WorldWideScience

Sample records for reinforced iron matrix

  1. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  2. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  3. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  4. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  5. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  6. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  7. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate-based bioceramic

    NARCIS (Netherlands)

    Wang, S; Xu, Y; Zhou, J.; Li, H; Chang, Jiang; Huan, Z

    2017-01-01

    Iron-matrix composites with calcium silicate (CS) bioceramic as the reinforcing phase were fabricated through powder metallurgy processes. The microstructures, mechanical properties, apatite deposition and biodegradation behavior of the Fe-CS composites, as well as cell attachment and proliferation

  8. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  9. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  10. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  11. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  12. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  13. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Saidatulakmar Shamsuddin; Shamsul Baharin Jamaludin; Zuhailawati Hussain; Zainal Arifin Ahmad

    2007-01-01

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al 2 O 3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  14. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  15. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  16. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  17. Tempering Behavior of TiC-Reinforced SKD11 Steel Matrix Composite

    Science.gov (United States)

    Hwang, Ji-In; Kim, Seong Hoon; Heo, Yoon-Uk; Kim, Dae Ha; Hwang, Keum-Cheol; Suh, Dong-Woo

    2018-03-01

    TiC-reinforced SKD11 steel matrix composite, fabricated by a pressure infiltration casting, undergoes monotonic decrease in hardness as tempering temperature increases. Element mappings by TEM-EDS and thermodynamic calculation indicate that remarkable redistribution of V between the reinforcement and the steel matrix occurs by partial dissolution and re-precipitation of MC carbides upon casting process. The absence of secondary hardening is led by the enrichment of V in the reinforcement that reduces the V content in the steel matrix; this reduction in V content makes the precipitation of fine VC sluggish during the tempering.

  18. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yanhui Liu

    2016-09-01

    Full Text Available In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM, X-ray diffractometer (XRD, and energy dispersive X-ray spectroscopy (EDS confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991 and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  19. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    Science.gov (United States)

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  20. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  1. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  2. Experimental Study on Fibre-reinforced Cementitious Matrix Confined Concrete Columns under Axial Compression

    Directory of Open Access Journals (Sweden)

    Lan Zeng

    2017-03-01

    Full Text Available Poor fire resistance of fibre-reinforced polymer (FRP restricts its further application in construction structures. In this paper, a novel fibre-reinforced cementitious matrix confined concrete column (FRCMCC using fireproof grout as the fibre matrix was developed, and experiments were conducted to establish its performance and analyse the mechanical properties under axial compression. The test results show that its failure mode was more moderate compared to the traditional fibre-reinforced resinous matrix confined concrete column (FRRMCC, and the concrete columns confined with multi-layer fibres and end reinforcement could provide both good strength and ductility.

  3. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  4. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  5. Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering.

    Science.gov (United States)

    Tkachenko, Serhii; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastian; Dvořák, Karel; Celko, Ladislav; Kaiser, Jozef; Montufar, Edgar B

    2018-05-01

    The present work studies the microstructure and mechanical performance of tricalcium phosphate (TCP) based cermet toughened by iron particles. A novelty arises by the employment of spark plasma sintering for fabrication of the cermet. Results showed partial transformation of initial alpha TCP matrix to beta phase and the absence of oxidation of iron particles, as well as a lack of chemical reaction between TCP and iron components during sintering. The values of compressive and tensile strength of TCP/Fe cermet were 3.2 and 2.5 times, respectively, greater than those of monolithic TCP. Fracture analysis revealed the simultaneous action of crack-bridging and crack-deflection microstructural toughening mechanisms under compression. In contrast, under tension the reinforcing mechanism was only crack-bridging, being the reason for smaller increment of strength. Elastic properties of the cermet better matched values reported for human cortical bone. Thereby the new TCP/Fe cermet has potential for eventual use as a material for bone fractures fixation under load-bearing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  7. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  8. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  9. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle

    International Nuclear Information System (INIS)

    Vijayarangan, S.; Rajamanickam, N.; Sivananth, V.

    2013-01-01

    Highlights: ► A FE model is developed to study the suitability of MMC for steering knuckle. ► Structural analysis of steering knuckle is carried out for 12 load cases. ► The cross section of the critical region is optimized using genetic algorithm. ► The life of the MMC (Al-10 wt.% TiC) knuckle is compared before and after optimization. ► MMC material could replace SG iron for automotive steering knuckle. -- Abstract: Steering knuckle is considered as one of the critical component in automotive suspension system. It is subjected to time varying loads during its service life, leading to fatigue failure. Therefore, its design is an important aspect in the product development cycle. Currently, spheroidal graphite (SG) iron is widely used to manufacture steering knuckle in the commercial automobile sector. It has been observed from the knuckle manufacturers that advanced materials and weight reduction are the real need for the current automobile industry. Due to their high strength to weight ratio, Metal Matrix Composites (MMCs) have the potential to meet the demanded design requirements of the automotive industry, compared to conventional materials. In this work, an aluminum alloy reinforced with titanium carbide particulate is suggested as an alternate material in place of existing SG iron. Structural analysis of steering knuckle made of alternate material Al-10 wt.% TiC was performed using commercial code ANSYS. The results of steering knuckle made of MMC (Al-10 wt.% TiC) were compared with that of aluminum alloy and SG iron steering knuckles for its performance based on real time load cases. It is found from this analysis, the knuckle strut region has maximum stress and deflection during its life time. The critical strut region cross section area of knuckle was analyzed and geometrically optimized for minimum bending stress and deflection using genetic algorithm available in MatLab. Since, the knuckle experiences time varying loads, fatigue analysis also

  10. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  11. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  12. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  13. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  14. Characterisation of Microstructure of We43 Magnesium Matrix Composites Reinforced with Carbon Fibres

    Directory of Open Access Journals (Sweden)

    Gryc A.

    2016-06-01

    Full Text Available In the paper the microstructures of WE43 matrix composites reinforced with carbon fibres have been characterised. The influence of reinforcement type and T6 heat treatment (a solution treatment at 525°C for 8 h, a hot water quench and a subsequent ageing treatment at 250°C for 16 h on microstructure have been evaluated. The light microscope and scanning electron microscope investigations have been carried out. No significant differences in samples reinforced with non-coated textiles have been reported. The substantial changes in sample reinforced with nickel-coated textile have been observed. The segregation of alloying elements to the matrix-reinforcement layer has been identified. The T6 heat treatment caused the appearance of disperse precipitates of β phase, but the process cannot be considered as satisfactory (irregular distribution, low volume fraction, relatively large size.

  15. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    Science.gov (United States)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  16. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  17. Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2008-01-01

    Full Text Available Synthesis and characterization of pine needles reinforced thermosetting resin (Resorcinol-Formaldehyde which is most suitable as composite matrix has been reported. The polycondensation reaction between resorcinol and formaldehyde (RF in different molar ratios has been applied to the synthesis of RF polymer matrix. A thermosetting resin based composite, containing approximately 10, 20, 30 and 40% of natural fiber by weight, has been obtained by adding pine needles to the Resorcinol-Formaldehyde (RF resin. The mechanical properties of randomly oriented intimately mixed particle reinforced (Pine needles composites were determined. Effect of fiber loading in terms of weight % on mechanical properties such as tensile, compressive, and flexural and wear properties have also been evaluated. The reinforcing of the resin with Pine needles was accomplished in particle size of 200 micron by employing optimized resin. Present work reveals that mechanical properties of the RF resin increases to extensive extent when reinforced with Pine needles. Thermal (TGA/DTA and morphological studies (SEM of the resin, fiber and polymer composites thus synthesized have also been carried out.

  18. Aluminium/iron reinforced polyfurfuryl alcohol resin as advanced biocomposites

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2016-07-01

    Full Text Available Aluminium and iron are widely used in construction sectors for the preparation of advanced composites with epoxy resins as matrices. In recent times, there are several reports on the polymerization of polyfufuryl alcohol (PFA a thermoset bioresins from furfuryl alcohol (FA. FA is obtained from waste of sugarcane bagasse. In this work, first the possibility of curing PFA from FA in the presence of aluminium or iron has been explored. Absorbance results from colorimeter/spectrophotometerindicated that the curing of FA to PFA in presence of aluminium started easily while in presence of iron the curing of FA to PFA could not start. Based on the above results, aluminium wire reinforced composites were successfully prepared with three different weight fractions (0.13, 0.09 and 0.07 of aluminium wire. The mechanical properties of these composites were determined theoretically and reported.

  19. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  20. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  1. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  2. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  3. Short and long carbon fibre reinforced Cu-matrix composites: microstructural results and structural origin of properties

    International Nuclear Information System (INIS)

    Buchgraber, W.

    1997-01-01

    Carbon fibre reinforced copper matrix composites possess properties of copper, i.e. excellent thermal and electrical conductivities, and properties of carbon fibre, i.e. a small thermal expansion coefficient. Since the desirable properties of the composite can be obtained by selecting the amount, type and orientation of the carbon fibres, it is considered to be suitable for use as electric and electronic materials. This lecture focuses on two-dimensional isotropic carbon fibre reinforced copper matrix composites with long or short carbon fibres. Short carbon fibre reinforced copper matrix composites have been produced by hot-pressing of copper coated short carbon fibres. During hot-pressing, the carbon fibres take on a preferred orientation in a plane perpendicular to the hot pressing direction. Within this plane the fibre orientation is random. Long carbon fibre reinforced copper matrix composites have been made by hot pressing of monolayers consisting of copper coated long carbon fibres. Different orientations of the monolayers will be compared. Both the physical and mechanical properties of the discussed composites are strongly influenced not only by the properties of its individual constituents, but also by the microstructure and properties of the fibre matrix interface. The problem of poor wettability of the carbon fibre by the copper matrix will be discussed. The microstructure of several types of carbon fibre reinforced copper matrix composites will be discussed. Their thermophysical properties will be compared with microstructural results. (author)

  4. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  5. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  6. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  7. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  8. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  9. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  10. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  11. Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing

    International Nuclear Information System (INIS)

    Roy, D.; Ghosh, S.; Basumallick, A.; Basu, B.

    2007-01-01

    Aluminium based metal matrix composites reinforced with in situ Ti-aluminide and alumina particles were prepared by reactive hot pressing a powder mix of aluminium and nanosized TiO 2 powders. The reinforcements were formed in situ by exothermal reaction between the TiO 2 nano crystalline powder and aluminium. The thermal characteristics of the in situ reaction were studied with the aid of Differential scanning calorimetry (DSC). X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Scanning electron microscopy (SEM) techniques were employed to study the microstructural architecture of the composites as a function of hot pressing temperature and volume percent reinforcement. Microhardness measurements on the as prepared in situ aluminium matrix composites exhibit significant increase in hardness with increase in hot pressing temperature and volume fraction of reinforcement

  12. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  13. Polarization Behavior of Squeeze Cast Al2O3 Fiber Reinforced Aluminum Matrix Composites

    International Nuclear Information System (INIS)

    Ham, S. H.; Kang, Y. C.; Cho, K. M.; Park, I. M.

    1992-01-01

    Electrochemical polarization behavior of squeeze cast Al 2 O 3 short fiber reinforced Al alloy matrix composites was investigated for the basic understanding of the corrosion properties of the composites. The composites were fabricated with variations of fiber volume fraction and matrix alloys. It was found that the reinforced composites are more susceptible to corrosion attack than the unreinforced matrix alloys in general. Corrosion resistance shows decreasing tendency with increasing Al 2 O 3 fiber volume fraction in AC8A matrix. Effect of the matrix alloys revealed that the AC8A Al matrix composite is less susceptible to corrosion attack than the 2024 and 7075 Al matrix composites. Effect of plastic deformation on electrochemical polarization behavior of the squeeze cast Al/Al 2 O 3 composites was examined after extrusion of AC8A-10v/o Al 2 O 3 . Result shows that corrosion resistance is deteriorated after plastic deformation

  14. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  15. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  16. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  17. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  18. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  19. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  20. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  1. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    Science.gov (United States)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  2. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  3. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    Science.gov (United States)

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  4. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-04-01

    Full Text Available Biomaterial composites made of titanium and hydroxyapatite (HA powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD, back scattered electron imaging (BSE, scanning electron microscope (SEM equipped with energy dispersive spectrometer (EDS, electron probe microanalyzer (EPMA, and transmission electron microscope (TEM. The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO42, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  5. A study on the damping capacity of BaTiO3-reinforced Al-matrix ...

    Indian Academy of Sciences (India)

    the results showed that the damping capacity of Al-matrix composites can increase greatly [3–5]. Therefore, reinforcing. Al alloy matrix with higher damping particles could be an efficient way to obtain Al-matrix composites with both high strength and high damping capacity. Ferroelectric and piezoelectric ceramics can exhibit ...

  6. Mechanical properties of Nextel trademark 312 fiber-reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Vaidyanathan, K.R.; Sankar, J.; Kelkar, A.D.; Weaver, B.

    1995-01-01

    Vapor phase synthesis is emerging as a method for the preparation of near final-shape, ceramic matrix composites for advanced structural applications. Oxide fiber-reinforced silicon carbide matrix composites are currently being developed for these applications. The mechanical properties of Nextel trademark 312 fiber reinforced SiC matrix composites fabricated employing the forced-flow, thermal gradient chemical vapor infiltration process (FCVI) were evaluated at room temperature in pure tension. The composites were fabricated with a 0.15 μm pyrolytic carbon interface layer for improving the toughness of the composite system. Because of the available FCVI apparatus, only short length specimens (7--8 cm) could be fabricated. Room temperature tensile strengths were measured and compared to room temperature flexure strength results for the composite. Excellent toughness and composite behavior was obtained for the composite system. Fractography as well as possible factors responsible for the differences in tensile and flexural strengths for the composite system is presented in this paper

  7. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  8. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  9. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  10. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  11. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Wlodarczyk, A.; Adamiak, M.

    2003-01-01

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al 2 O 3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 o C and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  12. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  13. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  14. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  15. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  16. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    Science.gov (United States)

    Özgün, Özgür; Dinler, İlyas

    2018-05-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  17. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  18. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2005-01-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al 2 O 3 . 3H 2 O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration

  19. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al{sub 2}O{sub 3} . 3H{sub 2}O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.

  20. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  1. Obtaining nanofibers from sisal to reinforce nanocomposites biodegradable matrixes

    International Nuclear Information System (INIS)

    Oliveira, Francieli B. de; Teixeira, Eliangela de M.; Marconcini, Jose M.; Mattoso, Luiz H.C.; Teodoro, Kelcilene B.R.

    2009-01-01

    Cellulose nanofibers have been extracted by acid hydrolysis from sisal fibers. They are seen a good source material due to availability and low cost. The nanofibers was evaluated by thermal degradation behavior using thermogravimetry (TG), crystallinity by X-ray diffraction and morphological structure was investigated by atomic force microscopy (AFM) experiments. The resulting nanofibers was shown high crystallinity and a network of rodlike cellulose elements. The nanofibers will be incorporated as reinforcement in a biodegradable matrix and evaluated. (author)

  2. Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites

    International Nuclear Information System (INIS)

    Cherian, I.K.; Kriven, W.M.; Lehigh, M.D.; Nettleship, I.

    1996-01-01

    Recently, the effect of solid inclusions on the sintering of ceramic powders has been explained in terms of a back-stress that opposes densification. Several analyses have been proposed to describe this problem. However, little quantitative information exists concerning the effect of reinforcement on microstructural evolution. This study compares the microstructural development of zirconia and mullite matrices in the presence of alumina platelets. The effect of platelet loading on density is similar for both composites. Quantitative stereological examinations reveal that the average grain size and pore size are finer for the zirconia-matrix composite. The platelet loading does not have any noticeable effect on the average grain size of the matrix in either composite. However, the average pore size increases as the volume fraction of platelets increases for both materials. Contiguity measurements have detected some aggregation of platelets in the zirconia-matrix composite

  3. Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel

    Science.gov (United States)

    Ramadhan, M. R.; Faslih, A.; Umar, M. Z.

    2018-05-01

    Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.

  4. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  5. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  6. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  7. Fabrication of BN Nanosheet Reinforced ZrO{sub 2} Composite Pellets for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shukeir, Malik; Umer, Malik; Lee, Bin; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Plutonium also can be resulted from the dismantlement of nuclear weapons. This will result in the increase of the stockpile of plutonium. For that purpose many organizations are focusing their R-D work on the concept of Inert Matrix Fuel IMF, where a U-free matrix is used to eliminate the U-Pu conversion. R-D work was standardized around Zirconiabased IMF as a result of many screening and ranking studies performed on various candidates. Regardless of its outstanding radiation resistance, chemical stability and its high melting point, it has a very low thermal conductivity, which could be detrimental for the fuel matrix especially in case of accidents. A reinforcement phase could be used for the enhancement of the thermomechanical properties. Among many possible reinforcements, 2D structured nanosheets have emerged as an excellent candidate to enhance the thermal properties and mechanical properties simultaneously. In this approach Boron Nitride Nanosheets BNNS are used for that purpose. BNNS have a very low density, very high thermal conductivity, very high mechanical properties and high neutron absorption cross-section for Boron which is used frequently as a burnable poison. They have properties similar to graphene but they exhibit superior thermal stability in the oxide structure. Despite all the studies on other reinforcements, BNNS reinforced ZrO{sub 2} has not yet been reported. In this study, pure ZrO{sub 2} and partially stabilized Zirconia PSZ (using Yttria) ceramics are mixed with different volume fractions of BNNS.

  8. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  9. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  10. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  11. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  12. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  13. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  14. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  15. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  16. Development of in-situ ZrC reinforced iron based composites for wear resistance applications

    International Nuclear Information System (INIS)

    Bandyopadhyay, T.K.; Das, K.

    2002-01-01

    A common objective behind the processing of iron-based composites is to improve the wear resistance of steels by incorporating some reinforcing phases, e.g., carbides and oxides. In the present investigation, iron-based zirconium carbide reinforced composite is produced by the aluminothermic reduction of zircon sand (ZrSiO 4 ) and blue dust (Fe 2 O 3 ) in the presence of carbon. Aluminothermic reduction of blue dust and zircon sand, being highly exothermic in nature, essentially leads to a self-propagating high-temperature synthesis (SHS) of the Fe-ZrC composite. The as-cast composite is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the composite and the effect of heat treatment on the microstructure are evaluated. The composite possess sufficient hardness and promising abrasive wear resistance property. The abrasive wear resistance property of the Fe-ZrC composite is compared with that of a M2 grade tool material and it is found to be better than the tool material. The composite also possess good high temperature stability. (author)

  17. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  18. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  19. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  20. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  1. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  2. Iron nanoparticles from blood coated with collagen as a matrix for ...

    Indian Academy of Sciences (India)

    A simple wet precipitation technique was used to prepare nanobiocomposite containing iron nanoparticles coated with collagen. This nanobiocomposite was used as matrix for the synthesis of nanohydroxyapatite. The physicochemical characteristic studies of the nanohydroxyapatite thus formed were carried out using ...

  3. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  4. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  5. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  6. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  7. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  8. ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Casati, R., E-mail: riccardo.casati@polimi.it [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy); Fabrizi, A. [Department of Management and Engineering, Università di Padova, Stradella S. Nicola 3, Vicenza (Italy); Tuissi, A. [CNR-IENI, Corso Promessi Sposi 29, Lecco (Italy); Xia, K. [Department of Mechanical Engineering, University of Melbourne, Victoria 3010 (Australia); Vedani, M. [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy)

    2015-11-11

    This work is aimed at proposing a method to prepare aluminum matrix composites reinforced with γ-Al{sub 2}O{sub 3} nanoparticles and at describing the effects of an in-situ reaction on the resulting nano-reinforcement dispersed throughout the metal matrix. Al nano- and micro-particles were used as starting materials. They were consolidated by equal channel angular pressing (ECAP) in as-received conditions and after undergoing high-energy ball milling. Further, γ-Al{sub 2}O{sub 3} reinforcing nanoparticles were produced in-situ from the hydroxide layer that covered the Al powder particles. The powder particle morphology and the composites microstructures were investigated by electron microscopy. The transformation process was monitored by X-ray diffraction, differential scanning calorimetry and thermo-gravimetric analysis.

  9. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, GH.A., E-mail: Gh.a.bagheri65@gmail.com

    2016-08-15

    In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson–Riley method and Williamson–Hall equation. Microstructure of samples after sintering was investigated by FESEM. Finally, densitometry, hardness, determination of electrical resistance and pin on disk wear test were performed and effect of reinforcement percentages on the physical and mechanical properties of composites was studied. Results show incredible improvement in mechanical properties with increasing in TiC value, even though, electrical conductivity dropped off considerably. - Highlights: • Microstructures, mechanical and physical properties of composites have been studied. • Stored Gibbs free energy of dislocations and grain boundaries has been calculated. • Gibbs free energy increased with increasing in titanium percent. • Higher TiC percentage led to better mechanical and unfavorable physical properties.

  10. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-03-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  11. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-06-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  12. Matrix effects for calcium and potassium K-X-rays, in fenugreek plants grown in iron rich soils

    International Nuclear Information System (INIS)

    Deep, Kanan; Rao, Preeti; Bansal, Himani; Mittal, Raj

    2014-01-01

    The present work comprises the matrix effects study of the plant system (plant and soil) for macronutrients Ca and K with elevated levels of iron in the soil. The earlier derived matrix effect terms from fundamental relations of intensities of analyte and substrate elements with basic atomic and experimental setup parameters had led to iterative determination of enhanced elements rather than avoiding their enhancement. The relations also facilitated the evaluations of absorption for close Z interfering constituents (like Ca and K) in samples of a lot of particular category with interpolation of matrix terms with elemental amounts. The process has already been employed successfully for potato, radish, rice and maize plants. On similar lines, the observed prominent change in interpolation parameters for the plants in the present experiment serves as a tool to check the toxicity/contamination of the growing medium. - Highlights: • Matrix effects for Ca and K in Fenugreek plant and its soil with elevated iron level. • Fenugreek plants grown in iron rich soil and treated with K/Ca fertilizers. • The matrix terms correlated to analyte and enhancer element amounts. • Interpolation of matrix terms with elemental amounts points to Fe toxicity of soil

  13. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  14. Development and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Alam, S.; Irfan, S.; Iftikhar, F.; Raza, M.A.

    2006-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. A great effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the % age composition of curing agent in epoxy matrix. In order to study the phenomenon; how the change in composition of curing agent effect the composite material and which optimum composition can give the optimum properties of the material, when Kevlar reinforced to Epoxy Matrix by Hand Lay-up process. It was ensured that factors which can .affect the experiment remained the same for each experiment. The composite produced were subjected to mechanical tests to analyze the performance, to optimize the material. (author)

  15. Full incorporation of Strattice™ Reconstructive Tissue Matrix in a reinforced hiatal hernia repair: a case report

    Directory of Open Access Journals (Sweden)

    Freedman Bruce E

    2012-08-01

    Full Text Available Abstract Introduction A non-cross-linked porcine acellular dermal matrix was used to reinforce an esophageal hiatal hernia repair. A second surgery was required 11 months later to repair a slipped Nissen; this allowed for examination of the hiatal hernia repair and showed the graft to be well vascularized and fully incorporated. Case presentation A 71-year-old Caucasian woman presented with substernal burning and significant dysphagia. An upper gastrointestinal series revealed a type III complex paraesophageal hiatal hernia. She underwent laparoscopic surgery to repair a hiatal hernia that was reinforced with a xenograft (Strattice™ Reconstructive Tissue Matrix, LifeCell, Branchburg, NJ, USA along with a Nissen fundoplication. A second surgery was required to repair a slipped Nissen; this allowed for examination of the hiatal repair and graft incorporation 11 months after the initial surgery. Conclusion In this case, a porcine acellular dermal matrix was an effective tool to reinforce the crural hiatal hernia repair. The placement of the mesh and method of fixation are believed to be crucial to the success of the graft. It was found to be well vascularized 11 months after the original placement with no signs of erosion, stricture, or infection. Further studies and long-term follow-up are required to support the findings of this case report.

  16. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  17. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Astanin, V.V.; Imayeva, L.A.

    1995-01-01

    It is known that superplastic deformation affects the processes o solid phases bonding. In particular, the effect of a character of matrix flow upon nucleation and growth of the reaction products at the fiber/matrix interface should be expected during consolidation of the fiber-reinforced composites under superplastic conditions. The matrix material flow in thin clearance (about 20μm) between strengthening fibers is a special feature of composite consolidation. In previous papers, it was shown that the character of the flow in thin specimens, when the specimen thickness is equal to several grain sizes, is very different from that in thick specimens. In this manner the question of the effect of the deformation on the fiber/matrix interface formation is complicated and one should consider the peculiarities of matrix deformation during the composite fabrication and the effect of localization of the deformation on the fiber/matrix interface reaction. In this paper, the authors shall focus on these two problems

  18. AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties

    International Nuclear Information System (INIS)

    Liu, Y.Q.; Cong, H.T.; Wang, W.; Sun, C.H.; Cheng, H.M.

    2009-01-01

    To improve the specific strength and stiffness of Al-based composites, AlN/Al nanoparticles were in-situ synthesized by arc plasma evaporation of Al in nitrogen atmosphere and consolidated by hot-pressing to fabricate AlN nanoparticle-reinforced nanocrystalline Al composites (0-39 vol.% AlN). Microstructure characterization shows that AlN nanoparticles homogeneously distribute in the matrix of Al nanocrystalline, which forms atomically bonded interfaces of AlN/Al. The hardness and the elastic modulus of the nanocomposite have been improved dramatically, up to 3.48 GPa and 142 GPa, respectively. Such improvement is believed to result from the grain refinement strengthening and the interface strengthening (load transfer) between the Al matrix and AlN nanoparticles

  19. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  20. Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix

    Science.gov (United States)

    Zacharda, V.; Němeček, J.; Štemberk, P.

    2017-09-01

    The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.

  1. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  2. Microstructure and wear characteristics on Al alloy matrix composite reinforced with Ni perform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Park, Cheol Hong; Kim, Hyung Jin; Huh, Sun Chul [Gyeongsang National University, Tongyeong, (Korea, Republic of)

    2012-06-15

    Al based composite reinforced with Nickel is used for diesel engine piston, because the thermal properties, strength and corrosion resistant are for better than Al alloy alone. For processing, the intermetallic compounds of Ni and Al improves wear resistance due to its high hardness. Existing process methods for MMC (metal matrix composite) using preform were manufactured under high-pressure. However, this causes deformation of the preform or weaknesses in the completed MMC. Low-pressure infiltration can prevent these problems, and there is an advantage of cost reduction in of production with small-scale of production equipment. In this study, the microstructure and wear characteristics of Al-based composite with Ni preform as reinforcement with low-pressure infiltration was analyzed.

  3. Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric

    Directory of Open Access Journals (Sweden)

    Magdi El-Messiry

    2017-09-01

    Full Text Available Fiber reinforced concrete (FRC has become increasingly applied in civil engineering in the last decades. Natural fiber fabric reinforced cement composites are considered to prevent damage resulting from an impact loading on the cementite plate. Flax woven fabric that has a high energy absorption capability was chosen. To increase the interfacial shear properties, the fabric was pultruded with different matrix properties that affect the strength and toughness of the pultruded fabric. In this study, three fabric structures are used to increase the anchoring of the cement in the fabric. The compressive strength and the impact energy were measured. The results revealed that pultruded fabric reinforced cement composite (PFRC absorbs much more impact energy. PFRC under impact loading has more micro cracks, while plain cement specimen shows brittle failure. The compressive test results of PFRC indicate that flax fiber fabric polymer enhanced compressive strength remarkably. Fiber reinforcement is a very effective in improving the impact resistance of PFRC. The study defines the influence factors that control the energy dissipation of the composite, which are the hardness of the polymer and the fabric cover factor. Significant correlation between impact energy and compressive strength was proved.

  4. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  5. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  6. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  7. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S., E-mail: lathaselvam1963@gmail.com [Department of Mechanical Engineering, Nehru Institute of Technology, Coimbatore 641105, Tamil Nadu (India); Department of Mechanical Engineering, Anna University, Chennai 600025, Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Palanivel, R., E-mail: rpalanivelme@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Ganesh Babu, B., E-mail: profbgb@gmail.com [Department of Mechanical Engineering, Roever College of Engineering and Technology, Perambalur 621212, Tamil Nadu (India)

    2017-03-15

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  8. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    International Nuclear Information System (INIS)

    Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B.

    2017-01-01

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  9. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  10. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  11. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  12. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  13. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  14. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  15. Parametric study for graphene reinforced aluminum matrix composites production using Box Behnken design

    Science.gov (United States)

    Dasari, Bhagya Lakshmi; Nouri, Jamshid M.; Brabazon, Dermot; Naher, Sumsun

    2017-10-01

    The production of graphene reinforced aluminum matrix composite through powder metallurgical route requires optimization of process parameters to obtain better performance characteristics. One of the advanced method available for statistical analysis of parameters is Response Surface Methodology (RSM). The statistical analysis was carried out with three parameters, weight percentage of graphene reinforcement Wg (0.05%, 0.1% and 0.2%), stirring time ST(1h, 2h and 3h) and compaction pressure Pc(16T, 17T and 19T) while sintering temperature T kept constant. The performance of the Box Behnken design was analyzed and optimized using Design Expert software for the effective production of composites. From the results obtained from the analysis, the best set of parameters were considered for the future production of composites.

  16. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhang Shaoyang; Wang Fuping

    2007-01-01

    Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiC p (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO 4 ) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 deg. C and 316 deg. C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO 4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO 4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications

  17. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  18. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wen-ming Tian; Song-mei Li; Bo Wang; Xin Chen; Jian-hua Liu; Mei Yu

    2016-01-01

    Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sinter-ing (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

  19. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  20. Structural and thermophysical properties characterization of continuously reinforced cast Al matrix composite

    Directory of Open Access Journals (Sweden)

    Brian Gordon

    2010-11-01

    Full Text Available In this work the process of manufacturing a continuously reinforced cast Al matrix composite and its properties are presented. The described technology permits obtaining a structural material of competitive properties compared to either heat treatable aluminum alloys or polymer composites for several types of applications. The examined thermophysical properties and structural characterization, including material anisotropy, coupled with the results of previous measurements of the mechanical properties of both Al2O3 reinforcing filaments and metallic prepregs have proven the high quality of this material and the possibility of its operation under special loading modes and environmental conditions. Microscopic examinations (LM, SEM were carried out to reveal the range of morphological homogeneity of the microstructure, the anisotropy of the filament band distribution, and simultaneously the adhesive behavior of the metal/fiber interface. The 3D morphology of the chosen microstructure components was revealed by computed tomography. The obtained results indicate that special properties of the examined prepreg materials have been strongly influenced, on the one hand, by the geometry of its internal microstructure, i.e. spatial distribution and volume fraction of the Al2O3 reinforcing filaments and, on the other hand, by a very good compatibility obtained between the individual metal prepreg components.

  1. Discontinuously reinforced titanium matrix composites for fusion applications

    International Nuclear Information System (INIS)

    Castro, V.; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M.

    2002-01-01

    We have reinforced α-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  2. Discontinuously reinforced titanium matrix composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. E-mail: mvcastro@fis.uc3m.es; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M

    2002-12-01

    We have reinforced {alpha}-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  3. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  4. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    Science.gov (United States)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  5. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  6. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  7. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  8. Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    B.O. Fatile

    2017-06-01

    Full Text Available An investigation has been carried out on the synthesis and characterization of ZA-27 alloy composites reinforced with zinc oxide nanoparticles. This was aimed at developing high performance ZA-27 matrix nanocomposite with low density. The particle size and morphology of the zinc oxide (ZnO nanoparticles were investigated by Transmission Electron Microscope (TEM and the elemental composition was obtained from Energy Dispersive Spectroscopy (EDS attached to TEM and X-ray fluorescence spectroscopy (XRF. ZA-27 nanocomposite samples were developed using 0, 1, 2, 3, 4 and 5 wt% of ZnO nanoparticles by double steps stir casting technique. Mechanical properties and Microstructural examination were used to characterize the composite samples produced. The results show that hardness and ultimate tensile strength of the composite samples increased progressively with increase in weight percentage of ZnO nanoparticles. Increase in Ultimate tensile strength (UTS of 10.2%, 21.1%, 22.3%, 35.5%, 33.4% and increase in hardness value of 8.2%, 14.8%, 21.7%, 27.9%, 27.1% were observed for nanocomposites reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt% ZnO nanoparticles respectively in comparison with unreinforced alloy. It was generally observed that composite sample containing 4 wt% of reinforcement has the highest tensile strength and hardness values. However, the fracture toughness and percent elongation of the composites samples slightly decreased with increase in ZnO nanoparticles content. Results obtained from the Microstructural examination using optical microscope and Scanning Electron Microscope (SEM show that the nanoparticles were well dispersed in the ZA-27 alloy matrix.

  9. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  10. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  11. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  12. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  13. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  14. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  15. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  16. Effects of particle/matrix interfaces on the mechanical properties for SiCp or YAl2p reinforced Mg–Li composites

    International Nuclear Information System (INIS)

    Zhang, Q.Q.; Wu, G.Q.; Huang, Z.; Tao, Y.

    2014-01-01

    Highlights: • The particle/matrix interfaces in Mg–Li matrix composites are characterized. • The different reinforcement types with intermetallics and ceramics are considered. • The failure behaviors for the composites are successfully studied. • The effect of particle/matrix interface on the mechanical properties is discussed. -- Abstract: YAl 2p or SiC P reinforced Mg–14Li–3Al (LA143) matrix composites were prepared by stir-casting. The composites were subjected to fracture toughness and tensile tests. The particle/matrix interfaces were investigated by nanoindentation combined with scanning electron microscopy (SEM). The effects of the particle/matrix interfaces on the mechanical properties of the composites were discussed through a unit cell model with a transition interface layer. The results show that a transition interface layer with smoother hardness and modulus gradient is developed in the YAl 2 /LA143 composite. Both the fracture toughness and ductility for the YAl 2 /LA143 composite are higher than those for the SiC/LA143 composite. The failure behavior is determined by particle breakage with little interfacial breakage for the YAl 2 /LA143 composite, while being due to interfacial breakage for the SiC/LA143 composite. The superiority of the mechanical properties for the YAl 2 /LA143 composite may result from the failure behavior of particle breakage, which are correlated to the better physical compatibility between the YAl 2 intermetallics and LA143 matrix

  17. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  18. Performance Evaluation of PCD Insert 1600 Grade on Turning of Al 6061 Reinforced with 7.5% ZrB2 Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Ramanathan M.

    2016-01-01

    Full Text Available Aluminum matrix composite is the innovation of high performance material technology and it has superior interfacial integrity and thermodynamic stability between the matrix and reinforcement. Making the engineering components from this composite material require subsequent machining operations. This paper presents the detailed experimental investigation of the machining behaviour in turning of Al 6061-7.5% ZrB2 Metal Matrix Composite (MMC by using Poly Crystalline Diamond (PCD insert of 1600 grade. The effect of ZrB2 reinforcement particles on machinability behaviour need to be studied. It is concluded that the feed rate has great influence on surface roughness and depth of cut has great influence on cutting force. The confirmation experiment indicates that there is a good agreement between the estimated value and experimental Value. Tool wear study also carried out for time duration of 15 minutes.

  19. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  20. Using Goals, Feedback, Reinforcement, and a Performance Matrix to Improve Customer Service in a Large Department Store

    Science.gov (United States)

    Eikenhout, Nelson; Austin, John

    2005-01-01

    This study employed an ABAC and multiple baseline design to evaluate the effects of (B) feedback and (C) a package of feedback, goalsetting, and reinforcement (supervisor praise and an area-wide celebration as managed through a performance matrix, on a total of 14 various customer service behaviors for a total of 115 employees at a large…

  1. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  2. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  3. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  4. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D. [Desalination Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Meena, Sher Singh [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-ray energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.

  5. Highly radioresistant aramid fiber as a concrete-reinforcing material. Development of reinforced compound materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Moriya, Toshio.

    1997-01-01

    Nuclear installations, such as nuclear fusion reactor always receive strong influence from magnetic field. There, stray current is induced by the changes in magnetic fields among iron rods of the construction, resulting that the plasma control magnetic field might be disturbed. As the countermeasures for these troubles, iron rods mixed with non-magnetic Mn-steel have been used in JAERI, but it is insufficient to completely prevent such electromagnetic damages. Thus, aramid fiber reinforced plastics (ArFRP) was paid an attention as a concrete-reinforcing material. JAERI has been attempting to develop a radioresistant ArFRP jointly with Mitsui Construction Co., Ltd. and a highly efficient producing process of ArFRP was developed. The product had superior properties in respects of radioresistancy, heat-resistancy and durability. The properties of newly developed ArFRP rods were compared with those of the conventional ArFRP and iron rods. (M.N.)

  6. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  7. Influence of reinforcement grade and matrix composition on corrosion resistance of cast aluminium matrix composites (A3xx.x/SiCp) in a humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Viejo, F.; Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Lopez, M.D. [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28931, Mostoles, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2003-05-01

    A study of the influence of the silicon carbide (SiC{sub p}) proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) exposed to high relative humid environment was carried out under simulation in a climatic chamber. The matrix of A360/SiC/xxp composites was virtually free of copper while the A380/SiC/xxp matrix contained 3.13-3.45wt% Cu and 1.39-1.44wt% Ni. The kinetics of the corrosion process was studied on the basis of gravimetric tests. The nature of corrosion products was analysed by Scanning Electron Microscopy (SEM) and Low Angle X-Ray Diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion damage to Al/SiCp composites was low at 80% Relative Humidity (RH) and increased with temperature, SiCp proportion, relative humidity and Cu matrix concentration. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Eine Studie zum Einfluss des Siliziumkarbidanteils (SiCp) und der Zusammensetzung des Grundwerkstoffs von vier Aluminiummatrixverbundwerkstoffen (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p), die in Umgebungen mit relativ hoher Feuchtigkeit ausgelagert waren, wurde unter simulierten Bedingungen in einer Klimakammer durchgefuehrt. Die Matrix des A360/SiC/xxp-Verbundwerkstoffs war praktisch Kupfer-frei waehrend die A380/SiC/xxp Matrix 3,13-3,45 Gew.-% Cu und 1,39-1,44 Gew.-% Ni enthielt. Die Kinetik des Korrosionsprozesses wurde auf der Basis von gravimetrischen Messungen studiert. Die Beschaffenheit der Korrosionsprodukte wurde mittelt REM-Untersuchungen und

  8. Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Yoo, Seong Jin; Kim, Woo Jin

    2014-01-01

    A combination of accumulative roll bonding (ARB) and high-energy ball milling was used to fabricate carbon nano tube (CNT)-reinforced Mg composites in sheet form. CNT-Al composite powders synthesized using the high-energy ball-milling process, were coated on the surface of Mg sheets using either spraying or dipping methods. The coated sheets were stacked and then subjected to ARB. Formation of CNT-intermetallic compounds through inter-diffusion between Al and Mg, fragmentation of the CNTintermetallic compounds, and their dispersion into the matrix by plastic flow; as well as dissolution of the intermetallic compound particles into the matrix while leaving CNTs in the matrix, occurred in sequence during the ARB process. This eventually resulted in the uniform distribution of nano-sized CNT particles in the Mg matrix. As the thickness of the Mg sheet and of the coating layer of Al-CNT powder on the surface of the Mg sheet were similar, the dispersion of CNTs into the Mg matrix occurred more uniformly and the strengthening effect of adding CNTs was greater. The strengthening gained by adding CNTs was attributed to Orowan strengthening and dislocation-density increase due to a thermal mismatch between the matrix and the CNTs.

  9. Suitability of Recycled Polyethylene/Palm Kernel Shell-Iron Filings Composite for Automobile Application

    Directory of Open Access Journals (Sweden)

    I.A. Samotu

    2015-06-01

    Full Text Available A recycling aimed research was carried out to produce a new composite material and proffer suggestion for the possible use of the newly developed composite material. The empty water sachet (commonly called pure water nylon in Nigeria, was used as a matrix, which was reinforced by carbonized palm kernel shell (CPKS particulate and iron fillings. The percentage composition of iron fillings was maintained at 5 wt%, while that of palm kernel shell ash was varied from 5 wt% - 20 wt% at an interval of 5 %. The composites were compounded and compressively moulded. Physical and mechanical properties of the composites were tested for alongside three conventional car bumper samples, and the results obtained shows that the composite material could be used to produce a car bumper among other parts of automobile like dashboard due to their impact strength and low density. Impact strength - density ratio for the materials gave prime information on the possible application of the developed material. Scanning Electron Microscope (SEM was used to examine the distribution of the reinforcement within the matrix. After results analysis, materials with 5 wt% of CPKS and that with 10 wt% of CPKS were recommended for the car bumper production following their high impact strength - density ratio of 0.26 and 0.19 respectively, which are higher as compared to that of a conventional bumper material measured alongside the composite materials.

  10. Influence of the Sr and Mg Alloying Additions on the Bonding Between Matrix and Reinforcing Particles in the AlSi7Mg/SiC-Cg Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Dolata A. J.

    2016-06-01

    Full Text Available The aim of the work was to perform adequate selection of the phase composition of the composite designated for permanent - mould casting air compressor pistons. The hybrid composites based on AlSi7Mg matrix alloy reinforced with mixture of silicon carbide (SiC and glassy carbon (Cg particles were fabricated by the stir casting method. It has been shown that the proper selection of chemical composition of matrix alloy and its modification by used magnesium and strontium additions gives possibility to obtain both the advantageous casting properties of composite suspensions as well as good bonding between particles reinforcements and matrix.

  11. A study of formation of iron nanoparticles in aluminium matrix with helium pores

    Czech Academy of Sciences Publication Activity Database

    Kichanov, S.E.; Kozlenko, D. P.; Belushkin, A.V.; Reutov, V.F.; Samoilenko, S.O.; Jirák, Zdeněk; Savenko, B. N.; Bulavin, L. A.; Zubavichus, Y.V.

    2012-01-01

    Roč. 351, č. 1 (2012), "012013-1"-"012013-5" ISSN 1742-6588. [International Workshop on SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor - Devoted to the 75th anniversary of Yu M Ostanevich's Birth /2./. Dubna, 27.05.2011-30.05.2011] Institutional research plan: CEZ:AV0Z10100521 Keywords : iron nanoparticles * aluminium matrix * helium pores Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  13. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  14. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  15. Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U–Pb Geochronology Using Mixed Solution Standards

    Directory of Open Access Journals (Sweden)

    Liam Courtney-Davies

    2016-08-01

    Full Text Available U–Pb dating of the common iron-oxide hematite (α-Fe2O3, using laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS, provides unparalleled insight into the timing and processes of mineral deposit formation. Until now, the full potential of this method has been negatively impacted by the lack of suitable matrix-matched standards. To achieve matrix-matching, we report an approach in which a U–Pb solution and ablated material from 99.99% synthetic hematite are simultaneously mixed in a nebulizer chamber and introduced to the ICP-MS. The standard solution contains fixed U- and Pb-isotope ratios, calibrated independently, and aspiration of the isotopically homogeneous solution negates the need for a matrix-matched, isotopically homogenous natural iron-oxide standard. An additional advantage of using the solution is that the individual U–Pb concentrations and isotope ratios can be adjusted to approximate that in the unknown, making the method efficient for dating hematite containing low (~10 ppm to high (>1 wt % U concentrations. The above-mentioned advantage to this solution method results in reliable datasets, with arguably-better accuracy in measuring U–Pb ratios than using GJ-1 Zircon as the primary standard, which cannot be employed for such low U concentrations. Statistical overlaps between 207Pb/206Pb weighted average ages (using GJ-1 Zircon and U–Pb upper intercept ages (using the U–Pb mixed solution method of two samples from iron-oxide copper-gold (IOCG deposits in South Australia demonstrate that, although fractionation associated with a non-matrix matched standard does occur when using GJ-1 Zircon as the primary standard, it does not impact the 207Pb/206Pb or upper intercept age. Thus, GJ-1 Zircon can be considered reliable for dating hematite using LA-ICP-MS. Downhole fractionation of 206Pb/238U is observed to occur in spot analyses of hematite. The use of rasters in future studies will hopefully minimize

  16. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  17. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  18. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-01-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with "6"0Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0–1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite. - Highlights: • The properties of basalt fiber reinforced epoxy resin matrix composite under "6"0Co γ irradiation up to 2.0 MGy were studied. • Basalt fiber can weaken the aging effects of γ irradiation on the resin matrix. • Tensile property of basalt fiber composite remains stable and flexural property has a low degree of attenuation. • Basalt fiber composite is an ideal candidate of structural material for nuclear industry.

  19. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  20. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  1. Oxidation resistance in air of 1-D SiC (Hi-nicalon) fibre reinforced silicon nitride ceramic matrix composite

    International Nuclear Information System (INIS)

    Dupel, P.; Veyret, J.B.

    1997-01-01

    The oxidation behaviour of a Si 3 N 4 matrix reinforced with SiC fibres (Hi-nicalon) pre-coated with a 400 nm thick pyrolytic carbon layer has been investigated in dry air in the temperature range 800-1500 C. The same study was performed for individual constituents of the composite (fibre and matrix). Two phenomena are observed in the oxidation behaviour of the composite. At low temperature (T<1200 C), the matrix oxidation is negligible, only the carbon interphase was oxidised creating an annular space between the fibres and the matrix throughout the sample. At high temperature (T≥1300 C) the rate of formation of the oxidation products of the matrix is rapid and a sealing effect is observed. While at these temperatures the interphase is protected in the bulk of the material, the time needed to seal the gap between the fibre and the matrix is too long to prevent its oxidation to a significant depth from the surface. Finally, preliminary results are presented where the consumption of the interphase is completely prevented by applying an external coating which gives oxidation protection from low to high temperature. (orig.)

  2. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  3. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  4. Effect of type and percentage of reinforcement for optimization of the cutting force in turning of Aluminium matrix nanocomposites using response surface methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshi, Devinder [DAV Institute of Engineering and Technology, Jalandhar (India); Sharma, Rajesh Kumar [Institute of Technology, Hamirpur (India)

    2016-03-15

    Aluminium matrix composites (AMCs) now hold a significant share of raw materials in many applications. It is of prime importance to study the machinability of such composites so as to enhance their applicability. Sufficient work has been done for studying the machining of AMCs with particle reinforcements of micron range. This paper presents the study of AMCs with particle reinforcement of under micron range i.e. nanoparticles. This paper brings out the results of an experimental investigation of type and weight percent of nanoparticles on the tangential cutting force during turning operation. SiC, Gr and SiC-Gr (in equal proportions) were used with Al-6061 alloy as the matrix phase. The results indicate that composites with SiC require greater cutting force followed by hybrid and then Gr. Increase in the weight percent also significantly affected the magnitude of cutting force. RSM was used first to design and analyze the experiments and then to optimize the turning process and obtain optimal conditions of weight and type of reinforcements for turning operation.

  5. SYNTHESIS AND CHARACTERIZATION OF CANNABIS INDICA FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2011-04-01

    Full Text Available This paper reports on the synthesis of Cannabis indica fiber-reinforced composites using Urea-Resorcinol-Formaldehyde (URF as a novel matrix through compression molding technique. The polycondensation between urea, resorcinol, and formaldehyde in different molar ratios was applied to the synthesis of the URF polymer matrix. A thermosetting matrix based composite, reinforced with lignocellulose from Cannabis indica with different fiber loadings 10, 20, 30, 40, and 50% by weight, was obtained. The mechanical properties of randomly oriented intimately mixed fiber particle reinforced composites were determined. Effects of fiber loadings on mechanical properties such as tensile, compressive, flexural strength, and wear resistance were evaluated. Results showed that mechanical properties of URF resin matrix increased considerably when reinforced with particles of Cannabis indica fiber. Thermal (TGA/DTA/DTG and morphological studies (SEM of the resin, fiber and polymer composite thus synthesized were carried out.

  6. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  7. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, M., E-mail: michaels@mail.tuwien.ac.at [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Vaucher, S. [Advanced Materials Processing, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, D-85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble (France)

    2010-11-15

    Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC {approx} 1000 W mK{sup -1}) and low coefficient thermal expansion (CTE {approx} 1 ppm K{sup -1}). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile {alpha}-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 deg. C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond-Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.

  8. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  9. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  10. Compacted graphite iron: Cast iron makes a comeback

    Science.gov (United States)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  11. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  12. Damage Assessment in a SiC-fiber reinforced Ceramic Matrix Composite

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Assessment of the fracture behavior of a SiC-fbre-reinforced barium osumilite (BMAS ceramic matrix composite tested under static and cyclic tension conditions is reported herein. Notched specimens were used in order to limit material damage within a predefined gauge length. Imposition of successive unloading/reloading loops was found to result in an increase by 20% in material strength as compared to pure tension; the observed increase is attributed to energy dissipation from large-scale interfacial debonding phenomena that dominated the post-elastic tensile behaviour of the composite. Cyclic loading also helped establish the axial residual stress state of the fibres in the composite of tensile nature via a well-defined common intersection point of unloading-reloading cycles. A translation vector approach in the stress-strain plane was successful in establishing the residual stress-free properties of the composite and in reconciling the scatter noted in elastic properties of specimens with respect to theoretical expectations.

  13. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  14. Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kallip, Kaspar, E-mail: kaspar.kallip@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Leparoux, Marc [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); AlOgab, Khaled A. [King Abdulaziz City for Science and Technology (KACST), National Centers for Advanced Materials, P O Box 6086, Riyadh, 11442 (Saudi Arabia); Clerc, Steve; Deguilhem, Guillaume [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Arroyo, Yadira [Empa, Swiss Federal Laboratories for Material Science and Technology, Electron Microscopy Center, Ueberlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kwon, Hansang [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Pukyong National University, Department of Materials System Engineering, 365 Sinseon-ro, Busan 608-739 (Korea, Republic of)

    2015-10-15

    AlMg5-based metal matrix composites were successfully fabricated using high energy planetary ball-milling and hot pressing. The influence of 6 types of carbon nanotubes (CNTs) with different properties was investigated for reinforcement. Over 3 fold increase in hardness and ultimate tensile strength was achieved with maximum values of 200 HV{sub 20} and 720 MPa respectively by varying CNT content from 0.5 to 5 vol%. The state, the dispersion as well as the reactivity of the different CNTs were investigated by Raman spectroscopy, X-Ray diffraction and microscopy. The CNTs were considered to be dispersed homogeneously, but were shortened due to high energy milling. No significant differences in mechanical performances could be observed depending either on the nature or on the agglomeration initial state of the investigated CNTs. The milling time has to be however adjusted to the CNT content as higher concentrations require a longer milling time for achieving dispersion of the nano-reinforcement. - Highlights: • CNTs sustained the milling process and became homogeneously dispersed. • 3 times strengthening over unreinforced alloy achieved. • Flexible processing route for dispersing wide range of nanoparticulate materials.

  15. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  16. Development of quartz particulate reinforced AA6063 aluminum matrix composites via friction stir processing

    Directory of Open Access Journals (Sweden)

    S. Joyson Abraham

    2016-12-01

    Full Text Available Friction stir processing (FSP has been accepted as a potential method to produce aluminum matrix composites (AMCs without the drawbacks of liquid metallurgy methods. The present work focuses on the development of AMCs reinforced with quartz (SiO2 particles using FSP. Grooves with various dimensions were machined on AA6063 plates and compacted with quartz particles. A single pass FSP was carried out using a combination of optimized process parameters. The volume fraction of quartz particles in the AMCs was varied from 0 to 18 vol.% in steps of 6 vol.%. The developed AA6063/Quartz AMCs were characterized using optical, scanning and transmission electron microscopy. The quartz particles were distributed uniformly in the aluminum matrix irrespective of the location within the stir zone. The grains of the AA6063 were extensively refined by the combination of thermomechanical effect of FSP and the pinning effect of quartz particles. The dispersion of the quartz particles improved the microhardness and wear resistance of the AMCs. The role of quartz particles on the worn surface and wear debris is reported.

  17. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  18. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  19. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    Science.gov (United States)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  20. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  1. Characterization of ancient Indian iron and entrapped slag ...

    Indian Academy of Sciences (India)

    year old Indian iron using microprobe techniques (EDS, XRD and PIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very heterogeneous.

  2. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  3. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  4. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  5. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  6. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  7. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  8. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  9. Micro structural analysis of nanocomposite of metallic matrix of aluminum reinforced by 2% of NTC

    International Nuclear Information System (INIS)

    Dias, Fabio Saldanha; LavaredaCarlos Romulo; Mendes, Luiz Fernando; Queiroz, Jennyson Luz

    2016-01-01

    The study of based on aluminum materials has a high importance level, mainly when is intense wanted in automobile and aerospace industry to transform in light and high perform parts. Aluminum has low specific weight and easiness to join with other materials and these qualities can supply excellent properties and lots of technological applications. Components based on aluminum represents good examples to develop optimized micro structures during the fabrication process that can be basic on properties mechanical performance. As a result this work analyses the micro structure's composites with metallic matrix reinforced by 2% of Multi-Walled Carbon Nanotubes manufactured by aluminum splinters mixed to CNT (author)

  10. Use of hyghly reactive rice husk ash in the production of cement matrix reinforced with Green coconut fiber

    OpenAIRE

    Pereira, C.L.; Savastano, H. Jr; Paya Bernabeu, Jorge Juan; Santos, S. F.; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes

    2013-01-01

    This study evaluated the influence of partial replacement of Portland cement by rice husk ash (RHA) to enable the use of green coconut husk fiber as reinforcement for cementitious matrix. The use of highly reactive pozzolanic ash contributes for decreasing the alkaline attack on the vegetable fiber, originated from waste materials. The slurry dewatering technique was used for dispersion of the raw materials in aqueous solution, followed by vacuum drainage of water and pressing for the product...

  11. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  12. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Directory of Open Access Journals (Sweden)

    Sonia C. Ferreira

    2014-12-01

    Full Text Available Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp produced by powder metallurgy (PM were anodized under voltage control in tartaric-sulfuric acid (TSA. In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050 anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

  13. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Science.gov (United States)

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  14. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  15. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    Science.gov (United States)

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  16. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  17. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available In this work solution surface treatment was applied for producing basalt fiber reinforced PA6 matrix composites. Beyond scanning electron microscopy, static and dynamic mechanical tests, dynamic mechanical analysis of composites was used for qualifying the interfacial adhesion in a wide temperature range. The loss factor peak height of loss factor is particularly important, because it is in close relationship with the mobility of polymer molecular chain segments and side groups, hence it correlates with the number and strength of primary or secondary bondings established between the matrix and the basalt fibers. It was proven, that the interfacial adhesion between basalt fibers and polyamide can be largely improved by the application of silane coupling agents in the entire usage temperature range of composites. The presence of coupling agents on the surface of basalt fibers was proven by Fourier transform infrared spectroscopy. The best results were obtained by 3-glycidoxypropyltrimethoxysilane coupling agent.

  18. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.

    Science.gov (United States)

    Neumann, Anke; Kaegi, Ralf; Voegelin, Andreas; Hussam, Abul; Munir, Abul K M; Hug, Stephan J

    2013-05-07

    The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.14-0.96), Fe (0-17), P (0-4.4), Ca (45-162), and Mn (0-2.8). Depending on influent Fe(II) concentrations, 20-80% As was removed in the top sand layer, but As removal to safe levels occurred in the ZVI-layer of the first bucket. Residual As, Fe, and Mn were removed after re-aeration in the sand of the second bucket. New and over 8-year-old filters removed As to iron matrix (CIM) of newer filters and predominantly magnetite in older filters. As mass balances indicated that users filtered less than reported volumes of water, pointing to the need for more educational efforts. All tested SONO filters provided safe drinking water without replacement for up to over 8 years of use.

  19. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  20. Stainless steel fibre reinforced aluminium matrix composites processed by squeeze casting: relationship between processing conditions and interfacial microstructure

    International Nuclear Information System (INIS)

    Colin, C.; Marchal, Y.; Boland, F.; Delannay, F.

    1993-01-01

    This work investigates the influence of some processing parameters on the extent of interfacial reaction in squeeze cast aluminium matrix composites reinforced with 12 μm diameter, continuous stainless steel fibres. The average thickness of the reaction layer at fibre/matrix interfaces was measured by image analysis. When casting was made in a die at room temperature, the thickness of the reaction layer was affected on a distance of several mm from the lateral surface or from the bottom of the preform. The results indicate that the major part of the reaction occurs before solidification of the liquid metal. The control of the extent of interfacial reaction can be achieved through optimization of both infiltration parameters and features of the preform such as the volume fraction of the fibres. (orig.)

  1. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  2. Aluminium Matrix Composites Reinforced with Co-continuous Interlaced Phases Aluminium-alumina Needles

    Directory of Open Access Journals (Sweden)

    Elvio de Napole Gregolin

    2002-09-01

    Full Text Available An Al-5SiO2 (5 wt% of SiO2 aluminium matrix fiber composite was produced where the reinforcement consists of fossil silica fibers needles. After being heat-treated at 600 °C, the original fiber morphology was retained but its microstructure changed from solid silica to an interconnected (Al-Si/Al2O3 interlaced structure named co-continuous composite. A technique of powder metallurgy, using commercial aluminium powder and the silica fibers as starting materials, followed by hot extrusion, was used to produce the composite. The co-continuous microstructure was obtained partially or totally on the fibers as a result of the reaction, which occurs during the heat treatment, first by solid diffusion and finally by the liquid Al-Si in local equilibrium, formed with the silicon released by reaction. The internal structure of the fibers was characterized using field emission electron microscope (FEG-SEM and optical microscopy on polished and fractured samples.

  3. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  4. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Saha, Partha, E-mail: psaha@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Kishore, Shyam [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India)

    2010-07-15

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  5. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha; Kishore, Shyam

    2010-01-01

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  6. Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2008-11-01

    Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.

  7. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  8. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  9. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2

    International Nuclear Information System (INIS)

    Sulima, Iwona; Boczkal, Sonia; Jaworska, Lucyna

    2016-01-01

    Steel-8TiB 2 composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB 2 particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size of materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB 2 composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB 2 composites. •New phases of different size and morphology were identified.

  10. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    International Nuclear Information System (INIS)

    Huet, Bruno; L'Hostis, Valerie; Le Bescop, Patrick; Idrissi, Hassane

    2004-01-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  11. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  12. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    Science.gov (United States)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  13. Study of a railway embankment reinforced with jute tassels

    Indian Academy of Sciences (India)

    Embankment; models (physical); soil reinforcement; jute tassel; slope ... Because of high tensile strength of vetiver grass roots, they act like soil .... All the joints are glued as well as reinforced with steel angles and .... slipping, it is nailed to the top of the embankment by several 25.4 mm iron ... The cables can yield in ten-.

  14. Characterization of Al-Cu alloy reinforced fly ash metal matrix ...

    African Journals Online (AJOL)

    The Al-4.5wt%Cu reinforced 3, 6, 9 and 12wt%fly ash composite was squeeze casted with an applied pressure of 120MPa. The results showed that hardness tensile compression and impact values were increased by increasing weight percentage of fly ash reinforcements during squeeze casting. Porosity and other casting ...

  15. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  16. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2017-01-01

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  17. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  18. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng, E-mail: dongpeng@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Wang, Zhe [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Wenxian [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Chen, Shaoping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [Department of Mechanical Engineering, Pennsylvania State University Erie, Erie, PA 16563 (United States)

    2017-04-13

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al{sub 3}Ti and Al{sub 3}Ni. In addition, a small quantity of TiO{sub 2} phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al{sub 3}Ti, Al{sub 3}Ni, and TiO{sub 2} phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  19. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  20. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Syed Nasimul, E-mail: syedn@nitrkl.ac.in; Kumar, Lailesh

    2016-06-14

    In this work Al-matrix composites reinforced by exfoliated graphite nanoplatelets (xGnP) is fabricated by powder metallurgy route and their microstructure, mechanical properties and sliding wear behaviour were investigated. Here, xGnP has been synthesized from the thermally exfoliated graphite produced from a graphite intercalation compound (GIC) through rapid evaporation of the intercalant at an elevated temperature. The xGnP synthesized was characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), differential scanning calorimetry and thermogravimetric analysis (DSC/TGA), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The Al and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 550 °C for 2 h in an inert atmosphere. Al-1, 2, 3 and 5 wt% xGnP nanocomposites were developed. Results of the wear test show that there was a significant improvement in the wear resistance of the composites up to the addition of 3 wt% of xGnP in the Al matrix. The hardness of the various Al-xGnP composites also shows improvement upto the addition of 1 wt% xGnP beyond which there was a decrease in the hardness of the composites. The tensile strength of the Al-xGnP composites continuously reduced with the addition of xGnP due to the formation of Al{sub 4}C{sub 3} particles at the interface of the Al and xGnP in the composite.

  1. Micromechanics of the Interface in Fibre-Reinforced Cement Materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Shah, S.P.

    1996-01-01

    In fibre reinforced brittle matrix composites the mechanicalbehaviour of the interface between the fibres and the matrix has avery significant influence on the overall mechanical behaviour ofthe composite material. Since brittle matrix composites are designed primarilywith the aim of improving th...

  2. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  3. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  4. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  5. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    CSIR Research Space (South Africa)

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  6. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites

    International Nuclear Information System (INIS)

    Da Silva, Nelson Marques

    2001-01-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  7. A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ayman H. Kamel

    2011-01-01

    Full Text Available Iron(II-(1,10-phenanthroline complex imprinted membrane was prepared by ionic imprinting technology. In the first step, Fe(II established a coordination linkage with 1,10-phenanthroline and functional monomer 2-vinylpyridine (2-VP. Next, the complex was copolymerized with ethylene glycol dimethacrylate (EGDMA as a crosslinker in the presence of benzoyl peroxide (BPO as an initiator. Potentiometric chemical sensors were designed by dispersing the iron(II-imprinted polymer particles in 2-nitrophenyloctyl ether (o-NPOE plasticizer and then embedded in poly vinyl chloride (PVC matrix. The sensors showed a Nernstian response for [Fe(phen3]2+ with limit of detection 3.15 ng mL−1 and a Nernstian slope of 35.7 mV per decade.

  8. Study of flax hybrid preforms reinforced epoxy composites

    International Nuclear Information System (INIS)

    Muralidhar, B. A

    2013-01-01

    Highlights: • We examine the thermal, viscoelastic and mechanical behaviour of flax preform hybrid composites. • The thermal stability of the matrix decrease with increasing volume fraction of flax preforms. • The effect of number of preform layers and the lay-up architecture were studied.. • Morphological study on the fractured surface of the composite laminate is carried out. - Abstracts: This study investigates the thermal, mechanical and thermomechanical properties of flax hybrid preform reinforced epoxy composites. Flax plain weave fabric and 1 × 1 weft rib knitted structures were together used as reinforcements and the composites were produced using hand lay-up technique. Specimen preparation and testing were carried out as per ASTM standards. Thermogravimetric analysis (TGA) indicates a decrease in thermal stability of the matrix polymer with the incorporation of flax hybrid preform. The dynamic mechanical analysis revealed a shift in the T g with the addition of flax hybrid preforms. Mechanical data obtained showed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix. Additionally, investigation show that laminate with knitted preform as skin layer exhibits superior mechanical properties. However, improved tensile properties at lower fibre volume fraction, reinforces the opinion that hybrid preform composites can offer significant benefits in terms of performance, weight and overall cost. The failure mechanism was analysed, by scanning electron microscope (SEM)

  9. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  10. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  11. The characterization of a neutron radiography Triga reactor for NAA of chlorine in an iron oxide matrix

    International Nuclear Information System (INIS)

    Glagolenko, I.; Carney, K.; Difelici, R.; Maddison, D.; Sayer, M.; Hart, P.; Ross, J.; Kahn, S.; Swanson, R.

    2000-01-01

    An irradiation position in the 250 kW Triga reactor was characterized for instrumental neutron activation analysis of chlorine in an iron oxide matrix. Factors that affect the accuracy of the determination include variations in the reactor neutron spectrum and flux as a function of spatial position and the presence of chlorine impurities. Gold wire and foils were used to determine the neutron flux and cadmium ratio as a function of height in an air-filled irradiation tube. (author)

  12. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  13. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, Ankita [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Srivastava, Mukul [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Nanomaterials and Applications Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Kumar, R. Manoj [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Lahiri, Indranil [Nanomaterials and Applications Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Lahiri, Debrupa, E-mail: dlahifmt@iitr.ac.in [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India)

    2017-05-17

    Graphene nanoplatelets (GNP) reinforced aluminum matrix composites, with ≤5 wt% GNP content, were synthesized by spark plasma sintering (SPS). GNPs were found to withstand severe conditions of high pressure and temperature during processing. Strength of composite was observed to be depending on the content and uniform dispersion of GNP in aluminum matrix, as verified by scanning electron micrographs. X-ray diffraction analysis confirmed that no reaction products exist at Al-GNP interface in significant amount. Instrumented indentation studies revealed improvement in hardness by 21.4% with 1 wt% GNP. This is due to the presence of stronger reinforcement, which provides high resistance to matrix against deformation. Improvement in yield strength and tensile strength was 84.5% and 54.8%, respectively, with 1 wt% GNP reinforcement. Properties deteriorated at higher concentration due to agglomeration of GNP. Reinforcing effect of GNPs, in terms of strengthening of composite, is found to be dominated by Orowan strengthening mechanism. Pinning of grains boundaries by GNPs led to uniform grain size distribution in the composites structure. Overall, graphene reinforcement has offered 86% improvement in specific strength of aluminum matrix.

  14. Process of producing a ceramic matrix composite article and article formed thereby

    Science.gov (United States)

    Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY

    2011-10-25

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.

  15. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  16. Some Aspects of Formation of Cracks in FRC with Main Reinforcement

    DEFF Research Database (Denmark)

    Brincker, Rune; Simonsen, J.; Hansen, W.

    1997-01-01

    In this paper the response of fibre reinforced concrete (FRC) with main reinforcement in pure tension is considered. Test results are presented showing three distinct regimes: a regime og linear elasticity, a regime of yielding at approximately constant stress, and finally, a regime of strain...... hardening. a simple model is presented which takes into account the debonding between the reinforcement and the fiber reinforced matrix as well as the crack opening relation of the fiber reinforced matrix. The fracture process is described from the un-cracked state and formation of the first crack till......, and a more ductile contribution from the fiber bridging, a plastic regime will be present in the tensile response. The case of a parabolic crack opening relation defines a brittleness number that describes the transition from formation of unstable discrete cracks to smaller cracks controlled by the softening...

  17. Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature

    International Nuclear Information System (INIS)

    Geng Ke; Lu Weijie; Zhang Di; Sakata, Taokao; Mori, Hirotaro

    2003-01-01

    Titanium matrix composites reinforced with TiB and Nd 2 O 3 were prepared by a non-consumable arc-melting technology. X-ray diffraction (XRD) was used to identify the phases in the composites. Microstructures of the composites were observed by means of optical microscope (OM). There are three phases: TiB, Nd 2 O 3 and titanium matrix. TiB grows in needle shape, whereas Nd 2 O 3 grows in lath shape. Tensile properties of the composites were tested at 773, 823 and 873 K. Both the fracture surfaces and longitudinal sections of the fractured tensile specimens were comprehensively examined by scanning electron microscope (SEM). The fracture mode and fracture process at different temperatures were analyzed and explained. It shows that the tensile strength of the composites has a significant improvement at elevated temperatures compared to titanium matrix. The ductility of the composites improves with the content of neodymium and the test temperatures. The titanium composite exhibits different fracture modes at different test temperatures

  18. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  19. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  20. Microstructure and mechanical properties of Al-Mg-Si-Cu matrix composites reinforced with AINp. processed by extrusion of powders

    International Nuclear Information System (INIS)

    Ortiz, J. L.; Amigo, V.; Salvador, M. D.; Perz, C. R.

    2000-01-01

    This article presents an experimental investigation on the structure and mechanical properties of an Al-Mg-Si-Cu P/M alloy reinforced with 5%, 10% and 15% aluminum nitride, produced by extrusion of cold compacted powders mixtures. Mechanical properties in as extruded and T6 conditions are compared. Differential Scanning Calorimetry and Dilatometric analysis were conducted to gain further insight into the precipitation process of these materials. Low cost 6061 Al/AINp composites can be produced with rate and small porosity by extrusion of cold compacted shapes without canning. The mechanical properties of the MMCs obtained by this process have limitations for high particles fractions because of clustering effects. All materials are always harder than the matrix and shows a similar behavior during aging processes but kinetics is changed. Potential applications of dilatometric techniques in the aging investigations of aluminum alloys and aluminum matrix composites have been established. (Author) 23 refs

  1. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    Science.gov (United States)

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  2. Performance of Deacetyled Glucomannan as Iron Encapsulation Excipient

    Directory of Open Access Journals (Sweden)

    Wardhani Dyah H.

    2018-01-01

    Full Text Available Encapsulation protects iron from degradation or oxidation possibilities due to its encapsulation material. Glucomannan (GM is a neutral polysaccharide consist of D-mannose and D-glucose connected with β-1,4 linkage. Deactylation transforms solubility of glucomannan as well as its gel structure. These properties support for excipient application. The aim of this work was to determine performance of deacetylated glucomannan as iron matrix. Deacetylation was conducted heterogeneously. Deacetylation did not change the backbone of GM. Higher alkali concentration has better ability to encapsulate iron. Extended deacetylation time and alkali concentration affect insignificantly on the performance of encapsulation to protect iron from oxidation. The release of iron from the matrix influences by deacetylation degree.

  3. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    International Nuclear Information System (INIS)

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; Gnanasekaran, G.

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed that the surface roughness and agglomeration of the GO in the polymer matrix increased by increasing its concentration. Ionic exchange capacity, proton conductivity, and tensile texture results showed that the reinforcement of GO in the polymer matrix enhances the physicochemical properties of the host polymer. These PVA/PAMPS/GO nano composites showed improved mechanical stability compared to the pristine polymer, because of strong interfacial interactions within the components and homogeneous dispersion of the GO sheets in the PVA/PAMPS matrix.

  4. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    Science.gov (United States)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  5. Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.

    2018-05-01

    A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.

  6. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  7. Effect of gamma radiation on the magnetic properties of a carbon-fiber-reinforced plastic with a polysulfone matrix

    International Nuclear Information System (INIS)

    Rodin, Yu.P.; Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.

    1994-01-01

    In the present article, the authors report results of a study of the change in the magnetic susceptibility of a carbon-fiber-reinforced plastic based on a thermoplastic matrix -- aromatic polysulfone -- in relation to the absorbed dose of γ-radiation. The study results show that the change in the magnetic susceptibility of specimens which have absorbed different doses of gamma radiation correlates with the change in their mechanical properties, thermal behavior, and structural changes. A method is described for measuring susceptibility which can be used successfully to study the structure and properties of polymer materials and composites based on them. 3 refs., 3 figs

  8. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  9. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  10. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1995-01-01

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi 2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  11. Microwave combustion synthesis of in situ Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Heguo, E-mail: zhg1200@sina.com [College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Key Laboratory of Advanced Micro-Nano Materials and Technology, Jiangsu Province Higher Education Institutions, 210094 (China); Synergetic Center for Advanced Materials Research, Jiangsu Province Higher Education Institutions, 210094 (China); Hua, Bo; Cui, Tao; Huang, Jiewen; Li, Jianliang [College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Xie, Zonghan, E-mail: zonghan.xie@adelaide.edu.au [School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia)

    2015-08-15

    Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites were fabricated from Al and ZrO{sub 2} powders by SiC assisted microwave combustion synthesis. The microstructure and reaction pathways were analyzed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results showed that the heating rate during microwave synthesis was very high and the entire process took several minutes and that the ignition temperature of the reaction was much lower than that of conventional methods. In addition, the resulting microstructure was found to be finer than that prepared by the conventional methods and no cracks can be seen in the Al{sub 3}Zr reinforcements. As such, the newly developed composites have potential for safety-critical applications where catastrophic failure is not tolerated.

  12. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  13. Microstructure characteristics of nickel reinforced metal matrix composites (Ni/AC8A) by low-pressure metal infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jun; Rong, Hua Wei; Jun, Ji Ang; Park, Sung Ho; Huh, Sun Chul; Park, Won Jo [Gyeongsang National University, Jinju (Korea, Republic of)

    2009-07-01

    MMCs(Metal Matrix Composites) can obtain mechanical characteristics of application purposes that a single material is difficult to obtain. Al alloy composite material that nickel is added by reinforcement is used for piston of diesel engine, because high temperature properties, strength, corrosion resistant are improved excellently than existent Al alloy. And, in case of processing, interface between Ni and Al improves wear resistant by intermetallic compound of high hardness. Also, in the world, industrial circles are proceeding research to apply excellent composite material. Existent process methods of MMC using preform were manufactured by high-pressure. But, it cause deformation of preform or fault of completed MMC. Using low-pressure as infiltration pressure can prevent this problem, and there is an advantage that is able to reduce the cost of production by small scale of production equipment. Accordingly, process methods of MMC have to consider low-pressure infiltration for the strength of preform, and nowadays, there are many studies about reducing infiltration pressure. In this study produced Al composite material that Ni is added by reinforcement by low-pressure infiltration, and observed microstructure of completed MMCs.

  14. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  15. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  16. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  17. Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-03-01

    Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.

  18. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  19. (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy

    Indian Academy of Sciences (India)

    For instance, Zhang et al. [6] have prepared 30 types of epoxy matrix reinforced with ... the resin in a high-speed metal blade rotation medium. The .... Tests were run for .... Figure 2. Mean effect plots showing the influence of load, nanoclay content and speed on ..... [8] Wang K, Chen L, Wu J, Toh M L, He C and Yee A F 2005.

  20. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hassan [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jahedi, Mohammad, E-mail: mohammad.jahedi@unh.edu [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Toroghinejad, Mohammad Reza; Meratian, Mahmoud [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Knezevic, Marko [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-07-18

    In this work, 2 vol% carbon nanotubes (CNTs) reinforced aluminum (Al) matrix composites of superior microstructural homogeneity are successfully synthesized using Bc equal-channel angular extrusion (ECAP) route. The key step in arriving at high level of homogeneous distribution of CNTs within Al was preparation of the powder using simultaneous attrition milling and ultra-sonication processes. Microstructure as revealed by electron microscopy and absence of Vickers hardness gradients across the material demonstrate that the material reached the homogeneous state in terms of CNT distribution, porosity distribution, and grain structure after eight ECAP passes. To facilitate comparison of microstructure and hardness, samples of Al were processed under the same ECAP conditions. Significantly, the composite containing only 2 vol% exhibits 20% increase in hardness relative to the Al samples.

  1. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  2. Evolution and alteration in situ of a massive iron duricrust in Central Africa

    Science.gov (United States)

    Bitom, Dieudonné; Volkoff, Boris; Abossolo-Angue, Monique

    2003-08-01

    A soil sequence with iron duricrust is described in an area covered by tropical rain forest in South Cameroon. The dismantling of the iron duricrust is documented through a close observation of a soft duricrust, which corresponds to a transitional stage in the degradation of a massive iron duricrust into a loose nodular horizon. In the initial massive and hematitic duricrust, nodular shapes are progressively formed. The nodules and the internodular matrix remain hematitic. The internodular matrix undergoes goethitization and a pronounced deferruginisation before loosening; the primary structure of the iron duricrust is maintained, however, due to internodular bridges, relics of internodular matrix which escaped the process of goethitization. The iron is gradually released from these hematitic bridges, which become softer. This leads to the collapse of the initial structures of the iron duricrust and to the formation of a loose nodular material with a clayey matrix containing kaolinite and goethite. Many loose nodular horizons, which are found all over Central Africa, may have been formed by such alteration of a former iron duricrust.

  3. Wear study of Al-SiC metal matrix composites processed through microwave energy

    Science.gov (United States)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  4. Effects of High-Temperature Annealing in Air on Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2008-01-01

    BN/SiC-coated Hi-Nicalon fiber-reinforced celsian matrix composites (CMC) were annealed for 100 h in air at various temperatures to 1200 C, followed by flexural strength measurements at room temperature. Values of yield stress and strain, ultimate strength, and composite modulus remain almost unchanged for samples annealed up to 1100 C. A thin porous layer formed on the surface of the 1100 C annealed sample and its density decreased from 3.09 to 2.90 g/cu cm. The specimen annealed at 1200 C gained 0.43 wt%, was severely deformed, and was covered with a porous layer of thick shiny glaze which could be easily peeled off. Some gas bubbles were also present on the surface. This surface layer consisted of elongated crystals of monoclinic celsian and some amorphous phase(s). The fibers in this surface ply of the CMC had broken into small pieces. The fiber-matrix interface strength was characterized through fiber push-in technique. Values of debond stress, alpha(sub d), and frictional sliding stress, tau(sub f), for the as-fabricated CMC were 0.31+/-0.14 GPa and 10.4+/-3.1 MPa, respectively. These values compared with 0.53+/-0.47 GPa and 8.33+/-1.72 MPa for the fibers in the interior of the 1200 C annealed sample, indicating hardly any change in fiber-matrix interface strength. The effects of thermal aging on microstructure were investigated using scanning electron microscopy. Only the surface ply of the 1200 C annealed specimens had degraded from oxidation whereas the bulk interior part of the CMC was unaffected. A mechanism is proposed explaining the various steps involved during the degradation of the CMC on annealing in air at 1200 C.

  5. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  6. Failure phenomena in fibre-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites

    NARCIS (Netherlands)

    van den Heuvel, P.W.J.; Goutianos, S.; Young, R.J.; Peijs, A.A.J.M.

    2004-01-01

    A three-dimensional (3-D) finite element (FE) analysis of the stress situation around a fibre break in a unidirectional carbon fibre-reinforced epoxy composite has been performed. Two cases were considered: (i) good fibre/matrix adhesion and (ii) fibre/matrix debonding. In the case of good adhesion,

  7. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  8. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering

    International Nuclear Information System (INIS)

    Magnant, J.; Pailler, R.; Le Petitcorps, Y.; Maille, L.; Guette, A.; Marthe, J.

    2013-01-01

    Fabrication of multidirectional continuous carbon and silicon carbide fiber reinforced ceramic matrix composites (CMC) by a new short time hybrid process was studied. This process is based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of silicon nitride powders into the fibrous preform by slurry impregnation and, finally, on the densification of the composite by liquid phase spark plasma sintering (LP-SPS). The homogeneous introduction of the ceramic charges into the multidirectional fiber pre-forms was realized by slurry impregnation from highly concentrated and well-dispersed aqueous colloid suspensions. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle. The composites manufactured are dense. Microstructural analyses were conducted to explain the mechanical properties achieved. One main important result of this study is that LP-SPS can be used in some hybrid processes to densify fiber reinforced CMC. (authors)

  9. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  10. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  11. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  12. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    Directory of Open Access Journals (Sweden)

    Mohamed Gobara

    2015-06-01

    Full Text Available A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particles improve the mechanical properties of Mg alloy. EIS and potentiodynamic polarization results indicated that the reinforcing particles significantly improve the corrosion resistance of the reinforced alloy in 3.5% NaCl solution.

  13. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    Science.gov (United States)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  14. Structure evolutions in a Ti–6Al–4V matrix composite reinforced with TiB, characterised using high energy X-ray diffraction

    International Nuclear Information System (INIS)

    Ropars, Ludovic; Dehmas, Moukrane; Gourdet, Sophie; Delfosse, Jérôme; Tricker, David; Aeby-Gautier, Elisabeth

    2015-01-01

    Highlights: • In-situ high energy X-ray diffraction used during different thermal treatments. • Kinetics of phase evolutions characterised for the matrix and for the borides. • Conversion from TiB 2 to TiB-B27 via a metastable structure TiB-B f . • Strong effect of the process on the matrix phases evolutions and microstructure. - Abstract: A titanium matrix composite reinforced with TiB was produced using powder metallurgy. A Ti–6Al–4V alloy was chosen to be the matrix, and 12 wt.% of TiB 2 was used as the boron source for the solid state formation of TiB. The TiB 2 to TiB conversion reaction was studied using an in situ high energy X-ray diffraction technique while heat treating the composite. The TiB 2 (space group: P6/mmm) converts into TiB-B27 (Pnma), via TiB-B f (Cmcm). The metastable character of B f is confirmed here; it is the first phase formed during the conversion and it progressively converts into B27 during elevated temperature heat treatment. A modification of the phase transformation kinetics in the matrix and of the composite β transus temperature (T β = 1275 °C) was also observed, mainly due to gas contamination and intensive work hardening as a result of the mechanical alloying process used to manufacture the material and to a modification of the matrix equilibria

  15. Numerical Methods Application for Reinforced Concrete Elements-Theoretical Approach for Direct Stiffness Matrix Method

    Directory of Open Access Journals (Sweden)

    Sergiu Ciprian Catinas

    2015-07-01

    Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.

  16. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  17. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  18. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  19. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  20. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  1. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Anti frictional materials iron-pig iron-brass manufacture using shaving waste products of pig-iron

    International Nuclear Information System (INIS)

    Nasamov, S. N.; Krivij, N.; Gudenau, H. W.; Babich, A. I.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Parts based on iron and steel powders are widely used in the manufacture of automobile and domestic equipment. This work was done to study the anti-friction properties of iron-pig iron-brass compositions of materials which were obtained by pressing and sintering from a mix of iron powders and industrial by products of cast-iron turnings, brass, talc and technical sulphur. Experiments were performed using cold pressure technology in the flowing matrix of the powder composite without solid lubricants. The subsequent sintering was carried out at 1200 degree centigree under isothermal conditions in a nitrogen atmosphere in the sintering zone during 1 h. The physical-mechanical and anti-friction properties were almost double by the active drainage of the gases from the compression mould. The study of the microstructure of the sintered materials showed that free cementite existed between the particle limits and around the pores. large agglomerations of dark inclusions could be observed, consisting of graphite, zinc and iron oxides, which were points of tension in the materials that reduce its durability and, therefore, its wear resistance to dry friction. (Author) 34 refs

  3. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers

    Directory of Open Access Journals (Sweden)

    Cynthia G. Flores-Hernández

    2014-03-01

    Full Text Available The performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated in this paper. Three different kinds of keratin reinforcement were used: short and long biofibers and rachis particles. These were added separately at 5, 10, 15 and 20 wt% to the chitosan-starch matrix and the composites were processed by a casting/solvent evaporation method. The morphological characteristics, mechanical and thermal properties of the matrix and composites were studied by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The thermal results indicated that the addition of keratin enhanced the thermal stability of the composites compared to pure matrix. This was corroborated with dynamic mechanical analysis as the results revealed that the storage modulus of the composites increased with respect to the pure matrix. The morphology, evaluated by scanning electron microscopy, indicated a uniform dispersion of keratin in the chitosan-starch matrix as a result of good compatibility between these biopolymers, also corroborated by FTIR. These results demonstrate that chicken feathers can be useful to obtain novel keratin reinforcements and develop new green composites providing better properties, than the original biopolymer matrix.

  4. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  5. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  6. Improvement of Interfacial Adhesion of Incorporated Halloysite-Nanotubes in Fiber-Reinforced Epoxy-Based Composites

    Directory of Open Access Journals (Sweden)

    Jin-Woo Lee

    2017-04-01

    Full Text Available The heart of composite materials depends on the characteristics of their interface. The physical properties of composite materials are often described by the rule of mixtures, representing the average physical properties of the reinforcement and the matrix resin. However, in practical applications there are situations which arise where the rule of mixtures is not followed. This is because when an external energy applied to the composite material is transferred from the matrix to the reinforcement, the final physical properties are affected by the interface between them rather than the intrinsic properties of both the reinforcement and the matrix. The internal bonding strength of the interface of these composites can be enhanced by enhancing the bonding strength by adding a small amount of material at the interface. In this study, the mechanical properties were evaluated by producing a carbon fiber-reinforced composite material and improved by dispersing halloysite nanotubes (HNTs and the epoxy resin using an ultrasonic homogenizer. The interfacial bond strength increased with the addition of HNT. On the other hand, the addition of HNTs more than 3 wt % did not show the reinforcing effect by HNT agglomeration.

  7. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  8. Fatigue Life and Microstructure after Multiple Remelting of A359 Matrix Composites Reinforced with SiC Particles

    Directory of Open Access Journals (Sweden)

    Klasik A.

    2016-12-01

    Full Text Available The article presents the results of fatigue life tests and microstructure examinations of A359 alloy matrix composites (F3S.10S and F3S.30S containing 10 and 30wt% of SiC particles, subjected to multiple remelting by conventional gravity casting. Mechanical characteristics were determined in a modified low cycle fatigue (MLCF test, enabling rapid estimation of fatigue life and other mechanical parameters in practice of any material. Qualitative and quantitative metallographic examinations were also carried out. The quantitative evaluation of microstructure was performed by computer image analysis. A set of geometrical parameters of the reinforcing particles, pores and eutectic precipitates present in the metal matrix was determined. The relationships between the mechanical parameters, structural characteristics and the number of remelting operations were presented. It was found that up to the fourth remelting, the mechanical characteristics, including fatigue life, are slightly deteriorated but decrease gradually in the subsequent operations of remelting. The observed effect is mainly due to the shrinkage porosity occurring as a result of gravity casting. To eliminate this defect, the use of squeeze casting process was recommended. It has also been shown that multiple remelting can be an easy and economically well-founded alternative to other more expensive recycling methods.

  9. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  10. Microstructure, Friction and Wear of Aluminum Matrix Composites

    Science.gov (United States)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  11. Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2015-09-01

    Full Text Available The microstructural characteristics, mechanical and wear behaviour of Aluminium matrix hybrid composites reinforced with alumina, rice husk ash (RHA and graphite were investigated. Alumina, RHA and graphite mixed in varied weight ratios were utilized to prepare 10 wt% hybrid reinforced Al-Mg-Si alloy based composites using two-step stir casting. Hardness, tensile properties, scanning electron microscopy, and wear tests were used to characterize the composites produced. The results show that Hardness decreases with increase in the weight ratio of RHA and graphite in the composites; and with RHA content greater than 50%, the effect of graphite on the hardness becomes less significant. The tensile strength for the composites containing o.5wt% graphite and up to 50% RHA was observed to be higher than that of the composites without graphite. The toughness values for the composites containing 0.5wt% graphite were in all cases higher than that of the composites without graphite. The % Elongation for all composites produced was within the range of 10–13% and the values were invariant to the RHA and graphite content. The tensile fracture surface morphology in all the composites produced was identical characterized with the presence of reinforcing particles housed in ductile dimples. The composites without graphite exhibited greater wear susceptibility in comparison to the composite grades containing graphite. However the wear resistance decreased with increase in the graphite content from 0.5 to 1.5 wt%.

  12. Comparison of two novel approaches to model fibre reinforced concrete

    NARCIS (Netherlands)

    Radtke, F.K.F.; Simone, A.; Sluys, L.J.

    2009-01-01

    We present two approaches to model fibre reinforced concrete. In both approaches, discrete fibre distributions and the behaviour of the fibre-matrix interface are explicitly considered. One approach employs the reaction forces from fibre to matrix while the other is based on the partition of unity

  13. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  14. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  15. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  16. Contributions in the Preparation and Processing of Composite Material Type Silumin 3 - Reinforced Matrix with S235JR Steel Mesh

    Directory of Open Access Journals (Sweden)

    Remus Belu-Nica

    2015-07-01

    Full Text Available In the paper are presented concrete data on developing technological batches of metal composite material (MCM type Silumin 3-reinforced matrix with steel mesh S235JR, with the indicating of the parameter and of the distinct stages of work. The samples from prepared batches were cut along and across by water jet abrasive process and were subjected to a destructive testing program and microstructural examination, obtaining results in concordance with the desired quality. The abrasive material used for cut was GMA granite with the average mesh of 80, the particle size ranging between 150-300 µm, density 2300 kg/m3 and melting point 1240°C.

  17. Structure evolutions in a Ti–6Al–4V matrix composite reinforced with TiB, characterised using high energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ropars, Ludovic, E-mail: ludovic.ropars@airbus.com [Airbus Group SAS, Airbus Group Innovations, 12 rue Pasteur, BP-76, 92152 Suresnes Cedex (France); Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Dehmas, Moukrane, E-mail: ismoukrane.dehmas@univlorraine.fr [Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Laboratory of Excellence for Design of Alloy Metals for Low-mass Structures (‘DAMAS’ Labex), Université de Lorraine (France); Gourdet, Sophie; Delfosse, Jérôme [Airbus Group SAS, Airbus Group Innovations, 12 rue Pasteur, BP-76, 92152 Suresnes Cedex (France); Tricker, David [Materion AMC, RAE Road, Farnborough, Hampshire GU14 6XE (United Kingdom); Aeby-Gautier, Elisabeth [Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Laboratory of Excellence for Design of Alloy Metals for Low-mass Structures (‘DAMAS’ Labex), Université de Lorraine (France)

    2015-03-05

    Highlights: • In-situ high energy X-ray diffraction used during different thermal treatments. • Kinetics of phase evolutions characterised for the matrix and for the borides. • Conversion from TiB{sub 2} to TiB-B27 via a metastable structure TiB-B{sub f}. • Strong effect of the process on the matrix phases evolutions and microstructure. - Abstract: A titanium matrix composite reinforced with TiB was produced using powder metallurgy. A Ti–6Al–4V alloy was chosen to be the matrix, and 12 wt.% of TiB{sub 2} was used as the boron source for the solid state formation of TiB. The TiB{sub 2} to TiB conversion reaction was studied using an in situ high energy X-ray diffraction technique while heat treating the composite. The TiB{sub 2} (space group: P6/mmm) converts into TiB-B27 (Pnma), via TiB-B{sub f} (Cmcm). The metastable character of B{sub f} is confirmed here; it is the first phase formed during the conversion and it progressively converts into B27 during elevated temperature heat treatment. A modification of the phase transformation kinetics in the matrix and of the composite β transus temperature (T{sub β} = 1275 °C) was also observed, mainly due to gas contamination and intensive work hardening as a result of the mechanical alloying process used to manufacture the material and to a modification of the matrix equilibria.

  18. Experimental Studies on SiC and Rice Husk Ash Reinforced Al Alloy Composite

    Directory of Open Access Journals (Sweden)

    Shivaprakash Y. M.

    2018-01-01

    Full Text Available In this research work Aluminium alloy with Cu (4.5% as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.

  19. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  20. Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukkun-fukuda@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kondoh, Katsuyoshi; Umeda, Junko [Joining and Welding Research Institution, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Fugetsu, Bunshi [Hokkaido University, Niow5, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2011-06-15

    Research highlights: {yields} Using the IPA based solution, the oxide-free pure Mg/CNTs composite powders could be prepared. {yields} The mechanical strength of the pure Mg composite reinforced with CNTs was not improved though the elongation was enhanced due to the elimination of MgO and less residual strain in the composite. {yields} The mechanical strength of the AZ61Mg alloy composite reinforced with CNTs was improved with maintaining adequate ductility due to the interfacial strengthening of Al{sub 2}MgC{sub 2} ternary carbide. {yields} The CNT addition was not influenced on the microstructure and grain orientations of the AZ61 Mg alloy matrix. - Abstract: Magnesium (Mg) composite reinforced with carbon nanotubes (CNTs) having superior mechanical properties was fabricated using both pure Mg and AZ61 Mg alloy matrix in this study. The composites were produced via powder metallurgy route containing wet process using isopropyl alcohol (IPA) based zwitterionic surfactant solution with unbundled CNTs. The produced composites were evaluated with tensile test and Vickers hardness test and analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and electron back scattered diffraction (EBSD). As a result, only with AZ61 Mg alloy matrix, tensile strength of the composite was improved. In situ formed Al{sub 2}MgC{sub 2} compounds at the interface between Mg matrix and CNTs effectively reinforced the interfacial bonding and enabled tensile loading transfer from the Mg matrix to nanotubes. Furthermore, it was clarified that the microstructures and grain orientations of the composite matrix were not significantly influenced by CNT addition.

  1. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  2. The Challenge to Scavenge IRON from Tailings Produced By FLOTATION A New Approach: The Super-WHIMS & the BigFLUX Magnetic Matrix

    Directory of Open Access Journals (Sweden)

    José Pancrácio Ribeiro

    Full Text Available Abstract Tailings recovery has been a constant challenge for most engineers. Along more than five years, GAUSTEC joined major players in the mining Industry to scavenge Iron from tailings produced by flotation making use of WHIMS (Wet High Intensity Magnetic Separation. In the early 1980s, in USA, the US 4,192,738 patent was granted with promising results. Despite this, thirty years have passed with no significant application worldwide. One main reason is reported: the market missed a really high feed capacity WHIMS in order to avoid the huge number of the WHIMS that were available at that time (such projects would typically require more than 20 WHIMS to scavenge iron from tailings produced by flotation plants. Such a huge asset to scavenge low grade iron tailings would not payback. The Mega sized WHIMS launched by GAUSTEC in 2014, the GHX-1400, improved by the Super-WHIMS Technology (18.000 Gauss and BigFlow Magnetic Matrixes (Gaps smaller than 1.5 mm, faced this challenge. Specially designed ancillary equipment described here also played a decisive role in the scene.

  3. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  4. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  6. The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-Mgo composites

    Directory of Open Access Journals (Sweden)

    Recep Calin

    2012-12-01

    Full Text Available In this study, the effects of reinforcement volume ratios (RVR on composite structure and thermal conductivity were examined in Al-MgO reinforced metal matrix composites (MMCs of 5%, 10% and 15% RVR produced by melt stirring. In the production of composites, EN AW 1050A aluminum alloy was used as the matrix material and MgO powders with particle size of -105 µm were used as the reinforcement material. For every composite specimen was produced at 500 rev/min stirring speed, at 750 °C liquid matrix temperature and 4 minutes stirring time. Composite samples were cooled under normal atmosphere. Then, microstructures of the samples were determined and evaluated by using Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDS analysis. In general, it was observed that the reinforcement exhibited a homogeneous distribution. Furthermore, it was determined that the increase in the RVR increased porosity. From the Scanning Electron Microscope images, a thermal Ansys model was generated to determine effective thermal conductivity. Effective thermal conductivity of Al-MgO composites increased with the decrease in reinforcement volume ratio.

  7. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    OpenAIRE

    N. Panwar; R.P. Poonia; G. Singh; R. Dabral; A. Chauhan

    2017-01-01

    In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear...

  8. Influence of load and reinforcement content on selected tribological properties of Al/SiC/Gr hybrid composites

    Directory of Open Access Journals (Sweden)

    Sandra Veličković

    2018-04-01

    Full Text Available Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.

  9. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  10. Feasibility study on development of metal matrix composite by microwave stir casting

    Science.gov (United States)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  11. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Ildefonso Rodriguez-Ramiro

    2017-09-01

    Full Text Available Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF (www.luckyironfish.com/shop, Guelph, Canada and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA maintained the solubility of iron released from LIF (LIF-iron at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS, similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen.

  12. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    Science.gov (United States)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  13. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  14. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  15. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  16. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Directory of Open Access Journals (Sweden)

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  17. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  18. Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2013-05-01

    Full Text Available In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2. Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu composites.

  19. Tribomechanical behavior of B{sub 4}C{sub p} reinforced Al 359 composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Deivasigamani; Rathanasamy, Rajasekar [Kongu Engineering College, Tamil Nadu (India). Dept. of Mechanical Engineering; Subramanian, Mohan Kumar; Kaliyannan, Gobinath Velu [PAAVAI Engineering College, Tamil Nadu (India). Dept. of Mechatronics Engineering; Palaniappan, Sathish Kumar [Indian Institute of Technology, Kharagpur, West Bengal (India); Durairaj, Jayanth

    2017-03-01

    n the present investigation, the influence of B{sub 4}C{sub p} particles on the mechanical and tribological behavior of Al 359 composites has been studied. B{sub 4}C{sub p} particle reinforced Al 359 composite samples were prepared by stir casting process. Hardness, tensile strength and wear behavior of the composites were studied and compared with a control specimen. Hardness of B{sub 4}C{sub p} particles reinforced Al 359 matrix increases compared to base matrix due to the presence of the ceramic phase. Coefficient of friction considerably increases with up to 20 wt.-% addition of B{sub 4}C{sub p} in base matrix. Specimens were subjected to wear tests under different load conditions and the following five different wear mechanisms such as wear groove, abrasion, delamination, oxidation and plastic deformation were evaluated. The abrasion results prove the increase in wear resistance of B{sub 4}C{sub p} reinforced composites compared to a control specimen.

  20. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  1. Sisal fibre pull-out behaviour as a guide to matrix selection for the production of sisal fibre reinforced cement matrix composites

    CSIR Research Space (South Africa)

    Mapiravana, Joe

    2011-12-01

    Full Text Available Natural fibre reinforced cement composites are promising potential materials for use in panelised construction. The structural properties of these composite materials are yet to be fully understood. As the role of the natural fibre is to reinforce...

  2. Effect of Zircon Silicate Reinforcements on the Microstructure and Properties of as Cast Al-4.5Cu Matrix Particulate Composites Synthesized via Squeeze Cast Route

    Directory of Open Access Journals (Sweden)

    E. G. Okafor

    2010-06-01

    Full Text Available The as-cast microstructure and properties of Al-4.5Cu/ZrSiO4 particulate composite synthesized via squeezed casting route was studied, varying the percentage ZrSiO4 in the range of 5-25wt%. The result obtained revealed that addition of ZrSiO4 reinforcements, increased the hardness value and apparent porosity by 107.65 and 34.23% respectively and decrease impact energy by 43.16 %. As the weight percent of ZrSiO4 increases in the matrix alloy, the yield and ultimate tensile strength increased by 156.52 and 155.81% up to a maximum of 15% ZrSiO4 addition respectively. The distribution of the brittle ZrSiO4 phase in the ductile matrix alloy led to increase strength and hardness values. These results had shown that, additions of ZrSiO4 particles to Al-4.5Cu matrix alloy improved properties.

  3. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  4. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  5. Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xin-Jing; Zhang, Juan; Qi, Gong-Wei; Dai, Xiao-Hui; Zhou, Jun-Ping [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); Zhang, Shu-Yong, E-mail: syzhang@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); National Key Lab of Crystal, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China)

    2015-08-15

    Highlights: • Electrochemical performance of Fe{sub 3}O{sub 4} is improved by combining different approaches. • Porous Cu substrate is used to enlarge surface area and improve conductivity. • MWCNT is used to reinforce the electrode structure and change morphology of Fe{sub 3}O{sub 4}. • Reversible capacity, capacity retention and high-rate performance are improved. - Abstract: Multi-walled carbon nanotube-reinforced porous iron oxide (Fe{sub 3}O{sub 4}/MWCNT) is synthesized by a two-step approach with porous Cu substrate serving as current collector. Porous Cu substrate is prepared through electroless deposition with hydrogen bubble serving as template. Fe{sub 3}O{sub 4}/MWCNT composites are prepared by the electrodeposition of Fe{sub 3}O{sub 4} in the presence of dispersed MWCNTs from a Fe{sub 2}(SO{sub 4}){sub 3} solution with MWCNT suspension. Results showed that Fe{sub 3}O{sub 4} forms granular nanoparticles on the porous Cu substrate with several MWCNTs embedded in it. Adding MWCNTs changes the morphology of Fe{sub 3}O{sub 4}. Smooth Fe{sub 3}O{sub 4}, smooth Fe{sub 3}O{sub 4}/MWCNT, and porous Fe{sub 3}O{sub 4} composites are also prepared for comparison. When used as anode materials, porous Fe{sub 3}O{sub 4}/MWCNT composites have a reversible capacity of approximately 601 mA h g{sup −1} at the 60th cycle at a cycling rate of 100 mA g{sup −1}. This value is higher than that of the other materials. The reversible capacity at a cycling rate of 10,000 mA g{sup −1} is approximately 50% of that at 100 mA g{sup −1}. Therefore, the MWCNT-reinforced porous Fe{sub 3}O{sub 4} composite exhibits much better reversible capacity, capacity retention, and high-rate performance than the other samples. This finding can be ascribed to the porous structure of Fe{sub 3}O{sub 4}, better conductivity of porous Cu substrate and MWCNTs, and the morphology change of Fe{sub 3}O{sub 4} nanoparticles upon the addition of MWCNTs.

  6. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Nelson, R., E-mail: nelson.90.mech@gmail.com [Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph.2001@gmail.com [Center for Research in Metallurgy, School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa)

    2016-08-15

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneously in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.

  7. Development of an Extrusion Process to Ameliorate the Tribological Properties of Heat Treated Al Mg Si (Cu System Alloys Matrix Composites in Consolidated State

    Directory of Open Access Journals (Sweden)

    M.O. Shabani

    2012-09-01

    Full Text Available The developments of AA6061 aluminum matrix composites are of great interest in industrial applications for lighter materials with high specific strength, stiffness and wear resistance. In this article, the dry wear behavior of AA6061 matrix composites was investigated under different sliding speeds and applied loads. It is observed that the composites exhibit higher friction coefficients and greater wear resistances than the Al alloy against the steel disc surface. Low-speed wear rates are associated with abrasive wear,indicating the dominant wear mechanism, though minor, delamination wear may be produced. Abrasive wear associates with the formation of deep scratches on the worn surface in the sliding direction. For a given load and sliding velocity the extent of iron transfer is highest in case of 15 % SiC reinforced Al6061 composite among all the material studied.

  8. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  9. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  10. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  11. Iron phosphate glass: a promising matrix for the immobilization of Cs and Mo

    International Nuclear Information System (INIS)

    Hemadevi, V.; Joseph, Kitheri

    2015-01-01

    Presently, borosilicate glass (BSG) is the acceptable vitrification matrix for the immobilization of high level waste. The solubility of Mo in BSG is limited in the presence of Cs. As per the literature, solubility of Mo in BSG is about 2.5 wt. % in the presence of Cs. Hence it is difficult to immobilize nuclear waste rich in Cs and Mo in borosilicate glass. It is observed that the composition of Cs and Mo expressed as oxides are 10.4 and 14.7 wt. % respectively in simulated fast reactor waste. Iron phosphate glass containing 20 wt. % simulated fast reactor waste (referred as IP20FRW) was synthesized and characterized. IP20FRW contains ~ 3 wt. % of molybdenum oxide along with 2 wt. % cesium oxide. IPG is a suitable matrix for the immobilization of Cs and Mo separately. Hence it is essential to understand the glass characteristics of IPG containing both Cs and Mo. This paper explores systematic loading of both Cs and Mo such that the final composition corresponds to 10.5 wt. % Cs 2 O-15 wt. % MoO 3 -31.9 wt. % Fe 2 O 3 -42.6 wt. % P 2 O 5 . In addition to synthesis, the present study also includes understanding the change in glass characteristics of IPG containing both Cs and Mo. The possibility of higher percent loading of both Cs and Mo in IPG demonstrates the better glass forming characteristics of IPG. The synthesis and characterization of Cs-Mo loaded glasses will be discussed in this paper. (author)

  12. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  13. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  14. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    OpenAIRE

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement depends upon many parameters, such as: the nature of the rubber matrix, the type of fiber, the concentration and orientation of the fibers, fiber to rubber adhesion to generate a strong interface, f...

  15. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  16. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  17. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

  18. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    Science.gov (United States)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  19. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  20. Die-cast heterophase composites with AlSi13Mg1CuNi matrix

    Directory of Open Access Journals (Sweden)

    M. Dyzia

    2010-01-01

    Full Text Available On the basis of the performed tests, an advantageous interaction of glassy carbon particles in a couple consisting of a heterophase composite and a spheroidal cast iron has been corroborated. It was found that, the presence of glassy carbon in the heterophase composite (SiC+C affects the stabilization of the friction coefficient value as a function of the friction distance and reduces the intensity of the wearing-in stage of the interacting surfaces. Both a decrease of the friction coefficient and the wear of the heterophase composites may be connected with the carbon particles' chipping effect and the deposition of its fragments on the surface of the interacting components of the friction couple, which forms a kind of a solid lubricating agent in the system. This should allow applying of this material to the composite piston - cylinder sleeve system in piston air-compressors. Further works will concern the selection of the matrix alloy composition with the purpose of reducing the phenomenon of particles chipping during machining. It seems that one of the possibilities is the application of a more plastic matrix and optimizing the fraction of reinforcing phases and their gradient distribution in the casting.

  1. Bond slip and crack development in FRC and regular concrete specimens longitudinally reinforced with FRP or steel under tension loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2012-01-01

    tensile loading using high definition image analysis in two unique test setups. Two different types of cementitious materials, conventional concrete and highly ductile Engineered Cementitious Composite (ECC), and two types of reinforcement bars, regular steel and Glass Fiber Reinforcement Polymer (GFRP......The governing mechanism in the structural response of reinforced concrete members in tension is the interaction between structural reinforcement and the surrounding concrete matrix. The composite response and the mechanical integrations of reinforced cementitious members were investigated during......), were tested. It was found that the ductile ECC in contrast to regular brittle concrete decreases crack widths significantly which effectively results in decreased bond slip between the reinforcement and surrounding matrix. Furthermore the use of elastic GFRP in comparison to elastic/plastic steel...

  2. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  3. Characterization of hybrid aluminum matrix composites for advanced applications – A review

    Directory of Open Access Journals (Sweden)

    Jaswinder Singh

    2016-04-01

    Full Text Available Hybrid aluminum matrix composites (HAMCs are the second generation of composites that have potential to substitute single reinforced composites due to improved properties. This paper investigates the feasibility and viability of developing low cost-high performance hybrid composites for automotive and aerospace applications. Further, the fabrication characteristics and mechanical behavior of HAMCs fabricated by stir casting route have also been reviewed. The optical micrographs of the HAMCs indicate that the reinforcing particles are fairly distributed in the matrix alloy and the porosity levels have been found to be acceptable for the casted composites. The density, hardness, tensile behavior and fracture toughness of these composites have been found to be either comparable or superior to the ceramic reinforced composites. It has been observed from the literature that the direct strengthening of composites occurs due to the presence of hard ceramic phase, while the indirect strengthening arises from the thermal mismatch between the matrix alloy and reinforcing phase during solidification. Based on the database for material properties, the application area of HAMCs has been proposed in the present review. It has been concluded that the hybrid composites offer more flexibility and reliability in the design of possible components depending upon the reinforcement's combination and composition.

  4. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  5. Particle-Reinforced Aluminum Matrix Composites (AMCs—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast

    Directory of Open Access Journals (Sweden)

    Anja Schmidt

    2018-02-01

    Full Text Available The research and development of new materials such as particle-reinforced aluminum matrix composites (AMCs will only result in a successful innovation if these materials show significant advantages not only from a technological, but also from an economic point of view. Against this background, in the Collaborative Research Center SFB 692, the concept of an integrated technology, user, and market analysis and forecast has been developed as a means for assessing the technological and commercial potential of new materials in early life cycle stages. After briefly describing this concept, it is applied to AMCs and the potential field of manufacturing aircraft components. Results show not only technological advances, but also considerable economic potential—the latter one primarily resulting from the possible weight reduction being enabled by the increased yield strength of the new material.

  6. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  7. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    Cichosz, Piotr; Karolczak, Pawel; Kuzinovski, Mikolaj

    2008-01-01

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index k h of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  8. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  9. Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites

    OpenAIRE

    Ardanuy Raso, Mònica; Claramunt Blanes, Josep; Arévalo Peces, Raquel; Parés Sabatés, Ferran; Aracri, Elisabetta; Vidal Lluciá, Teresa

    2012-01-01

    In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterized in order to assess their reinforcement capability. Sisal pulp was found to be most suitable as reinforcement for their brittle cementitious matrix. Nanofibrillated cellulose was produced by th...

  10. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  11. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    OpenAIRE

    Gobara, Mohamed; Shamekh, Mohamed; Akid, Robert

    2015-01-01

    A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg) was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particle...

  12. Three-dimensional fabric reinforced concrete finds first use in reactor building

    International Nuclear Information System (INIS)

    Akihama, S.; Nakagava, H.

    1989-01-01

    It is reported about creation of concrete reinforced with synthetic fibers by Japanese firm Kadzima. Synthetic material with three-dimensional orientation of fibers is produced of roving impreganted with synthetic resin. The reinforcement produced is submerged into the concrete matrix. The compression strength of such a material makes up 58 MPa. The new material is used for constructing the nuclear reactor shielding containers

  13. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  14. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    Science.gov (United States)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  16. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    Akihiro Oshima; Akira Udagawa; Yousuke Morita

    1999-01-01

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  17. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  18. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  19. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  20. Static and cyclic performance of cementitious composites reinforced with glass-fibres

    International Nuclear Information System (INIS)

    Arabi, N.

    2018-01-01

    This paper concerns an experimental study of the influence of short glass-fibres randomly oriented of a reinforced cement-based composite on the mechanical behaviour. The matrix material parameters used are: cement/sand ratio and water/cement ratio fixed at 0.5; the glass-fibre content (0%, 0.5%, 1.0%, 1.5%, 2% and 2.5%) and fibre lengths (3, 6 and 12 mm). Composites mechanical characterisation under static behaviour at flexural and compression tests, shows that the reinforcement effect is beneficial only in flexural case. A synergy (matrix-reinforcement) was observed when fibre length of 12 mm is used with application rate of 2% in flexural. The fatigue behaviour determined by Wöhler plots (stress-number of cycles to rupture), derived from experimental results; showed a large results dispersion which is attributed to many causes initiating this damage. The cyclic tests illustrate brittle character of these materials; even with low-amplitude cycles of loading no adaptation of these materials can be reported. [es

  1. Isothermal heat treatment influence on the interface of a powder metallurgy aluminium metal matrix composite reinforced with Ni3Al intermetallics

    International Nuclear Information System (INIS)

    Ferrer, C.; Amigo, V.; Salvador, M.D.; Busquets, D.; Torralba, J.M.

    1998-01-01

    The improvement of the mechanical properties of aluminium MMCs reinforced with Ni 3 Al particles is based on the continuity of the matrix-particle interface as well as on the strength of these particles. This work deals with the influence of different heat treatments on the evolution of new phases in that interface. Samples were prepared following a powder metallurgy route with a final stage of extrusion. Several heat treatments encompassing a broad group of temperatures and times were applied producing different phases around the primary particles. Samples were analysed via optical and scanning electron microscopy with energy dispersive X ray analysis. Microhardness tests were also conducted on the different phases generated. (Author) 15 refs

  2. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  3. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  4. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  5. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  6. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  7. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  8. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  9. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  10. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  11. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. (GEMPPM, Villeurbanne (France))

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  12. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  13. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  14. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  15. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  16. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  17. Radiation processing for carbon fiber-reinforced polytetrafluoroethylene composite materials

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    The present work is an attempt to evaluate the performance of the fiber composites with crosslinked polytetrafluoroethylene (PTFE) as a polymer matrix by radiation. The uni-directional carbon fiber-reinforced composites were fabricated with PTFE fine powder impregnation method and then crosslinked by electron beams irradiation under selective conditions. The carbon fiber-reinforced crosslinked PTFE composites show good mechanical properties compared with crosslinked PTFE. The radiation resistance of crosslinked PTFE composites is improved more than that of crosslinked resin without fiber. (author)

  18. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    Wintec

    initiated in our laboratory on synthesis and study of pro- perties of Hibiscus sabdariffa fibre reinforced urea– formaldehyde (U–F) resin matrix based biocomposites. 2. Experimental. 2.1 Material and methods. Urea (Qualigens Chemicals Ltd), formaldehyde solution. (Qualigens Chemicals Ltd.) and sodium hydroxide (Quali-.

  19. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications

    Science.gov (United States)

    Duta, L.; Ristoscu, C.; Stan, G. E.; Husanu, M. A.; Besleaga, C.; Chifiriuc, M. C.; Lazar, V.; Bleotu, C.; Miculescu, F.; Mihailescu, N.; Axente, E.; Badiceanu, M.; Bociaga, D.; Mihailescu, Ion N.

    2018-05-01

    We report on Matrix-Assisted Pulsed Laser Evaporation (MAPLE) deposition of Carbon thin films, simple or reinforced with intended concentrations of Ag and Si. A KrF∗ (λ = 248 nm, τFWHM ≤ 25 ns, ν = 10 Hz) excimer laser was used for irradiation. The effect of a post-deposition thermal treatment in vacuum was studied. Besides detailed morphological, compositional, structural and pull-out adherence characterizations, the potential of the carbonaceous films for medical applications was investigated in vitro by anti-biofilm and cytocompatibility assays. The microscopic images evidenced no delaminations. Micro-Raman spectroscopy revealed a graphitization tendency depending on preparation conditions, thermal treatment and reinforcing agents' presence. Adherence values improved considerably after thermal treatment. In vitro biological evaluation showed that the films containing ∼1.85 at.% Ag were non-cytotoxic for MG63 cells, while eliciting a limited antimicrobial activity. The increase of Ag content to 3.6 at.% results in a significant enhancement of antimicrobial activity, whilst maintaining the cytotoxic action and adherence characteristics at acceptable levels. We propose a new class of metamaterials based on C reinforced with Ag and Si obtained by MAPLE for medical applications, i.e. the prevention and treatment of various infections associated with biofilms developed on implants and other medical equipments.

  20. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  1. Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)

    International Nuclear Information System (INIS)

    Hameed, R.; Turatsinze, A.

    2015-01-01

    A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)

  2. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    /chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...... profound effects on cell adhesion, proliferation, growth and phenotype. The observed matrix modifications reported here may therefore modulate cellular behaviour in diseases such as atherosclerosis where MPO-derived oxidants are generated....

  3. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  4. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  5. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  6. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  7. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  8. Radiation Induced Precipitation in Iron

    International Nuclear Information System (INIS)

    Solly, B.

    1964-02-01

    Foils of iron have been neutron-irradiated in the Swedish re- search reactor R2 to integrated doses in the range 10 17 - 10 19 nvt (> 1 MeV) and examined by transmission electron microscopy. Features have been observed having diffraction contrast similar to that of the prismatic dislocation loops formed in f.c.c. metals by the collapse of point-defect clusters. The features have been shown to be due to precipitation of impurities at radiation damage centres in the iron matrix

  9. Metallic Glasses as Potential Reinforcements in Al and Mg Matrices: A Review

    Directory of Open Access Journals (Sweden)

    S. Jayalakshmi

    2018-04-01

    Full Text Available Development of metal matrix composites (MMCs with metallic glass/amorphous alloy reinforcements is an emerging research field. As reinforcements, metallic glasses with their high strength (up to ~2 GPa and high elastic strain limit (~2% can provide superior mechanical properties. Being metallic in nature, the glassy alloys can ensure better interfacial properties when compared to conventional ceramic reinforcements. Given the metastable nature of metallic glasses, lightweight materials such as aluminum (Al and magnesium (Mg with relatively lower melting points are suitable matrix materials. Synthesis of these advanced composites is a challenge as selection of processing method and appropriate reinforcement type (which does not allow devitrification of the metallic glass during processing is important. Non-conventional techniques such as high frequency induction sintering, bidirectional microwave sintering, friction stir processing, accumulative roll-bonding, and spark plasma sintering are being explored to produce these novel materials. In this paper, an overview on the synthesis and properties of aluminum and magnesium based composites with glassy reinforcement produced by various unconventional methods is presented. Evaluation of properties of the produced composites indicate: (i retention of amorphous state of the reinforcement after processing; (ii significant improvement in hardness and strength; (iii improvement/retention of ductility; and (iv high wear resistance and low coefficient of friction. Further, a comparative understanding of the properties highlights that the selection of the processing method is important in producing high performance composites.

  10. KevlarTM Fiber-Reinforced Polybenzoxazine Alloys for Ballistic Impact Application

    Directory of Open Access Journals (Sweden)

    Chanchira Jubsilp

    2011-10-01

    Full Text Available A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA/urethane prepolymer (PU alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastomeric PU content in the BA/PU alloy resulted in samples with tougher characteristics. The storage modulus of the KevlarTM-reinforced BA/PU composites increased with increasing the mass fraction of polybenzoxazine. A ballistic impact test was also performed on the KevlarTM-reinforced BA/PU composites using a 9 mm handgun. It was found that the optimal contents of PU in the BA/PU alloys should be approximately 20wt%. The extent of the delaminated area and interfacial fracture were observed to change with the varied compositions of the matrix alloys. The appropriate thickness of KevlarTM-reinforced 80/20 BA/PU composite panel was 30 plies and 50 plies to resist the penetration from the ballistic impact equivalent to levels II-A and III-A of NIJ standard. The arrangement of composite panels with the higher stiffness panel at the front side also showed the best efficiency of ballistic penetration resistance.

  11. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  12. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  13. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  14. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  15. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  16. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  17. Finite element analysis and experimental verification of Polymer reinforced CRC improved for close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik

    2007-01-01

    Compact Reinforced Composite, CRC, is a high-strength cement-based composite that holds an enormous flexural and energy-absorbing capacity due to the close-spaced high strength steel reinforcement and a high-strength cement-based fiber DSP matrix. The material has been used in various constructions...

  18. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  19. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  20. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  1. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  2. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    Science.gov (United States)

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  4. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    International Nuclear Information System (INIS)

    Schubert, A; Hackert-Oschätzchen, M; Lehnert, N; Götze, U; Herold, F; Schmidt, A; Meichsner, G

    2016-01-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control. (paper)

  5. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  6. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  7. Radiation Induced Precipitation in Iron

    Energy Technology Data Exchange (ETDEWEB)

    Solly, B

    1964-02-15

    Foils of iron have been neutron-irradiated in the Swedish re- search reactor R2 to integrated doses in the range 10{sup 17} - 10{sup 19} nvt (> 1 MeV) and examined by transmission electron microscopy. Features have been observed having diffraction contrast similar to that of the prismatic dislocation loops formed in f.c.c. metals by the collapse of point-defect clusters. The features have been shown to be due to precipitation of impurities at radiation damage centres in the iron matrix.

  8. Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation

    International Nuclear Information System (INIS)

    Luo, Xin; Peng, Jianchao; Zandén, Carl; Yang, Yanping; Mu, Wei; Edwards, Michael; Ye, Lilei; Liu, Johan

    2016-01-01

    Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 °C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.

  9. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  10. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    International Nuclear Information System (INIS)

    Chen, Z; Kang, H; Zhao, Y; Zheng, Y; Wang, T

    2016-01-01

    With an aim of developing high quality in situ TiB 2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB 2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB 2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB 2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB 2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB 2 in strengthening TiB 2 reinforced aluminium casting composites. (paper)

  11. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  13. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  14. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  15. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  16. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  17. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  18. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  19. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  20. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Science.gov (United States)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  1. Sintering by infiltration of loose mixture of powders, a method for metal matrix composite elaboration

    International Nuclear Information System (INIS)

    Constantinescu, V.; Orban, R.; Colan, H.

    1993-01-01

    Starting from the observation that Sintering by Infiltration of Loose Mixture of Powders confers large possibilities for both complex shaped and of large dimensions Particulate Reinforced Metal Matrix Composite components elaboration, its mechanism comparative with those of the classical melt infiltration was investigated. Appropriate measures in order to prevent an excessive hydrostatic flow of the melt and, consequently, reinforcement particle dispersion, as well as to promote wetting in both infiltration and liquid phase sintering stages of the process were established as necessary. Some experimental results in the method application to the fusion tungsten carbide and diamond reinforced metal matrix composite elaboration are, also, presented. (orig.)

  2. Constitutive equations for cracked reinforced concrete based on a refined model

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)

  3. A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete.

    Science.gov (United States)

    Fritz, Laura; Hadwiger, Markus; Geier, Georg; Pittino, Gerhard; Gröller, M Eduard

    2009-01-01

    This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of particles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete's application direction. This is a crucial step in assessing the material's behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industry. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessary analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.

  4. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  5. Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model.

    Science.gov (United States)

    Nieponice, Alejandro; Gilbert, Thomas W; Badylak, Stephen F

    2006-12-01

    The gastric pull-up procedure, a standard intervention after radical esophagectomy, is associated with high morbidity and mortality due to leaks and stricture. A previous preclinical study showed that an extracellular matrix (ECM) scaffold with autologous muscle tissue could be used to repair a complete circumferential defect in the cervical esophagus. The aim of the present study was to determine if healing of end-to-end anastomoses of the esophagus could be improved by reinforcement with an ECM scaffold. Twelve female mongrel dogs underwent a complete transection of either the cervical esophagus (n = 6) or the gastroesophageal junction (n = 6). A portion of the endomucosa at the anastomotic site was resected and replaced with an ECM scaffold in contact with the subjacent muscle and the muscle was anastomosed. The measured end points included macroscopic and microscopic evaluation and quantification of the esophageal diameter at the anastomotic site. No anastomotic leaks or systemic complications were observed in the ECM-treated animals. Morphologic findings in both groups showed complete mucosal covering of the surgery site. The remodeled esophageal tissue showed angiogenesis and complete epithelialization. Intact, organized layers of muscle tissue were present between the native muscularis externa and the submucosal layer and effectively bridged the transected ends. The ECM scaffold altered the default mechanism of esophageal repair. Scar tissue formation with associated stricture was virtually eliminated, and the esophageal healing response was characterized by the replacement with structurally normal tissue layers. These findings suggest that the high morbidity rate associated with esophagectomy procedures may be reduced by this ECM augmentation procedure at the anastomotic site.

  6. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  7. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method.

    Science.gov (United States)

    Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo

    2017-12-01

    In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  9. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  10. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  11. Role of the polymeric matrix in the processing and structural properties of composite materials. Proceedings of the Joint U.S.-Italy Symposium on Composite Materials, Capri, Italy, June 15-19, 1981

    International Nuclear Information System (INIS)

    Seferis, J.C.; Nicolais, L.

    1983-01-01

    The interaction between the polymeric matrix and the reinforcing phase and the effect of the matrix on composite performance are discussed under the following headings: chemical and environmental effects, short-fiber reinforcements, interfacial effects, and continuous fiber reinforcements and design. Papers are presented on the factors affecting the development of new matrix resins for advanced composites creep and fracture initiation in fiber-reinforced plastics dimensional stability of reinforced matrices and internal stresses in fiber-reinforced plastics. Other topics discussed include the use of composites in commercial aircraft, design of continuous-fiber composite structures, and delamination in graphite-epoxy. For individual items see A83-46280 to A83-46308

  12. Interfacial adhesion improvement in carbon fiber/carbon nanotube reinforced hybrid composites by the application of a reactive hybrid resin initiated by gamma irradiation

    Science.gov (United States)

    Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.

    2018-04-01

    Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.

  13. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  14. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  15. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  16. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  17. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    Science.gov (United States)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  18. Fracture Toughness Improvement of Composites Reinforced with Optimally Shaped Short Ductile Fibers

    National Research Council Canada - National Science Library

    Wetherhold, Robert C; Patra, Abani K

    2001-01-01

    The fracture toughness of brittle matrix composites reinforced with ductile fibers has been greatly improved by shaping the fibers so that they fully contribute their plastic work to the fracture process...

  19. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites

    International Nuclear Information System (INIS)

    Bakare, I.O.; Okieimen, F.E.; Pavithran, C.; Abdul Khalil, H.P.S.; Brahmakumar, M.

    2010-01-01

    The development of high-performance composite materials from locally sourced and renewable materials was investigated. Rubber seed oil polyurethane resin synthesized using rubber seed monoglyceride derived from glycerolysis of the oil was used as matrix in the composite samples. Rubber seed oil-based polyurethane composite reinforced with unidirectional sisal fibers were prepared and characterized. Results showed that the properties of unidirectional fiber-reinforced rubber seed oil-based polyurethane composites gave good thermal and mechanical properties. Also, the values of tensile strengths and flexural moduli of the polyurethane composites were more than tenfold and about twofold higher than un-reinforced rubber seed oil-based polyurethane. The improved thermal stability and the scanning electron micrographs of the fracture surface of the composites were attributed to good fiber-matrix interaction. These results indicate that high-performance 'all natural products' composite materials can be developed from resources that are readily available locally.

  20. Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction

    Science.gov (United States)

    2000-08-01

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  1. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  2. Soil reinforcement with recycled carpet wastes.

    Science.gov (United States)

    Ghiassian, Hossein; Poorebrahim, Gholamreza; Gray, Donald H

    2004-04-01

    A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.

  3. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  4. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  5. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  6. An investigation of ductile and brittle reinforcement on the fracture behavior of molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Brooks, D.; Soboyejo, W.O.

    1994-01-01

    The results of an ongoing study of the effects of ductile and brittle reinforcement on the fracture toughness of particulate reinforced molybdenum disilicide matrix composites are presented. MoSi 2 composites reinforced with ductile Nb, Mo, and W particles are compared with MoSi 2 composites reinforced with SiC, TiB 2 , and partially stabilized zirconia (PSZ) particles. The effects of different degrees of yttria stabilization on zirconia reinforced composites will also be examined, as well as the effect of solid solution alloying with WSi 2 . The effects of multiple reinforcement of MoSi 2 with 20 vol.% Nb and 20 vol.% unstabilized zirconia (TZ-0) are discussed. The toughening is rationalized using micromechanical models for crack bridging, transformation toughening, and crack deflection

  7. Effect of reinforcement volume fraction on the density & elastic ...

    African Journals Online (AJOL)

    Effect of reinforcement volume fraction on the density & elastic parameters of BMG's matrix composites. Wahiba Metiri 1, Fatiha Hadjoub1, 2 and Leila Touati Tliba 1. 1 Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-. Mokhtar, BP 12, Annaba -23000, Algeria.

  8. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  9. Effects of HIP and forging on fracture behaviour in cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Nishigaki, K.; Okajima, D.; Ogasawara, M.

    2010-01-01

    The cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure was developed as a die material due to its high hardness. In order to achieve high performances of dies, not only the hardness but also the mechanical properties such as fracture toughness and fatigue crack propagation (FCP) resistance should be improved. In this paper, hot isostatic pressing (HIP) or forging was applied to the cast iron to improve mechanical properties, and the fracture behaviour, such as flexural strength, fracture toughness and FCP, was studied. The average flexural strength was reduced by forging because of the enhanced notch sensitivity due to the increase in the hardness. The fracture toughness was not affected by HIP nor forging while its scatter was significantly reduced by both post-treatments. The intrinsic FCP resistance taking account of crack closure was the same regardless of the application of HIP or forging, indicating that a slight change in the microstructure resulting from both treatments and the presence of casting defects exerted little influence on FCP behaviour. It could be concluded that both HIP and forging could improve the hardness of the material, while fracture toughness and FCP resistance were maintained.

  10. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  11. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  12. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  13. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge; Efecto del porcentaje de refuerzo frente al desgaste en compuestos de matriz metalica sinterizados con descarga luminiscente anormal

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Velasquez, S.; Pineda-Triana, Y.; Aguilar-Castro, Y.; Vera-Lopez, E.

    2016-05-01

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H{sub 2} - N{sub 2} and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  14. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  15. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  16. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  17. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  18. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  19. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  20. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.

  1. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  2. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  3. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  4. Mathematically Simulated Elastic Characteristics of the Composite Reinforced by Spherical Inclusions

    Directory of Open Access Journals (Sweden)

    E. S. Sergeeva

    2017-01-01

    Full Text Available Composite materials are widely used in engineering, especially in constructions working under simultaneous intensive mechanical and thermal loads. In the industry the main requirements for materials are restrictions on the elastic characteristics, such as bulk modulus and shear modulus.Composite materials consist of a base material, a so-called binder (matrix, and reinforcing inclusions. The composite matrix defines a method for the composite manufacturing and must meet a set of operational and technological requirements. The most commonly used types are a metal matrix and a polymer one, because of the relative ease of manufacture, good wettability, and chemical resistance.Reinforcing inclusions can be of different nature (boron, crystalline, etc. and shape (spherical, lamellar, fiber. Lately, active researches have been conducted with the nanostructural elements (fullerenes, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs plates, nanoclusters used as the filler.There are various ways of modeling the elastic properties of the composites. The most common are numerical methods using a finite element method and analytical methods.In simulation of composite characteristics, in addition to the properties of its components, a reinforcing structure plays an important role.The paper considers an obtained isotropic composite with a metal matrix reinforced by the spherical nanoclusters of randomly oriented SWNTs with a reinforcement scheme similar to the cubic crystal lattice. Numerical modeling and analytical methods were used.For the numerical solution two types of periodic structure of the material were obtained: a cube with eight parts of the ball in the corners of a cube and a sphere in the center. For each of the periodic cells a representative volume is selected in which, using the kinematic and force boundary conditions, have been implemented two types of stress-strain state, namely stretching along one axis and shear. For

  5. Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Kalim, E-mail: deshmukh.kalim@gmail.com [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Ahamed, M. Basheer [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Sadasivuni, Kishor Kumar [Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha (Qatar); Ponnamma, Deepalekshmi; AlMaadeed, Mariam Al-Ali [Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Khadheer Pasha, S.K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai, 400019 (India); Chidambaram, K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India)

    2017-01-15

    In this work, Graphene Oxide (GO) reinforced novel polymer composites comprising of poly (4-styrenesulfonic acid) (PSSA) and polyvinyl alcohol (PVA) blend matrix have been developed using colloidal processing technique. The properties and the structure of prepared composites were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy (UV), Thermogravimetric analysis (TGA), Polarized optical microscopy (POM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The FTIR and Raman spectroscopy analysis indicate the strong interfacial interaction between GO and PSSA/PVA blend matrix. The XRD and SEM analysis confirm that GO was fully exfoliated into individual graphene sheets and dispersed homogeneously within the polymer matrix. The effective reinforcement of GO into PSSA/PVA blend matrix has resulted in the enhancement of dielectric constant. The dielectric constant has increased from 82.67 (50 Hz, 150 °C) for PSSA/PVA (50/50) blend to 297.91 (50 Hz, 150 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. The dielectric loss (tan δ) has increased from 1.56 (50 KHz, 140 °C) for PSSA/PVA (50/50) blend to 2.64 (50 KHz, 140 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. These findings provide a new insight to fabricate flexible, high-k dielectric composite as a promising material for energy storage applications. - Highlights: • Graphene Oxide was prepared from natural graphite using modified Hummers method. • Novel PSSA/PVA/GO composites were prepared by reinforcing GO into PSSA/PVA blend matrix. • Molecular level dispersion of GO in PSSA/PVA blend matrix was successfully achieved. • Enhancement in the dielectric constant was observed due to effective reinforcement of GO in PSSA/PVA blend matrix. • PSSA/PVA/GO composites with high dielectric performances can be considered for energy storage applications.

  6. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  7. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  8. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  9. Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars

    Science.gov (United States)

    Naveen Kumar, G.; Sundaravadivelu, Karthik

    2017-07-01

    In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.

  10. Mechanical behaviour of aluminium matrix composites with particles in high temperature

    International Nuclear Information System (INIS)

    Amigo, V.; Salvador, M. D.; Ferrer, C.; Costa d, C. E.; Busquets, D.

    2001-01-01

    The aluminium matrix composites materials reinforced by ceramic particles can be elaborated by powder metallurgy techniques, with extrusion processes. These can provide new materials, with a better mechanical behaviour and moreover when we need those properties at higher temperatures. Aluminium alloy reinforced composites with silicon nitride particles by powder extrusion process was done. Their mechanical properties were characterised at room and elevated temperatures. (Author) 28 refs

  11. Evaluation of the thermal properties of polypropylene reinforced with palm fibers composites

    International Nuclear Information System (INIS)

    Capri, M.R.; Santana, L.C.; Mulinari, D.R.

    2016-01-01

    The aim of this study was to characterize polypropylene reinforced with palm composites. Of this form, it was studied physical and chemical modifications of the in nature fibers, washed with hot water and mercerized. The composites of polypropylene reinforced with 5%, 10% and 20% (wt /wt) in nature fibers and mercerized were evaluated thermally. The fibers were characterized by SEM XRD and TGA / DSC techniques. Results revealed that the mercerized fibers presented higher crystallinity when compared to others, as well as increased roughness, facilitating interlacing with the reinforcement matrix. Thermal studies of the fibers showed that the mercerization caused displacement curves paragraph higher temperatures. The composites reinforced with treated fibers presented largest temperatures and enthalpies of degradation. The content of fiber influenced in enthalpy degradation and reduction in fusion temperature. (author)

  12. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Yao-Wen Hsu

    2017-07-01

    Full Text Available A novel nanoarchitecture-reinforced poly(lactic acid (PLA nanocomposite was prepared using multi-walled carbon nanotube (MWCNT-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity.

  13. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  14. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms...

  15. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuliang [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Xiao Changfa, E-mail: xiaotjpu@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Hu Xiaoyu; Bai Qianqian [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. Black-Right-Pointing-Pointer The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. Black-Right-Pointing-Pointer The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  16. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    International Nuclear Information System (INIS)

    Zhang Xuliang; Xiao Changfa; Hu Xiaoyu; Bai Qianqian

    2013-01-01

    Highlights: ► The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. ► The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. ► The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  17. The effects of boro-tempering heat treatment on microstructural properties of ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz

    2011-01-01

    In this study, the effects of boro-tempering heat treatment on microstructural properties of ductile iron were investigated. Test samples with dimensions of 10 x 10 x 55 mm were boronized at 900 o C for 1, 3 and 5 h and then tempered at four different temperatures (250, 300, 350 and 450 o C) for 1 h. Both optical microscopy and scanning electron microscopy were used to reveal the microstructural details of coating and matrix of boro-tempered ductile iron. X-ray diffraction was used to determine the constituents of the coating layer. The boride layer formed on the surface of boro-tempered ductile cast iron is tooth shape form and consisted of FeB and Fe 2 B phases. The thickness of boride layer increases as the boronizing time increases and tempering temperature decreases. Tempering temperature is more effective than boronizing time on the matrix structure. Boro-tempering heat treatment reduces the formation of lower and upper ausferritic matrix temperature according to classical austempering. This causes formation of upper ausferritic matrix in the sample when tempered at 300 o C. This is in contrast to general case which is the formation of lower ausferritic matrix via austempering at this temperature.

  18. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  19. Application of complex inoculants in improving the process-ability of grey cast iron for cylinder blocks

    Directory of Open Access Journals (Sweden)

    LIU Wei-ming

    2006-05-01

    Full Text Available Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.

  20. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    Science.gov (United States)

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (Pprepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.