and (8) with TLIF + PS-rods (group 2). To assess spinal stability, the mean range of motion, lax zone, and stiff zone at L3-L4 were compared during flexion-extension, lateral bending, and axial rotation. With intact disc, stability was equivalent after PS-rod and CS-rod fixation, except that PS-rod fixation was stiffer during axial rotation. With DLIF support, there was no significant difference in stability between PS-rod and CS-rod fixation. With TLIF support, PS-rod fixation was stiffer than CS-rod fixation during lateral bending. Bilateral CS-rod fixation provided about the same stability in cadaveric specimens

  5. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    Science.gov (United States)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  6. Freely suspended rod fall dampener, especially for control rod of liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Becvar, J.; Saroch, V.

    1977-01-01

    A shock absorber is described whose advantage is that the space required for the movement of the shock absorber in the operating travel of the system suspension rod-control rod bundle may be reduced. The design allows the automatic disconnection of the system and the removal of the suspension rod from the reactor without dismantling. The braking force reaction is transmitted to the structure above the core. The system fall energy is absorbed on the side of the suspension rod which has a bigger mass. (J.B.)

  7. RodPilot{sup R} - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Clemens [AREVA NP GmbH, NLEE-G, Postfach 1199, 91001 Erlangen (Germany)

    2008-07-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  8. Precise deformation measurement of prestressed concrete beam during a strain test using the combination of intersection photogrammetry and micro-network measurement

    Science.gov (United States)

    Urban, Rudolf; Braun, Jaroslav; Štroner, Martin

    2015-05-01

    The prestressed thin-walled concrete elements enable the bridge a relatively large span. These structures are advantageous in economic and environmental way due to their thickness and lower consumption of materials. The bending moments can be effectively influenced by using the pre-stress. The experiment was done to monitor deformation of the under load. During the experiment the discrete points were monitored. To determine a large number of points, the intersection photogrammetry combined with precise micro-network were chosen. Keywords:

  9. Control-rod driving mechanism

    International Nuclear Information System (INIS)

    Jodoi, Takashi.

    1976-01-01

    Purpose: To prevent falling of control rods due to malfunction. Constitution: The device of the present invention has a scram function in particular, and uses principally a fluid pressure as a scram accelerating means. The control rod is held by upper and lower holding devices, which are connected by a connecting mechanism. This connecting mechanism is designed to be detachable only at the lower limit of driving stroke of the control rod so that there occurs no erroneous scram resulting from careless disconnection of the connecting mechanism. Further, scramming operation due to own weight of the scram operating portion such as control rod driving shaft may be effected to increase freedom. (Kamimura, M.)

  10. 78 FR 37236 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-06-20

    ... Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Determinations On the basis of the record \\1... imports from China, Mexico, and Thailand of prestressed concrete steel rail tie wire, provided for in... China, Mexico, and Thailand. Accordingly, effective April 23, 2013, the Commission instituted...

  11. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  12. The Use of Prestressed Concrete Vessels in the French Power Reactor Programme

    International Nuclear Information System (INIS)

    Conte, F.; Dambrine, C.; Gaussot, D.

    1963-01-01

    This paper deals with the use of pre-stressed concrete for the G2 and G3 reactors at Marcoule and for the EDF3 reactor now under construction at Chinon. The first two reactors have been operating at power since 1959 and 1960 respectively. Messrs. Conte and Dambrine discuss the problems that arose during construction of the vessels for G2 and G3 and also deal with the experience gained in operation - experience which suggests that they are extremely safe- Work on the EDF3 vessel, begun at Chinon in the second half of 1961, is still under way and should be finished towards the end of 1963. Mr. Gaussot discusses the reasons for choosing this type of vessel, the results of calculations and mock-up tests, and the problems presented by the construction itself. A number of studies have been devoted to the future prospects of prestressed concrete structures for reactors. It would seem that working pressures could be increased, if desired, and, in any case, that dimensions could be considerably enlarged, thus offering the chance of integral-type solutions. (author) [fr

  13. Control rod velocity limiter

    International Nuclear Information System (INIS)

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  14. Control rod position control device

    International Nuclear Information System (INIS)

    Ubukata, Shinji.

    1997-01-01

    The present invention provides a control rod position control device which stores data such as of position signals and driving control rod instruction before and after occurrence of abnormality in control for the control rod position for controlling reactor power and utilized the data effectively for investigating the cause of abnormality. Namely, a plurality of individual control devices have an operation mismatching detection circuit for outputting signals when difference is caused between a driving instruction given to the control rod position control device and the control rod driving means and signals from a detection means for detecting an actual moving amount. A general control device collectively controls the individual control devices. In addition, there is also disposed a position storing circuit for storing position signals at least before and after the occurrence of the control rod operation mismatching. With such procedures, the cause of the abnormality can be determined based on the position signals before and after the occurrence of control rod mismatching operation stored in the position storing circuit. Accordingly, the abnormality cause can be determined to conduct restoration in an early stage. (I.S.)

  15. Control rod selecting and driving device

    International Nuclear Information System (INIS)

    Isobe, Hideo.

    1981-01-01

    Purpose: To simultaneously drive a predetermined number of control rods in a predetermined mode by the control of addresses for predetermined number of control rods and read or write of driving codified data to and from the memory by way of a memory controller. Constitution: The system comprises a control rod information selection device for selecting predetermined control rods from a plurality of control rods disposed in a reactor and outputting information for driving them in a predetermined mode, a control rod information output device for codifying the information outputted from the above device and outputting the addresses to the predetermined control rods and driving mode coded data, and a driving device for driving said predetermined control rods in a predetermined mode in accordance with the codified data outputted from the above device, said control rod infromation output device comprising a memory device capable of storing a predetermined number of the codified data and a memory control device for storing the predetermined number of data into the above memory device at a predetermined timing while successively outputting the thus stored predetermined number of data at a predetermined timing. (Seki, T.)

  16. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    Science.gov (United States)

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  17. RODDRP - A FORTRAN program for use in control rod calibration by the rod drop method

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1972-01-01

    The different methods to measure reactivity which are applicable to control rod calibration are discussed. They include: 1) the positive period method, 2) the rod drop method, 3) the source-jerk method, 4) the rod oscillation method, and 5) the pulsed neutron method. The instrument setup used at WSU for rod drop measurements is presented. To speed up the analysis of power fall-off trace, a FORTRAN IV program called RODDRP was written to simultaneously solve the in-hour equation and relative neutron flux. The procedure for calculating the worth of the rod that produced the power trace is given. The reactivity for each time relative flux point is obtained. Conclusions about the status of the equipment are made

  18. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  19. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nylund, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1991-01-01

    This patent describes a method for loading fuel rods in a desired pattern. It comprises providing a supply of fuel rods of known enrichments; providing a magazine defining a matrix of elongated slots open at their forward ends for receiving fuel rods; defining a fuel rod feed path; receiving successively one at a time along the feed path fuel rods selected from the supply thereof; verifying successively one at a time along the feed path the identity of the selected fuel rods, the verifying including blocking passage of each selected fuel rod along the feed path until the identity of each selected fuel rod is confirmed as correct; feeding to the magazine successively one at a time along the feed path the selective and verified fuel rods; and supporting and moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  20. Evaluation of the increased load bearing capacity of steel beams strengthened with pre-stressed FRP laminates

    Directory of Open Access Journals (Sweden)

    S. Bennati

    2016-10-01

    Full Text Available We analyse the problem of a simply supported steel beam subjected to uniformly distributed load, strengthened with a pre-stressed fibre-reinforced polymer (FRP laminate. We assume that the laminate is first put into tension, then bonded to the beam bottom surface, and finally fixed at both its ends by suitable connections. The beam and laminate are modelled according to classical beam theory. The adhesive is modelled as a cohesive interface with a piecewise linear constitutive law defined over three intervals (elastic response, softening response, debonding. The model is described by a set of differential equations with suitable boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces and interfacial stresses. As an application, we consider the standard IPE series for the steel beam and the Sika® CarboDur® system for the adhesive and laminate. For each considered cross section, we first carry out a preliminary design of the unstrengthened steel beam. Then, we imagine to apply the FRP strengthening and calculate the loads corresponding to the elastic limit states in the steel beam, adhesive, and laminate. Lastly, we take into account the ultimate limit state corresponding to the plasticisation of the mid-span steel cross section and evaluate the increased load bearing capacity of the strengthened beam