WorldWideScience

Sample records for reinforced thermoplastics technology

  1. Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes

    NARCIS (Netherlands)

    Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko

    2006-01-01

    This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are

  2. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    International Nuclear Information System (INIS)

    McCool, Rauri; Murphy, Adrian; Wilson, Ryan; Jiang Zhenyu; Price, Mark

    2011-01-01

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available

  3. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  4. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  5. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  6. Mechanical behaviour of textile-reinforced thermoplastics with integrated sensor network components

    International Nuclear Information System (INIS)

    Hufenbach, W.; Adam, F.; Fischer, W.-J.; Kunadt, A.; Weck, D.

    2011-01-01

    Highlights: → Consideration of two types of integrated bus systems for textile-reinforced thermoplastics with embedded sensor networks. → Specimens with bus systems made of flexible printed circuit boards show good mechanical performance compared to the reference. → Inhomogeneous interface and reduced stiffnesses and strengths for specimens with bus systems basing on single copper wires. -- Abstract: The embedding of sensor networks into textile-reinforced thermoplastics enables the design of function-integrative lightweight components suitable for high volume production. In order to investigate the mechanical behaviour of such functionalised composites, two types of bus systems are selected as exemplary components of sensor networks. These elements are embedded into glass fibre-reinforced polypropylene (GF/PP) during the layup process of unconsolidated weft-knitted GF/PP-preforms. Two fibre orientations are considered and orthotropic composite plates are manufactured by hot pressing technology. Micrograph investigations and computer tomography analyses show different interface qualities between the thermoplastic composite and the two types of bus systems. Mechanical tests under tensile and flexural loading indicate a significant influence of the embedded bus system elements on the structural stiffness and strength.

  7. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  8. Production and properties of micro-cellulose reinforced thermoplastic starch

    Science.gov (United States)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  9. Fibre-reinforced composite structures based on thermoplastic matrices with embedded piezoceramic modules

    International Nuclear Information System (INIS)

    Hufenbach, Werner A; Modler, Niels; Winkler, Anja; Ilg, Juergen; Rupitsch, Stefan J

    2014-01-01

    The paper presents recent developments for the integration of piezoceramic modules into fibre-reinforced composite structures based on thermoplastic matrices. An adapted hot pressing technology is conceptualized that allows for material homogeneous integration of the active modules. The main focus of this contribution is on the development of a robust and continuous manufacturing process of such novel active composites as well as on the operational testing of the produced samples. Therefore, selected specimens are manufactured as bending beams and investigated by means of electrical impedance measurements, modal analysis and structural excitation tests. In particular, the functionality of representative specimens is characterized based on frequency as well as spatially resolved deflection measurements. Moreover, the mentioned samples are compared to non-integrated piezoceramic modules and to equivalent passive reinforced composite structures. (paper)

  10. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  11. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  12. Long-fibre reinforced thermoplastics. Applications and limitations of a new type of material

    Energy Technology Data Exchange (ETDEWEB)

    Neise, E.

    1986-06-01

    New processing possibilities are offered by long-fibre reinforced thermoplastics, because - contrary to thermoset processing - no chemical reaction occurs and thermoforming and welding of prepregs is possible. Processing techniques like filament winding, tape laying or pultrusion are in development at different institutes.

  13. Experimental characterisation of recycled (glass/tpu woven fabric) flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal; Rietman, Bert; Visser, Roy; Akkerman, Remko; Hoa, S.V.; Hubert, P.

    2013-01-01

    Recycling of continuously reinforced thermoplastic composites (TPC) has a substantial prospect at present and in future due to its increasing availability and rapidly growing application regime. This study focusses on the first steps in using TPC process scrap on a scale in which its maximum

  14. Fabrication and mechanical testing of fibre reinforced thermoplastic composite tubes

    International Nuclear Information System (INIS)

    Tufail, M.

    2005-01-01

    Polymer based composites are produced using less expensive moulds and quick fabrication techniques. The overall processing cost for such materials is much lesser than metallic materials. Usually monolithic parts are produced out of composite materials which further decreases the processing time needed for joining sub- , assemblies as in the case of metallic parts. Any defects encountered due to sub-assemblies are also eliminated. Thermoset based composites have been used for long time to produce parts for automotive, aerospace, marine, and sports industries. The properties thus obtained by using thermoset as matrix are very well in comparison with metals but certain draw backs a.e there with this kind of matrix. Thermoset based composites are processed in untidy environment and once the object is produced can not be reshaped. In contrary to that thermoplastic materials are processed in a clean environment and the material can be recycled. The component once produced can easily be reshaped if required as no chemical reaction does take place during the process. Although the high melt viscosity of thermoplastic has limited its application as due to its high viscosity, its processing would be very difficult. Various methods have been developed to resolve this issue. In this study, a commingled material has been used to produce thermoplastic based composite tubes. The method developed for making such tubes is defined along with the method adopted to measure some of the mechanical properties of these tubes. (author)

  15. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  16. Continuous welding of unidirectional fiber reinforced thermoplastic tape material

    Science.gov (United States)

    Schledjewski, Ralf

    2017-10-01

    Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.

  17. Creep of thermoplastic polyurethane reinforced with ozone functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2012-09-01

    Full Text Available This work focused on the mechanical behavior, especially creep resistance, of thermoplastic polyurethane (TPU filled with ozone-treated multi-walled carbon nanotubes (MWCNTs. It was found that the ozone functionalization of MWCNTs could improve their dispersion and interfacial adhesion to the TPU matrix as proved by scanning electron microscope and Raman spectrometer. It finally contributed to the enhancement of Young’s modulus and yield strength of TPU/MWCNT composites. Moreover, the creep resistance and recovery of MWCNT/TPU composites revealed a significant improvement by incorporating ozone functionalized MWCNTs. The strong interaction between the modified MWCNTs and TPU matrix would enhance the interfacial bonding and facilitate the load transfer, resulting in low creep strain and unrecovered strain.

  18. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  19. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  20. Investigation of production of continuous off axis fibre reinforced thermoplastic material

    Science.gov (United States)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  1. Nanoimprint technology nanotransfer for thermoplastic and photocurable polymers

    CERN Document Server

    Taniguchi, Jun; Mizuno, Jun; Saito, Takushi

    2013-01-01

    Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers

  2. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    Science.gov (United States)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  3. Processing technology for advanced fibre composites with thermoplastic matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aa. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark)

    1997-12-31

    Technologies and semi-raw materials for the manufacture of thermoplastic composites with continuous fibres are discussed. Autoclave consolidation, vacuum consolidation and press consolidation are all processes which are suitable for the manufacture of components with a three dimensional geometry. Autoclave consolidation is primarily for high quality components with high fibre content and complex geometry; using vacuum consolidation, very large components can be produced without the need of an autoclave, and the press consolidation technique is a very fast process suitable for mass production of smaller parts. Filament winding is used primarily for the manufacture of rotationally symmetrical components, and some of the technologies in use are winding with a continuously in-situ consolidation, winding inside an oven and room temperature winding followed by an autoclave consolidation. Semi-raw materials for thermoplastic composites exist as both prepregs and postpregs in many different forms, of which many are still under development. Some of the basic processing properties for the different types of semi-raw materials and most commonly used thermoplastic polymers are given. (au) 37 refs.

  4. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  5. Cost efficient carbon fibre reinforced thermoplastics with in-situ polymerization of polyamide

    Science.gov (United States)

    Köhler, T.; Akdere, M.; Röding, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight design has gained more and more relevance over the last decades. Especially in automotive industry it is of paramount importance to reduce weight and save fuel. At the same time the demand for safety and performance increases the components’ weight. To reach a trade-off between driving comfort and efficiency new lightweight materials have to be developed. One possible solution is the usage of carbon fibre reinforced thermoplastics (CFRTP) as a lightweight substitute material. In contrast to conventional carbon fibre reinforced plastics (CFRP), CFRTPs are cheaper and have a higher impact resistance. Furthermore they are characterized by hot forming ability, weldability and recyclability. However, the impregnation of the textile requires high pressure, because of the melted polymer’s high viscosity. A new innovative approach for CFRTP is the usage of in-situ polymerization with ɛ-caprolactam as matrix, which has a much lower viscosity and thus requires much lower pressure for impregnation and consolidation.

  6. The development of thermoplastic fibre based reinforcements for the rotational moulding process

    Science.gov (United States)

    Alemán, D. N. Castellanos; McCourt, M.; Kearns, M. P.; Martin, P. J.; Butterfield, J.

    2018-05-01

    Rotational moulding is a method used to produce hollow plastic parts through the heating, melting and cooling of polymer powder within a metal mould. A wide range of products are made using this process, such as fluid containment tanks, boats, light weight vehicle bodies and marine buoys. Rotomoulded composites using thermoplastic fibres are of increasing interest to the industry, as they have the potential to significantly improve impact strength, whilst reducing part weight, resulting in a structure that is 100% recyclable compared to a traditional composite. A series of self-reinforced thermoplastic weaves can be used to produce a number of composite structures using the rotational moulding process. This work outlines the improvements obtained from the range of rotomoulded composites structures, as well as preforms that could be used in future rotational moulding work. Characteristics of self-reinforced materials were exploited with the aim of increasing the mechanical properties, preserving the weaves and increasing the nature of the material adhesion. Addition of the fabrics in the cooling stage was shown to be of great interest as this avoided exposure of the material to the peak temperature, which may affect the integrity of the fabric. Placing the weave during cooling was useful as the material could receive the maximum amount of tensile force during the impact test. A total of nine diverse types of compounds were manufactured and tested, with seven of the impact tests showing an increase in strength greater than 50%.

  7. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  8. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  9. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    Science.gov (United States)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  10. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  11. Research and achievements on carbon fiber reinforced thermoplastic composites for high pressure storage

    International Nuclear Information System (INIS)

    Nony, Fabien; Thomas, Cedric; Villalonga, Stephane; Magnier, Christophe

    2012-01-01

    Hydrogen storage is a key enabling technology for the extensive use of hydrogen as an energy carrier. However, none of the current technologies satisfies all of the hydrogen storage attributes sought by manufacturers, legislators and end-users. At present, compressed gaseous hydrogen storage (CGH2) is recognized as the most mature technology. This paper reviews recent developments and achievements regarding materials and technologies investigated by CEA to promote the development of a of type IV 70 MPa hydrogen vessel. Particularly, results concerning innovative thermoplastic matrix composite vessel will be presented and discussed. On going developments on dedicated manufacturing process and material characterization will be shared in a first part of the presentation and a second part will be devoted to durability assessment and damage tolerance of such composite structures with respect to their potential applications. (authors)

  12. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    International Nuclear Information System (INIS)

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  13. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner

    National Research Council Canada - National Science Library

    Benedic, Fabien; Leard, Jean-Philippe; Lefloch, Christian

    2005-01-01

    .... In order to achieve the new target prices, a new disruptive technology has been performing for several years in using a thermoplastic liner instead the usual expensive concept of metallic forged liner...

  14. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Kumar Barick, Aruna; Kumar Tripathy, Deba

    2011-01-01

    Graphical abstract: Highlights: → Preparation and characterization of TPU nanocomposite for tailor made applications. → The structural analyses were carried out by FTIR, WAXD, FESEM and HRTEM. → The thermal and dynamic mechanical properties were evaluated by TGA, DSC and DMA. → The dynamic rheological behavior was investigated by RPA in frequency sweep. → The frequency dependence of electrical properties was studied by LCR meter. - Abstract: The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (T g ) and storage modulus (E') of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.

  15. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  16. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  17. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  18. Novel alpha-zirconium phosphonates for the reinforcement of ductile thermoplastics

    Science.gov (United States)

    Furman, Benjamin R.

    2007-12-01

    Ductile thermoplastics are useful additives for providing fracture toughness to brittle thermosetting polymers; however, this toughening is usually accompanied by a significant decrease in elastic modulus. Therefore, alpha-zirconium phosphonates (ZrP) were developed and investigated as reinforcing nano-scale fillers that increase the yield strength and elastic modulus of a polyester thermoplastic without causing a reduction in its ductility. ZrP materials are synthetic layered compounds that are imbued with targeted organic surface functionalities and whose structural development can be carefully controlled in the laboratory. Ether-terminal alkyl ZrP materials were designed and synthesized, using a conventional ZrF62--mediated preparation, with the intent of developing strong dipole-dipole interactions between the layer surfaces and polyester macromolecules. Additionally, a general method for using lamellar lyotropic liquid crystals (LLC's) as supramolecular templates for alkyl ZrP was evaluated, whose products showed promising similarity to the conventionally prepared materials. The LLC-forming characteristics of several organophosphonate preparations were determined, showing improved mesophase stability with mixed amphiphiles and preparation with R4N + counterions. A mixed-surface octyl/methoxyundecyl ZrP was produced and combined with polycaprolactone (PCL) and polymethylmethacrylate (PMMA) in concentrations up to 50% (w/w). The mechanical properties of the ZrP/PCL nanocomposite were evaluated by tensile, flexural, and dynamic mechanical testing methods. Nanocomposites containing 5% (w/w) ZrP showed significant increases in tensile yield stress and elastic modulus without suffering any loss of ductility versus the unfilled polymer. Layer delamination from the ZrP tactoids was minimal and did not occur through an intercalative mechanism. Higher ZrP loadings resulted in the agglomeration of tactoids, leading to defect structures and loss of strength and ductility

  19. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic

    Science.gov (United States)

    Díez-Pascual, A.; Shuttleworth, P.; Gónzalez-Castillo, E.; Marco, C.; Gómez-Fatou, M.; Ellis, G.

    2014-08-01

    Novel ternary nanocomposites based on a thermoset (TS) system composed of triglycidyl p-aminophenol (TGAP) epoxy resin and 4,4'-diaminodiphenylsulfone (DDS) curing agent incorporating 5 wt% of a semicrystalline thermoplastic (TP), an ethylene/1-octene copolymer, and 0.5 or 1.0 wt% multi-walled carbon nanotubes (MWCNTs) have been prepared via physical blending and curing. The influence of the TP and the MWCNTs on the curing process, morphology, thermal and mechanical properties of the hybrid nanocomposites has been analyzed. Different morphologies evolved depending on the CNT content: the material with 0.5 wt% MWCNTs showed a matrix-dispersed droplet-like morphology with well-dispersed nanofiller that selectively located at the TS/TP interphase, while that with 1.0 wt% MWCNTs exhibited coarse dendritic TP areas containing agglomerated MWCNTs. Although the cure reaction was accelerated in its early stage by the nanofillers, curing occurred at a lower rate since these obstructed chain crosslinking. The nanocomposite with lower nanotube content displayed two crystallization peaks at lower temperature than that of pure TP, while a single peak appearing at similar temperature to that of TP was observed for the blend with higher nanotube loading. The highest thermal stability was found for TS/TP (5.0 wt%)/MWCNTs (0.5 wt%), due to a synergistic barrier effect of both TP and the nanofiller. Moreover, this nanocomposite displayed the best mechanical properties, with an optimal combination of stiffness, strength and toughness. However, poorer performance was found for TS/TP (5.0 wt%)/MWCNTs (1.0 wt%) due to the less effective reinforcement of the agglomerated nanotubes and the coalescence of the TP particles into large areas. Therefore, finely tuned morphologies and properties can be obtained by adjusting the nanotube content in the TS/TP blends, leading to high-performance hybrid nanocomposites suitable for structural and high-temperature applications.

  20. Variation of mechanical and thermal properties of the thermoplastics reinforced with natural fibers by electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok Won [Department of Physics, University of Ulsan, Ulsan 680 749 (Korea, Republic of)], E-mail: sokkim@ulsan.ac.kr; Oh, Seungmin; Lee, Kyuse [Ilkwang Co. Ltd. 1178-6 Goyon-ri, Ungchon-mueon, Ulju-gun 689 871 (Korea, Republic of)

    2007-11-15

    With restrictions for environmental protection being strengthened, the thermoplastics reinforced with natural fibers (NFs) such as jute, kenaf, flax, etc., appeared as an automobile interior material instead of the chemical plastics. Regardless of many advantages, one shortcoming is the deformation after being formed in high temperature of about 200 deg. C, caused by the poor adhesion between the natural fibers and thermoplastics. Also, the energy saving in connection with car air-conditioning becomes very important. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composing of 50% polypropylene (PP) and 50% natural fiber irradiated by the electron beam (energy: 0.5 MeV, dose: 0-20 kGy) were measured. The length and thickness of PP and NF are 80{+-}10 mm and 40-120 {mu}m, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum when the dose of electron beam is 10 kGy, and the deformation after the thermal cycle were reduced by the electron beam.

  1. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  2. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M.

    2015-01-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA

  3. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M. [Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstr. 49, 52062 Aachen (Germany)

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  4. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Critical assessment of the mandrel peel test for fiber reinforced thermoplastic laminates

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Akkerman, Remko

    2013-01-01

    The applicability of the mandrel peel test for thermoplastic composites was investigated experimentally by comparing the fracture toughness to the values obtained by the double cantilever beam (DCB) and end loaded split (ELS) beam test. Two laminates were considered: a unidirectionally carbon-PPS

  6. Behavioral variation by ionizing irradiation of recycled thermoplastic elastomer reinforced with natural fibers or inorganic fillers

    International Nuclear Information System (INIS)

    Mohamed, H.A.A.

    2015-01-01

    Plastics are organic polymeric materials consisting of giant organic molecules. Plastic materials can be formed into shapes by one of a variety of processes, such as extrusion, molding, casting or spinning. Modern plastics possess a number of extremely desirable characteristics; high strength to weight ratio, excellent thermal properties, electrical insulation, resistance to acids, alkalis and solvents. These polymers are made of a series of repeating units known as monomers. The structure and degree of polymerisation of a given polymer determine its characteristics. Linear polymers, a single linear chain of monomers, and branched polymers, linear with side chains, are thermoplastic that is they soften when heated. Thermoplastics make up 80% of the plastics produced today. Examples of thermoplastics include: • High density polyethylene (HDPE) used in piping, automotive fuel tanks, bottles, toys, • Low density polyethylene (LDPE) used in plastic bags, cling film, flexible containers; • Polyethylene terephthalate (PET) used in bottles, carpets and food packaging; • Polypropylene (PP) used in food containers, battery cases, bottle crates, automotive parts and fibers; • Polystyrene (PS) used in dairy product containers, tape cassettes, cups and plates; • Polyvinyl chloride (PVC) used in window frames, flooring, bottles, packaging film, cable insulation, credit cards and medical products.

  7. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  8. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    Science.gov (United States)

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-05

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of overlap length on the mechanical properties of flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, M. I.; van Hattum, F.W.J.; Rietman, B.; Visser, H. A.; Akkerman, R.

    2015-01-01

    The in-plane mechanical properties of laminates with two dimensional planar reinforcing elements (flakes in this case) are investigated. A woven structure for the flakes is considered in this study, comprising of fiber bundles in both warp and weft direction. Failure of the flake or the interface

  10. Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Algrafi, M.W.

    2014-01-01

    Highlights: • Increase in fiber loading increased tensile strength and modulus of the composites. • Tensile strain was decreasing with increase in fiber loading. • Flexural strength and modulus increased with increase in fiber content. • Impact strength was deteriorated with increasing fiber loading. • Morphology observations shown a good adhesion between fibers and matrix. - Abstract: In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion

  11. A Novel CAE Method for Compression Molding Simulation of Carbon Fiber-Reinforced Thermoplastic Composite Sheet Materials

    Directory of Open Access Journals (Sweden)

    Yuyang Song

    2018-06-01

    Full Text Available Its high-specific strength and stiffness with lower cost make discontinuous fiber-reinforced thermoplastic (FRT materials an ideal choice for lightweight applications in the automotive industry. Compression molding is one of the preferred manufacturing processes for such materials as it offers the opportunity to maintain a longer fiber length and higher volume production. In the past, we have demonstrated that compression molding of FRT in bulk form can be simulated by treating melt flow as a continuum using the conservation of mass and momentum equations. However, the compression molding of such materials in sheet form using a similar approach does not work well. The assumption of melt flow as a continuum does not hold for such deformation processes. To address this challenge, we have developed a novel simulation approach. First, the draping of the sheet was simulated as a structural deformation using the explicit finite element approach. Next, the draped shape was compressed using fluid mechanics equations. The proposed method was verified by building a physical part and comparing the predicted fiber orientation and warpage measurements performed on the physical parts. The developed method and tools are expected to help in expediting the development of FRT parts, which will help achieve lightweight targets in the automotive industry.

  12. Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2013-01-01

    Full Text Available “Kenaf-fibers- (KF-” reinforcedthermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.

  13. Study on the Mechanical and Interfacial Property of Injection Molded Fiber Reinforced Thermoplastics

    OpenAIRE

    王, 存涛

    2014-01-01

    Fiber reinforced polymer (FRP) composites have been used widely in the land transportation, aerospace, marine structures and characteristically conservative infrastructure construction industries and generally, the interface plays very important role in the properties of FRP materials. Therefore, this research studied the mechanical and interfacial property involved in the non-weld samples, weld samples and adhesive samples of insert moldings. Green composites as one of environment-friendly m...

  14. SAXS determination of the structural periodicity of thermoplastic polyurethane reinforced with cellulose nanocrystals

    International Nuclear Information System (INIS)

    Prataviera, Rogerio; Bretas, Rosario E.S.; Lucas, Alessandra de A.; Poullet, Eric; Averous, Luc

    2015-01-01

    In this work, casting films were obtained from TPU reinforced with cellulose nanocrystals. The structural nano periodicity of these system was evaluated by Small Angle X-Ray Scattering, SAXS. The results indicated that the used TPU has a atypical phase separated morphology of rigid and soft segments, being observed 3 different distances them, probably due to the large polyol polyester molecule derived from colza oil used in the TPU synthesis. (author)

  15. Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites

    DEFF Research Database (Denmark)

    Doagou-Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2018-01-01

    The influence of the processing variables and nanotube content on the mechanical and electrical properties of polyamide 6,6-based nanocomposites reinforced with multi-walled carbon nanotubes is investigated. Results show that variation in the processing variables such as compounding method....... Different processing parameters required for achieving optimal mechanical and electrical performances are also found. Correlation between processing parameters and microstructure within the nanocomposites is studied. Results show that variation of the processing parameters defines the existence or absence...... discussed using scanning and transmission electron microscopy, rheological and crystallization investigations. The research provides a recipe to manufacture the tailored nanocomposite with the specified properties for various industrial applications....

  16. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  17. Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites

    Science.gov (United States)

    Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch

    2017-10-01

    Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.

  18. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  19. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    OpenAIRE

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental mate...

  20. Formability of fiber-reinforced thermoplastics in hot press forming process based on friction properties

    NARCIS (Netherlands)

    Sachs, Ulrich; Haanappel, Sebastiaan; Rietman, Bert; ten Thije, R.H.W.; Akkerman, Remko

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  1. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  2. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  3. The technologically-reinforced natural radioactivity

    International Nuclear Information System (INIS)

    2005-01-01

    Technologically-reinforced natural radioactivity comes from mining industries, geological resources and ores de-confinement, and from separation, purification, transformation and use of by-products or products. Partly based on a survey and questionnaires sent to industrial organisations, this report proposes a large and detailed overview of this kind of radioactivity for different sectors or specific activities: the French phosphate sector, the international rare Earth and heavy ores sector, the French monazite sector, the ilmenite sector, the French and international zirconium sector, the non-ferrous metal sector, the international and French drinkable, mineral and spring water sector, the international wastewater sector, the French drilling sector, the international and French geothermal sector, the international and French gas and oil sector, the international and French coal sector, the international and French biomass sector, the international and French paper-making industry, and the management of wastes with technologically-reinforced natural radioactivity in France

  4. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah; Lubineau, Gilles; Yudhanto, Arief; Yaldiz, Recep; Schijve, Warden

    2017-01-01

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  5. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2017-03-31

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  6. Microwave heating for thermoplastic composites - Could the technology be used for welding applications?

    Science.gov (United States)

    Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco

    2018-05-01

    Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.

  7. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief; Wafai, Husam; Lubineau, Gilles; Yaldiz, R.; Verghese, N.

    2017-01-01

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology

  8. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  9. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  11. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  12. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-11-01

    Full Text Available Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs, sulfuric acid treated (aHNTs and a combined treatment of polyvinyl alcohol (PVA-sodium dodecyl sulfate (SDS-malonic acid (MA (treatment (mHNTs. It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature, 8 bar (injection pressure, 30 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young’s modulus and highest density was found to be 150 °C (injection temperature, 8 bar (injection pressure, 32 °C (mold temperature, 8 min (injection time, 3 wt % (HNTs loading and mHNT (HNTs type. For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature, 8 bar (injection pressure, 32 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. For the highest hardness, the best parameters are 140 °C (injection temperature, 6 bar (injection pressure, 30 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. The analyses are carried out by coordinating

  13. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  14. Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase

    Directory of Open Access Journals (Sweden)

    Michael Thomas Müller

    2018-06-01

    Full Text Available An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT, graphene nanoplatelets (GNP, or conductive carbon black (CB. The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

  15. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  16. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Jawaid, M.; Al-Shuja’a, O.M.

    2014-01-01

    Highlights: • Increasing fiber content decreased tensile strength and strain. • Tensile modulus was increasing with increase in fiber content. • SEM showed fiber/matrix poor adhesion. • Impact strength was decreasing with increase in fiber content. • Lower thermal stability with increase in fiber content was observed. - Abstract: Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m 2 ). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m 2 ; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix

  17. Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases

    Science.gov (United States)

    Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre

    2017-09-01

    Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.

  18. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites

    Science.gov (United States)

    Mohammed, A. A.; Bachtiar, D.; Rejab, M. R. M.; Jiang, X. X.; Abas, Falak O.; Abass, Raghad U.; Hasany, S. F.; Siregar, Januar P.

    2018-05-01

    Global warming has had a great impact on environmental changes since the last decade. Eco-friendly industrial products are of great importance to sustain life on earth, including using natural composites. Natural fibers used as fillers are also environmentally valuable because of their biodegradable nature. However, compatibility issues between the fiber and its respective matrix is a major concern. The present work focused on the study of the flexural, impact, and thermal behaviors of environmentally friendly sugar palm fibers (SPF) incorporated into a composite with thermoplastic polyurethane (TPU). Two techniques (extrusion and compression molding) were used to prepare these composites. The fiber size and dosage were kept constant at 250 µm and 30 wt.% SPF, respectively. The effects of potassium permanganate (KMnO4) treatment on the flexural, impact, and thermal behaviors of the treated SPF with 6% NaOH-reinforced TPU composites were investigated. Three different concentrations of KMnO4 (0.033%, 0.066%, and 0.125%) were studied for this purpose. The characterization of the flexural and impact properties of the new TPU/SPF composites was studied as per American Society for Testing Materials ASTM standards. Thermogravimetric analysis was employed for thermal behavior analysis of the TPU/SPF composites. The best flexural strength, impact strength, and modulus properties (8.118 MPa, 55.185 kJ/m2, and 262.102 MPa, respectively) were obtained with a 0.033% KMnO4-treated sample. However, all flexural strength, impact strength, and modulus properties for the KMnO4-treated samples were lower than the sample treated only with 6% NaOH. The highest thermal stability was also shown by the sample treated with 0.033% KMnO4. Therefore, this method enhanced the thermal properties of the TPU/SPF composites with clear deterioration of the flexural and impact properties.

  20. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    Directory of Open Access Journals (Sweden)

    Takahiro Wada

    2018-01-01

    Full Text Available This study aimed to evaluate the shock absorption ability of trial face guards (FGs incorporating a glass-fiber-reinforced thermoplastic (GF and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS and with either (i 1.6 mm thick AP (AP-APS or (ii  1.6 mm thick GF (GF-APS covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa and flexural modulus (7.53 GPa than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa. Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  1. Fibre reinforced composites '84; Proceedings of the International Conference, University of Liverpool, England, April 3-5, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Among the topics discussed are phenolic resin matrix composites for high temperature and fire-exposure applications, novel resins for fiber-reinforced composite productivity improvement, the use of engineering textiles for mechanical property improvement in composites, the significance of aramid fiber reinforcement in composites, the energy absorption properties of Sheet Metal Compounds (SMCs) under crash conditions, and SMC impact behavior variations with temperature. Also covered are CFRP applications in high performance structures, composite helicopter main rotor blade technology, composite vehicular leaf springs, carbon fiber-reinforced thermoplastics, filament winding development status, the injection processing of fiber-reinforced thermoplastics, civil aircraft composite structure certification, composite radomes, design procedures for short fiber-reinforced thermoplastics, the strength limitations of mechanically fastened lap joints, environmental fatigue and creep in glass-reinforced materials, the effects of moisture on high performance laminates, the environmental behavior of SMC, and corrugated composites.

  2. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  3. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  4. TECHNOLOGY FOR INSTALLATION OF REINFORCED CONCRETE FLOOR SLABS LIGHTENED BY CORE DRIVERS WITH PRELIMINARY REINFORCEMENT STRESS

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper presents technology for installation of floor slabs lightened by plastic core drivers which are preliminary stressed under construction conditions.  Efficiency of such constructive solution is justified by the action of preliminary concrete compression in the tensile zone while reducing structure dead weight due to void arrangement.  The paper provides classification of systems for preliminary stress and contains recommendations on selection of the system depending on peculiariar features of the designed construction.  Main products and materials required for execution of works , requirements to stressed wire rope reinforcement, its main characteristics have been considered in the paper.Principal diagram of the lightened preliminary stressed slab stipulates arrangement of so called  dummy caisson. Strands of reinforcement ropes are located within the framework of bars passing over supporting structures (over vertical bearing structures of  the framework and voids are formed in the cells between bars by laying hollow plastic items joined together by a cage. The paper presents technological sequence of operations required for arrangement of the lightened preliminary stressed slab, schemes for equipment arrangement and characteristics of the applied devices and units (pushing device for reinforcement ropes, hydraulic jack with delivery hydraulic pump, mixing station, injection pump and others.  Recommendations have been given for execution of works in cold weather. The paper considers problems pertaining to control quality of the materials and items which are supplied to a construction site and directly execution of works on preliminary stress of a cellular slab.The executed analysis of technology permits to conclude that it is characterized by high level of applicability for import substitution. It is necessary to consider the possibility to apply the technology at objects of various application while comparing it with other

  5. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  6. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  7. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner

    National Research Council Canada - National Science Library

    Benedic, Fabien; Leard, Jean-Philippe; Lefloch, Christian

    2005-01-01

    Although EADS ST has been involved in high pressure tanks for 25 years. EADS ST is still developing new technologies and products to provide the best solution in response to the evolution of the market in terms of performances and costs...

  8. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  9. SAXS determination of the structural periodicity of thermoplastic polyurethane reinforced with cellulose nanocrystals; Determinacao da perodicidade estrutural de poliuretano termoplastico reforcado com nanocristais de celulose por SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Prataviera, Rogerio; Bretas, Rosario E.S.; Lucas, Alessandra de A., E-mail: lucas@ufscar.br [Universidade Federal de Sao Carlos, (UFSCar), Sao Carlos, SP (Brazil); Poullet, Eric; Averous, Luc [Universidade de Strasbourg, Strasbourg (France)

    2015-07-01

    In this work, casting films were obtained from TPU reinforced with cellulose nanocrystals. The structural nano periodicity of these system was evaluated by Small Angle X-Ray Scattering, SAXS. The results indicated that the used TPU has a atypical phase separated morphology of rigid and soft segments, being observed 3 different distances them, probably due to the large polyol polyester molecule derived from colza oil used in the TPU synthesis. (author)

  10. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells.

    Science.gov (United States)

    Harini, K; Chandra Mohan, C; Ramya, K; Karthikeyan, S; Sukumar, M

    2018-03-15

    The main aim of the present study is to extract and characterize cashew nut shell (CNS) starch and walnut shell cellulose (WNC) for development of cellulose reinforced starch films. Moreover, the extraction and characterization of pomegranate peel extract, for incorporation with CNS-WNC films, was investigated. CNS starch was examined to be a moderate amylose starch with 26.32 ± 0.43% amylose content. Thermal degradation temperature of CNS starch was found to be 310 °C. Walnut shell cellulose was found to have high crystallinity index of 72%, with two thermal degradation temperatures of 319 °C and 461 °C. 2% WN cellulose reinforced CNS starch films were examined to have good oxygen transfer rate, mechanical and physical properties. Thermal degradation temperature of CNS-WNC starch films were found to be at the range of 298-302 °C. Surface roughness of CNS-WNC starch films were found to be increasing with increase in concentration of cellulose in films. Hydroxymethylfurfurole, Benzene, 2-methoxy-1,3,4-trimethyl and 1,2,3-Propanetriol, 1-acetate were found to be major active compounds present in hydrophilic extracts of Punica granatum peels. 2% WN cellulose reinforced starch films infused with hydrophilic active compounds of pomegranate peel was examined to be having good active package properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  12. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    Science.gov (United States)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  13. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    Science.gov (United States)

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  14. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthias B.; Grouve, Wouter Johannes Bernardus; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an

  15. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  16. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available Natural fibers are used as reinforcement material for number of thermoplastic/thermoset polymers. The interest in using polylactic acid (PLA) as thermoplastic matrix to produce composites completely from 100% renewable resources has increased...

  17. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  18. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  19. Compression molding of chopped woven thermoplastic composite flakes

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal

    2016-01-01

    Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been

  20. Engineering Design Handbook. Discontinuous Fiberglass Reinforced Thermoplastics

    Science.gov (United States)

    1981-04-01

    excellent results. Small shots in large equipment result in excessive residence times, causing molding difficulties. Chrome-plated 4140 material is...of cases, it is possi- ble to work with three basic types of mold steel, namely, AISI P20, AISI H13, and AISI 01. As with unreinforced

  1. The raft foundation reinforcement construction technology of Hongyun Building B tower

    Science.gov (United States)

    Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness include four kinds of reinforcement Φ32, Φ28, Φ12 and 12 steel grade two, in respective. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing. According to the characteristics with large volume and thickness of the engineering of raft foundation, the construction of the reinforced force was calculated and the quality control measures were used to the reinforcement binding and connection, so it is success that Hongyun Building B tower raft foundation reinforced construction.

  2. Health monitoring technology for alumina-fiber-reinforced plastic

    International Nuclear Information System (INIS)

    Aoyama, Hiroshi; Watanabe, Hiroyuki; Terai, Motoaki

    1998-01-01

    Formally, we developed new load-support systems that consists of a biconical, alumina-fiber-reinforced plastic (ERP) structure for the superconducting magnet. Safe operation of the superconducting magnet will be jeopardized if the mechanical condition of the load-support system begins to degrade. One of the factors that evaluate the soundness of the superconducting magnet is the stiffness of the load-support system. Here, it is important to know the relation between the degradation of the stiffness and the growth of defects. For this purpose, firstly, a fatigue test of the load-support system was carried out, and the various defects (matrix cracking and delamination of FRP laminates) were observed during this fatigue testing. Finally, we proposed the application of two non-destructive-evaluation (NDE) methods for the health monitoring of alumina/epoxy load-support systems. (author)

  3. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  4. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  5. TECHNOLOGY FOR INSTALLATION OF REINFORCED CONCRETE FLOOR SLABS LIGHTENED BY CORE DRIVERS WITH PRELIMINARY REINFORCEMENT STRESS

    OpenAIRE

    S. N. Leonovich; I. I. Peredkov

    2015-01-01

    The paper presents technology for installation of floor slabs lightened by plastic core drivers which are preliminary stressed under construction conditions.  Efficiency of such constructive solution is justified by the action of preliminary concrete compression in the tensile zone while reducing structure dead weight due to void arrangement.  The paper provides classification of systems for preliminary stress and contains recommendations on selection of the system depending on peculiariar fe...

  6. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  7. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  8. REVIEW OF MODERN TECHNOLOGIES OF REINFORCEMENT AND STABILIZATION OF SOFT SOILS

    Directory of Open Access Journals (Sweden)

    Romanov Nikita Valer’evich

    2018-05-01

    Full Text Available Subject: description of the current situation in technologies of soil improvement, namely mechanical and hydraulic consolidation of soils and vertical reinforcement of soils for different types of soft soils. Research objectives: demonstration of modern possibilities and approaches to the design and construction of improved soils. Materials and methods: in this paper, we consider such technologies of ground improvement as dynamic compaction, hydraulic consolidation (vertical drain consolidation, Menard vacuum consolidation, vertical reinforcement of soils (CMC - controlled modulus columns. Results: the result of the study is an intuitive representation of the applicability of described technologies for various types of soft soils. Conclusions: the technologies of ground improvement considered in this article are an effective alternative to both pile foundations and soil replacement. To this day, industrial implementation of soil improvement technologies has proved its applicability, efficiency and competitiveness.

  9. Properties and performance of flax yarn/thermoplastic polyester composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum......-assisted compression molding process. The microstructure of the composites shows that the flax fiber yarns are well impregnated by the polyester matrix, and this supports the measured low porosity content of the composites. The experimental tensile modulus and ultimate tensile stress of the composites in the axial...

  10. Development of aluminothermic welding technology for assembly of reinforcement blocks for nuclear power plants

    International Nuclear Information System (INIS)

    Janicko, S.

    1984-01-01

    The newly developed technology of aluminothermic welding of reinforcing bars is used for the construction of reinforcements, turbine foundations, platforms, bubbling depressurization towers, etc. The method makes possible a good welding of the ends of the reinforcement and reproducibility of welded joints properties without the influence of the human factor on quality. The chemical composition of the weld has a higher content of C and Si which is important with regard to strength. Tensile strength, hardness (ranging from 188 to 270 HV 300), notch toughness (11 to 113 J.cm -2 ) and integrity were assessed. The savings achieved by introduction of the new technology are 1.783 h/weld. (J.H.)

  11. Journaling as reinforcement for the resourcefulness training intervention in mothers of technology-dependent children.

    Science.gov (United States)

    Toly, Valerie Boebel; Blanchette, Julia E; Musil, Carol M; Zauszniewski, Jaclene A

    2016-11-01

    Resourcefulness, a set of cognitive and behavioral skills used to attain, maintain, or regain health, is a factor related to depressive symptoms in mothers of children with chronic conditions and complex care needs who are dependent on medical technology such as mechanical ventilation or feeding tubes. The purpose of this secondary analysis of a randomized, controlled pilot intervention study was to determine the feasibility, acceptability and fidelity of daily journal writing as a method of reinforcement of resourcefulness training (RT) that teaches the use of social and personal resourcefulness skills. Participants returned their journals to the study office at the end of the four-week journaling exercise. Content analysis from exit interviews and journals supported the feasibility, acceptability and fidelity of daily journaling for reinforcement of RT in this population. Journal writing can be used by pediatric nurses to reinforce and promote resourcefulness skill use in parents of technology-dependent children. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  13. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites – Part II

    NARCIS (Netherlands)

    Ropers, Steffen; Sachs, Ulrich; Kardos, Marton; Osswald, Tim A.

    2017-01-01

    A proper description of the bending behavior is crucial to obtain accurate forming simulations, especially for continuous fiber-reinforced thermoplastic composites. These materials exhibit a highly temperature and bending-curvature dependent bending stiffness. These dependencies make the property

  14. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  15. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  16. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id; Faza, Aulia [Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia Jl. Ganesha 10, Bandung (Indonesia)

    2016-03-29

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  17. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  18. TECHNOLOGY OF THERMOPLASTIC STARCH PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. D. Lukin

    2015-01-01

    Full Text Available In recent years, the manufacturing of bio-recyclable polymer products, which production and consumption has become an efficient way to protect environment from solid wastes in different countries of the world. The issue of environmental protection becomes global and the rapid growth of synthetic plastics application in many industries is a serious concern. There is a important task to improve the quality, safety and durability of products as well as their utilization after the expiration period. One of the most acceptable ways to solve these issues is to produce biodegradable materials based on natural materials, which are not harmful for environment and human health. A very common and effective method to give biological degradability to synthetic polymers is to insert starch into polymer composition in combination with other ingredients.

  19. Mechanical properties of green composites based on thermoplastic starch

    Science.gov (United States)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  20. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Togo, A; Yamamura, H; Yamaguchi, M [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  1. Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior

    Directory of Open Access Journals (Sweden)

    A. D. de Figueiredo

    Full Text Available This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP. Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test", the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

  2. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    International Nuclear Information System (INIS)

    Weiss, K-P; Bagrets, N; Lange, C; Goldacker, W; Wohlgemuth, J

    2015-01-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime. (paper)

  3. A Plant Control Technology Using Reinforcement Learning Method with Automatic Reward Adjustment

    Science.gov (United States)

    Eguchi, Toru; Sekiai, Takaaki; Yamada, Akihiro; Shimizu, Satoru; Fukai, Masayuki

    A control technology using Reinforcement Learning (RL) and Radial Basis Function (RBF) Network has been developed to reduce environmental load substances exhausted from power and industrial plants. This technology consists of the statistic model using RBF Network, which estimates characteristics of plants with respect to environmental load substances, and RL agent, which learns the control logic for the plants using the statistic model. In this technology, it is necessary to design an appropriate reward function given to the agent immediately according to operation conditions and control goals to control plants flexibly. Therefore, we propose an automatic reward adjusting method of RL for plant control. This method adjusts the reward function automatically using information of the statistic model obtained in its learning process. In the simulations, it is confirmed that the proposed method can adjust the reward function adaptively for several test functions, and executes robust control toward the thermal power plant considering the change of operation conditions and control goals.

  4. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  5. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  6. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  7. Resistance Welding of Thermoplastic Composites : Process and Performance

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as

  8. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  9. On the weld strength of in situ tape placed reinforcements on weave reinforced structures

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Rietman, Bert; Akkerman, Remko

    2012-01-01

    Unidirectionally reinforced thermoplastic tapes were welded onto woven fabric reinforced laminates using a laser assisted tape placement process. A mandrel peel setup was used to quantify the interfacial fracture toughness between the tape and the laminate as a measure for weld strength. The tape

  10. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  11. Recycling C/PPS laminates into long fibre thermoplastic composites by low shear mixing

    NARCIS (Netherlands)

    de Bruijn, Thomas A.; Vincent, Guillaume Almire; van Hattum, Ferrie

    2017-01-01

    The increasing interest in continuous fibre reinforced thermoplastic composites has resulted in a rise of industrial waste. The recycling of the waste is topic of this study, aiming at high mechanical properties by retaining both a long fibre length and the matrix material. Consolidated continuous

  12. Effect of reinforcement element folds on stresses in NPP containment shell in the zone of technological tunnels

    International Nuclear Information System (INIS)

    Ul'yanov, A.N.; Medvedev, V.N.; Kiselev, A.S.

    1993-01-01

    Basing on the results of experimental and calculational studies of stressed state in the zone of a technological tunnel with one-side thicker part the approximated problem solution taking into account the effect of reinforcement element folds on opening zone stressed state is obtained. The great effect of reinforcement ropes on shell stressed state in the zone of technological tunnels, which causes the necessity of its accounting during this zone design, is revealed. Special attention shoul be paid to the sections, where the stretching stresses arising as a result of bundle bending are not compensated (sections of bundle fold origin from normal trajectory)

  13. Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation

    OpenAIRE

    Osorio, Marlon A.; Restrepo, David; Velásquez-Cock, Jorge A.; Zuluaga, Robin O.; Montoya, Ursula; Rojas, Orlando; Gañán, Piedad F.; Marin, Diana; Castro, Cristina I.

    2014-01-01

    In this paper, a nanocomposite based on thermoplastic starch (TPS) reinforced with bacterial cellulose (BC) nanoribbons was synthesized by in situ fermentation and chemical crosslinking. BC nanoribbons were produced by a Colombian native strain of Gluconacetobacter medellinensis; the nanocomposite was plasticized with glycerol and crosslinked with citric acid. The reinforcement percentage in the nanocomposites remained constant throughout the fermentation time because of the TPS absorption ca...

  14. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  15. Influence of gamma irradiation in the thermoplastic elastomer (TPE)

    International Nuclear Information System (INIS)

    Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G.

    2017-01-01

    The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by 60 Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index

  16. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Science.gov (United States)

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  17. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  18. Cryomilling of Thermoplastic Powder for Prepreg Applications

    Science.gov (United States)

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  19. Portable Device Slices Thermoplastic Prepregs

    Science.gov (United States)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  20. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  1. The Place for Thermoplastic Composites in Structural Components

    Science.gov (United States)

    1987-12-01

    hydroforming of thermoplastics is so attractive is that it takes advantage of sheet-metal forming technology that has been in development for many years. High ...interfacial bond strength and fracture energies (Table D-1). Note the high bond strength of treated type I fibers and a correspondingly low fracture energy ...value, indicating little energy dissipated in the pull-out of fractured fibers. The untreated type I fibers have a low bond strength and a high pull-out

  2. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    Science.gov (United States)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  3. Use of wet concrete spraying in building technology of reinforced-concrete fiber slabs according to «Monofant» system

    OpenAIRE

    BUGAYEVSKIY S.

    2016-01-01

    Technology of cementation of reinforced-concrete slabs with non-extractable-liners for the «Monofant» system, using wet concrete spraying is implemented. A compression test for obtained columns made of fiber concrete is carried out.

  4. Particle-Reinforced Aluminum Matrix Composites (AMCs—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast

    Directory of Open Access Journals (Sweden)

    Anja Schmidt

    2018-02-01

    Full Text Available The research and development of new materials such as particle-reinforced aluminum matrix composites (AMCs will only result in a successful innovation if these materials show significant advantages not only from a technological, but also from an economic point of view. Against this background, in the Collaborative Research Center SFB 692, the concept of an integrated technology, user, and market analysis and forecast has been developed as a means for assessing the technological and commercial potential of new materials in early life cycle stages. After briefly describing this concept, it is applied to AMCs and the potential field of manufacturing aircraft components. Results show not only technological advances, but also considerable economic potential—the latter one primarily resulting from the possible weight reduction being enabled by the increased yield strength of the new material.

  5. Karakteristik Mekanik Panel Dinding dari Komposit Sabut Kelapa (Coco Fiber)-Sampah Plastik (Thermoplastics)

    OpenAIRE

    Fajriyanto, Fajriyanto

    2009-01-01

    The research about utilization of coco fiber and thermoplastic waste to produce partition wall based on fiber reinforced plastic (FRP) composites has been conducted. The research methodology used was experimental research method. There were three steps conducted in the research; the first, preparation of instruments and sampling of raw materials, the second, blending process for producing fiberboard composites, the third, mechanical-waterproof testing and analyzing of products. The obje...

  6. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2017-01-01

    Roč. 130, č. 2 (2017), s. 1043-1052 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA16-03194S Institutional support: RVO:61389013 Keywords : poly(lactic acid) * cold crystallization * thermoplastic polyurethane Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.953, year: 2016

  7. Polymer-filler interactions in polyether based thermoplastic polyureathane/silica nanocomposites

    OpenAIRE

    Heinz, Özge; Heinz, Ozge

    2013-01-01

    Thermoplastic polyurethaneureas (TPU) are a unique class of materials that are used in a broad range of applications due to their tailorable chemistry and morphology that allow engineering materials with targeted properties. The central theme of this dissertation is to develop an understanding on polymer-filler interfacial interactions and related reinforcing mechanism of silica nanoparticles in polyether based TPU/silica nanocomposites. Prior to our investigation on nanocomposite materials, ...

  8. Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Ostafinska, Aleksandra; Mikešová, Jana; Krejčíková, Sabina; Nevoralová, Martina; Šturcová, Adriana; Zhigunov, Alexander; Michálková, Danuše; Šlouf, Miroslav

    2017-01-01

    Roč. 101, August (2017), s. 273-282 ISSN 0141-8130 R&D Projects: GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : thermoplastic starch * titanium dioxide particles * morphology Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.671, year: 2016

  9. Joining of thermoplastic substrates by microwaves

    Science.gov (United States)

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  10. PHYSICAL AND CHEMICAL PRINCIPLES OF REPAIR TECHNOLOGY PERTAINING TO REINFORCED CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2008-01-01

    Full Text Available The paper presents a brief review of new methods for repair of concrete and reinforced concrete products, structures etc. The review demonstrates that the usage of diffusion processes proceeding in the porous materials makes it possible to obtain positive effects while performing  repair works. 

  11. Consolidation modelling for thermoplastic composites forming simulation

    Science.gov (United States)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  12. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Sivakumar Gowthaman

    2018-04-01

    Full Text Available Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS and randomly distributed fiber-reinforced soil (RDFS are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  13. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    Science.gov (United States)

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  14. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  15. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  16. Development of silica nanoparticles obtaintion process from renewable source waste and its incorporation in thermoplastic polymer for manufacturing a nanocomposite

    International Nuclear Information System (INIS)

    Ortiz, Angel Visentim

    2016-01-01

    The nanocomposite technology is applicable to a wide range of thermoplastic and thermoset polymers. The use of sugar cane byproducts has been extensively studied as a source of reinforcement for nanocomposites. The bagasse is widely used in cogeneration and as a result of the burning of this material, millions of tons of ash are produced. For this work, silica contained in the ashes of bagasse from sugarcane was extracted by chemical method and thermal method. The thermal method is more efficient leading to a purity of more than 93% of silica, while the chemical method generated silica contaminated with chlorine and sodium from the extraction reagents. The silica particles obtained were evaluated by dynamic light scattering (DSL) and presented an average size of 12 micrometers. These particles were submitted to grinding in a ball mill and then to a sonochemical treatment. Silica particles treated by the sonochemical process ( 20 kHz, 500 W and 90 minutes) had its dimensions reduced to nanometric scale of tenths of nanometers. The nanossílica obtained was then used as reinforcement in high density polyethylene (HDPE). Mechanical and thermo-mechanical properties were assessed and gains were shown for mechanical properties , except for the impact resistance. The distortion temperature (HDT) showed that the incorporation of the reinforcement in HDPE led to a small increase in this property compared to pure HDPE. The crystallinity of the nanocomposites generated was evaluated by differential scanning calorimetry (DSC) and it was observed a decrease of crystallinity in the material when the reinforcing incorporation was 3%. The material irradiated to 250 kGy with electron beam showed important property gains, mainly due to the high level of crosslinking of irradiated HDPE. (author)

  17. Thermoplastic Elastomers From Chemically or Irradiation Activated Polyolefin Wastes and Ground Tyre Rubber

    International Nuclear Information System (INIS)

    Tolstov, A.M.; Grigoryeva, A.L.; Bardash, O.P.

    2005-01-01

    Thermoplastic elastomers (TPE) are known as materials with unique combination of elastomeric properties and thermo plasticity. Among the TPE of different type the polymer blends of thermoplastics and rubbers are the most commonly used. Recently a very effective technology of dynamic vulcanization of rubber component inside thermoplastic matrix has been developed. As a result of rubber vulcanization and dispersion inside thermoplastic the new type of TPE so-called thermoplastic dynamic vulcanizations (TPV) are obtained. In our work we have applied the technology of dynamic vulcanization for recycled components (PP, HDPE, GTR). It has appeared that such components are not mixed well and the resulting TPV have poor mechanical properties. To solve a problem of poor compatibility of the components used we carried out a pre-modification (functionalization) of the component surfaces by gamma-irradiation or by chemically or gamma-irradiation induced grafting of reactive monomers. Both the polyolefin (HDPE) and GTR were functionalized before mixing. The monomers were selected by such a way that being grafted to be able to react to each other in interface during the components blending. For example, we used maleic anhydride and acrylamide. The effect of better compatibility has appeared in higher tensile characteristics of TPV synthesized

  18. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  19. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  20. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  1. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Claudia Prosperi

    2010-01-01

    Full Text Available A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a stronginterpenetration of adjacent layers was observed.

  2. Study of Time-Dependent Properties of Thermoplastics

    Directory of Open Access Journals (Sweden)

    Bolchoun A.

    2010-06-01

    Full Text Available Simple tests carried out with a common tension/compression testing machine are used to obtain timedependent properties of non-reinforced thermoplastics. These tests include ramp loadings as well as relaxation and creep tests. Two materials (PBT Celanex 2002-2 and POM Hostaform C9021, Ticona GmbH, Kelsterbach were taken for the experiments. The experiments show that an adequate description of the long-term material properties can be obtained from the short-time tests, namely from tests with constant traverse speed $L^.$. Below a model for the time-dependent mechanical behavior is presented and fitted to the obtained measured data. For the evaluation of the fitting quality long-term tests are used. Especially creep and relaxation tests with ”jumps”, i.e. rapid change of loading, are important for this purpose.

  3. Materials and process limitations for thermoplastic composite materials for wind turbine blades - preform of prepregs and commingled yarns

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, R.T.D.

    2011-07-01

    Wind turbine blades are produced based on the current thermoset resin technology, but thermoplastics can offer better potential to become the future blade materials. One of the most important goals when designing larger blade systems is to keep the blade weight under control. Thermoplastic materials offer weight saving similar to thermosets, apart from many other benefits like design flexibility, durability, cost, weight saving, and performance advantageous to the wind industry. In the current research study a detailed discussion on material and process limitations such as thermoplastic prepreg tapes and commingled yams are presented in terms of their properties and available forms in the current markets. A critical review of thermoplastics discussed in the context of turbine blades applications. (Author)

  4. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  6. An improved compression molding technology for continuous fiber reinforced composite laminate. Part 1: AS-4/LaRC-TPI 1500 (HFG) Prepreg system

    Science.gov (United States)

    Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.

  7. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    Science.gov (United States)

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  8. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites

    Directory of Open Access Journals (Sweden)

    Sean Bowman

    2018-03-01

    Full Text Available Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa, flexural modulus (>63 GPa, and interlaminar shear strength (>27 MPa, indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  9. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    International Nuclear Information System (INIS)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory's (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes

  10. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.

  11. Fiber reinforced concrete: an advanced technology for LL/ML radwaste conditioning and disposal

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Verdier, A.

    1993-01-01

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre. (author). 3 refs., 5 figs., 7 tabs

  12. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  13. Características tecnológicas de farinhas de arroz pré-gelatinizadas obtidas por extrusão termoplástica Technological properties of pre-gelatinized rice flour obtained by thermoplastic extrusion

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2008-10-01

    for thermoplastic extrusion. The GRF was extruded using a Brabender single screw extruder, varying moisture (19.2 - 24.8% and extrusion temperature (108 - 192ºC. Torque, expansion index (EI, viscographic properties, water absorption index (WAI, and water solubility index (WSI characteristics of GRF were analyzed using response surface methodology (RSM and main component analysis (PCA. The results, analyzed by MRS and PCA, indicated that during the process, the values of torque and EI increased when lower moisture was used. Considering viscographic properties, GRF presented a higher initial viscosity of the starch paste when in higher temperatures, while viscosities at 95ºC and at 50ºC increased when temperature and moisture were at extreme opposites. WAI decreased when lower temperatures and higher moisture were used. WSI was not influenced by temperature and moisture when analyzed using MRS, but with PCA, there was an increase when temperatures ranged between 120 - 150ºC and moisture between 19.2 - 22%. In conclusion, both MRS and PCA analysis showed that a variation in the technological properties of GRF were related to the use of opposite extremes of temperature and/or moisture during the extrusion process, and the PCA was able to complete the analysis done using MRS.

  14. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  15. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  16. Thermoplastic film camera for holographic recording

    International Nuclear Information System (INIS)

    Liegeois, C.; Meyrueis, P.

    1982-01-01

    The design thermoplastic-film recording camera and its performance for holography of extended objects are reported. Special corona geometry and accurate control of development heat by constant current heating and high resolution measurement of the develop temperature make easy recording of reproducible, large aperture holograms possible. The experimental results give the transfer characteristics, the diffraction efficiency characteristics and the spatial frequency response. (orig.)

  17. Thermoplastic elastomers via controlled radical graft polymerization

    NARCIS (Netherlands)

    Tuzcu, G.

    2012-01-01

    Rubbery behavior with a consistent modulus over a wide temperature range is a challenge in the search for ultimate structure-property relations of thermoplastic elastomers (TPEs). This feature is closely related to the phase separation behavior of the constitutional segments and the Tg of the

  18. Processing of thermoplastic polymers using reactive solvents

    NARCIS (Netherlands)

    Meijer, H.E.H.; Venderbosch, R.W.; Goossens, J.G.P.; Lemstra, P.J.

    1996-01-01

    The use of reactive solvents offers an interesting and flexible route to extent the processing characteristics of thermoplastic polymers beyond their existing limits. This holds for both intractable and tractable polymers. The first mainly applies for amorphous high-Tg polymers where processing may

  19. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  20. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  1. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.

    Science.gov (United States)

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Jönsson, Leif J; Hong, Feng F

    2016-07-08

    Bacterial nanocellulose (BNC) is a microbial nanofibrillar hydrogel with many potential applications. Its use is largely restricted by insufficient strength when in a highly swollen state and by inefficient production using static cultivation. In this study, an in situ nanocellulose-coating technology created a fabric-frame reinforced nanocomposite of BNC hydrogel with superior strength but retained BNC native attributes. By using the proposed technology, production time could be reduced from 10 to 3 days to obtain a desirable hydrogel sheet with approximately the same thickness. This novel technology is easier to scale up and is more suitable for industrial-scale manufacture. The mechanical properties (tensile strength, suture retention strength) and gel characteristics (water holding, absorption and wicking ability) of the fabric-reinforced BNC hydrogel were investigated and compared with those of ordinary BNC hydrogel sheets. The results reveal that the fabric-reinforced BNC hydrogel was equivalent with regard to gel characteristics, and exhibited a qualitative improvement with regard to its mechanical properties. For more advanced applications, coating technology via dynamic bacterial cultures could be used to upgrade conventional biomedical fabrics, i.e. medical cotton gauze or other mesh materials, with nanocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1077-1084, 2016. © 2016 American Institute of Chemical Engineers.

  2. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  3. Pyrolysis characteristics of typical biomass thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Hongzhen Cai

    Full Text Available The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite. Keywords: Biomass thermoplastic composite, Calcium carbonate, Pyrolysis characteristic

  4. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  5. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  6. Feasibility of tailoring of press formed thermoplastic composite parts

    Science.gov (United States)

    Sinke, J.

    2018-05-01

    The Tailor Made Blank concept is widely accepted in the production of sheet metal parts. By joining, adding and subtracting materials, and sometimes even applying different alloys, parts can be produced more efficiently by cost and/or weight, and new design options have been discovered. This paper is about the manufacture of press formed parts of Fibre Reinforced Thermoplastics and the evaluation whether the Tailoring concept, though adapted to the material behavior of FRTP, can be applied to these composites as well. From research, the first results and ideas are presented. One of the ideas is the multistep forming process, creating parts with thickness variations and combinations of fibre orientations that are usually not feasible using common press forming strategies. Another idea is the blending of different prepreg materials in one component. This might be useful in case of specific details, like for areas of mechanical fastening or to avoid carbon/metal contact, otherwise resulting in severe corrosion. In a brief overview, future perspectives of the potential of the Tailoring concept are presented.

  7. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  9. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    International Nuclear Information System (INIS)

    Mahdieh, Zahra; Bagheri, Reza; Eslami, Masoud; Amiri, Mohammad; Shokrgozar, Mohammad Ali; Mehrjoo, Morteza

    2016-01-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  10. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Zahra [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Bagheri, Reza, E-mail: rezabagh@sharif.edu [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Eslami, Masoud; Amiri, Mohammad [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali; Mehrjoo, Morteza [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  11. Investigation of Droplet Deposition for Suspensions Usable for Thermoplastic 3D Printing (T3DP)

    Science.gov (United States)

    Scheithauer, Uwe; Johne, Robert; Weingarten, Steven; Schwarzer, Eric; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2018-01-01

    Thermoplastic 3D printing (T3DP) is an additive manufacturing (AM) technology, which can be used for the production of dense single- and especially multi-material components. This becomes possible because of the combination of the precise deposition of small droplets of molten thermoplastic suspensions containing ceramic or metal particles, and a curing mechanism caused on cool down increasing the viscosity. In this paper, the droplet formation behavior of zirconia suspensions for T3DP (82 and 84 wt.%) was investigated. The droplet fusion factor (dff) is introduced to calculate the necessary distance between two droplets to form filament-like structures by fusion of adjacent droplets. Filament-like structures with a smooth surface and a nearly homogeneous cross section were manufactured for both suspensions with a dff of 44% or higher.

  12. Evolution of umbilicals in Brazil: optimizing deepwater umbilical applications with thermoplastic hoses and steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Neto, Mauro Del [DuPont do Brasil S.A., Barueri, SP (Brazil)

    2008-07-01

    Subsea umbilicals in the past 25 years have evolved in parallel with other subsea oil and gas technologies, as the search for hydrocarbons needed to drive the global economy has led offshore exploration and development companies to seek reserves ever-farther from shore in water thousands of meters deep. Relegated to little more than afterthought status before the push into deep water, modern umbilicals have now become crucial components linking deep water producers to their subsea wells, controlling subsea production systems through hydraulic and electrical power and injecting production chemicals for corrosion-, scale-, and hydrate-inhibition at subsea well heads. Particularly in subsea developments involving several deep water wells, umbilicals today are integral to both the production-system design and the chosen operating strategy. Failure of an umbilical linking a subsea well head in deep water to a host production facility can inflict severe economic consequences upon an operator by impairing production operations or halting production altogether. The additional cost of repairing or replacing a failed umbilical can run into the millions of dollars. As offshore oil and gas production has moved into ever-deeper water, umbilical manufacturers have begun introducing new stronger materials to handle the inherently higher pressures and temperatures. Today, two types of construction are used for fluid conduits in umbilical systems deployed in deep water: thermoplastic hoses and steel tubes. Steel tubes are generally more expensive than thermoplastic hoses, relatively stiff and considered to have high tensile strength, while thermoplastic hoses are extremely flexible and exhibit lower tensile strength. This lower tensile strength of the hoses may be compensated by including steel wire armoring in the umbilical. This also provides the added benefits of additional mechanical protection compared with the equivalent unarmored steel-tubes umbilicals. When either

  13. Phase transitions in blends functionalized thermoplastics

    International Nuclear Information System (INIS)

    Grigoryeva, O.; Sergeeva, L.; Starostenko, O.; Pissis, P.

    2001-01-01

    Phase transitions, morphology and structure-property relationships in polymer blends based on functionalized thermoplastics, i.e. widely used polyurethanes and styrene-acrylic acid copolymers, were investigated by means of inter-expletive non-destructive methods. Wide and small angle X-ray scattering (WAXS and SAXS), dynamic mechanical thermal analysis, thermally stimulated depolarization currents techniques, dielectric relaxation spectroscopy and several physico-mechanical characterization techniques were used. The results obtained by the various techniques were critically compared to each other. (author)

  14. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  15. Method and apparatus for extruding thermoplastic material

    International Nuclear Information System (INIS)

    McKelvey, J.M.

    1985-01-01

    A gear pump assisted screw conveyor extrusion system utilizing a cartridge heating device disposed axially within the screw and having the drives for the gear pump and the screw correlated in speed to create relatively little pressure in the thermoplastic material being extruded such that relatively little mechanical working thereof occurs. The thermoplastic material is melted in the screw conveyor primarily by heat transfer from the cartridge heater and the gear pump is utilized for conveying the melted material under pressure to a subsequent work station. A relatively deep material-conveying spiral channel is provided in the screw for maximized extrusion output per revolution of the screw and minimized mechanical energy generation by the screw. A motionless mixer may be employed intermediate the screw and the work station to homogenize the melted material for reducing temperature gradients therein. The system advantageously is capable of extruding material at a substantially greater rate and a lower material temperature and with substantially increased power economy than conventional systems utilizing a high pressure, externally heated screw conveyor portion

  16. Low Cost Processing of Commingled Thermoplastic Composites

    Science.gov (United States)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  17. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  18. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  19. 53rd Concrete Technology Conference. Repair, Reinforcement 3; Dai 53 kai semento gijutsu taikai. Hoshu, hokyo 3

    Energy Technology Data Exchange (ETDEWEB)

    Wakasugi, Mikio

    1999-08-10

    Yanagi et al. investigated crack-blocking effect of salt-removing effect of electrodeposition method using a ZnSO{sub 4} solution. Nishida et al. also paid attention to the same method, and carried out the investigation by applying the electrodeposition method using two kinds of solutions, i.e., ZnSO{sub 4} solution and MgCl{sub 2} solution, to samples where dry shrinkage and cracks are generated, then observing crack-blocking state and improvement state of mortar interior with a SEM and measuring pore size distribution. Fukushima carried out theoretical analysis in respect to the effect of surface finishing treatment in concrete to perform neutralization until the backs of reinforcing bars upon the corrosion inhibition of the reinforcing bars. Kubo et al. direct their attention to 100% silane without using any organic solvent, specifically, they used five kinds of silane with different molecular weight and molecular structure, performed surface treatment of concretes with different moisture state and density-solid state and measured moisture permeability and water permeability. Ueki et al. proposed a method for evaluating fluidity of high-flow mortar used in steel plate-lining operation of anti-earthquake reinforcing works, namely, a new testing method using a device for pouring high-flow mortar into a certain-spaced clearance from J funnel. (NEDO)

  20. Determination of tensile forces to enhance the supply stability of reinforced fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Woo; Lee, Jae Wook; Jang, Jin Seok; Jeong, Myeong Sik; Oh, Joo Young; Kang, Hoon; Kang, Ji Heon [Daegyeong Regional Division, Korea Institute of Industrial Technology, Daegu (Korea, Republic of); Kim, Hyung Ryul [Agency for Defense Development, Changwon (Korea, Republic of); Yoo, Wan Suk [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    The manufacturing process of long fiber thermoplastic is initiated by supplying reinforced fiber wound in a spool dispenser. If problems such as tangling or kinking occur in the apparatus used for supplying the reinforced fiber in the long-fiber thermoplastic direct process, the productivity of the long-fiber thermoplastic decreases. Therefore, it is important to enhance the supply stability of reinforced fiber. In general, the increase in supply stability can be achieved by maintaining a steady balloon shape that is controlled by the unwinding velocity or tensile force of the reinforced fiber. In this research, the range of suitable tensile force was determined under the assumption that the unwinding velocity remained constant. The reinforced fiber was assumed to be inextensible, homogeneous, and isotropic and to have uniform density. The transient-state unwinding equation of motion to analyze the unwinding motion of reinforced fiber can be derived by using Hamilton’s principle for an open system in which mass can change within a control volume. In the process of solving the transient-state unwinding equation of motion, the exact two-point boundary conditions are adopted for each time step.

  1. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    Science.gov (United States)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  2. Thermoplastic-thermosetting merged polyimides via furan-maleimide Diels–Alder polymerization

    Directory of Open Access Journals (Sweden)

    Yogesh S. Patel

    2017-02-01

    Full Text Available Novel thermoplastic-thermosetting merged polyimide system has been developed via Diels–Alder intermolecular polymerization of bisfuran namely, 2,5-bis(furan-2-ylmethylcarbamoyl terephthalic acid A with a series of bismaleimides B1–4. Thus obtained intermediate Diels–Alder adducts C1–4 were aromatized and imidized (i.e. cyclized through carboxylic and amide groups to afford thermoplastic-thermosetting merged polyimides D1–4. Bisfuran A was prepared by the condensation of pyromellitic dianhydride with furan-2-ylmethanamine and characterized by elemental, spectral, thermal and LCMS analyses. Synthesized Diels–Alder adducts C1–4 and polyimides D1–4 were characterized by elemental analysis, spectral features, number average molecular weight (Mn‾, degree of polymerization (DP and thermal analysis. To facilitate the correct structural assessment and to be able to verify the occurrence of the DA adducts and PIs, a model compound 4 was prepared from phthalic anhydride and furan-2-ylmethanamine in a similar way. FTIR spectral features of polyimides D1–4 were compared with model compound 4 and they were found to be quite identical. The ‘in situ' void-free glass fiber reinforced composites GFRC1–4 were prepared from the produced system and characterized by chemical, mechanical and electrical analyses. All the composites showed good mechanical, electrical and thermal properties and good resistance to organic solvents and mineral acids.

  3. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A

    2010-01-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  4. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    Science.gov (United States)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  5. Chimeric Plastics : a new class of thermoplastic

    Science.gov (United States)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  6. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  7. Pyrolysis characteristics of typical biomass thermoplastic composites

    Science.gov (United States)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  8. Characterization of thermoplastic composites for hot stamp forming

    NARCIS (Netherlands)

    Rietman, Bert; Grouve, Wouter; Akkerman, Remko

    2014-01-01

    This paper describes state-of-the-art characterization methods for thermoplastic composites at high processing temperature and provides a few examples of application in simulations of the hot stamp forming process.

  9. Friction and bending in thermoplastic composites forming processes

    NARCIS (Netherlands)

    Sachs, Ulrich

    2014-01-01

    With the demand for better fuel economy in the aerospace and automotive industries, lightweight polymer matrix composites became an attractive alternative for metal structures. Despite the inherently higher toughness and impact damage resistance of thermoplastics, thermoset matrix composites are

  10. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  11. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah, [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  12. A Reinforcement Learning Model Equipped with Sensors for Generating Perception Patterns: Implementation of a Simulated Air Navigation System Using ADS-B (Automatic Dependent Surveillance-Broadcast) Technology.

    Science.gov (United States)

    Álvarez de Toledo, Santiago; Anguera, Aurea; Barreiro, José M; Lara, Juan A; Lizcano, David

    2017-01-19

    Over the last few decades, a number of reinforcement learning techniques have emerged, and different reinforcement learning-based applications have proliferated. However, such techniques tend to specialize in a particular field. This is an obstacle to their generalization and extrapolation to other areas. Besides, neither the reward-punishment (r-p) learning process nor the convergence of results is fast and efficient enough. To address these obstacles, this research proposes a general reinforcement learning model. This model is independent of input and output types and based on general bioinspired principles that help to speed up the learning process. The model is composed of a perception module based on sensors whose specific perceptions are mapped as perception patterns. In this manner, similar perceptions (even if perceived at different positions in the environment) are accounted for by the same perception pattern. Additionally, the model includes a procedure that statistically associates perception-action pattern pairs depending on the positive or negative results output by executing the respective action in response to a particular perception during the learning process. To do this, the model is fitted with a mechanism that reacts positively or negatively to particular sensory stimuli in order to rate results. The model is supplemented by an action module that can be configured depending on the maneuverability of each specific agent. The model has been applied in the air navigation domain, a field with strong safety restrictions, which led us to implement a simulated system equipped with the proposed model. Accordingly, the perception sensors were based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology, which is described in this paper. The results were quite satisfactory, and it outperformed traditional methods existing in the literature with respect to learning reliability and efficiency.

  13. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  14. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  15. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian

    2018-01-22

    Highly conductive and stretchable fibers are crucial components of wearable electronics systems. Excellent electrical conductivity, stretchability, and wearability are required from such fibers. Existing technologies still display limited performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain high sensitivity (with a gauge factor of 425 at 100% strain), high stretchability, and high linearity. They are also reproducible and durable. Their use as safe sensing components on deformable cable, expandable surfaces, and wearable textiles is demonstrated.

  16. The power reinforcement framework revisited

    DEFF Research Database (Denmark)

    Nielsen, Jeppe; Andersen, Kim Normann; Danziger, James N.

    2016-01-01

    Whereas digital technologies are often depicted as being capable of disrupting long-standing power structures and facilitating new governance mechanisms, the power reinforcement framework suggests that information and communications technologies tend to strengthen existing power arrangements within...... public organizations. This article revisits the 30-yearold power reinforcement framework by means of an empirical analysis on the use of mobile technology in a large-scale programme in Danish public sector home care. It explores whether and to what extent administrative management has controlled decision......-making and gained most benefits from mobile technology use, relative to the effects of the technology on the street-level workers who deliver services. Current mobile technology-in-use might be less likely to be power reinforcing because it is far more decentralized and individualized than the mainly expert...

  17. Reinforced column shafts from the monumental architecture of Italica (prov. Baetica. Implementation of new technologies for the reconstruction of an exceptional practice

    Directory of Open Access Journals (Sweden)

    Oliva Rodríguez Gutiérrez

    2017-01-01

    Full Text Available The pieces under study presented in this paper come from the already well known “Traianeum” of Italica (prov. Baetica, present Santiponce, Seville, a huge complex area, formed by a wide open square with a main central temple, built according to the extension of the city with a new quarter in Hadrian times. Most of them, fragments of column shafts, offer very peculiar technical features: canals for metallic dowels, cavities for marble tasselli and holes for also metallic staples or cramps. All these systems had the aim of reinforce a valuable material with potential structure problems. The ensemble is unique because of the preservation of a sufficient amount of fragments that allows their complete restitution with the help of photogrammetric techniques in order to obtain three-dimensional models of the pieces and to understand the ancient technologic solutions. Even more, the practices make us reflect about technical skills and economy and organization of constructions.

  18. THE DEVELOPMENT OF TECHNOLOGY OF THE CORE THERMO-MECHANICALLY HARDENED REINFORC-ING STEEL OF GRADE A700HW OF DIE-ROLLED SECTION NO 12, 14, 16 PRODUCTION ACCORDING TO REQUIREMENT OF FINNISH STANDARDS SFST1216 IN CONDITIONS OF SMALL-SECTION MILL 320 OF RUP «BMZ»

    Directory of Open Access Journals (Sweden)

    A. V. Rusalenko

    2009-01-01

    Full Text Available The development of technology of the core thermomechanically hardened reinforcing steel of grade А700HW of die-rolled section No 12, 14, 16 production according to requirement of Finnish standards SFST1216 in conditions of small-section mill 320 of RUP «BMZ» is given.

  19. Development of thermoplastic composite aircraft structures

    Science.gov (United States)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  20. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  1. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    OpenAIRE

    Okikiola Ganiu AGBABIAKA; Isiaka Oluwole OLADELE; Paul Toluwalagbara OLORUNLEYE

    2014-01-01

    Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment) on the mechanical and water absorption properties o...

  2. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    Science.gov (United States)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  3. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  4. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  5. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-01-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10 17 m −3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  6. Dosimetric effects of thermoplastic immobilizing devices on skin dose

    International Nuclear Information System (INIS)

    Adu-Poku Olivia

    2017-07-01

    This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)

  7. Studies on the influence of structurally different peroxides in polypropylene/ethylene alpha olefin thermoplastic vulcanizates (TPVs

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on polypropylene (PP and new generation ethylene-octene copolymer (EOC have been developed by dynamic vulcanization process, which involves melt-mixing and simultaneously crosslinking a rubber with a thermoplastic. In this paper technologically compatibilized blends of PP and EOC were dynamically vulcanized by coagent assisted peroxide crosslinking system. The effect of structurally different types of peroxides, namely dicumyl peroxide, di-tert butyl peroxy isopropyl benzene and tert-butyl cumyl peroxide with varying concentrations on the properties on TPVs was mainly studied. The physico-mechanical, thermal and morphological properties of these TPVs were characterized by using X-ray diffraction (XRD, differential scanning calorimeter (DSC and scanning electron microscopy (SEM.

  8. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  9. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  10. Radiation Curing of Rubber/Thermoplastic Composites Containing Different Inorganic Fillers

    International Nuclear Information System (INIS)

    EL-Zayat, M.M.M.

    2012-01-01

    Blending of polymeric materials has proved to be a successful method for preparing new polymeric materials having not only the main properties of the blends components but also new modification as well as specific ones. High density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) are both soild and constitute the blend components to be investigated in present study and hence the method of mechanical blending is the most suitable one for its preparation . HDPE thermoplastic is a semi – crystalline polymer ; on the other hand , NBR elastomer is totally amorphous polymer. Both polymers are categorized as crosslinking polymers with respect to ionizing gamma rays with different extents. In order to increase the efficiency of irradiation curing of such NBR/HDPE blend , it may be required to add suitable additives such as reinforcing fillers that may increase the extent of crosslinking at the same irradiation dose . Thus synthetic fillers are used commercially in industrial processing of rubber formulation due to its specific characteristics and hence its high reinforcing capacity and suitable price . To follow property changes occurred to the blend as well as its composites , measurements have been done to monitor the changes that happened to mechanical, physical and thermal properties as a function of irradiation dose and composition of blends and composites.

  11. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Chaiwatyothin, Sudarat; Mueangta, Suwat; Hanchana, Areeya

    2013-01-01

    Highlights: ► TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ► Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ► Stress and Young’s modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ► Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Young’s modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  12. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  13. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  14. Comparative environmental and human health evaluations of thermolysis and solvolysis recycling technologies of carbon fiber reinforced polymer waste.

    Science.gov (United States)

    Khalil, Y F

    2018-06-01

    This quantitative research aims to compare environmental and human health impacts associated with two recycling technologies of CFRP waste. The 'baseline' recycling technology is the conventional thermolysis process via pyrolysis and the 'alternative' recycling technology is an emerging chemical treatment via solvolysis using supercritical water (SCW) to digest the thermoset matrix. Two Gate-to-Gate recycling models are developed using GaBi LCA platform. The selected functional unit (FU) is 1 kg CFRP waste and the geographical boundary of this comparative LCIA is defined to be within the U.S. The results of this comparative assessment brought to light new insights about the environmental and human health impacts of CFRP waste recycling via solvolysis using SCW and, therefore, helped close a gap in the current state of knowledge about sustainability of SCW-based solvolysis as compared to pyrolysis. Two research questions are posed to identify whether solvolysis recycling offers more environmental and human health gains relative to the conventional pyrolysis recycling. These research questions lay the basis for formulating two null hypotheses (H 0,1 and H 0,2 ) and their associated research hypotheses (H 1,1 and H 1,2 ). LCIA results interpretation included 'base case' scenarios, 'sensitivity studies,' and 'scenarios analysis.' The results revealed that: (a) recycling via solvolysis using SCW exhibits no gains in environmental and human health impacts relative to those impacts associated with recycling via pyrolysis and (b) use of natural gas in lieu of electricity for pyrolyzer's heating reduces the environmental and human health impacts by 37% (lowest) and up to 95.7% (highest). It is recommended that on-going experimental efforts that focus only on identifying the best solvent for solvolysis-based recycling should also consider quantification of the energy intensity as well as environmental and human health impacts of the proposed solvents. Copyright © 2018

  15. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  16. Development and evaluation of thermoplastic street maintenance material

    Science.gov (United States)

    Siemens, W. D.

    1973-01-01

    An all-weather permanent street patching material was investigated for flexible and rigid pavements. The economic, operational, and material requirements are discussed along with the results of field tests with various mixtures of EVA resins and asphalt. Cost analyses for thermoplastic patching methods are included.

  17. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  18. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    Science.gov (United States)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  19. [Fusion implants of carbon fiber reinforced plastic].

    Science.gov (United States)

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  20. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  1. New strategy to create “Super Dentin” using adhesive technology: Reinforcement of adhesive–dentin interface and protection of tooth structures

    Directory of Open Access Journals (Sweden)

    Toru Nikaido

    2011-02-01

    Full Text Available Dentin bonding systems have been dramatically simplified and improved during the recent decades. Monomer penetration into dentin and its polymerization in situ creates a hybrid layer, which is essential to obtain good bonding to dentin. Moreover, the presence of an acid–base resistant zone below the hybrid layer has been documented with self-etching adhesive systems in an artificial secondary caries attack. When ultrastructure of the acid–base resistant zone is assessed by SEM and TEM observations, formation of the acid–base resistant zone is considered to be due to the monomer penetration potential and fluoride release in the adhesive systems. Natural dentin has a limited potential to resist an acid attack of secondary caries; however, the acid–base resistant zone does not purely consist of dentin in morphology, it is rather a combination of dentin and the adjacent hybrid layer. Therefore, the reinforced dentin has been called “Super Dentin” bearing the ability to prevent primary and secondary caries. Prospectively, the great potential of adhesive technology in creation of the “Super Dentin” would lead to the development of new materials for mechanical, chemical and biological protection of the dental structures.

  2. Effects of matrix properties on microscale damage in thermoplastic laminates under quasi-static and impact loading

    KAUST Repository

    Wafai, B. Husam

    2018-03-01

    Thermoplastics reinforced with continuous fibers are very promising building materials for the auto industry and consumer electronics to reduce the weight of vehicles and portable devices, and to deliver a high impact tolerance at the same time. Polypropylene is an abundant thermoplastic, and its glass fibers composites make a valuable solution that is suitable for mass production. But the adoption of such composites requires a deep understanding of their mechanical behavior under the relevant loading conditions. In this Ph.D. work, we aim to understand the damage process in continuous glass fiberreinforced polypropylene in detail. We will focus in particular on developing an approach for microscale observation of damage during the out-of-plane loading process and will use these observations for both qualitative and quantitative evaluation of the composite. We will apply our approach to two kinds of polypropylene composites, one of them is specially designed to withstand impact. The comparison between the two types of composites at slow and fast loading cases will shed some light on the effect of the polymer properties on the behavior of composites under out-of-plane loading.

  3. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  4. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  5. Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocomposites

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2017-01-01

    The influence of the processing conditions and MWCNT content on the mechanical properties of PA6,6-based nanocomposites areinvestigated. In addition to the composition of the composites, the impact of manufacturing conditions such as dilution mechanism, twin-screwextruder mixing specifications......, and injection molding parameters on the behavior of the nanocomposites are evaluated. Results show that whilethe increase in the content of MWCNTs can lead to 40.0 % enhancement in the mechanical properties, changing the processing parametersvaries the values by 30.0 % in the same content. The mechanisms...... involved in the modulation of the nanocomposites properties are alsodiscussed...

  6. An Estimation of the Potential of Carbon Fiber Reinforced Thermoplastics for Car Weight Reduction

    Science.gov (United States)

    2011-11-01

    Murayama1, Kazuro Kageyama1, Keiichi Nagata1, Tsuyoshi Matsuo1 and Jun Takahashi1 1The University of Tokyo * 7-3-1 Hongo , Bunkyo City, Tokyo 113-8656...ORGANIZATION NAME(S) AND ADDRESS(ES) The University of Tokyo 7-3-1 Hongo , Bunkyo City, Tokyo 113-8656, Japan 8. PERFORMING ORGANIZATION REPORT NUMBER

  7. Device and method for the preparation of a mixture comprising fibre-reinforced thermoplastic pellets

    NARCIS (Netherlands)

    Beukers, A.; Wiltink, F.J.; Van Breugel, J.H.

    2000-01-01

    This material must be plasticised and in order to be able to process such a mixture by injection moulding or flow moulding it is necessary for, on the one hand, a rise in pressure and, on the other hand, mixing of the material to take place by means of the device. In order as far as possible to

  8. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    Science.gov (United States)

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  9. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  10. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Biella, Serena; Cesura, Federico; Levi, Marinella; Turri, Stefano

    2013-01-01

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  11. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  12. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  13. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.

    Science.gov (United States)

    Iijima, Masahiro; Kohda, Naohisa; Kawaguchi, Kyotaro; Muguruma, Takeshi; Ohta, Mitsuru; Naganishi, Atsuko; Murakami, Takashi; Mizoguchi, Itaru

    2015-12-01

    To investigate the effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures. Five thermoplastic materials, polyethylene terephthalate glycol (Duran®, Scheu Dental), polypropylene (Hardcast®, Scheu Dental), and polyurethane (SMP MM®, SMP Technologies) with three different glass transition temperatures (T g) were selected. The T g and crystal structure were assessed using differential scanning calorimetry and X-ray diffraction. The deterioration of mechanical properties by thermal cycling and the orthodontic forces during stepwise temperature changes were investigated using nanoindentation testing and custom-made force-measuring system. The mechanical properties were also evaluated by three-point bending tests; shape recovery with heating was then investigated. The mechanical properties for each material were decreased significantly by 2500 cycles and great decrease was observed for Hardcast (crystal plastic) with higher T g (155.5°C) and PU 1 (crystalline or semi-crystalline plastic) with lower T g (29.6°C). The Duran, PU 2, and PU 3 with intermediate T g (75.3°C for Duran, 56.5°C for PU 2, and 80.7°C for PU 3) showed relatively stable mechanical properties with thermal cycling. The polyurethane polymers showed perfect shape memory effect within the range of intraoral temperature changes. The orthodontic force produced by thermoplastic appliances decreased with the stepwise temperature change for all materials. Orthodontic forces delivered by thermoplastic appliances may influence by the T g of the materials, but not the crystal structure. Polyurethane is attractive thermoplastic materials due to their unique shape memory phenomenon, but stress relaxation with temperature changes is expected. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For

  14. Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.

    Science.gov (United States)

    Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto

    2015-03-30

    Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...... main μIM process parameters (melt temperature, injection speed, packing pressure) using the Design of Experiment statistical technique. Measurements results demonstrated the importance of calibrating mould´s master geometries to ensure correct part production and effective quality conformance...... on the frequency in order to improve the signal quality and assure acoustic reproduction fidelity. Production quality of the TPE rings drastically influence the product functionality. In the present study, a procedure for μIM TPE micro rings production optimization has been established. The procedure entail using...

  16. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  17. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  18. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil.......The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  19. Development of silica nanoparticles obtaintion process from renewable source waste and its incorporation in thermoplastic polymer for manufacturing a nanocomposite; Denvolvimento de processo de obtenção de nanopartículas de sílica a partir de resíduo de fonte renovável e incorporação em polímero termoplástico para a fabricação de nanocompósito

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Angel Visentim

    2016-07-01

    The nanocomposite technology is applicable to a wide range of thermoplastic and thermoset polymers. The use of sugar cane byproducts has been extensively studied as a source of reinforcement for nanocomposites. The bagasse is widely used in cogeneration and as a result of the burning of this material, millions of tons of ash are produced. For this work, silica contained in the ashes of bagasse from sugarcane was extracted by chemical method and thermal method. The thermal method is more efficient leading to a purity of more than 93% of silica, while the chemical method generated silica contaminated with chlorine and sodium from the extraction reagents. The silica particles obtained were evaluated by dynamic light scattering (DSL) and presented an average size of 12 micrometers. These particles were submitted to grinding in a ball mill and then to a sonochemical treatment. Silica particles treated by the sonochemical process ( 20 kHz, 500 W and 90 minutes) had its dimensions reduced to nanometric scale of tenths of nanometers. The nanossílica obtained was then used as reinforcement in high density polyethylene (HDPE). Mechanical and thermo-mechanical properties were assessed and gains were shown for mechanical properties , except for the impact resistance. The distortion temperature (HDT) showed that the incorporation of the reinforcement in HDPE led to a small increase in this property compared to pure HDPE. The crystallinity of the nanocomposites generated was evaluated by differential scanning calorimetry (DSC) and it was observed a decrease of crystallinity in the material when the reinforcing incorporation was 3%. The material irradiated to 250 kGy with electron beam showed important property gains, mainly due to the high level of crosslinking of irradiated HDPE. (author)

  20. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  1. Tool-ply friction in thermoplastic composite forming (CD-rom)

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.

    2008-01-01

    Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film

  2. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Science.gov (United States)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  3. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  4. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  5. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  6. Prediction of wrinklings and porosities of thermoplastic composits after thermostamping

    Science.gov (United States)

    Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome

    2018-05-01

    During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg

  7. Computational modelling of a thermoforming process for thermoplastic starch

    Science.gov (United States)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its

  8. Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites

    Science.gov (United States)

    2004-08-01

    State University – M. Namani • Southern Clay Products – D. Hunter • Applied Sciences Inc. – J. Glasglow • Omega Point Laboratories – S . Romo Financial...Characterization of Thermoplastic Elastomer Nanocomposites 5a. CONTRACT NUMBER F04611-99-C-0025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ... S ) AND ADDRESS(ES) ERC, Inc,AFRL/PRS,10 E. Saturn Blvd.,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT NUMBER E04-082 9. SPONSORING

  9. Theoretical and experimental investigations of a thermoplastic constitutive law

    Science.gov (United States)

    Zdebel, U.

    1984-12-01

    A thermoplastic constitutive law allowing combinations of isotropic and kinematic hardening as well as deviations from the normality rule was examined. Since the energy balance for thermomechanical processes is taken into account, the consistent connection to thermodynamic laws is guaranteed. The experimental verification of material parameters is described; it is performed by isothermal tension-torsion tests on thin-walled tubes at different temperatures. The materials functions allow the extension to nonisothermal (adiabatic) processes. The comparison between theoretical and exprimental results is not entirely satisfactory and demonstrates the remaining inconsistencies. Suggestions which could lead to a better description of the behavior of elastoplastic materials are made.

  10. Thermoplastic starch materials prepared from rice starch; Preparacao e caracterizacao de materiais termoplasticos preparados a partir de amido de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S., E-mail: barbarapont@gmail.co [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2009-07-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  11. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  12. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    Energy Technology Data Exchange (ETDEWEB)

    Varela, Juan Carlos; Velo, Marcos [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad Santiago de Compostela, Santiago de Compostela (Spain); Espinar, Eduardo; Llamas, Jose Maria [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad de Sevilla (Spain); Rúperez, Elisa; Manero, Jose Maria [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Javier Gil, F., E-mail: francesc.xavier.gil@upc.edu [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires.

  13. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  14. Impact of thermoplastic mask on dosimetry of different radiotherapeutic beams

    International Nuclear Information System (INIS)

    Chen Lixin; Zhang Li; Qian Jianyang; Huang Xiaoyan; Lu Jie; Huang Shaomin

    2003-01-01

    Objective: To determine the influence of auxiliary thermoplastic mask on dose distribution of photon or electron beams. Methods: Using the PTW Marcus 23343 type fixed-separation parallel-plate ionization chamber in a special phantom(PMMA), the change of photon dose buildup region was measured with rectification of Bruce empirical formula. Using 3-D water phantom, the central axis percentage depth doses (PDD) of electron beams were measured with verification of the parallel-plate ionization chamber at several given depths. Results: When 8 MV X-ray was delivered through the added facial mask, the buildup region doses were increased obviously with a 25% relative increment beneath near the surface. When 8, 12, 15 MeV electron beams and mask were used, all PDD curves moved to the surface. Conclusions: The impact of thermoplastic mask on the dose increase in the X-ray buildup region, and on the PDD decrease in the electron beam target region should be paid much more attention. And the dose distribution, with an added mask, will have to be re-evaluated in 3-D conformal radiotherapy

  15. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  16. Thermoplastic processing of proteins for film formation--a review.

    Science.gov (United States)

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  17. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  18. Development of thermo-plastic heating and compaction facility

    International Nuclear Information System (INIS)

    Ko, Dae Hak; Lim, Suk Nam

    1998-01-01

    Low- and intermediate-level radioactive wastes consist of spent resin, spent filter, concentrated waste and dry active waste(DAW) and they are solidified or packaged into drums or high integrated containers(HICs). DAWs occupy 50 percent of all low- and intermediate-level radioactive wastes generated from nuclear power plants in Korea. Incinerable wastes in the DAWs are about 60 percent. Therefore, it is very important for us to reduce the volume of incinerable wastes in DAWs. Experience of supercompaction turned out that thermo-plastic wastes have a swelling effect after supercompaction process due to their repulsive power. And the thermo-plastic heating and compaction facility has been developed by KEPCO. In conclusion, heating and compaction facility can reduce the volume of DAWs as well as upgrade the quality of treated wastes, because the swelling effect by repulsive power after compaction is removed, final wastes form the shape of block and they have no free-standing water in the wastes. Plan for practical use is that this facility will be installed in other nuclear power plants in Korea in 1999. (Cho, G. S.). 1 tab., 2 figs

  19. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    International Nuclear Information System (INIS)

    Varela, Juan Carlos; Velo, Marcos; Espinar, Eduardo; Llamas, Jose Maria; Rúperez, Elisa; Manero, Jose Maria; Javier Gil, F.

    2014-01-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires

  20. Influence of gamma irradiation in the thermoplastic elastomer (TPE); Influência da radiação gama no elastômero termoplástico (TPE)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G., E-mail: camila@ba7.com.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by {sup 60}Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index.

  1. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  2. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  3. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  4. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  5. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  6. The role of water on the structure and mechanical properties of a thermoplastic natural block co-polymer from squid sucker ring teeth.

    Science.gov (United States)

    Rieu, Clément; Bertinetti, Luca; Schuetz, Roman; Salinas-Zavala, Cesar Ca; Weaver, James C; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2016-09-02

    Hard biological polymers exhibiting a truly thermoplastic behavior that can maintain their structural properties after processing are extremely rare and highly desirable for use in advanced technological applications such as 3D-printing, biodegradable plastics and robust composites. One exception are the thermoplastic proteins that comprise the sucker ring teeth (SRT) of the Humboldt jumbo squid (Dosidicus gigas). In this work, we explore the mechanical properties of reconstituted SRT proteins and demonstrate that the material can be re-shaped by simple processing in water and at relatively low temperature (below 100 °C). The post-processed material maintains a high modulus in the GPa range, both in the dry and the wet states. When transitioning from low to high humidity, the material properties change from brittle to ductile with an increase in plastic deformation, where water acts as a plasticizer. Using synchrotron x-ray scattering tools, we found that water mostly influences nano scale structure, whereas at the molecular level, the protein structure remains largely unaffected. Furthermore, through simultaneous in situ x-ray scattering and mechanical tests, we show that the supramolecular network of the reconstituted SRT material exhibits a progressive alignment along the strain direction, which is attributed to chain alignment of the amorphous domains of SRT proteins. The high modulus in both dry and wet states, combined with their efficient thermal processing characteristics, make the SRT proteins promising substitutes for applications traditionally reserved for petroleum-based thermoplastics.

  7. Attribute Based Selection of Thermoplastic Resin for Vacuum Infusion Process: A Decision Making Methodology

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lystrup, Aage; Løgstrup Andersen, Tom

    2012-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...... for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection....

  8. High performance thermoplastics: A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  9. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  10. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. High-pressure needle interface for thermoplastic microfluidics.

    Science.gov (United States)

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  12. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    International Nuclear Information System (INIS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Liu, Yanju; Leng, Jinsong; Xu, Ben; Fu, Yongqing

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ϵ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin–based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix. (paper)

  13. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  14. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian; Xu, Xuezhu; Xin, Yangyang; Lubineau, Gilles

    2018-01-01

    performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain

  15. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  16. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  18. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  19. High performance thermoplastics - A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.

  20. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  1. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Billson, D R; Hutchins, D A

    2014-01-01

    Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor. (paper)

  2. Assembly injection moulding joins metal and thermoplastics; Montagespritzgiessen verbindet Metall und Thermoplast

    Energy Technology Data Exchange (ETDEWEB)

    Drummer, Dietmar; Meister, Steve [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Kunststofftechnik; Reichart, Marc [HBW Gubesch Kunststoff Engineering GmbH, Wilhelmsdorf (Germany)

    2010-03-08

    Automotive safety restraint system components increasingly use flexible styrenic and olefinic TPEs. With continued evolution in automotive interior design and performance requirements, demands on material technology are concomitantly rising. A growing trend towards molded in color solutions with low gloss aesthetics require TPE materials with ery low gloss, improved scratch resistance, and low temperature ductility. Innovations utilizing Teknor Apex's compounding technology have enabled the development of low gloss styrenic elastomers for airbag door applications that provide an optimized combination of low temperature performance, surface aesthetics (low gloss and improved scratch resistance), and ease of processing. This paper highlights the salient features of these new compounds and the effect of injection molding condition on the gloss at the surface of the cover.

  3. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  4. Tribological behavior of plasma-polymerized aminopropyltriethoxysilane films deposited on thermoplastic elastomers substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Sainz-García, Elisa; González-Marcos, Ana [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Ordieres-Meré, Joaquín [ETSII, Polytechnic University of Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid (Spain)

    2013-07-01

    Thermoplastic elastomers (TPE) are multifunctional polymeric materials that are characterized by moderate cost, excellent mechanical properties (high elasticity, good flexibility, hardness, etc.), high tensile strength, oxidation and wettability. With an objective of reducing the superficial friction coefficient of TPE, this work analyzes the characteristics of coating films that are based on aminopropyltriethoxysilane (APTES) over a TPE substrate. Since this material is heat-sensitive, it is necessary to use a technology that permits the deposition of coatings at low temperatures without affecting the substrate integrity. Thus, an atmospheric-pressure plasma jet system (APPJ) with a dielectric barrier discharge (DBD) was used in this study. The coated samples were analyzed by Scanning Electron Microscopy, Atomic Force Microscopy, Fourier-Transform Infrared with Attenuated Total Reflectance Spectroscopy, X-ray Photoelectron Spectroscopy and tribological tests (friction coefficient and wear rate). The studies showed that the coated samples that contain a higher amount of forms of silicon (SiOSi) and nitrogen (amines, amides and imines) have lower friction coefficients. The sample coated at a specific plasma power of 550 W and an APTES flow rate of 1.5 slm had the highest values of SiOSi and nitrogen-containing groups peak intensity and atomic percentages of Si2p and SiO{sub 4}, and the lowest percentages of C1s and average friction coefficient. The results of this research permit one to conclude that APPJ with a DBD is a promising technique to use in coating SiO{sub x} and nitrogen-containing groups layers on polymeric materials. - Highlights: • SiO{sub x} thin films on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of plasma power and precursor flow rate on film's properties. • Friction coefficient is inversely related to the amount of SiOSi and N groups. • Nitrogen groups from the ionization gas (N{sub 2}) seem to

  5. Long‐Term Monitoring of a Geosynthetic Reinforced Soil Integrated Bridge System (GRS‐IBS)

    Science.gov (United States)

    2017-11-01

    The geosynthetic reinforced soil integrated bridge system (GRS-IBS) is an innovative alternative to conventional bridge technology that utilizes closely spaced layers of geosynthetic reinforcement and compacted granular fill material to provide direc...

  6. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    OpenAIRE

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  7. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  8. Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design.

    Science.gov (United States)

    Fabra, María José; López-Rubio, Amparo; Cabedo, Luis; Lagaron, Jose M

    2016-12-01

    This work compares the effect of adding different biopolyester electrospun coatings made of polycaprolactone (PCL), polylactic acid (PLA) and polyhydroxybutyrate (PHB) on oxygen and water vapour barrier properties of a thermoplastic corn starch (TPCS) film. The morphology of the developed multilayer structures was also examined by Scanning Electron Microscopy (SEM). Results showed a positive linear relationship between the amount of the electrospun coatings deposited onto both sides of the TPCS film and the thickness of the coating. Interestingly, the addition of electrospun biopolyester coatings led to an exponential oxygen and water vapour permeability drop as the amount of the electrospun coating increased. This study demonstrated the versatility of the technology here proposed to tailor the barrier properties of food packaging materials according to the final intended use. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alpha radioactivity monitor using ionized air transport technology for large size uranium waste (2). Simulation model reinforcement for practical apparatus design

    International Nuclear Information System (INIS)

    Asada, Takatoshi; Hirata, Yosuke; Naito, Susumu; Izumi, Mikio; Yoshimura, Yukio

    2011-01-01

    In alpha radioactivity measurement using ionized air transportation (AMAT), conversion from ion currents to radioactivity accurate is required. An ion transport simulation provides ways of complementarily determining conversion factors. We have developed an ion transport simulation model. Simulation results were compared with experiments with air speeds, faster than 1 m/s, achieving good agreement. In a practical AMAT apparatus, the air-flow at the alpha source may be slower than 1 m/s, and ion loss is likely to be large. Reinforcement of the ion transport model to cover the lower air speed region is effective. Ions are generated by an alpha particle in a very thin column. Since the ion density at this temporal stage is high, the recombination loss, proportional to the square of ion density, is dominant within a few milli-seconds. The spatial and temporal scales of this columnar recombination are too small for CFD simulation. We solve an ion transport equation during the period of columnar recombination with diffusion and recombination terms and incorporated the relation between ion loss and turbulent parameters into CFD. Using this model, simulations have been done for various air speeds and targets. Those for simulation results agree with experiments, showing improvement of simulation accuracy. (author)

  10. Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch

    Science.gov (United States)

    Savadekar, N. R.; Karande, V. S.; Vigneshwaran, N.; Kadam, P. G.; Mhaske, S. T.

    2015-03-01

    The present work deals with the preparation of cotton linter nanowhiskers (CLNW) by acid hydrolysis and subsequent processing in a high-pressure homogenizer. Prepared CLNW were then used as a reinforcing material in thermoplastic starch (TPS), with an aim to improve its performance properties. Concentration of CLNW was varied as 0, 1, 2, 3, 4 and 5 wt% in TPS. TPS/CLNW nanocomposite films were prepared by solution-casting process. The nanocomposite films were characterized by tensile, differential scanning calorimetry, scanning electron microscopy (SEM), water vapor permeability (WVP), oxygen permeability (OP), X-ray diffraction and light transmittance properties. 3 wt% CLNW-loaded TPS nanocomposite films demonstrated 88 % improvement in the tensile strength as compared to the pristine TPS polymer film; whereas, WVP and OP decreased by 90 and 92 %, respectively, which is highly appreciable compared to the quantity of CLNW added. DSC thermograms of nanocomposite films did not show any significant effect on melting temperature as compared to the pristine TPS. Light transmittance ( T r) value of TPS decreased with increased content of CLNW. Better interaction between CLNW and TPS, caused due to the hydrophilic nature of both the materials, and uniform distribution of CLNW in TPS were the prime reason for the improvement in properties observed at 3 wt% loading of CLNW in TPS. However, CLNW was seen to have formed agglomerates at higher concentration as determined from SEM analysis. These nanocomposite films can have potential use in food and pharmaceutical packaging applications.

  11. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  12. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  13. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    Saralegi, Ainara; Eceiza, Arantxa; Corcuera, Maria Angeles; Johan Foster, E; Weder, Christoph

    2014-01-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  14. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU)

    International Nuclear Information System (INIS)

    Frick, Achim; Borm, Michael; Kaoud, Nouran; Kolodziej, Jan; Neudeck, Jens

    2014-01-01

    Thermoplastic polyurethanes (TPU) are important polymeric materials for seals. In competition with Acrylonitrile butadiene rubbers (NBR), TPU exhibits higher strength and a considerable better abrasion resistance. The advantage of NBR over TPU is a smaller compression set but however TPU excels in its much shorter processing cycle times. Generally a TPU is a block copolymer composed of hard and soft segments, which plays an important role in determining the material properties. TPU can be processed either to ready moulded parts or can be incorporated by multi component moulding, in both cases it shows decent mechanical properties. In the present work, the relationship between melt-process induced TPU morphology and resultant thermo mechanical properties were examined and determined by means of quasi-static tensile test, creep experiment, tension test and dynamical mechanical analysis (DMA). Scanning electron beam microscope (SEM) and differential scanning calorimeter (DSC) were used to study the morphology of the samples. A significant mathematical description of the stress-strain behaviour of TPU was found using a 3 term approach. Moreover it became evident that processing conditions such as processing temperature have crucial influence on morphology as well as short and long-term performance. To be more precise, samples processed at higher temperatures showed a lack of large hard segment agglomerates, a smaller strength for strains up to 250% and higher creep compliance

  15. The development of an alternative thermoplastic powder prepregging technique

    Science.gov (United States)

    Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.

    1992-01-01

    An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.

  16. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU)

    Science.gov (United States)

    Frick, Achim; Borm, Michael; Kaoud, Nouran; Kolodziej, Jan; Neudeck, Jens

    2014-05-01

    Thermoplastic polyurethanes (TPU) are important polymeric materials for seals. In competition with Acrylonitrile butadiene rubbers (NBR), TPU exhibits higher strength and a considerable better abrasion resistance. The advantage of NBR over TPU is a smaller compression set but however TPU excels in its much shorter processing cycle times. Generally a TPU is a block copolymer composed of hard and soft segments, which plays an important role in determining the material properties. TPU can be processed either to ready moulded parts or can be incorporated by multi component moulding, in both cases it shows decent mechanical properties. In the present work, the relationship between melt-process induced TPU morphology and resultant thermo mechanical properties were examined and determined by means of quasi-static tensile test, creep experiment, tension test and dynamical mechanical analysis (DMA). Scanning electron beam microscope (SEM) and differential scanning calorimeter (DSC) were used to study the morphology of the samples. A significant mathematical description of the stress-strain behaviour of TPU was found using a 3 term approach. Moreover it became evident that processing conditions such as processing temperature have crucial influence on morphology as well as short and long-term performance. To be more precise, samples processed at higher temperatures showed a lack of large hard segment agglomerates, a smaller strength for strains up to 250% and higher creep compliance.

  17. Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics

    Science.gov (United States)

    Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.

    1998-03-01

    Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.

  18. Preparation of Thermoplastic Polyimide Ultrafine Fiber Nonwovens by Electrospinning

    Directory of Open Access Journals (Sweden)

    CHEN Jun

    2018-02-01

    Full Text Available The superfine fiber of thermoplastic polyimide(LPI, whose average diameter ranges from 0.36μm to 1.47μm, was prepared through electrospinning with DMAc as solvent. It lays a good foundation for the mass preparation of LPI non-woven. The influence of electrospinning process conditions, including LPI concentration, flow rate and voltage, on morphology of LPI fiber was investigated systematically. The results show that the average diameter increases and the fibers diameter distribution turns wider with the LPI concentration increasing from 22%(mass fraction, same as below to 30%. Meanwhile, when the concentration is rather lower, some cambiform fibers can be observed. As the concentration increases, the cambiform fiber disappears. While the concentration increases continually, the fibers are adhered to be flakiness. The change of the spinning voltage makes little difference on the average diameter of fibers; the average diameter of fibers increases with the increase of the flow rate of LPI solution; when the flow rate is more than 1.5mL/h, the fibers start to be adhered, the cambiform fibers appear while the flow rate is over 1.8mL/h. Through optimizing the process, the LPI fibers with average diameter of 1.18μm were prepared under 30℃ with the conditions of 28% concentration, 15kV voltage, 1.2mL/h flow rate and the 25cm receiving distance.

  19. Performance of polymeric films based thermoplastic starch and organophilic clay

    International Nuclear Information System (INIS)

    Cipriano, P.B.; Costa, A.N.M.; Araujo, S.S.; Araujo, A.R.A.; Canedo, E.L.; Carvalho, L.H.

    2010-01-01

    The aim of this work was the development and investigation of the properties of flat films of LDPE/corn thermoplastic starch (TPS). A bentonite clay (Argel) was organophilized and characterized by XRD. This clay (1%) in both pristine and organophilic forms was added to the matrix (LDPE) and to LDPE/TPS systems with TPS contents varying from 5-20% w/w. The films manufactured (LDPE, LDPE/Clay, LDPE/TPS, LDPE/TPS/Clay) were characterized. Results indicate that water vapor permeability is dependent and increases with TPS content which was attributed to the higher affinity of water by TPS. TPS and Clay addition to LDPE led to significant changes in film properties with respect to the neat LDPE. In general,tensile and perforation forces increased with clay and TPS contents; the strength of thermo sealed films lowered with natural clay addition and increased with TPS and organoclay incorporation and, in general, dynamic friction coefficient decrease with organoclay and TPS addition. Best overall properties were obtained for the systems containing the organoclay and optimal properties were achieved for the 5%TPS10 LDPE1% ANO system. (author)

  20. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 open-quotes Removal and Encapsulation of Heavy Metals from Ground Water,close quotes EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers

  2. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  3. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  4. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  5. Application of thermo-plastic elestomers to electric wires

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Hideki; Watanabe, Kiyoshi

    1988-02-15

    Thermoplastic elastomer (TPE) is used in only 1% of the total rubber and plastics in electric cable and wire fields. This report describes on the legal regulations, practical applications, and the future problems. Japanese regulation on the power cable is the use of specified materials only, whereas in Europe and USA the function of the material is given a priority. For the communication cable and for the material selection of electronic and household wires, the priority of selection is the function of the material. Merits of TPE in use are the specialty properties unknown in the conventional materials, non-necessity of crosslinking, and the high productivity. PE is mainly used for the communication cable, PE and PVC for sheath. Telefone cord is the biggest outlet of TPE presently. Other applications are found in connection cable between the OA equipments, shield wire, and insulation cables for robots, aeroplanes, and ocean development units, etc.. For more expansion of applications, balance between the flexibility and various properties, water resistance and price should be improved. (7 figs, 3 tabs, 3 refs)

  6. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial.

    Science.gov (United States)

    Lee, Dong-Keun; Kee, Theodore; Liang, Zhangrui; Hsiou, Desiree; Miya, Darron; Wu, Brian; Osawa, Eiji; Chow, Edward Kai-Hua; Sung, Eric C; Kang, Mo K; Ho, Dean

    2017-11-07

    Detonation nanodiamonds (NDs) are promising drug delivery and imaging agents due to their uniquely faceted surfaces with diverse chemical groups, electrostatic properties, and biocompatibility. Based on the potential to harness ND properties to clinically address a broad range of disease indications, this work reports the in-human administration of NDs through the development of ND-embedded gutta percha (NDGP), a thermoplastic biomaterial that addresses reinfection and bone loss following root canal therapy (RCT). RCT served as the first clinical indication for NDs since the procedure sites involved nearby circulation, localized administration, and image-guided treatment progress monitoring, which are analogous to many clinical indications. This randomized, single-blind interventional treatment study evaluated NDGP equivalence with unmodified GP. This progress report assessed one control-arm and three treatment-arm patients. At 3-mo and 6-mo follow-up appointments, no adverse events were observed, and lesion healing was confirmed in the NDGP-treated patients. Therefore, this study is a foundation for the continued clinical translation of NDs and other nanomaterials for a broad spectrum of applications. Published under the PNAS license.

  7. Improved construction materials for polar regions using microcellular thermoplastic foams

    Science.gov (United States)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  8. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  9. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  10. Training programme impact on thermoplastic immobilization for head and neck radiation therapy

    International Nuclear Information System (INIS)

    Outhwaite, Julie-Anne; McDowall, W. Robert; Marquart, Louise; Rattray, Gregory; Fielding, Andrew; Hargrave, Catriona

    2013-01-01

    Purpose: To determine whether uniform guidelines and training in the stabilization and formation of thermoplastic shells can improve the reproducibility of set-up for Head and Neck cancer patients. Methods and materials: Image based measurements of the planning and treatment positions for 35 head and neck cancer patients undergoing radical radiotherapy were analysed to provide a baseline of the reproducibility of thermoplastic immobilization. Radiation therapists (RT) were surveyed to establish a perception of their confidence in thermoplastic procedures. An evidence based staff training programme was created and implemented. Set-up reproduction and staff perception were reviewed to measure the impact of the training programme. Results: The mean (SD) 3D vectors of anatomical displacement, measured on the patient images, improved from 4.64 (2.03) for the baseline group compared to 3.02 (1.65) following training (p < 0.01). The proportion of 3D displacements of patient data exceeding 5 mm 3D vector was decreased from 37.1% to 5.7% (p < 0.001) and the 3 mm vector from 85.7% to 42.9% (p < 0.001). The post-training survey scores demonstrated improved confidence in reproducibility of set-up for head and neck patients. Conclusion: The Thermoplastic Shells Training Program has been found to improve the treatment reproducibility for head and neck radiation therapy patients. Uniform guidelines have increased RT confidence in thermoplastic procedures.

  11. Multi-scale thermal stability of a hard thermoplastic protein-based material

    Science.gov (United States)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  12. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    Science.gov (United States)

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  13. TPS/LDPE blends reinforced with lignocellulose fibers; Compositos TPS/LDPE reforcados com fibras lignocelulosicas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, G.K.; Andrade, C.T., E-mail: kloc@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano

    2010-07-01

    Because of their abundance, availability, low abrasiveness and mechanical properties, cellulose fibers have been frequently chosen as reinforcing fillers in composites. Castor bean cake, the residue from biodiesel production, is rich in lignocellulose fibers and proteins. One of these proteins is ricin, a toxin protein. In this work, ricin was denatured by heat treatment in water at 90 deg C for 4 h. Thermoplastic starch (TPS), low density polyethylene (LDPE), maleated polyethylene (used as the compatibilizing agent), and an organophilic clay were processed in the presence of different contents of heat treated castor bean cake. Processing was carried out in a single-screw extruder, at 400 rpm, with heat zones at 130 deg C, 135 deg C, 135 deg C and 130 deg C (from feed zone to die end). The structural and mechanical properties of the resulting polymeric composites were investigated, and revealed the reinforcing effect of the partially purified cellulose fibers. (author)

  14. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene

    International Nuclear Information System (INIS)

    Arrakhiz, F.Z.; El Achaby, M.; Benmoussa, K.; Bouhfid, R.; Essassi, E.M.; Qaiss, A.

    2012-01-01

    Highlights: ► Pine cone fibers are used as reinforcement in thermoplastic matrix. ► Pine cone fiber was alkali treated to remove waxes and non cellulosic component. ► Fiber–matrix adhesion was assured by the use of a SEBS-g-MA as a compatibilizer. -- Abstract: Pine cone fibers are a cellulosic material readily available and can be used as reinforcement in a thermoplastic-based composite. A solid knowledge of their fibrillar morphology and structure is required to evaluate their usefulness as a substitute to other abundant natural fibers. Pine cone fibers were alkali treated prior usage to remove waxes and non cellulosic surface component. Fiber–matrix adhesion was assured by both a styrene–(ethylene–butene)–styrene triblock copolymer grafted with maleic anhydride (SEBS-g-MA) and a linear block copolymer based on styrene and butadiene compatibilizer. Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Thermogravimetric analysis (TGA), tensile and torsional tests were employed for Pine cone polypropylene composite and compatibilized composite at different fiber content. Results show a clear improvement in mechanical properties from the use of both alkali treated Pine cone and Pine cone compatibilized with maleic anhydride, a gain of 43% and 49% respectively in the Young’s modulus, as a results of improved adhesion between fibers and matrix at the interface.

  15. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP Emitted From the... HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory Organic HAP/chemical name(CAS No.) Acet-aldehyde (75-07-0) Acrylo-nitrile (107-13-1) 1,3 Buta-diene (106-99-0...

  17. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Hulleman, S.H.D.; Wit, D. de

    1996-01-01

    The influence of crystallization on the stress-strain behaviour of thermoplastic potato starch has been monitored. Potato starch has been processed by extrusion with glycerol and water added as plasticizers. The thermoplastic starch consists of a molecular network of semicrystalline amylose and

  18. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  19. THERMOPLASTIC MATRIX SELECTION FOR FIBRE METAL LAMINATE USING FUZZY VIKOR AND ENTROPY MEASURE FOR OBJECTIVE WEIGHTING

    Directory of Open Access Journals (Sweden)

    N. M. ISHAK

    2017-10-01

    Full Text Available The purpose of this study is to define the suitable thermoplastic matrix for fibre metal laminate for automotive front hood utilisation. To achieve the accurate and reliable results, the decision making process involved subjective and objective weighting where the combination of Fuzzy VIKOR and entropy method have been applied. Fuzzy VIKOR is used for ranking purpose and entropy method is used to determine the objective weighting. The result shows that polypropylene is the best thermoplastic matrix for fibre metal laminate by satisfying two compromise solutions with validation using least VIKOR index value scored 0.00, compared to low density polyethylene, high density polyethylene and polystyrene. Through a combination of Fuzzy VIKOR and entropy, it is proved that this method gives a higher degree of confidence to the decision maker especially for fibre metal laminate thermoplastic matrix selection due to its systematic and scientific selection method involving MCDM.

  20. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Science.gov (United States)

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of natural fibres on the mechanical properties of thermoplastic starch

    Science.gov (United States)

    Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Moácicki, Leszek; Mitrus, Marcin; Kupryaniuk, Karol; Kusz, Andrzej; Bartnik, Grzegorz

    2016-04-01

    This paper presents the results covering the mechanical properties of thermoplastic potato starch granules with flax, cellulose fibre, and pine bark addition. A modified single screw extrusion-cooker TS-45 with L/D = 18 and an additional cooling section of the barrel was used as the processing unit. The establishment influence of the fibre addition, as well as the extrusion-cooker screw speed, on the mechanical properties of the thermoplastic starch granules was the main objective of the investigation. The maximum force during compression to 50% of the sample diameter, elastic modulus, and compression strength were evaluated. Significant differences were noted depending on the amount of fibre used, while only an insignificant influence of screw speed on the mechanical properties of the granulate was reported. An increased amount of fibres lowered the maximum force as well as the elastic modulus and compression strength of the thermoplastic starch granulates.

  2. Geosynthetic Reinforced Soil Integrated Bridge System, Synthesis Report

    Science.gov (United States)

    2011-01-01

    This report is the second in a two-part series to provide engineers with the necessary background knowledge of Geosynthetic Reinforced Soil (GRS) technology and its fundamental characteristics as an alternative to other construction methods. It suppl...

  3. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  4. Additive free thermoplastic vulcanizates based on natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Manas, E-mail: mondal@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, 01069 Dresden (Germany); Gohs, Uwe, E-mail: gohs@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Wagenknecht, Udo [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Heinrich, Gert [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, 01069 Dresden (Germany)

    2013-12-16

    Electron induced reactive processing (EIReP) is an eco-friendly and sustainable reactive processing method based on the use of high energy electrons. It was used to cross-link the elastomeric domain phase during melt mixing in order to prepare natural rubber (NR) and polypropylene (PP) based thermoplastic vulcanizates (TPVs). The electron treatment with various values of absorbed dose showed a prominent effect on mechanical, rheological, and morphological characteristics of the PP/NR TPVs. SEM and TEM studies confirmed that these TPVs can exists across the co-continuous or discrete phase morphology. The maximum set of mechanical properties (tensile strength of 15 MPa and elongation at break of more than 500%) were obtained at an absorbed dose of 100 kGy for a 50/50 blend ratio of NR and PP without addition of any compatibilizer or chemicals. At higher values of absorbed dose the degradation of polypropylene showed a negative impact on the properties of the TPVs. Depending on the morphology and the evaluation of mechanical properties a structure–property co-relationship is drawn on the basis of common phenomenological understanding of the TPVs. - Highlights: • Dynamic vulcanization of 50:50 PP/NR blend by high energy electron beam. • PP/NR TPVs show rubber like behavior with melt processability. • High tensile strength of 15 MPa and large extensibility beyond 500%. • Complete phase inversed morphology from NR to PP matrix. • Vulcanized natural rubber particle size of 1–3 μm.

  5. Computational design of mould sprue for injection moulding thermoplastics

    Directory of Open Access Journals (Sweden)

    Muralidhar Lakkanna

    2016-01-01

    Full Text Available To injection mould polymers, designing mould is a key task involving several critical decisions with direct implications to yield quality, productivity and frugality. One prominent decision among them is specifying sprue-bush conduit expansion as it significantly influences overall injection moulding; abstruseness anguish in its design criteria deceives direct determination. Intuitively designers decide it wisely and then exasperate by optimising or manipulating processing parameters. To overwhelm that anomaly this research aims at proposing an ideal design criteria holistically for all polymeric materials also tend as a functional assessment metric towards perfection i.e., criteria to specify sprue conduit size before mould development. Accordingly, a priori analytical criterion was deduced quantitatively as expansion ratio from ubiquitous empirical relationships specifically a.k.a an exclusive expansion angle imperatively configured for injectant properties. Its computational intelligence advantage was leveraged to augment functionality of perfectly injecting into an impression gap, while synchronising both injector capacity and desired moulding features. For comprehensiveness, it was continuously sensitised over infinite scale as an explicit factor dependent on in-situ spatio-temporal injectant state perplexity with discrete slope and altitude for each polymeric character. In which congregant ranges of apparent viscosity and shear thinning index were conceived to characteristically assort most thermoplastics. Thereon results accorded aggressive conduit expansion widening for viscous incrust, while a very aggressive narrowing for shear thinning encrust; among them apparent viscosity had relative dominance. This important rationale would certainly form a priori design basis as well diagnose filling issues causing several defects. Like this the proposed generic design criteria, being simple would immensely benefit mould designers besides serve

  6. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  7. Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, Gustav Winther; Hiller, Jochen

    2013-01-01

    that friction materials which are untypical for brake applications, like thermoplastics and fibre composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fibre......Friction materials for typical brake applications are normally designed considering thermal stability as the major performance criterion. There are, however, brake applications with very limited sliding velocities, where the generated heat is insignificant. In such cases it is possible...... in order to interpret the changes of friction observed during the running-in phase....

  8. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  9. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  10. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  11. Effect of gamma radiation on the magnetic properties of a carbon-fiber-reinforced plastic with a polysulfone matrix

    International Nuclear Information System (INIS)

    Rodin, Yu.P.; Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.

    1994-01-01

    In the present article, the authors report results of a study of the change in the magnetic susceptibility of a carbon-fiber-reinforced plastic based on a thermoplastic matrix -- aromatic polysulfone -- in relation to the absorbed dose of γ-radiation. The study results show that the change in the magnetic susceptibility of specimens which have absorbed different doses of gamma radiation correlates with the change in their mechanical properties, thermal behavior, and structural changes. A method is described for measuring susceptibility which can be used successfully to study the structure and properties of polymer materials and composites based on them. 3 refs., 3 figs

  12. Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads

    Directory of Open Access Journals (Sweden)

    Sevillano, E.

    2016-06-01

    Full Text Available The development of monitoring technologies particularly suitable to be used with novel CFRP strengthening techniques has gained great attention in recent years. However, in spite of the high performance of these advanced composite materials in the strengthening and repairing of structures in service, they are usually associated with brittle and sudden failure mainly caused by debonding phenomena, originated either at the CFRP-plate end or at the intermediate areas in the vicinity of flexural cracks in the RC beam. Thus, it is highly recommended for these structures to be monitored in order to ensure their integrity while in service. Specifically, the feasibility of smart sensing technologies such as Fiber Bragg Grating (FBG sensors and piezo-impedance transducers (PZT has been studied. To the knowledge of the authors, none serious study has been carried out until now concerned to the topic of damage detection due to debonding in rehabilitated structures with CFRP composites.El desarrollo de tecnologías de monitorización aplicables junto con las novedosas técnicas de refuerzo basadas en materiales CFRP ha recibido una atención creciente los últimos años. Sin embargo, a pesar del alto rendimiento de estos avanzados materiales compuestos en la reparación y refuerzo de estructuras en servicio, están habitualmente asociados a fallos frágiles y repentinos causados principalmente por fenómenos de despegue, originados bien en los extremos del refuerzo, bien en áreas intermedias en las proximidades de grietas de flexión existentes en la viga. Por tanto, es altamente recomendable monitorizar estas soluciones estructurales de cara a garantizar su integridad en servicio. Específicamente, se ha estudiado la viabilidad de sensores inteligentes tales como los sensores Fiber Bragg Grating (FBG o los transductores piezoeléctricos (PZT. Hasta donde los autores saben, no se han realizado estudios serios hasta la fecha abordando la detección de da

  13. Shear behavior of thermoformed woven-textile thermoplastic prepregs: An analysis combining bias-extension test and X-ray microtomography

    Science.gov (United States)

    Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.

    2017-10-01

    Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.

  14. Disperse reinforced concrete used in obtaining prefabricated elements for roads

    Directory of Open Access Journals (Sweden)

    Bogdan MEZEI

    2014-07-01

    Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.

  15. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    OpenAIRE

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...

  16. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  17. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  18. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    Science.gov (United States)

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  19. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    Science.gov (United States)

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may

  20. TU-CD-304-09: Feasibility Study for Thermoplastic Mask Set Up Monitoring Using Force Sensing Resistor (FSR) Sensor

    International Nuclear Information System (INIS)

    Kim, T; Cho, M; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T; Kim, S

    2015-01-01

    Purpose: To improve the setup accuracy of thermoplastic mask, we developed a new monitoring method based on force sensing technology and evaluated its feasibility. Methods: The thermoplastic mask setup monitoring system consists of a force sensing resistor sensor unit, a signal transport device, a control PC and an in-house software. The system is designed to monitor pressure variation between the mask and patient in real time. It also provides a warning to the user when there is a possibility of movement. A preliminary study was performed to evaluate the reliability of the sensor unit and developed monitoring system with a head phantom. Then, a simulation study with volunteers was conducted to evaluate the feasibility of the monitoring system. Note that the sensor unit can have multiple end-sensors and every end-sensor was confirmed to be within 2% reliability in pressure reading through a screening test. Results: To evaluate the reproducibility of the proposed monitoring system in practice, we simulated a mask setup with the head phantom. FRS sensors were attached on the face of the head phantom and pressure was monitored. For 3 repeated mask setups on the phantom, the variation of the pressure was less than 3% (only 1% larger than 2% potential uncertainty confirmed in the screening test). In the volunteer study, we intended to verify that the system could detect patient movements within the mask. Thus, volunteers were asked to turn their head or lift their chin. The system was able to detect movements effectively, confirming the clinical feasibility of the monitoring system developed. Conclusion: Through the proposed setup monitoring method, it is possible to monitor patient motion inside a mask in real time, which has never been possible with most commonly used systems using non-radiographic technology such as infrared camera system and surface imaging system. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid

  1. TU-CD-304-09: Feasibility Study for Thermoplastic Mask Set Up Monitoring Using Force Sensing Resistor (FSR) Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Cho, M; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: To improve the setup accuracy of thermoplastic mask, we developed a new monitoring method based on force sensing technology and evaluated its feasibility. Methods: The thermoplastic mask setup monitoring system consists of a force sensing resistor sensor unit, a signal transport device, a control PC and an in-house software. The system is designed to monitor pressure variation between the mask and patient in real time. It also provides a warning to the user when there is a possibility of movement. A preliminary study was performed to evaluate the reliability of the sensor unit and developed monitoring system with a head phantom. Then, a simulation study with volunteers was conducted to evaluate the feasibility of the monitoring system. Note that the sensor unit can have multiple end-sensors and every end-sensor was confirmed to be within 2% reliability in pressure reading through a screening test. Results: To evaluate the reproducibility of the proposed monitoring system in practice, we simulated a mask setup with the head phantom. FRS sensors were attached on the face of the head phantom and pressure was monitored. For 3 repeated mask setups on the phantom, the variation of the pressure was less than 3% (only 1% larger than 2% potential uncertainty confirmed in the screening test). In the volunteer study, we intended to verify that the system could detect patient movements within the mask. Thus, volunteers were asked to turn their head or lift their chin. The system was able to detect movements effectively, confirming the clinical feasibility of the monitoring system developed. Conclusion: Through the proposed setup monitoring method, it is possible to monitor patient motion inside a mask in real time, which has never been possible with most commonly used systems using non-radiographic technology such as infrared camera system and surface imaging system. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid

  2. Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes

    NARCIS (Netherlands)

    Gouin O'Shaughnessey, P.; Dube, M; Fernandez Villegas, I.

    2016-01-01

    A three-dimensional finite element model of the induction welding of carbon fiber/polyphenylene sulfide thermoplastic composites is developed. The model takes into account a stainless steel mesh heating element located at the interface of the two composite adherends to be welded. This heating

  3. Creep damage index as a sensitive indicator of damage accumulation in thermoplastic laminates

    Czech Academy of Sciences Publication Activity Database

    Minster, Jiří; Šperl, Martin; Šepitka, J.

    2018-01-01

    Roč. 37, č. 3 (2018), s. 147-154 ISSN 0731-6844 Institutional support: RVO:68378297 Keywords : damage accumulation * thermoplastic laminate * cyclic tensile loading * time-dependent properties * microindentation Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 1.086, year: 2016 http://journals.sagepub.com/doi/pdf/10.1177/0731684417735184

  4. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols

    NARCIS (Netherlands)

    Tang, D.; Noordover, B.A.J.; Sablong, R.J.; Koning, C.E.

    2012-01-01

    In this study, two novel, bio-based, amorphous polyester diols, namely poly(1,2-dimethylethylene adipate) (PDMEA) and poly(1,2-dimethylethylene succinate) (PDMES) are used to prepare thermoplastic poly(urethane urea)s (TPUUs). Interestingly, the TPUUs based on PDMEA show similar thermal and

  5. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  6. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  7. Application of extrusion-cooking for processing of thermoplastic starch (TPS)

    NARCIS (Netherlands)

    Moscicki, Leszek; Mitrus, Marcin; Wojtowicz, Agnieszka; Oniszczuk, Tomasz; Rejak, Andrzej; Janssen, Leon; Mościcki, Leszek

    Thermoplastic starch (TPS) as fully biodegradable biopolymer appeared to be one of the most useful and promising materials for packaging purpose. To obtain TPS thermal and mechanical processing should disrupt semi-crystalline starch granules. As the melting temperature of pure starch is

  8. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  9. Synthesis of thermoplastic elastomer using potassium persulfate and ammonium peroxydisulfate initiator

    International Nuclear Information System (INIS)

    Dewi Sondari; Agus Haryono; M Ghozali; Ahmad Randy; Kuntari Adi Suhardjo; Ariyadi B; Surasno

    2010-01-01

    Thermoplastic elastomer is polymeric material that has elastomer and thermoplastic properties. This material can be easily molded into finished and recyclable goods, thus environmentally safe for long term application. In this study we synthesize thermoplastic elastomer using two initiator that are potassium persulfate and ammonium peroxydisulfate with natural rubber to monomer (styrene/methyl methacrylate) ratio of 50 : 50 and 60 : 40 (v/v). The process of thermoplastic elastomer synthesis was conducted with emulsion grafting polymerization method for 6 hours at 65 °C. We used sodium dodecyl sulfate as emulsifier. FT-IR analysis result shows that grafting process had already occurred shown by new peaks that were observed in 1743 and 1519 cm"-"1. These peaks was assigned to carbonyl (C=O) group of methyl methacrylate and C=C benzene of styrene respectively. From "1H-NMR new peaks at δ = 7.1 ppm was aromatic proton from phenyl group of styrene, at δ = 3.5 ppm was methoxy proton of grafted methyl methacrylate acrylic group, and at δ = 5.1 ppm that is resonance of isoprene methine proton. This result showed that methyl methacrylate and styrene had already grafted onto natural rubber backbone. Initiator influenced grafting efficiency. Potassium persulfate gave 97.6 % grafting efficiency while ammonium peroxydisulfate gave 90.2 % grafting efficiency. (author)

  10. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  11. Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds

    NARCIS (Netherlands)

    Viegas Ochoa de Carvalho, Pedro; Fernandez Villegas, I.; Groves, R.M.; Benedictus, R.

    2016-01-01

    Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an

  12. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  13. Evaluation of a Thermoplastic Immobilization System for Breast and Chest Wall Radiation Therapy

    International Nuclear Information System (INIS)

    Strydhorst, Jared H.; Caudrelier, Jean-Michel; Clark, Brenda G.; Montgomery, Lynn A.; Fox, Greg; MacPherson, Miller S.

    2011-01-01

    We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 ± 1.6 mm, whereas the chest wall was found to be 1.6 ± 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.

  14. Are reactive thermoplastic polymers suitable for future wind turbine composite materials blades?

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    , it was found that only two potential reactive thermoplastic resin systems qualify for different processing requirements for blade manufacturing. Hence, the article focuses on the issues with the use of reactive polymers like APA-6 (Caprolactam) and CBT (Cyclic Butylene Terephtalate) resin systems for composite...

  15. 3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts

    Science.gov (United States)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh

    2016-10-01

    Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.

  16. Studies on the structure and properties of thermoplastic starch/luffa fiber composites

    International Nuclear Information System (INIS)

    Kaewtatip, Kaewta; Thongmee, Jariya

    2012-01-01

    Highlights: ► Thermoplastic starch/luffa fiber composites were prepared using compression molding. ► The tensile strengths of the composites were higher than for thermoplastic starch. ► Degradation temperatures of the composites were higher than for thermoplastic starch. ► Luffa fiber decreases the water absorption of TPS. -- Abstract: Thermoplastic starch (TPS)/luffa fiber composites were prepared using compression molding. The luffa fiber contents ranged from 0 wt.% to 20 wt.%. The tensile strength of the TPS/luffa fiber composite with 10 wt.% of luffa fiber had a twofold increase compared to TPS. The temperature values of maximum weight loss of the TPS/luffa fiber composites were higher than for TPS. The water absorption of the TPS/luffa fiber composites decreased significantly when the luffa fiber contents increased. The strength of adhesion between the luffa fiber and the TPS matrix was clearly demonstrated by their compatibility presumably due to their similar chemical structures as shown by scanning electron microscope (SEM) micrographs and Fourier transform infrared (FTIR) spectra.

  17. High-temperature hybrid welding of thermoplastic (CF/Peek) to thermoset (CF/Epoxy) composites

    NARCIS (Netherlands)

    Fernandez Villegas, I.; Vizcaino Rubio, P.

    2015-01-01

    Thermoset composites are widely used for the manufacturing of modern composite aircrafts. The use of thermoplastic composites (TPC) in aerospace applications is, however, gradually increasing owing to their cost-effectiveness in manufacturing and improved damage tolerance. An example of the use of

  18. Tensile creep of thermoplastics: time-strain superposition of non-iso free-volume data

    Czech Academy of Sciences Publication Activity Database

    Kolařík, Jan

    2003-01-01

    Roč. 41, č. 7 (2003), s. 736-748 ISSN 0887-6266 R&D Projects: GA ČR GA106/00/1307 Institutional research plan: CEZ:AV0Z4050913 Keywords : creep * thermoplastics * viscoelastic properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.369, year: 2003

  19. Impact of thermoplastic mask on X-ray surface dose calculated with Monte Carlo code

    International Nuclear Information System (INIS)

    Zhao Yanqun; Li Jie; Wu Liping; Wang Pei; Lang Jinyi; Wu Dake; Xiao Mingyong

    2010-01-01

    Objective: To calculate the effects of thermoplastic mask on X-ray surface dose. Methods: The BEAMnrc Monte Carlo Code system, designed especially for computer simulation of radioactive sources, was performed to evaluate the effects of thermoplastic mask on X-ray surface dose.Thermoplastic mask came from our center with a material density of 1.12 g/cm 2 . The masks without holes, with holes size of 0.1 cm x 0.1 cm, and with holes size of 0. 1 cm x 0.2 cm, and masks with different depth (0.12 cm and 0.24 cm) were evaluated separately. For those with holes, the material width between adjacent holes was 0.1 cm. Virtual masks with a material density of 1.38 g/cm 3 without holes with two different depths were also evaluated. Results: Thermoplastic mask affected X-rays surface dose. When using a thermoplastic mask with the depth of 0.24 cm without holes, the surface dose was 74. 9% and 57.0% for those with the density of 1.38 g/cm 3 and 1.12 g/cm 3 respectively. When focusing on the masks with the density of 1.12 g/cm 3 , the surface dose was 41.2% for those with 0.12 cm depth without holes; 57.0% for those with 0. 24 cm depth without holes; 44.5% for those with 0.24 cm depth with holes size of 0.1 cm x 0.2 cm;and 54.1% for those with 0.24 cm depths with holes size of 0.1 cm x 0.1 cm.Conclusions: Using thermoplastic mask during the radiation increases patient surface dose. The severity is relative to the hole size and the depth of thermoplastic mask. The surface dose change should be considered in radiation planning to avoid severe skin reaction. (authors)

  20. Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Cadarso, V.J.; Kirchner, R. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Stankevičius, L.; Tamulevičius, T.; Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Schift, H., E-mail: helmut.schift@psi.ch [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland)

    2016-11-01

    Highlights: • Nanopatterning of thin diamond-like carbon (DLC) films and silver containing DLC composites. • Nanoimprint lithography with thermoplastic silicon containing resist. • Zero-residual layer imprinting and pattern transfer by reactive ion etching. • Robust leaky waveguide sensors with sensitivity up to 319 nm/RIU. - Abstract: Patterning of diamond-like carbon (DLC) and DLC:metal nanocomposites is of interest for an increasing number of applications. We demonstrate a nanoimprint lithography process based on silicon containing thermoplastic resist combined with plasma etching for straightforward patterning of such films. A variety of different structures with few hundred nanometer feature size and moderate aspect ratios were successfully realized. The quality of produced patterns was directly investigated by the means of optical and scanning electron microscopy (SEM). Such structures were further assessed by employing them in the development of gratings for guided mode resonance (GMR) effect. Optical characterization of such leaky waveguide was compared with numerical simulations based on rigorous coupled wave analysis method with good agreement. The use of such structures as refractive index variation sensors is demonstrated with sensitivity up to 319 nm/RIU, achieving an improvement close to 450% in sensitivity compared to previously reported similar sensors. This pronounced GMR signal fully validates the employed DLC material, the technology to pattern it and the possibility to develop DLC based gratings as corrosion and wear resistant refractometry sensors that are able to operate under harsh conditions providing great value and versatility.

  1. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  2. The Reinforcing Event (RE) Menu

    Science.gov (United States)

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  3. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  4. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  5. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  6. New Joining Technology for Optimized Metal/Composite Assemblies

    Directory of Open Access Journals (Sweden)

    Holger Seidlitz

    2014-01-01

    Full Text Available The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.

  7. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  8. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  9. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  10. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  11. Deep Reinforcement Fuzzing

    OpenAIRE

    Böttinger, Konstantin; Godefroid, Patrice; Singh, Rishabh

    2018-01-01

    Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions...

  12. Generating Autoclave-Level Mechanical Properties with Out-of-Autoclave Thermoplastic Placement of Large Composite Aerospace Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Out-of-autoclave thermoplastic tape/tow placement (TP-ATP) is nearing commercialization but suffers a moderate gap in mechanical properties compared with laminates...

  13. Properties of Radiation Cured Elastomer/ Thermoplastic Blends Containing Different Additives

    International Nuclear Information System (INIS)

    Abou Zeid, M.M.; Shaltout, N.A.; Khalil, A.M.; El Miligy, A.A.

    2008-01-01

    The effect of different co agents on the physico-chemical properties of NBR/HDPE composites reinforced with 40 phr (part per hundred part of rubber by weight) HAF carbon black and cured with accelerated electrons was investigated. The co agents N, N- methylene bis acrylamide (MBAAm) and trimethylol propane trimethacrylate (TMPTMA) were used at a constant content of 10 phr. The physico-chemical properties such as tensile strength (TS), tensile modulus at 50% elongation (M50), elongation at break (Eb), hardness, soluble fraction (SF), swelling number (SN) and thermal properties were studied. The results obtained showed that the TMPTMA as a co agent is more effective than MDA in enhancing the mechanical and physical properties of NBR/HDPE vulcanized composites

  14. Application and Design of Earth Structures from the Reinforced Soils

    Directory of Open Access Journals (Sweden)

    I. Vaníček

    2000-01-01

    Full Text Available Paper describes the new problems connected with the proper design of the reinforced soil structures according to Eurocode 7 Geotechnical design. Therefore basic problems of reinforcement are briefly specified together with the influence of construction technology on the behaviour of such structures. Also up to date approach to the design method in the Czech republic are more specified. Finally the program of the new research in this field is described.

  15. Manufacturing of composite parts reinforced through-thickness by tufting

    OpenAIRE

    Dell'Anno, G.; Treiber, J. W G; Partridge, Ivana K

    2016-01-01

    The paper aims at providing practical guidelines for the manufacture of composite parts reinforced by tufting. The need for through-thickness reinforcement of high performance carbon fibre composite structures is reviewed and various options are presented. The tufting process is described in detail and relevant aspects of the technology are analysed such as: equipment configuration and setup, latest advances in tooling, thread selection, preform supporting systems and choice of ancillary mate...

  16. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  17. The effect of cocoa (Theobroma cacao L on the basic color stability of thermoplastic nylon resin dentures

    Directory of Open Access Journals (Sweden)

    Amiyatun Naini

    2011-11-01

    Full Text Available Nylon thermoplastic resin is material of choice for the making of flexible. This denture do not use wire retention, but has the physical properties of water absorption. In the oral cavity, it will always be in contact with food and beverages consumed. One of the foods that are consumed by the public is chocolate. This study aimed to determine the effect of cocoa (Theobroma cacao L on color stability of the thermoplastic nylon denture base. The study sample was thermoplastic nylon (valplast with a size of 10x10x2 mm soaked in the chocolate solution for 7 and 14 days. As the control, the sample soaked with distilled water. The color testing stability used was densitometer. There were significant differences between the control group (distilled water and the chocolate solution. This was due to dissolved components/tannin having a capillary flow diffusion into thermoplastic nylons that causing discoloration. The conclusion of this study, there was the effect of cocoa (Theobroma cacao L against the color stability of the nylon thermoplastic denture base. The longer time of immersion of nylon thermoplastic the greater the change in color.

  18. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  19. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Reinforced seal component

    International Nuclear Information System (INIS)

    Jeanson, G.M.; Odent, R.P.

    1980-01-01

    The invention concerns a seal component of the kind comprising a soft sheath and a flexible reinforcement housed throughout the entire length of the sheath. The invention enables O ring seals to be made capable of providing a radial seal, that is to say between two sides or flat collars of two cylindrical mechanical parts, or an axial seal, that is to say between two co-axial axisymmetrical areas. The seal so ensured is relative, but it remains adequately sufficient for many uses, for instance, to ensure the separation of two successive fixed blading compartments of axial compressors used in gas diffusion isotope concentration facilities [fr

  1. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  2. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    International Nuclear Information System (INIS)

    Tavlet, M.; Fontaine, A.; Schoenbacher, H.

    1998-01-01

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a 60 Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  3. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Tavlet, M; Fontaine, A; Schoenbacher, H

    1998-05-18

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a {sup 60}Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  4. Modelling and simulation of the consolidation behavior during thermoplastic prepreg composites forming process

    Science.gov (United States)

    Xiong, H.; Hamila, N.; Boisse, P.

    2017-10-01

    Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.

  5. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    Science.gov (United States)

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  6. Accuracy of Implants Placed with Surgical Guides: Thermoplastic Versus 3D Printed.

    Science.gov (United States)

    Bell, Caitlyn K; Sahl, Erik F; Kim, Yoon Jeong; Rice, Dwight D

    This study was conducted to evaluate the accuracy of implants placed using two different guided implant surgery materials: thermoplastic versus three-dimensionally (3D) printed. A cone beam computed tomography (CBCT) scan previously obtained and selected for single-tooth implant replacement was converted into a Digital Imaging and Communications in Medicine (DICOM) file. All models were planned and exported for printing using BlueSkyBio Plan Software with the DICOM files. A total of 20 3D-printed mandibular quadrant jaws replicating the CBCT were printed by Right Choice Milling, as was the control model to accept the control implant. Previously, 10 thermoplastic and 10 3D-printed surgical guides had been made by the same lab technician at Right Choice Milling. One Nobel Biocare implant with a trilobe connection was placed per guide and replica jaw model pair. Implants were placed using the thermoplastic and 3D-printed surgical guides, representing the two test groups, following the Nobel Biocare guided surgical protocol. A total of 21 CBCT scans were then taken, one for the control implant and one for each test implant. The CBCT volume was converted to a DICOM file and transferred to Invivo5 software version 5.4 (Anatomage). The DICOM file of each test implant was superimposed over the DICOM file of the control. The deviation of the head of the implant, the deviation of the apex of the implant, and the angle of deviation were evaluated from measurements on the superimposition of the control and test implants. Mann-Whitney U test was used to test the null hypotheses at α = .05 and a confidence interval of 95%. Descriptive statistics were used for the average ± standard deviation. The implants placed with the thermoplastic surgical guides showed an average of 3.40 degrees of angular deviation compared to 2.36 degrees for implants placed with the 3D-printed surgical guides (P = .143). The implants placed with the thermoplastic surgical guides showed an average of 1

  7. Importance of the textural characteristics of inert additives in the reduction of coal thermoplastic properties

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Fernandez; C. Barriocanal; M.A. Diez; R. Alvarez [Instituto Nacional del Carbon, Oviedo (Spain)

    2010-11-15

    Seven carbonaceous materials of different origin were chosen in order to study the influence of their porous structure on the modification of the thermoplastic properties of a bituminous coal. The materials included were: two non-coking coals, a petroleum coke, coke fines, two residues from tyre recycling and a bituminous residue. The materials were heat-treated to 900{sup o}C to prevent any chemical interaction between the volatiles evolved during co-carbonization. The thermoplastic properties of blends that contained 10 wt.% of additive were measured by means of the Gieseler test. Microporosity was measured by CO{sub 2} adsorption at 273 K, whereas meso and macroporosity were determined by means of mercury porosimetry. The results of the porous structure assessment are discussed in relation to the modification of coal plasticity. 32 refs., 5 figs., 5 tabs.

  8. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  9. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  10. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  11. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    Science.gov (United States)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  12. Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, S., E-mail: s.cruz@dep.uminho.pt [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal); Rocha, L.A. [CMEMS, University of Minho, 4804-533 Guimarães (Portugal); Viana, J.C. [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • A new method development for surface treatment of thermoplastic polyurethane (TPU) substrates. • The proposed method increases TPU surface energy (by 45%) and consequently the TPU wettability. • Great increase of the TPU surface roughness (by 621%). • Inkjet printed conductive ink was applied to the surface treated TPU substrate and significant improvements on the printability were obtained. - Abstract: A new method developed for the surface treatment of thermoplastic polymer substrates that increases their surface energies is introduced in this paper. The method is environmental friendly and low cost. In the proposed surface treatment method, nanoparticles are spread over the thermoplastic polyurethane (TPU) flexible substrate surface and then thermally fixed. This latter step allows the nanoparticles sinking-in on the polymer surface, resulting in a higher polymer–particle interaction at their interfacial region. The addition of nanoparticles onto the polymer surface increases surface roughness. The extent of the nanoparticles dispersion and sink-in in the substrate was evaluated through microscopy analysis (SEM). The roughness of the surface treated polymeric substrate was evaluated by AFM analysis. Substrate critical surface tension (ST) was measured by contact angle. In general, a homogeneous roughness form is achieved to a certain level. Great increase of the TPU surface roughness (by 621%) was induced by the propose method. The proposed surface treatment method increased significantly the substrate ST (by 45%) and consequently the TPU wettability. This novel surface treatment of thermoplastic polymers was applied to the inkjet printing of TPU substrates with conductive inks, and significant improvements on the printability were obtained.

  13. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-03-01

    Full Text Available The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.

  15. Investigation of a thermoplastic-powder metallurgy process for the fabrication of porous niobium rods

    International Nuclear Information System (INIS)

    Nordin, D.R.

    1978-06-01

    The feasibility of using a thermoplastic-powder metallurgy technique for the fabrication of porous niobium rods was investigated. Some early problems were overcome to successfully extrude the polymer coated niobium powder into long lengths. The effects of certain process variables were investigated. Residual porosity and extrusion pressure were found to be regulated by the polymer fraction. The procedures for taking the extruded polystyrene--niobium rods through the heat treatments to the final, tin infiltrated stage are explained

  16. Production and 3D printing processing of bio-based thermoplastic filament

    OpenAIRE

    Gkartzou, Eleni; Koumoulos, Elias P.; Charitidis, Costas A.

    2017-01-01

    In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid) (PLA) with low-cost kraft lignin. In Fused Filament Fabrication (FFF) 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minim...

  17. Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets

    OpenAIRE

    Paszkiewicz Sandra; Pawelec Iwona; Szymczyk Anna; Rosłaniec Zbigniew

    2015-01-01

    This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide) copolymer (PTT-PTMO) based nanocomposites with 0.5 wt.% of clay (MMT), graphene nanoplatelets (GNP) and graphene oxide (GO) have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmis...

  18. Thermal, mechanical and morphological behavior of starch thermoplastic (TPS) and polycaprolactone (PCL)

    International Nuclear Information System (INIS)

    Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.

    2011-01-01

    Thermal, mechanical and morphological properties of thermoplastic starch (TPS) and polycaprolactone (PCL) blend obtained by extrusion was studied. The results showed that TPS/PCL blends are immiscible, however it is suggested some interaction in the interphase between TPS and PCL as observed by crystallinity decrease of the blend. The PCL addition in the TPS improves the properties and decreases the cost of the blend. (author)

  19. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  20. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  1. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  2. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Science.gov (United States)

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  3. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  4. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications.

    Science.gov (United States)

    Cruz, Karina Ferreira Noronha; Formaggio, Daniela Maria Ducatti; Tada, Dayane Batista; Cristovan, Fernando Henrique; Guerrini, Lilia Müller

    2017-02-01

    Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o-ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601-607, 2017. © 2016 Wiley Periodicals, Inc.

  5. Thermal Characterization of Modified Tacca Leontopetaloides Starch and Natural Rubber Based Thermoplastic Elastomer

    International Nuclear Information System (INIS)

    Ainatul Mardhiah Mohd Amin; Nur Shahidah Ab Aziz; Nurul Shuhada Mohd Makhtar; Miradatul Najwa Mohd Rodhi; Suhaila Mohd Sauid

    2014-01-01

    The purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic elastomers, TPEs. Starch based polymer had been recognized to have highly potential in replace existing source of conventional elastomeric polymer. The modification process of blending starch with natural rubber, plasticizers, additives, and filler contribute to the enhancement and improvement for the properties of starch in order to produce biopolymers by approaching the properties of TPEs. Thermal properties of starch based thermoplastic was studied to evaluate the decomposition and degradation of the samples by using Thermogravimetric Analysis, TGA while the properties of endothermic reactions of the samples were thermally analyzed via Differential Scanning Calorimetry, DSC. From the analysis, it was found that the thermal properties of samples were revealed by recognizing GM-2 (green materials, GM) has high thermal resistance towards high temperature up to 480.06 degree Celsius with higher amount of residue which is 4.97 mg compared to other samples. This indicates GM-2 comprises of superior combination of ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching the properties of Thermoplastic Elastomers, TPEs. (author)

  6. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  7. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)

    2007-10-15

    The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)

  8. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  9. Multiple-objective optimization in precision laser cutting of different thermoplastics

    Science.gov (United States)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  10. Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Takahashi, Yutaka; Hamanaka, Ippei; Shimizu, Hiroshi

    2012-07-01

    This study investigated the effect of thermal shock on the mechanical properties of injection-molded thermoplastic denture base resins. Four thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were tested. Specimens of each denture base material were fabricated according to ISO 1567 and were either thermocycled or not thermocycled (n = 10). The flexural strength at the proportional limit (FS-PL), the elastic modulus and the Charpy impact strength of the denture base materials were estimated. Thermocycling significantly decreased the FS-PL of one of the polyamides and the PMMA and it significantly increased the FS-PL of one of the polyamides. In addition, thermocycling significantly decreased the elastic modulus of one of the polyamides and significantly increased the elastic moduli of one of the polyamides, the polyethylene terephthalate, polycarbonate and PMMA. Thermocycling significantly decreased the impact strength of one of the polyamides and the polycarbonate. The mechanical properties of injection-molded thermoplastic denture base resins changed after themocycling.

  11. Laser Cutting of Carbon Fiber Reinforced Plastics - Investigation of Hazardous Process Emissions

    Science.gov (United States)

    Walter, Juergen; Hustedt, Michael; Staehr, Richard; Kaierle, Stefan; Jaeschke, Peter; Suttmann, Oliver; Overmeyer, Ludger

    Carbon fiber reinforced plastics (CFRP) show high potential for use in lightweight applications not only in aircraft design, but also in the automotive or wind energy industry. However, processing of CFRP is complex and expensive due to their outstanding mechanical properties. One possibility to manufacture CFRP structures flexibly at acceptable process speeds is high-power laser cutting. Though showing various advantages such as contactless energy transfer, this process is connected to potentially hazardous emission of respirable dust and organic gases. Moreover, the emitted particles may be fibrous, thus requiring particular attention. Here, a systematic analysis of the hazardous substances emitted during laser cutting of CFRP with thermoplastic and thermosetting matrix is presented. The objective is to evaluate emission rates for the total particulate and gaseous fractions as well as for different organic key components. Furthermore, the influence of the laser process conditions shall be assessed, and first proposals to handle the emissions adequately are made.

  12. Literature review of tufted reinforcement for composite structures

    Science.gov (United States)

    Gnaba, I.; Legrand, X.; Wang, P.; Soulat, D.

    2017-10-01

    In order to minimize the damage caused by the 2D structures, several research have been done on more complex structures (3D-preforms) which have more interesting mechanical characteristics. Divers textile technologies are used to manufacture 3D preforms such as weaving, knitting, stitching, z-pinning, tufting… This kind of reinforcement aims to achieve a balance between the in-plane and out-of-plane properties. Recently, the tufting technology shows more opportunities to develop 3D reinforcements especially with the advances in robotics. The present paper focuses not only on the various technologies of reinforcement through the thickness but also on the mechanical behaviour of a tufted preform in a stamping process.

  13. Efeito dos parâmetros de extrusão termoplástica sobre as propriedades tecnológicas de farinhas pré-cozidas elaboradas com arroz e feijão Effect of the thermoplastic extrusion parameters on the technological properties of pre-cooked flours prepared with rice and beans

    Directory of Open Access Journals (Sweden)

    Ana Vânia Carvalho

    2012-12-01

    pré-gelatinizada mista de arroz e feijão apresenta as melhores características tecnológicas quando processada sob temperatura de 70 °C, 21% de umidade e com adição de 30% de farinha de feijão à mistura.The objective of this study was to obtain a pre-gelatinized flour from a mixed rice and bean flour, and to evaluate the influence of the formulations and processing conditions on the technological properties and protein content of the final product. A complete 2³ factorial design was adopted with central and axial points to prepare the mixed pre-gelatinized flour, varying the following parameters: percent of bean flour, moisture content and processing temperature. The responses were: protein content (Y1, water absorption index (Y2 and water solubility index (Y3. The formulations were processed in a single screw extruder. The temperature in zone 3 of the extruder varied between 46 and 114 °C, according to the experimental design. The processed products were dried in an air circulating oven at 50 °C for about 15 hours, presenting a final moisture between 4 and 6%, and were then ground in a knife mill and packed into polyethylene bags until analysed. For the protein content, only the percent bean flour was significant and with a positive effect, that is, the higher the bean flour content, the higher the protein content of the final product, independent of the processing conditions - temperature or moisture. For the water absorption index (WAI, the moisture content, temperature and moisture and temperature interaction were significant. Higher WAI values were observed at intermediate temperatures (60 to 80 °C and high moisture contents (17 to 20%. For the water solubility index (WSI, the moisture content, temperature and moisture e temperature interaction were again significant, higher WSI values being observed at higher temperatures (100 °C and lower moisture contents (14%. According to the experimental design, the pre-gelatinized mixed rice and bean flour

  14. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre-reinforced polym......Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components....

  15. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  16. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  17. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    .0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...

  18. Tangible Reinforcers: Bonuses or Bribes?

    Science.gov (United States)

    O'Leary, K. Daniel; And Others

    1972-01-01

    Objections to the use of tangible reinforcers, such as prizes, candy, cigarettes, and money, are discussed. Treatment programs using tangible reinforcers are recommended as powerful modifers of behavior to be implemented only after less powerful means of modification have been tried. (Author)

  19. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  20. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  1. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  2. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  3. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    Science.gov (United States)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  4. Designing bioinspired composite reinforcement architectures via 3D magnetic printing.

    Science.gov (United States)

    Martin, Joshua J; Fiore, Brad E; Erb, Randall M

    2015-10-23

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as '3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  5. Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood

    Directory of Open Access Journals (Sweden)

    Mürşit Tufan

    2016-02-01

    Full Text Available This study investigated the effect of heat-treated wood content on the water absorption, mechanical, and thermal properties of wood plastic composites (WPCs. The WPCs were produced from various loadings (30, 40, and 50 wt% of heat-treated and untreated alder wood flours (Alnus glutinosa L. using high-density polyethylene (HDPE with 3 wt% maleated polyethylene (MAPE coupling agent. All WPC formulations were compression molded into a hot press for 3 min at 170 ºC. The WPCs were evaluated using mechanical testing, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and differential scanning calorimetry (DSC. The mechanical property values of the WPC specimens decreased with increasing amounts of the heat-treated wood flour, except for the tensile modulus values. The heat treatment of alder wood slightly increased the thermal stability of the WPCs compared with the reference WPCs. The crystallization degree (Xc and the enthalpy of crystallization of the WPCs slightly decreased with increasing content of the heat-treated wood flour. However, all WPCs containing the heat-treated alder wood flour showed a higher crystallinity degree than that of the virgin HDPE.

  6. Thermoplastic composite wind turbine blades : Vacuum infusion technology for anionic polyamide-6 composites

    NARCIS (Netherlands)

    van Rijswijk, K.

    2007-01-01

    Due to the increasing costs of fossil fuels and the improved efficiency of wind turbines in the last decade, wind energy has become increasingly cost-efficient and is well on its way of becoming a mainstream source of energy. To maintain a continuous reduction in costs it is necessary to increase

  7. Technological properties of precooked flour containing coffee powder and rice by thermoplastic extrusion

    Directory of Open Access Journals (Sweden)

    Reginaldo Ferreira da Silva

    2013-03-01

    Full Text Available Although Brazil is a country of tradition in both the production and consumption of coffee, the most of the coffee is consumed as a beverage, which reduces greatly the competitiveness on international market, for reducing the chances of supplying the product under other forms of consumption. Owing to that, the aim of this study was developing a precooked mixed flour containing coffee powder and rice for use in coffee flavored products. Mixtures of rice and coffee in the proportions of 900:100, 850:150 and 800:200 g, respectively, were processed in a single screw extruder (Brabender DS-20, Duisburg, German and the effect of the extrusion process on the variables moisture content (16%, 18% and 20% and temperature in the third extruding zone (140 °C, 160 °C and 180 °C was studied. The results for expansion index ranged from 2.91 to 11.11 mm in diameter; the water absorption index from 4.59 to 6.33 g gel/g sample and the water solubility index varied from 4.05% to 8.57%. These results showed that, despite coffee powder influenced the variables studied, the expanded product after milling resulted in a extruded mixture with good absorption and water solubility indices, which favors the use of the precooked mixed flour for human consumption.

  8. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  9. Protesa Maksilofasial Thermoplastic Nylon (Valplast dengan Hollow Bulb (Klas III Aramany palate schisis hereditary

    Directory of Open Access Journals (Sweden)

    A. Azhindra

    2012-06-01

    Full Text Available Latar Belakang: pada penderita palato schisis (celah langit-langityang disebkan hereditary atau bawaan lahir terlihat defect yang menyebabkan gangguan bicara (sengau, penelanan, pengunyahan, estetik, dan psikologis. Untuk dapat mencapai fungsi bicara, fungsi mengunyah dan fungsi estetika diperlukan protesa untuk menutup celah tersebut. Tujuan: untuk meninformasikan cara rehabilitas defect atau cacat pada wajah dengan protesa maksilofasial thermoplastic nylon dengan hollow buib yang berguna untuk mengembalikan fungsi bicara, penelanan, pengunyahan, estetik dan psikologis penderita. Kasus dan penanganan: pasien pria berusia 46 tahun dating ke RSGM Prof. Soedomo atas rujukan dari poli RS. Dr. Sardjito. Saat datang pasien terganggu berbicara, menguyah dan menelan disebkan adanya celah langit-langit terbuka dan merupakan kelainan bawaan. Pasien kehilangan banyak gigi terutama pada gigi posterior pada rahang atas dan ingin dibuatkan gigi tiruan. Obturator ini dibuat segera dengan mempertimbangkan penutupan celah langit-langit, menggunakan bahan yang lebih ringan (menggunakan hoolow bulb agar keluhan pasien dapat diatasi didesain alat yang mempunyai retensi maksimal dan mengembalikan pengunyahan, fungsi bicara, penelanan, estetis dan psikologis sehingga pasien akan akan mempunyai bentuk wajah yang mendekati normal. Hollow bulb adalah rongga yang dibuat pada protesa maksilofasial untuk menutup rongga mulut, rongga hidung dan defect. Pada waktu insersi diperiksa retensi, stabilisasi, oklusi, estetik dan pengucapan. Kontrol dilakukan 1 minggu dan 1 bulan setelah pemakaian. Hasil pemeriksaan dan evaluasi setelah 1 minggu dan 1 bulan setelah pemakaian protesa maksilofasial hollow bulb didapatkan hasil dengan retensi, stabilisasi, olusi dan pengucapan lebih baik. Kesimpulan: setelah menggunakan protesa maksilofasial thermoplastic nylon dengan hollow buib pada penderita palato scisis, pasien dapat berbicara dan mengunyah dengan normal. Protesa maksilofasial

  10. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  11. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Science.gov (United States)

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross

    2005-01-01

    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  12. Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization

    International Nuclear Information System (INIS)

    Lee, J.A.; Kim, C.Y.; Park, Y.J.; Yoon, W.S.; Lee, N.K.; Yang, D.S.

    2014-01-01

    To determine the variability of patient positioning errors associated with intensity-modulated radiotherapy (IMRT) for prostate cancer and to assess the impact of thermoplastic pelvic immobilization on these errors using kilovoltage (kV) cone-beam computed tomography (CBCT). From February 2012 to June 2012, the records of 314 IMRT sessions in 19 patients with prostate cancer, performed with or without immobilization at two different facilities in the Korea University Hospital were analyzed. The kV CBCT images were matched to simulation computed tomography (CT) images to determine the simulation-to-treatment variability. The shifts along the x (lateral)-, y (longitudinal)- and z (vertical)-axes were measured, as was the shift in the three dimensional (3D) vector. The measured systematic errors in the immobilized group during treatment were 0.46 ± 1.75 mm along the x-axis, - 0.35 ± 3.83 mm along the y-axis, 0.20 ± 2.75 mm along the z-axis and 4.05 ± 3.02 mm in the 3D vector. Those of nonimmobilized group were - 1.45 ± 7.50 mm along the x-axis, 1.89 ± 5.07 mm along the y-axis, 0.28 ± 3.81 mm along the z-axis and 8.90 ± 4.79 mm in the 3D vector. The group immobilized with pelvic thermoplastics showed reduced interfractional variability along the x- and y-axes and in the 3D vector compared to the nonimmobilized group (p < 0.05). IMRT with thermoplastic pelvic immobilization in patients with prostate cancer appears to be useful in stabilizing interfractional variability during the planned treatment course. (orig.)

  13. Characterization of the morphology of co-extruded, thermoplastic/rubber multi-layer tapes

    International Nuclear Information System (INIS)

    L'Abee, R.M.A.; Vissers, A.M.J.T.; Goossens, J.G.P.; Spoelstra, A.B.; Duin, M. van

    2009-01-01

    Tapes with alternating semi-crystalline thermoplastic/rubber layers with thicknesses varying from 100 nm up to several μm were prepared by multi-layer co-extrusion. The variation in layer thickness was obtained by varying the thermoplastic/rubber feed ratio. A systematic study on the use of various microscopy techniques to visualize the morphology of the layered systems is presented. The relatively large length scales and the sample preparation make optical microscopy (OM) unsuitable to study the morphology of the multi-layer tapes. Although excellent contrast between the thermoplastic and rubber layers can be obtained, the usually applied, relatively large magnifications limit the use of transmission electron microscopy (TEM) and atomic force microscopy (AFM) to small sample areas. The large range of applicable magnifications makes scanning electron microscopy (SEM) the most suitable technique to study the morphology of the multi-layer tapes. The sample preparation for SEM with a secondary electron (SE) detector is often based on the removal of one of the components, which may induce changes in the morphology. SEM with a back-scattered electron (BSE) detector is a very convenient method to study the morphology over a wide range of length scales, where the contrast between the different layers can be enhanced by chemical staining. Finally, the nucleation behavior (homogeneous versus heterogeneous) of the semi-crystalline layers, as probed by differential scanning calorimetry (DSC), provides valuable information on the layered morphology. The use of relatively straightforward DSC measurements shows a clear advantage with respect to the discussed microscopy techniques, since no sample preparation is required and relatively large samples can be studied, which are more representative for the bulk.

  14. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  15. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics.

    Science.gov (United States)

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  16. Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method

    Science.gov (United States)

    Singh, R.; Mellinger, A.

    2015-04-01

    Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.

  17. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  18. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  19. Dissipation of mechanical work and temperature rise in AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Georgiou, I.; Sun, C. T.

    1990-01-01

    The dissipated mechanical work per cycle of sinusoidal stress in the thermoplastic composite material AS4/PEEK was measured as a function of stress amplitude for fixed frequency and fiber orientation. The experimental result shows that the dissipated work per cycle is proportional to the square of the stress amplitude. Using the concept of the equivalent isotropic material, it is shown that the relaxation modulus satisfies a proportionality condition. Also, the rate of temperature rise due to sinusoidal stresses has been measured as a function of stress amplitude. The result shows that the rate of temperature rise is not proportional to the square of the stress amplitude.

  20. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  1. Sigma Level Verification of a Thermoplastic Industry with the Support of DMAIC Method

    Directory of Open Access Journals (Sweden)

    de Queiroz Santos Antonio Carlos

    2015-01-01

    Full Text Available This study aims to determine the sigma level of the production process of a thermoplastics industry with the implementation of DMAIC approach. To achieve this purpose it was conducted interviews to know the production system, analysing the non-conformities in the produced forks. It was found that the industry has a sigma level that is the reality of industries in general, however, this level still does not equal to what is presented by large industries. The paper contributed to the improvement of industrial quality control, and the proposed method it is being evaluated so that other improvements can be implemented.

  2. The Intangible Assets Advantages in the Machine Vision Inspection of Thermoplastic Materials

    Science.gov (United States)

    Muntean, Diana; Răulea, Andreea Simina

    2017-12-01

    Innovation is not a simple concept but is the main source of success. It is more important to have the right people and mindsets in place than to have a perfectly crafted plan in order to make the most out of an idea or business. The aim of this paper is to emphasize the importance of intangible assets when it comes to machine vision inspection of thermoplastic materials pointing out some aspects related to knowledge based assets and their need for a success idea to be developed in a successful product.

  3. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  4. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  5. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  6. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  7. Modelling and simulating the forming of new dry automated lay-up reinforcements for primary structures

    Science.gov (United States)

    Bouquerel, Laure; Moulin, Nicolas; Drapier, Sylvain; Boisse, Philippe; Beraud, Jean-Marc

    2017-10-01

    While weight has been so far the main driver for the development of prepreg based-composites solutions for aeronautics, a new weight-cost trade-off tends to drive choices for next-generation aircrafts. As a response, Hexcel has designed a new dry reinforcement type for aircraft primary structures, which combines the benefits of automation, out-of-autoclave process cost-effectiveness, and mechanical performances competitive to prepreg solutions: HiTape® is a unidirectional (UD) dry carbon reinforcement with thermoplastic veil on each side designed for aircraft primary structures [1-3]. One privileged process route for HiTape® in high volume automated processes consists in forming initially flat dry reinforcement stacks, before resin infusion [4] or injection. Simulation of the forming step aims at predicting the geometry and mechanical properties of the formed stack (so-called preform) for process optimisation. Extensive work has been carried out on prepreg and dry woven fabrics forming behaviour and simulation, but the interest for dry non-woven reinforcements has emerged more recently. Some work has been achieved on non crimp fabrics but studies on the forming behaviour of UDs are seldom and deal with UD prepregs only. Tension and bending in the fibre direction, along with inter-ply friction have been identified as the main mechanisms controlling the HiTape® response during forming. Bending has been characterised using a modified Peirce's flexometer [5] and inter-ply friction study is under development. Anisotropic hyperelastic constitutive models have been selected to represent the assumed decoupled deformation mechanisms. Model parameters are then identified from associated experimental results. For forming simulation, a continuous approach at the macroscopic scale has been selected first, and simulation is carried out in the Zset framework [6] using proper shell finite elements.

  8. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. Challenging or Reinforcing the Gender Divide?

    DEFF Research Database (Denmark)

    Gustafsson, Jessica; Nielsen, Poul Erik

    2016-01-01

    This chapter aims to deepen the understanding of how the appropriations of new communication technologies in dramatic changing communication ecologies interrelate with social and cultural changes in contemporary rural and urban Kenya, focusing on gender and space. The study, which is set in Uasin...... Gishu County, Kenya, is based on a 799 households survey concerning gendered access and usage of media and ICT and 80 life-world interviews with men and women on their appropriations of new media. The chapter concludes that the interrelation between new media and gender is complex. To a large extent...... the media usage reflects the patriarchal structure in Kenya and reinforces gendered spaces but new media also offer new spaces that challenge prevailing norms. Suggesting that new technologies can simultaneously function as vehicles of transformation and reproduce power relations and cultural patterns....

  10. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  11. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-05-01

    Full Text Available A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF and polypropylene (PP were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf, and void content (Vc, were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS, impact property, and scanning electron microscopy (SEM were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  12. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites.

    Science.gov (United States)

    Kim, Jong Won; Lee, Joon Seok

    2016-05-06

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  13. Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite Preforms

    Science.gov (United States)

    Jespersen, S. T.; Baudry, F.; Schmäh, D.; Wakeman, M. D.; Michaud, V.; Blanchard, P.; Norris, R. E.; Månson, J.-A. E.

    2009-02-01

    A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 × 0.5 m2, weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20°C and 80°C.

  14. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  15. Biodegradation Behaviour of Thermoplastic Starch Films Derived from Tacca leontopetaloides Starch under Controlled Composting Condition

    Science.gov (United States)

    Amin, A. M. Mohd; Sauid, S. Mohd; Hamid, K. H. Ku; Musa, M.

    2018-05-01

    The biodegradation study of thermoplastic starch (TPS) films derived from Tacca leontopetaloides starch; namely TPS/GLY, TPS/ACE and TPS/BCHR were investigated under controlled composting conditions. A manual set-up test rig in laboratory scale was built according to ISO 14855-1: 2012. The biodegradation percentage was determined by measuring the amount of CO2 evolved using titration method and validated by automatic system (Arduino UNO System) that detected the CO2 evolved. After 45 days under controlled composting condition, results indicated that TPS/GLY degraded the fastest, followed by TPS/BCHR and the TPS/ACE had the slowest degradation. The biodegradation process of TPS/GLY, TPS/ACE and TPS/BCHR also exhibited two stages with different degradation speeds. From these results, it indicated that chemical modification of the TPS films by adding acetic acid and rice husk bio-char to the thermoplastic starch can have a major impact on the biodegradation rate and final biodegradation percentage.

  16. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  17. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    Science.gov (United States)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  18. Fabrication of thermoplastic ductile films of chitin butyrate/poly(ɛ-caprolactone) blends and their cytocompatibility.

    Science.gov (United States)

    Hashiwaki, Hiroki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2014-12-19

    We fabricate thermoplastic films of chitin burtyrate (ChB)/poly(ɛ-caprolactone) (PCL) blends with different degree of miscibility (miscible (M), partially miscible (PM), and immiscible (IM)), and examined the feasibility as a cell scaffold system through evaluating mechanical properties and cytocompatibility. We found a remediation of the brittleness and an increase in ductility of ChB by blending PCL for the M and PM blends. The blend films were subjected to alkaline hydrolysis (2-M NaOH/37°C/48 h) with expectation of the improvement of the surface hydrophilicity and cell accessibility. ATR-FTIR spectroscopy of the alkaline-treated PM and IM films revealed that PCL component and ester side-chains of acyl chitin were selectively removed from the surface domain. L929 fibroblast cells well adhered and proliferated on these films. Therefore, the materials possess a great potential for the utilization as a thermoplastic cell scaffold in tissue engineering by adequate selection of the degree of miscibility and post treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Thermoplastic mask in radiotherapy: a source of anxiety for the patient?].

    Science.gov (United States)

    Arino, C; Stadelmaier, N; Dupin, C; Kantor, G; Henriques de Figueiredo, B

    2014-12-01

    The thermoplastic mask often used to immobilize patients in radiotherapy can cause varying levels of stress and anxiety. This study aimed at evaluating the anxiety related to the use of radiotherapy masks and the coping strategies adopted by patients. Nineteen patients treated with radiotherapy mask for head and neck cancer, a brain tumour or a lymphoma, were met twice by a psychologist, either after the making of the mask and the first course of radiotherapy, or in the middle and at the end of treatment. Thirty-four semi-structured interviews were treated using a thematic content analysis and 13 patients answered to anxiety (STAI-YB) and coping (WCC) scales. The STAI-YB anxiety scores related to wearing the masks were low during the radiotherapy treatment period, and were confirmed by the remarks of patients recorded during the semi-structured interviews. Most patients had a positive perception of the mask, and considered it as a friend or protection. Twelve out of the 13 patients admitting to anxiety benefited from problem focused coping strategies. Thermoplastic mask-related anxiety is low and possibly lies in the positive representation patients have about the mask. The explanations provided by health professionals on the radiotherapy mask possibly have a very positive effect on this perception. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  20. Preparation and properties of blends of polypropylene and acrylonitril-butadiene-styrene with thermoplastic starch

    International Nuclear Information System (INIS)

    Kaseem, M.; Deri, F.

    2012-01-01

    In the present work the rheological and mechanical properties of polypropylene / thermoplastic starch (PP/TPS) and acrylo nitril-butadiene-styrene/ thermoplastic starch (ABS/TPS) blends were investigated. Starch was plasticised using glycerol and blends were prepared using a laboratory scale with single screw extruder. Rheological properties of the prepared blends were determined using a capillary rheometer. Mechanical properties were studied in term of tensile tests, stress at break, strain at break and young's modulus were determined. Rheological results showed that the blends are pseudo plastic in manner and the true viscosity of Pp/TPS blend decreases with increasing TPS content in the blend until 10%, and at more than 10% TPS it increases with increasing TPS. In ABS/TPS, the true viscosity decreases with increasing TPS content in the blend. The mechanical results showed that in both systems, the stress at break and strain at break decrease with increasing TPS content in the blend while the young's modulus increases with increasing TPS content. The mechanical results shown that the addition of TPS to each of PP and ABS follows the general trend for filler effects on polymer properties. (author)

  1. Magnetic resonance imaging-guided navigation with a thermoplastic shell for breast-conserving surgery.

    Science.gov (United States)

    Abe, M; Kiryu, T; Sonoda, K; Kashiki, Y

    2011-11-01

    The aim of this study was to evaluate the accuracy of a magnetic resonance imaging (MRI) marking technique with a drape-type thermoplastic shell for planning breast-conserving surgery (BCS). A prospective review was performed on 35 consecutive patients who underwent MRI in the supine position and used the specified MRI marking technique. Eleven cases underwent pre-operative chemotherapy and 24 cases did not. After immobilizing the breast mound with a drape-type thermoplastic shell, patients underwent MRI, and the location of the lesion was marked on the shell. Resection lines were dyed blue by indigo carmine, which was pushed through the pores of the shell. Specimens obtained during BCS were sliced into 5-mm contiguous sections, and the margin was assessed for each specimen. Cancer foci less than 5 mm from the margin were classified as positive. Of 35 patients, 33 were included in the analysis; 2 were excluded due to a lack of effect of pre-operative chemotherapy. Of these 33 patients, 25 (75.8%) had negative margins and 7 (21.2%) had positive margins. Our MRI marking technique may be useful for evaluating the extent of tumors that were determined by MRI alone. Long-term outcomes of this technique should be evaluated further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  3. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  4. Mechanics of Through-Thickness Reinforced Laminates: Delamination and Dynamic Response

    National Research Council Canada - National Science Library

    Massabo, Roberta

    2002-01-01

    Through-thickness reinforcement (stitching, z-pins, weaving) is a promising technology to develop fall-safe load bearing components for aeronautical structures and lightweight armor and combat vehicles with superior capabilities...

  5. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    Science.gov (United States)

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  6. Emissions under reinforced supervision

    International Nuclear Information System (INIS)

    Remoue, A.

    2009-01-01

    Despite some enforcement difficulties, the Integrated Pollution Prevention and Control (IPPC) European directive on the integrated approach of pollution is going to harden. The new version, which will be presented on second lecture at the Parliament in the beginning of 2010 will oblige industries to opt for the best available technologies. In Europe, 55000 sites are concerned by the IPPC directive, among which 6760 are in France. Today, about 1650 French sites are not in order with this directive. (J.S.)

  7. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  8. The effect of processing on the mechanical properties of self-reinforced composites

    Science.gov (United States)

    Hassani, Farzaneh; Martin, Peter J.; Falzon, Brian G.

    2018-05-01

    Hot-compaction is one of the most common manufacturing methods for creating recyclable all thermoplastic composites. The current work investigates the compaction of highly oriented self-reinforced fabrics with three processing methods to study the effect of pressure and temperature in the tensile mechanical properties of the consolidated laminates. Hot-press, calender roller and vacuum bag technique were adopted to consolidate bi-component polypropylene woven fabrics in a range of pressures and compaction temperatures. Hot-pressed samples exhibited the highest quality of compaction. The modulus of the hot-pressed samples increased with compaction temperature initially due to the improved interlayer bonding and decreased after a maximum at 150°C because of partial melting of the reinforcement phase. The calender roller technique exhibited to have smaller processing temperature window as the pressure is only applied for a short time and the fabrics start to shrink with increasing the processing temperature. The need for constraining the fabrics through the process is therefore found to be paramount. The Vacuum bag results showed this technique to be the least efficient method because of the low compaction pressure. Microscopic images and void content measurement of the consolidated samples further validate the results from tensile testing.

  9. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  10. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  11. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  12. Tailoring the porosity and shrinkage of extruded MgO support tubes for oxygen separation membranes by thermoplastic feedstock development

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kaiser, Andreas; Glasscock, Julie

    for co-extrusion and co-sintering of a porous Magnesium oxide (MgO) support with a thin film of cerium gadolinium oxide (Ce0.9Gd0.1O1.95-δ, CGO) as active oxygen transport membrane layer has been developed using a thermoplastic ceramic system and graphite as pore former. The feedstocks have been...

  13. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock...

  14. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  15. A prospective randomized comparison of neoprene vs thermoplast hand-based thumb spica splinting for trapeziometacarpal arthrosis

    NARCIS (Netherlands)

    Becker, S. J. E.; Bot, A. G. J.; Curley, S. E.; Jupiter, J. B.; Ring, D.

    2013-01-01

    Objective: In patients with trapeziometacarpal arthrosis, we tested the hypothesis that there is no difference in arm-specific disability 5-15 weeks after prescription of a pre-fabricated neoprene or a custom-made thermoplast hand-based thumb spica splint with the metacarpophalangeal joint included

  16. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  17. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  18. Chemicals having estrogenic activity can be released from some bisphenol A-free, hard and clear, thermoplastic resins.

    Science.gov (United States)

    Bittner, George D; Denison, Michael S; Yang, Chun Z; Stoner, Matthew A; He, Guochun

    2014-12-04

    Chemicals that have estrogenic activity (EA) can potentially cause adverse health effects in mammals including humans, sometimes at low doses in fetal through juvenile stages with effects detected in adults. Polycarbonate (PC) thermoplastic resins made from bisphenol A (BPA), a chemical that has EA, are now often avoided in products used by babies. Other BPA-free thermoplastic resins, some hypothesized or advertised to be EA-free, are replacing PC resins used to make reusable hard and clear thermoplastic products such as baby bottles. We used two very sensitive and accurate in vitro assays (MCF-7 and BG1Luc human cell lines) to quantify the EA of chemicals leached into ethanol or water/saline extracts of fourteen unstressed or stressed (autoclaving, microwaving, UV radiation) thermoplastic resins. Estrogen receptor (ER)-dependent agonist responses were confirmed by their inhibition with the ER antagonist ICI 182,780. Our data showed that some (4/14) unstressed and stressed BPA-free thermoplastic resins leached chemicals having significant levels of EA, including one polystyrene (PS), and three Tritan™ resins, the latter reportedly EA-free. Exposure to UV radiation in natural sunlight resulted in an increased release of EA from Tritan™ resins. Triphenyl-phosphate (TPP), an additive used to manufacture some thermoplastic resins such as Tritan™, exhibited EA in both MCF-7 and BG1Luc assays. Ten unstressed or stressed glycol-modified polyethylene terephthalate (PETG), cyclic olefin polymer (COP) or copolymer (COC) thermoplastic resins did not release chemicals with detectable EA under any test condition. This hazard survey study assessed the release of chemicals exhibiting EA as detected by two sensitive, widely used and accepted, human cell line in vitro assays. Four PC replacement resins (Tritan™ and PS) released chemicals having EA. However, ten other PC-replacement resins did not leach chemicals having EA (EA-free-resins). These results indicate that PC

  19. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  20. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.